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Abstract: Shapes of carotid arteries are analyzed here as elastic curves
under the framework introduced in [2]. Using a mathematical representa-
tion of parameterized curves, termed square-root velocity function (SRVF),
in conjunction with an elastic Riemannian metric, the framework provides
(1) parameterization-invariant shape metrics for comparing curves, (2) si-
multaneous registration of coordinate functions across curves, and (3) com-
putation of statistical summaries and models of shapes of given curves. The
method is applicable to curves in R

n for n ≥ 1. Thus, we study the shapes
and alignments of carotid arteries using their 3D coordinates and other geo-
metric properties along the curves, such as radii and curvatures. The results
show a significant improvement in curve alignments, leading to a compact
phase-amplitude PCA representation and modeling of artery data.
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1. Introduction

In this paper we analyze the AneuRisk65 data introduced in the paper [6, 7].
The goal of this dataset is the study of shapes of cerebral vessels to characterize
their physiological attributes, particularly the risk for aneurysms. We mainly
treat arteries as curves in R

3 in this paper, although some extensions that in-
clude scalar-valued functions along the curves, such as curvatures and radii, are

∗Main article 10.1214/14-EJS938.

1920

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/14-EJS938D
mailto:qxie@stat.fsu.edu
mailto:kurtek.1@stat.osu.edu
mailto:anuj@stat.fsu.edu
http://dx.doi.org/10.1214/14-EJS938


Elastic shape registration of curves 1921

also briefly mentioned in the analysis. The shape analysis of curves in R
n has

been of great interest in many parts of science and a variety of tools have been
developed. The two main ideas used in statistics literature are: (1) landmark-
based shape analysis where one selects matching landmarks across all objects
and studies the vectors of landmarks for shape analysis [1], and (2) shape anal-
ysis of curves in parameterized forms. We will take the latter approach as it
provides a comprehensive joint solution for registration and statistical shape
analysis. In this approach, the carotid arteries are studied as parameterized 3D
curves of the type f : I → R

3, where I = [−1, 0].
The problem of joint registration and shape analysis can be studied either as

pairwise or groupwise. In a pairwise registration problem between two curves,
one solves for which point on one curve matches which point on the other. In
case the two curves are parameterized, as is the case for us, the registration
is controlled by parameterization. That is, for any t ∈ I, the points f1(t) and
f2(t) are registered. The change in registration is accomplished by a warping
function.

Remark 1. It is important to note the difference in the effects of domain-
warping functions for different datasets studied in this special section. In case
of real-valued functions, e.g. spike trains [4] or proteomics data, a warping of
domain I changes the graph of a function, i.e. a display of the function is ac-
tually deformed in the process. In contrast, for curves in R

3, e.g. arteries or
juggling trajectories, the shape or the display of the curve remains unchanged
under domain warping. The domain warping function is therefore termed a re-
parameterization function in this context. This is an important fundamental
difference in (real-valued) functional data analysis and shape analysis of curves
in higher-dimensional Euclidean spaces.

The next question is: What should be the space of re-parameterization func-
tions? For re-parameterization functions from R to R, there are several sub-
groups that can be shortlisted. These include subgroups for translation (one-
dimensional), scaling (one-dimensional), and diffeomorphisms that fix an in-
terval. The first two result in linear mappings while the last group provides
a nonlinear registration between functions. Assuming that the linear mapping
has already been performed, we choose H to be the set of all positive diffeomor-
phisms from I to itself. The groupwise registration problem is that given mul-
tiple curves f1, f2, . . . , fn, we must find the corresponding re-parameterization
functions h1, h2, . . . , hn such that {fi(hi(t))} are registered for all t ∈ I. The
solution comes from computing a mean shape under a proper shape metric and
then aligning the individual curves to this mean curve.

