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1. Introductory remarks

My appreciation of the innovation, effort, and commitment to the data that
has led to these six fine papers, not to mention my own small contribution, goes
beyond what I can adequately express in this rejoinder; which is such in the sense
of celebrating my return to this outstanding team of researchers and their future
research on this fascinating problem of the identification of phase variation in
functional data. These collected manuscripts apply five registration methods,
three warping families, five collatoral data analyses and two new models; and
my commenting on all the new insights and remaining challenges would surely
exhaust the patience of the reader.

Perhaps the editor will tolerate my referring to each team by the string of
first letters of author names, such as RGK for my own analysis, Ramsay, Gribble
and Kurtek (2013).

What do the data and the biomechanical processes that generated them in-
vite the statistician to do? A complete investigation should recognize the three
levels of time in the data: (1) across records, (2) within records across jug-
gling cycles, and (3) within cycles. It would be essential, too, to recognize and
faithfully represent the information found in at least two orders of derivatives,
since the velocity and acceleration vectors at any time indicate the direction
of the ball and the force required by the juggling task, respectively. That is,
juggling dynamics is easily as important in this problem as juggling statics; and
was the motivation for RGK’s focus on tangential motion rather than purely
positional information. Phase variation, too, demands effort from the juggler,
and the warping functions used to represent this effort must also respect the
system’s limited energy budget available for the task. In this and many appli-
cation of registration methods, phase variation should be viewed and studied as
a substantively interesting part of the total picture, rather than as and ignor-
able nuisance. Finally, the data analyst has inevitably to tell the story via the
technology of statistical graphics, and some strategies work better than others.
To expect all this and more from each paper is, of course, unreasonable; but
collectively much of this agenda has been achieved.
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2. Representing phase variation by warping function h

Bernardi, Sangalli, Secchi and Vantini (2013) [BSSV] adopted a minimalist ap-
proach in which their two-parameter h’s were line segments. Because these seg-
ments were unconstrained at their boundaries, their approach was unique in
not requiring common domains for the registered functions. Of course warping
functions this elementary are quite unable to deal with the biphasic nature of
the the juggling cycle, but it was surprising how revealing these simple warps
were nonetheless, and I was reminded that many applications would only re-
quire one- or two-parameter warps, such as would be achieved by expressing the
log-derivative W of h as a second or third degree polynomial.

Poss and Wagner (2013) [PW], Tolver, Sorensen, Muller and Mousavi (2013)
[TSMM] and RGK opted for the B-spline expansion of W = logDh defined by
Ramsay and Silverman (2005) and installed in their software. This choice has
many advantages, including as much flexibility as the data require, which was
considerable for the full record registration of RGK, control over the differen-
tiability of h that can be augmented by regularization, and the possibility of
incorporating covariates and input functions in the definition of h, in addition
to the low dimensional possibilities already suggested.

The estimation of h via the dynamic time warping (DTW) algorithm by
Kurtek, Xie and Srivastava (2013) [KXS] and Lu and Marron (2013) [LM] comes
in for some negative commentary, I’m afraid. This algorithm, closely related
to that for isotonic regression (which also computes monotone functions), was
originally defined by Sakoe and Chiba (1978) for registering discrete sequences
of phonemes in records of speech. It is an exhaustive search method that assigns
a cost value to insertions, deletions or non-changes at the nodes of the lattice
of all possible pairs from members of two sequences, and which then assembles
a minimum-cost non-decreasing trajectory from the result. The final trajectory
increases in discrete jumps to reach the upper right of the lattice from its start at
the lower left. Applied to potentially continuous or at least high density sampling
points, the resulting warping function is anything but smooth, and we see the
consequence of this in the plots of warping functions resulting from the use
of the square-root velocity function method as instantiated in the Matlab and
R code distributed from Professor Srivastava’s lab. These discrete jumps have
particularly deadly consequences for derivative estimates, but also discernably
distort position functions such as those for the Z coordinates in Figure 3 of KXS.
The overly aggressive nature of DTW seems, when applied to the spike train
data, to manufacture peaks where none are obvious in the plots of the original
data. It is a shame that an otherwise exciting registration method is marred by
the use of DTW in a context that was never intended in the first place.

The objective functions used in registration methods need not, in principle,
be tied to any particular family H of warping functions. BSSV optimize a corre-
lational measure motivated by the possibility that curves vary in shape that is
dominated by a simple multiplication by a positive constant. I was not sure what
the domain of the integration was in their equation (2.1), but suspect that it was
the intersection of two domains of the two functions being compared since that
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would be consistent with their use of linear warps. The minimum eigenvalue
criterion used by RGK and TSMM is motivated by the same proportionality
argument. PW used an iterated optimization of squared error loss algorithm de-
veloped by Kneip and Ramsay (2008) [KR], a criterion already known to distort
peaks but nevertheless used by them for reasons of computational convenience.

