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Abstract: One of the purposes of the curve alignment has been to re-
cover a structural mean of the curves by taking into account the common
structural information or shape. Borrowing ideas from shape analysis, we
introduce the Frenet-Serret framework to remove phase variation and to
define a mean shape for three dimensional curves. Our method effectively
regularizes the estimation of the geometry through curvature and torsion,
and does not require curve alignment to define a mean. The method is
demonstrated with the juggling data set.
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Received August 2013.

1. Introduction

Many existing curve registration methods are developed specifically for one di-
mensional curve. For one dimensional curve the concept of phase and amplitude
variability is easily understood as horizontal and vertical variability, respectively.
Consequently, visual impression of the variability of the curves and the degree
of alignment of salient features are often considered sufficient to judge the need
or success of curve registration. However such notion of variability cannot be
directly extended to higher dimensional curves such as the Juggling data set.
An easy way to get around such problem would be to summarize the curves
into one dimensional features such as first or second derivatives and apply one
dimensional curve registration methods. This may be sufficient, as shown in the
initial analysis provided by J. Ramsay for the Juggling data set, although this
may highly depend on the context of the problem. An alternative strategy would
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be to simultaneously apply a one dimensional curve registration method to all
marginal curves, as used in the analysis of three dimensional vascular geometries
by Sangalli et al. (2009).

In this article we attempt to develop a new framework to directly deal with
higher dimensional curves. As the Juggling data set is our main interest, we
focus on the analysis of three dimensional curves. For each trial j = 1, . . . , J ,
denote the population of cycles of curves by fi, i = 1, . . . , Nj . Each curve is then
a function fi from [0, Ti] to R

3. These trajectories can roughly be considered
as pseudo-periodic curves in R

3. We are interested in analyzing the variations
of the cycles t 7→ fi(t), i = 1, . . . , Nj within a trial j (where j = 1, . . . , , J).
Our objective is to distinguish the variations in phase from those in shape. Note
that we denote the first three derivatives of the function f with respect to t by
ḟ(t), f̈(t) and

...
f (t).

To formulate the problem, we borrow ideas from differential geometry. Dif-
ferential geometry (of curves) aims at dealing with intrinsic properties, inde-
pendent of the parametrization of the object. In other words, for any diffeo-
morphism (warping function) h : [0, T ′] −→ [0, T ], differential geometry looks
for properties shared by any function defined as t′ 7→ f (h(t′)). Basically, it
will give the shape of the curve, independently of the way we move along the
curve (coordinate systems). Shape should also be invariant under the action of
Euclidean isometries (group of rotation-translation). The warping function un-
derlying phase variation can still be understood as a time transformation, in the
form of acceleration or deceleration, required to transform one shape to another.
Defining variation in shape enforces us to recognize the three dimensional curves
as a unit of the analysis. In particular, the description of shape variation needs
to be much more elaborated, because the shape variation cannot be restricted
to amplitude variation.

We analyze the shape by means of the Frenet-Serret representation of the
curves fi, which provides a flexible coordinate system driven by the geometric
features of the curve itself. Our view in taking this approach is that geom-
etry of the shape is an important (structural) property, moreover that there
is an interplay between phase and geometry. Indeed the warping function for
the juggling data can be readily understood through the tangential speed of
a ball moving in one dimensional manifold. Hence it is clear that the varia-
tion in the warping functions is related to the change in the geometry of the
curve.

Derivatives are informative in identifying features or landmarks for one di-
mensional curve registration. This is still the case for the alignment of multi-
dimensional curves. These functional data are related to specific human move-
ments, which are subject to some underlying law of physics. In particular, it
is suspected that human movements tend to optimize some criterion, for in-
stance the jerk, the rate of change in acceleration, i.e. the third derivative of
the function in time (Todorov and Jordan, 1998). An earlier analysis of the
Juggling data set by Ramsay (ch.12, Ramsay and Silverman (2002)) focused
on the modeling of the third derivative

...
f (t), with a time varying coefficient

linear differential equation as a function of the second derivative f̈(t) and the
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first derivative ḟ(t)–but the jerk is not really minimized in this analysis. As will
be seen later, the Frenet-Serret frame is a natural framework to incorporate
information on derivatives.

In a very first step, we are interested in defining a mean trajectory, hence we
introduce the way to compute a mean shape.

2. Frenet-Serret representation of the curves in R
3

In order to apply the Frenet-Serret representation of the curves, we require that
the curves be regular. A curve f from [0, T ] to R

3 is said to be regular if f is C3

on [0, T ] (piecewise C3 would be sufficient) and the derivative does not vanish.
In our case, the curves f are not closed (i.e f(0) 6= f(T ) as the trajectories
slightly fluctuate from cycle to cycle) and they are simple i.e f is injective (the
curve does not cross itself). Let FI = {f : I −→ R

3 | f ∈ C3, regular, simple}
be the space of curves that we consider in this article.