For any two curves, the quantity ‖f1−f2‖, denoting the L2 distance between
them, has often been used to compare shapes of curves. However, this quantity
changes with the parameterization of curves even though their shapes are in-
variant to different parameterizations. So, this is unsuitable for shape analysis
in its current form. One may be tempted to fix the issue using the quantity
infh∈H ‖f1 − f2 ◦ h‖, for removing parameterization variability and for compar-
ing shapes of f1 and f2, but there are many problems with that setup. It is
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not symmetric and is susceptible to the well-known pinching problem. A bigger
underlying problem is that this quantity is not a proper metric. (Please refer
to the discussion in Srivastava et al. [2, 8] for more details on the limitations of
this choice.) An important direction in the literature has been the use of new
Riemannian metrics that are invariant to re-parameterizations and, thus, avoid
the above-mentioned problem. For curves in R

2 there have been several such in-
variant metrics, see e.g. [5], etc., but so far there are very few ideas that work for
R

n in general. A solution that is applicable to curves in R
n is summarized next.

2. Elastic shape analysis framework: A brief introduction

This framework is based on the use of the square-root velocity function (SRVF)

of the curve f that is defined as q : I → R
3 by ([2]) q(t) = ˙f(t)/

√

|ḟ(t)|.

Note that if the original curves are restricted to only the absolutely continuous
functions, then the SRVFs are elements of L2(I,R3), and one can recover the

curve (up to a translation) by using the equation f(t) =
∫ t

0
q(s)|q(s)|ds. If a

curve f is re-parameterized by any h ∈ H, then the SRVF of the new curve is

given by (q, h) = (q◦h)
√

ḣ. Also, if f is rotated by a rotation matrix O ∈ SO(3),
its SRVF also rotates by the same O. The choice of representing curves by
SRVFs is important because the L

2 distance between SRVFs of any two curves
is unchanged by simultaneous rotation and re-parameterization of these curves,
i.e. ‖q1 − q2‖ = ‖O(q1, h) − O(q2, h)‖ for all O ∈ SO(3) and h ∈ H. This
isometry property avoids the pinching and other problems mentioned above. It
can be shown that the L

2 metric in the SRVF space is an example of an elastic

Riemannian metric [2] that measures a combination of bending and stretching
of curves that deforms one into the other.

The carotid arteries for different patients cannot be measured in a single co-
ordinate system and, therefore, require a global rigid alignment before analysis.
In other words, shape analysis of curves is required to be invariant to their rigid
motions. One often removes the variability associated with global scalings of
curves in shape analysis but if there is interest in incorporating global scales
in analysis, they can be easily included in the representation. Two of the vari-
ables – rigid translation and global scale – are easily removed as follows. The
SRVF representation is invariant of translation by definition. If we want to re-
move the scale variability, we can restrict f to be a unit length curve such that
∫

I
|q(t)|2dt =

∫

I
|ḟ(t)|dt = 1. Thus, the space of SRVFs representing unit-length

curves is a unit Hilbert sphere C endowed with the L
2 metric. It is called the

pre-shape space. In cases when scale is a variable to be considered in analyses,
the underlying space is no longer a hypersphere but the full L2 space. Given
any two SRVFs q1 and q2 in C, representing two unit-length curves in R

3, we
can compute the shortest path, or a geodesic, between them in C, as α : I → C
such that α(τ) = 1

sin(θ)(sin(θ(1 − τ))q1 + sin(θτ)q2), where θ is the arc-length

distance between them given by θ = dc(q1, q2) = cos−1(〈q1, q2〉). Here θ pro-
vides a quantification of differences in f1 and f2 in the pre-shape space while
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α provides an optimal deformation between them. The remaining two transfor-
mations – rotation and re-parameterization – change SRVFs of curves and are
removed using an elaborate algebraic technique as follows. We unify all SRVFs
resulting from rotations and re-parameterizations of the same curve, using the
notion of equivalence classes (or orbits) under the actions of SO(3) and H. Thus,
each shape is uniquely associated with an equivalence class defined as the set:

[q] = {O(q ◦ h)
√

ḣ|(h,O) ∈ H × SO(3)}. The shape space of curves in R
3 is

then the space of such classes; it can also be viewed as the quotient space of C
modulo SO(3) × H. Thus, for any two curves f1 and f2, represented by their
SRVF orbits [q1] and [q2], the distance between their shapes is given by:

ds([q1], [q2]) = inf
(h,O)∈H×SO(3)

dc(q1, O(q2 ◦ h)
√

ḣ). (2.1)

This equation provides two important ingredients for shape analysis – the min-
imization over h and O results in optimal registration of points across curves,
and the quantity ds forms a proper metric on the shape space of curves to re-
sult in a quantification of shape differences. The geodesic α, this time between
q1 and O∗(q2, h

∗), provides the optimal deformation in the shape space. The
optimal rotation O∗ is found using the Procrustes method while the optimal
re-parameterization h∗ is found using the dynamic programming algorithm. In
case we have an additional feature function, such as the maximum inscribed
sphere radius (MISR), along the curve, we can include it in the analysis by
forming curves in R

4, the fourth coordinate being the MISR function. Note that
the rotation group does not extend to SO(4) but stays at SO(3) to rotate only
the coordinates of the original f . The role of H also remains the same as earlier.

3. Experimental results

In this section we present some experimental results on the Aneurisk65 dataset
obtained using the elastic shape analysis described above. As an example, the
original coordinate functions of left carotids are shown in Fig. 1. It is observed
that the curvilinear abscissa for individual curves are not equal. However, at the
same time, the plot shows that the arteries can have similar shapes but with
quite different scales (lengths). Therefore, we standardize the abscissa to range
from [−1, 0] with 0 meaning closer to bifurcation. To highlight the need for joint
registration of different coordinate functions, we apply the method introduced
in [3, 8] for 1D functions separately on each coordinate function and show results
in Fig. 2. The original coordinate functions and the registered ones are shown.
However, for each single 3D curve, the warping functions used to deform the
three axes, x, y and z, are not the same. Which ones should be used to align
different curves? The natural solution is to jointly align all three coordinates for
3D curve registration and perform simultaneous analysis.

Pairwise registration and geodesic As the first result, the left column in
Fig. 3 shows an example of pairwise registration between a pair of carotid arter-
ies. The curves f1 and f2 are drawn with colors along curves representing the val-
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Original Abscissa Unified I = [−1, 0]

Fig 1. Coordinate functions for original curves of left carotids. Each row represents x, y
and z coordinate respectively. Left column shows coordinate functions plotted with respect to
curvilinear abscissa while the right column presents them plotted with respect to the unified
domain interval [−1, 0].

(a) Original (b) Registered (c) Warping Funcitons

Fig 2. Registrations of coordinate functions separately for original curves. Each row rep-
resents x, y and z coordinate respectively. Column (a) shows original coordinate functions
plotted with respect to the unified domain interval [−1, 0]. Column (b) shows registered coordi-
nate functions warped separately in each coordinate. Column (c) represents warping functions
corresponds to each coordinate.

ues of MISR. In panel (a) the correspondences between f1 and f2 are shown using
some dotted lines connecting the two curves. Panel (b) shows the geodesic path,
an optimal deformation from f1 to f2, in the shape space in equal time steps.
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(a) Correspondences (b) Geodesic Path

Registration with/without Feature

(c) Coordinates Only (d) With MISR Feature
X-coordinate
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Fig 3. Pairwise registration results. (a) Correspondences. (b) Geodesic path. (c) Pairwise
registration using the coordinate functions only, and (d) Pairwise registration using the coor-
dinate functions and the MISR. Color scheme: f1 – magenta; f2 – green; f̃2 = O∗(f2 ◦h∗) –
black. In the left case, the coordinate registration improves significantly over the original while
in the right the MISR registration improves also.