However, squared error loss applied to the SRVF transformation was used
by KXS and LM with far more impressive justification, namely that this is an
invariant measure that can be used to develop equivalence classes of registered
functions, with geodesic distance measures between these classes or orbits that
lead to the Karcher mean concept and to many other good things. This is an
exciting approach, and one anchored in solid differential geometry. Moving from
DTW to smoother warping family such as that of RS will present computational
challenges due to the derivative of the SRVF transformation having bipolar
singularities at peak and valley locations, but I’m confident that these difficulties
will be effectively dealt with, as has already been the case in applications of L∞

loss measures.
Brunel and Park (2013) [BP] offer a completely different but no less valu-

able attack on the registration problem. Their use of Frenet-Serret frames, arc
length, curvature and torsion, as coordinates for three-dimensional space curves
bypasses the need for registration entirely, and therefore automatically reflects
pure amplitude variation. Their beautiful exposition of their methodology will
be appreciated by readers wanting to try this out on their own data. We need to
learn how to interpret the resulting representations, as well how to find stably
estimate three orders of derivatives; but it seems sure that this approach has
much to offer.

On the other hand, the X, Y and Z coordinates used to record the data are
related to architecture of the human body, and Z is indispensable because of the
critical role played by gravitational force. It might have been worth, however,
looking at other coordinates systems, such as polar or elliptical coordinates, in
the X-Y plane. In short, multiple choices coordinate systems are entirely per-
missible, and defaulting to the coordinates used to record the data can seriously
handicap an analysis. Indeed, the same may be said for time t as a parameter-
ization of these space curves. It would not be difficult estimate to the integral
of the norm of the force vector from knowledge of the mass of the balls, and
this might provide valuable insight into how amplitude and phase variation are
related to work done over juggling cycles.

There is no particular reason for the usual practice of normalizing the domains
of two curves prior to registration, and the impact of this practice on derivatives
is a good reason not to do so. For example, the variation in the lengths of the
113 juggling cycles conveys important information about how the ball is thrown,
and seems likely to be related to the shape of the juggling trajectories in the Y-Z
plane. Domain normalization was even more problematic for the carotid artery
shape data. Current software needs to extended so as to permit registrations
with domains with different starting and ending points.

BSSV, TSMM and PW, as did KR before them, demonstrate that registration
is a more powerful tool when used to represent phase variation around variation
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defined by a model rather than by a single template function. PW’s finding that
principal components lined neatly with coordinate directions was dramatic, and
their plots of the estimated deformation functions show that the phase variation
around these components was impressively small, amounting at most to about
4% of the cycle time. The revealing post-hoc decompositions offered by LM and
KXS also point to the value of folding together model fitting and registration.
KR admitted that their algorithm does not always perform well, so that more
work is required and is already in progress, and we can expect to hear more on
this important idea soon.

The analysis by TSMM was a particularly bold attempt to decompose each
record into a periodic cycle-length component with constant norm and a longer
range variation over the whole record. Perhaps the failure of the constant norm
to be stable across records is related to the impact the wilder loops found in
some records and not others. In any case, and notwithstanding, the elliptical
cycles in their Figures 2 and 4 delighted this reader.

3. Other aspects, follow-up analyses and observations

The three-dimensional nature of the trajectories led to some impressive attempts
at two-dimensional graphical displays. Coding variation around a mean curve
in terms of color in Figure 8 of KXS did not seem quite as informative as the
displays of samples of curves in the same figure, and color didn’t seem to add
much to their Figures 4 and 7 either. But color-coding clusters in Figure 3 of
LM and most of the figures in BSSV worked well.

Plotting warping functions h is not that informative since they usually cluster
tightly around the diagonal, but plots of deformation functions d(t) = h(t) − t

or of the log derivatives W (t) = logDh(t) as in Figure 3 of PW makes much
more effective use of the space in a graph.

The plot of the SRVF curves in the right panel of Figure 2 of KXS was
especially welcome. It shows that this transformation enhances the slope of
these curves where they cross the zero line, corresponding the locations of peaks
and valleys in the untransformed curves. At the same time, it evens out the
variation in the slope of the original curves. This methodology is comes close
to being an automatic peak/valley landmark registration procedure, something
that most of our nonstatistical clients will find relatively easy to understand.

An especially important follow-up to a registration exercise is the exploration
of covariation between phase and amplitude. PW offered the only analysis of this
kind, based on principal components scores derived from PCAs of the registered
cycles and the log-derivatives of the warps. One is of course not surprised to
see phase changes related to variation in how the ball is thrown, such as are
indicated by the regression coefficients in their Table 5. Figure 6 of BSSV also
shows that the third cycle in each record, when the first-thrown ball is caught,
is mainly in cluster 2 containing the tighter loops. The juggler presumably has
more control of the trajectory of the first ball, and this should also affect the
shape of the third warp.
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The most involved second stage analyses of amplitude variation are provided
by the LM team, using new methods developed for object-oriented data and
surveyed in Marron and Alonso (2013), as well as PCA. It’s exciting see the
greater clarity offered by these approaches showcased in this context.
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