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Abstract: In this paper we present results from alignment, extraction,
and statistical analysis of juggling trajectories using an elastic functional
data analysis framework. This framework, specifically adapted for analyzing
cyclostationary signals using an elastic Riemannian metric, was introduced
recently by Kurtek et al. [2]. It relies on a special representation of curves
called the square-root velocity function to pose the alignment problem as
an optimization over the re-parametrization space. The cost function for
alignment is a proper metric and is used to separate phase and amplitude
components of juggling cycles. We present results of segmenting juggling
trials into cycles, separating phase and amplitude components of cycles, and
developing principal component analysis (PCA) based statistical models for
these individual components.
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1. Introduction

In this paper we present results on using elastic functional data analysis for
performing statistical analysis of the juggling data described earlier in the data
introduction paper by Ramsay et al. [3]. As described in that paper, this dataset
consists of measurements of the 3D position of the tip of the right index finger
of the juggler as he juggles three balls. This includes a total of ten juggling tra-
jectories with approximately 11–13 cycles per trial. Since the juggler’s motion
is repetitive, it is natural to treat the trials as observations of a cyclostationary
process. A cyclostationary process is a stationary stochastic process whose un-
derlying probability distribution is cyclic in time. Then, the goal of the analysis
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is to formulate a statistical model for the basic unit, a single cycle, and estimate
it from the observed data.

The general approach used in this paper was developed by Srivastava et al.
[4, 1, 5] and has been summarized in the accompanying paper on the analysis of
AneuRisk65 data by Xie et al. [6]. The adaption of this framework to analysis
of cyclostationary signals was done by Kurtek et al. [2] and is used here directly.
We simply remind the reader that this approach is based on the use of a special
function called the square-root velocity function (SRVF) of curves. For a curve
f : [0, 1] → R

3, its SRVF is defined by a function q : [0, 1] → R
3 as q(t) =

ḟ(t)/
√

|ḟ(t)| [4]. In case of real-valued functions g : [0, 1] → R, the SRVF takes

the form q(t) = sign(ġ(t))
√

|ġ(t)| and is termed the square-root slope function
(SRSF). For any two curves, f1 and f2, represented by their SRVF functions q1
and q2, the alignment or registration problem is formulated as:

inf
h∈H

‖q1 − (q2 ◦ h)
√

ḣ‖, (1.1)

where h ∈ H is a re-parameterization function, and H is the space of all such
functions.

2. Experimental results

There are five types of results presented in this paper:

1. We segment each long, periodic juggling trial into corresponding cycles.
2. We separate the amplitude and phase variabilities in the segmented cycles

using SRVFs.
3. We compute summary statistics such as the mean and covariance of the

amplitude component.
4. We perform dimension reduction using PCA in an appropriate space.
5. We define Gaussian models and validate them through random sampling.

2.1. Cycle segmentation

As a first step in our analysis, we want to segment the long, approximately
cyclostationary juggling trajectories into their corresponding cycles. To do this,
we utilize the tangential velocity functions for all of the trajectories as defined
in Ramsay et al. [3]. We use an automatic segmentation algorithm that has been
previously introduced by Kurtek et al. [2] and is based on the SRSF represen-
tation of functional data. In summary, it works as follows:

1. Manually select a set of cycles from the long signal.
2. Temporally align the chosen cycles and compute their average or median.

This forms the cycle template.
3. Slide the cycle template along the long, periodic signal with a pre-specified

window, which is application specific.
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Fig 1. Initial data processing via segmentation of juggling trajectories into corresponding
cycles.

4. At each step, optimally match the template cycle to the part of the signal
in the current window.

5. Record the phase distance generated based on this alignment. This should
result in a harmonic cost function.

6. Find all of the minima of this cost function. These points correspond to
the break points between the segmented cycles.

We present the results of this algorithm in Figure 1. In Figure 1(a)–(c), we
display two manually selected cycles, their temporal alignment and the resulting
cycle template, respectively. The harmonic cost function computed by sliding
this template along the long signal is displayed in Figure 1(d). The minima of
this function are marked in red and correspond to the segmented cycles. Figure
1(e) shows one juggling trajectory in the xz plane with the beggining of each
cycle marked in red. Finally, Figure 1(f)–(h) shows the x, y, and z coordinate
functions of the segmented cycles. We note that this algorithm was able to find
all of the cycles (in all of the juggling trials) efficiently and accurately.

2.2. Registration and statistical analysis of juggling cycles

After segmentation, if needed, one can temporally register all of the juggling cy-
cles by considering each coordinate function separately. That is, for each coordi-
nate of each cycle we estimate a different warping function using the SRSF rep-
resentation. An example of coordinate functions and their corresponding SRSFs
are presented in Figure 2. The results of this alignment are shown in Figure 3.
We are able to achieve nice alignment of features using this approach. However,
it is not clear which registration should be used to perform the subsequent sta-
tistical analysis. In particular, the juggling cycles are 3D curves and thus the
registration should be performed jointly on all three coordinates. Thus, for the
remainder of this paper, our approach will be to represent the three-dimensional
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Fig 2. Coordinate functions and their corresponding SRSFs.

cycles by their SRVFs, estimate a joint warping function for all coordinates as
described in [4], and finally perform statistical analysis of these curves and their
corresponding warping functions.