2.1. Arclength parametrization

The first geometrical information of a curve f is its length defined as L = L [f ] =∫ T

0 ‖ḟ(t)‖dt, where ‖·‖ is the usual Euclidean norm in R
3. A fundamental result

of the differential geometry of curves states that the arc-length s : t 7→ s(t) =∫ t

0
‖ḟ(u)‖du is an admissible parametrization of curves in FI , i.e., f(t) = γ (s(t)),

where γ : [0, L] −→ R
3 is the shape or the arc-length parametrized curve. It

is then useful to distinguish in notation the derivation with respect to (w.r.t.)
time t, and the derivation w.r.t. arclength (or space) s and the latter is denoted
by d

ds
,′. A direct consequence of the arc-length parametrization is that the

derivative of the shape γ′(s) , T (s) is the normalized tangent to the curve
at point s, and the chain rule formula gives ḟ(t) = ṡ(t)T

(
s(t)

)
. This classical

relationship shows that ṡ(t) = ‖ḟ(t)‖, where ṡ is called the tangential speed.

This gives a simple decomposition of the tangent vector into its direction ( ḟ(t)

‖ḟ(t)‖
)

and norm (‖ḟ(t)‖). It is worth noting that all the shape information about the
curve is contained in the direction of the tangent vector.

2.2. Frenet-Serret frames

The normalized curve γ can be completely characterized by introducing the
Normal vector N(s) = T ′(s)/ ‖T ′(s)‖, and the Bi-Normal vector B(s) = T (s)×
N(s). The triplet (T (s), N(s), B(s)) forms an orthonormal frame, i.e., the matrix
R(s) = (T (s) | N(s) | B(s)) is a rotation matrix in SO(3). The Frenet-Serret
frame satisfies the following Ordinary Differential Equation (ODE)





T ′(s) = κ(s)N(s)

N ′(s) = −κ(s)T (s) + τ(s)B(s)

B′(s) = −τ(s)N(s)

(2.1)



Removing phase variability to extract a mean shape for juggling trajectories 1851

where κ, τ : [0, L] −→ R. The function κ is the curvature and is positive, and τ
is the torsion and can be of either sign. This equation is completely specified by
an initial condition T (0) = T0, N(0) = N0 and B(0) = B0, and the shape γ is
obtained by integration: γ(s) = γ(0) +

∫ s

0 T (u)du.
The triplet (T (s), N(s), B(s)) is the Frenet-Serret frame, also known as TNB

frame and represents the local change in geometry of the curve. The shape γ can
be retrieved from the evolution of the frame R(s) (w.r.t a reference frame, usu-
ally the canonical one in R

3). Hence, two curves having the same curvature and
torsion are the same (they have the same shape), modulo a rigid transformation,
i.e., a rotation and a translation.

3. Analysis of the juggling data

For the juggling cycles within a fixed trial, the trajectories fi can have different
lengths Li = L [fi]. We can also define a population of shapes γi as well as that
of arc-length parametrizations si : t 7→ si(t). Our basic model for the juggling
data set is of the form

∀t ∈ [0, Ti], fi(t) = γi(si(t)).

The objective is to obtain a mean shape γ̄ in order to evaluate the variability
around the mean. The information about the shape can be easily accessed by
computing the derivatives frame s 7→ D [γi] (s) and deriving then the Frenet-
Serret frame curve s 7→ Ri(s). For ease of comparison, we consider the normal-
ized shapes γ̃i(s) , 1

Li

γi (sLi) such that L [γ̃i] = 1 for all i = 1, . . . , N . The

tangential speed is changed into s̃i(t) =
1
Li

si(Lit).

3.1. Estimation of curvature

The Frenet-Serret representation of γ is a function of (κ, τ). In order to estimate
γ we could proceed by focusing on estimating (κ, τ) from the derivatives of the
individual curve. A standard approach to the estimation of curvature and torsion
is based on the classical expression of curvature and torsion as a function of the
derivatives: 




κ(t) =
‖f̈(t)×ḟ(t)‖
‖ḟ(t)‖

3

τ(t) =
〈ḟ(t)×f̈(t),

...
f (t)〉

‖f̈(t)×ḟ(t)‖2

(3.1)

However, it is well known that formulas (3.1) are inappropriate for computation,
as these are numerically unstable (Younes, 2010). Hence, some regularization is
necessary.