Panels (c) and (d) present the x, y, and z coordinate functions in that order
using registration based only on these coordinates (left), and these coordinates
and the MISR function as the fourth coordinate (right). Note that the end points
of the coordinate functions should remain the same after re-parameterization.
However, they can change due to 3D rotation. The last row shows the MISR
function in the two cases. It can be seen that the quality of MISR registration
is better in the right case where it is included in the estimation of h∗.
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(a) Unregistered (b) Registered (c) Mean Curves (d) Warpings

(e) First Three Principle Directions

Unregistered Registered
−2σ −σ µ +σ +2σ −2σ −σ µ +σ +2σ

Fig 4. Statistical modeling of artery curves. (a) Mean curve before registration. (b) Mean
curve after registration. (c) Mean curves before and after registration from two views. Unregis-
tered: green; Registered: magenta. (d) Re-parameterization functions with corresponding mean
in red. (e) First three principal directions of variation. Left: unregistered. Right: registered.

Mean shape and groupwise registration Now that we have a proper dis-
tance in the shape space, we can compute shape summaries and model shape
variability in the given artery data. We use the notion of the Karcher mean
to compute a mean and then (in a pairwise manner) align the given curves to
this mean using Eqn. 2.1. Then, we perform fPCA of the given curves by first
mapping them into the tangent space at the Karcher mean shape, and then
mapping the results back to the shape space (see [2]).

In Fig. 4, panels (a) and (b) show the mean curve (red curve) on top of
the given artery curves, both without and with registration (optimization in
Eqn. 2.1), respectively. In panel (c), two views of the mean curves are displayed
for better evaluation. The mean of registered curves is shown in magenta and
that of the unregistered ones is in green. It can be seen that the magenta curve
captures more local geometric properties due to registration. In panel (d), the
warping functions used to register each curve to the mean curve are plotted
with the mean of re-parameterization functions (in red). Panel (e) shows the first
three principal directions of variation in each row for unregistered and registered
curves; red curves represent the mean curves and the blue ones are one and two
standard deviation away from the mean along each principal direction.

Furthermore, Fig. 5 shows the registered curves with corresponding mean
curves visualized separately as three coordinate functions. Other features along
the curve are then warped to display for comparison in Fig. 6. Those include the
first derivative of the curves (X1 FKS) along the three coordinates separately,
the radius (MISR) and the curvature (Curvature FKS).

Cluster Analysis Using the shape metric ds introduced earlier in Eqn. 2.1,
we can perform cluster analysis on the given 65 observed curves based on their
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Fig 5. Mean curves before and after registration. Each coordinate function is shown separately
in each row. Mean curves are plotted in red. Left: unregistered. Right: registered.

shapes. The pairwise distances ds([fi], [fj ]) are computed for any pair (i, j).
Based on the pairwise distances, the agglomerative hierarchical cluster tree using
Ward’s criterion is applied. The clustering result with three groups is chosen
to correspond to the Ω, Γ and S-shaped ICAs. The member curves are then
aligned to their respective mean curves within each group. The aligned curves
are displayed using the coordinate functions in Fig. 7. The group mean curves
capture more detailed shape structure than the overall mean and facilitate more

(a) Unregistered (b) Registered
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Fig 6. Computing mean curves. Features are warped with the optimal deformations to register
original curves for comparison. X1 FKS functions are shown on each coordinate separately.
Left: unregistered. Right: registered.
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(a) Cluster 1
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(b) Cluster 2
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(c) Cluster 3
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Fig 7. Mean curves within clusters viewed from three coordinates.

compact models. It can be observed that cluster 1 and cluster 3 mainly differ in
their x-coordinate functions and cluster 2 differs from the other clusters in all
coordinates.

4. Conclusion

We have applied elastic shape analysis of 3D and higher dimensional curves
to the Anuerisk65 carotid artery data. This framework enables us to align all
three coordinate functions simultaneously with one common warping function
and perform shape analysis of these curves. This framework also leads to a
proper metric on the quotient space that is used in pairwise comparisons, mean
computations, fPCA, and clustering of curves according to their shapes.
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