We begin with the statistical analysis of all cycles in juggling trial 10. The
cycles in this juggling trial, before and after temporal alignment, are displayed
in Figure 4. The phase variability is displayed in colors where dark blue cor-
responds to the beginning of a cycle and dark red to its end. Note that by
temporally aligning these cycles we do not change their 3D coordinates. We
only change the correspondence of points along the curves. We see an improve-
ment in correspondence using our alignment method. That is, after alignment,
points with similar colors correspond to similar locations along the cycle. We
can quantify the improvement in cycle alignment by computing the cumula-
tive variance before and after alignment. The cumulative variance in this trial
decreased by 58%, from 9.05 to 3.77, due to optimal alignment of the cycles.

Once the cycles are aligned, we can analyze their amplitude variation, which
is closely related to their shape. That is, we can compute the average and covari-
ance and perform PCA to reveal the structure in the aligned data. The first two
principal directions of variation are visualized in Figure 5. We display the path
generated by this direction within one standard deviation of the mean. In each
case, the mean is marked in green. We also display the point-wise magnitude of
variation on the mean cycle. We note that the most variation along the first prin-
cipal direction is seen when the index finger nears the bottom of the cycle. The
highest variation in the second direction is in the location of the beginning of
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Fig 3. Registration of individual coordinate functions for all juggling cycles.

each cycle along the y direction. Overall, the juggler’s finger follows a fairly sta-
ble path along each cycle. Using the average cycle and these principal directions
of variation, we impose a Gaussian model on cycle amplitude. Using this model,
we can generate random samples, which are displayed in the bottom row of Fig-
ure 5. We note that all of the random samples generated based on our stochastic
model are valid instances and closely resemble the cycles in the given data.

We can perform similar analysis on the estimated temporal registration func-
tions, which represent the phase variation in the given data. In Figure 6, we
display the two principal directions of variation in the registration functions,

Original xz Original yz Aligned xz Aligned yz

Fig 4. Registration of juggling cycles for one of the trials in the dataset. We provide two
different views for improved display. The cumulative variance decreased from 9.05 to 3.77
due to cycle registration.
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Fig 5. Principal directions of amplitude variation and random samples from a Gaussian
model.

and their point-wise magnitudes on the average cycle. We observe that the main
direction of variation represents a juggling cycle where the juggler starts either
slower or faster compared to the mean juggling speed, catches up close to the
midpoint of the cycle, and then again goes out of phase before once again catch-
ing up toward the end of the cycle. This type of phase variation is natural to
juggling data as the juggler often tries to compensate for performing the action
either too slow or too fast, sometimes even multiple times within one juggling
cycle. Another interesting observation is that almost all of the phase variation
is contained in the first direction. Overall, it is clear that the juggler seems
very good at controlling the timing of each cycle as indicated by the estimated

All functions PD 1 PD 1 mag PD 2 PD 2 mag

Fig 6. Principal directions of phase variation and their point-wise magnitudes (displayed on
the mean cycle).
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Original xz Original yz Aligned xz Aligned yz

Fig 7. Registration of juggling cycles for all cycles in the dataset. We provide two different
views for improved display. The cumulative variance decreased from 11.09 to 4.74 due to
cycle registration.

warping functions, which all tend to be close to a function that represents no
warping.

We repeated the above described analysis on all cycles from all juggling trials.
The results are presented in Figures 7, 8 and 9, where we notice similar results as
before. In Figure 7, there is clear improvement in point correspondences across
different cycles after alignment. This is especially seen as the phase changes from
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Fig 8. Principal directions of amplitude variation and random samples from a Gaussian
model for all cycles.
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Fig 9. Principal directions of phase variation and their point-wise magnitudes (displayed on
the mean cycle) for all cycles.

dark blue to light blue toward the beginning of the cycles, and then again from
orange to light red toward the end of the cycles. The cumulative variance was
equal to 11.09 before alignment and 4.74 after alignment. Thus, our registration
framework provided a 57% reduction in the cumulative variance in this example.
The principal direction of amplitude variation (Figure 8) is fairly similar to that
displayed in trial 10. On the other hand, the second direction of variation is
quite different and roughly shows up-down movement of the index finger in the
bottom portion of the cycle. Again, the random samples generated using our
model are representative of the original data. In Figure 9, we display the PCA
results for the registration functions. The main direction of variation represents
cycles that started faster than the mean juggling speed and then slowed down
or started slower than the mean and then sped up. This is also a natural type
of variability in this data. Once again, we would like to note the stability of
the juggler’s 3D coordinates of the finger as well as his timing of each cycle in
the data. This is especially reflected in the similarity of principal directions of
variation in the amplitude and phase components computed using cycles from
a single trial (Figures 5 and 6) versus cycles from all trials (Figures 8 and 9).

3. Conclusion

In this paper, we have explored the use of elastic functional data analysis for
studying the juggling data. The main tasks that are performed are: (1) ex-
traction of cyclic units from cyclostationary juggling trials, (2) separation of
the phase and amplitude components from these units using alignment of 3D
curves, and (3) statistical modeling of these components using PCA techniques.
As the results indicate, the elastic framework is successful in detecting and
modeling the phase-amplitude variability in the given data. This conclusion is
further supported by random sampling from the stochastic model with param-
eters estimated from the data.
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