Alternatively, if the Frenet-Serret frames R(s) are available on a fine grid
sj = jh, j = 0, . . . , N (and h > 0 in the step size), the Euler approximation to
the Frenet-Serret ODE gives

{
T (sj + h)− T (sj) ≈ hκ(sj)N(sj),

N(sj + h)−N(sj) ≈ −hκ(sj)T (sj) + hτ(sj)B(sj),
(3.2)
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and this implies that
{
〈T (sj + h), N(sj)〉 = hκ(sj),

〈N(sj + h), B(sj)〉 = hτ(sj).
(3.3)

We use the second method to compute the curvature and torsion in our analysis.

3.2. Estimation of a mean shape

Our strategy for estimation of the mean shape is summarized below.

1. Compute t 7→ si(t) and Li. Normalize the curve so that γ̃i(s) =
1
Li

γi (sLi).
Estimate (γ̃′

i(s), γ̃
′′
i (s), γ̃

′′′
i (s)) (by local polynomial).

2. Compute the TNB frame by Gram-Schmidt (i.e QR factorization) of the
frame (γ̃′

i(s), γ̃
′′
i (s), γ̃

′′′
i (s)).

3. Compute the discretized curvature and torsion with equation (3.3).
4. Compute the mean shape (TNB curve) s 7→ R̄(s): Assuming that Frenet-

Serret frames R(s) are available on a find grid sj = jh, j = 0, . . . , N ,
compute the Fréchet mean of the Frenet-Seret frames (represented as an
orthogonal matrix Ri(s) ∈ SO(3)):

∀j, R̄(jh) = arg min
R∈SO(3)

N∑

i=1

‖Ri(jh)−R‖
2
F .

This defines a (discrete) path s 7→ R̄(s). The mean orthogonal matrix
R̄(jh) is computed from the polar decomposition of the mean matrix

R̃N (jh) = 1
N

∑N

i=1 Ri(jh); this means that R̃N (jh) = R̄(jh)U(jh). The
matrix U(jh) is symmetric and positive definite, and is an indicator for
dispersion of the data.

5. By using the Euler approximation (3.2), the mean curvature and torsion
κ̄, τ̄ are computed by minimizing the (squared) prediction error between
time s and s + h, hence the discrete path s 7→ R̄(s) is approximately a
solution of the ODE:

˙̄R(s) =




0 κ̄(s) 0
−κ̄(s) 0 τ̄ (s)

0 −τ̄(s) 0


 R̄(s)

6. The mean shape is computed by integrating the mean tangent γ̄(s) =∫ s

0
T̄ (u)du.

7. For each curve, we can compute f̄i(t) = Liγ̄(
si(t)
Li

) (whereas fi(t) =

Liγ̃i(
si(t)
Li

)). The curvilinear coordinate si(t) is the reference warping func-
tion to the mean shape. But we can find for each function γi the optimal
warping to the mean function.

We applied this procedure to cycles from each trial to estimate a mean shape.
As an example, Figure 1 displays a three-dimensional view of the estimate of the
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Fig 1. Estimate of the mean shape for the cycles in trial 10 (red).

mean curve for the cycles in trial 10. As in statistical shape analysis, the right
positioning and scaling of the mean curve has been obtained by Procrustes
Analysis (that gives the proper translation, rotation and scaling factor). The
abrupt change in the curve around the top can be seen as an artefact of the
cycle splitting of a trial, partly magnified by discretization error. Nevertheless,
it emphasizes that cycles are not closed curves, and that the osculating plane
(generated by Tangent and Normal) fluctuates during a trial; overall, the mean
shape appears to capture the underlying common structure reasonably well.
A similar conclusion could be drawn from all other trials.

An example of estimates of the mean curvature and torsion is shown in Fig-
ure 2, superimposed on the individual estimates. Although it suggests that some
additional smoothing would be beneficial, the relatively stable estimates com-
pared to the individual estimates are due to the regularization obtained by the
Fréchet mean of Frenet-Serret frames. Investigation into further regularization
techniques and estimation of the optimal warping function is the topic of on-
going research. Nevertheless, we see that the peak in curvature occurs exactly
in the middle (0.5), at the bottom of the curve, with small variation across the
cycles. Interestingly, there is a prominent peak in torsion just before the maxi-
mum curvature occurs and possibly a minor one after then, otherwise close to
zero. A possible explanation would be that the hand goes forward at high rate
before reaching the bottom and a small correction occurs when the hand goes
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Fig 2. Estimate of the mean curvature and torsion for the cycles in trial 1 (red).

up, though with big variability. Consequently, the shape drifts away from the
original plane. Going back to Figure 1, we see almost planar curves until the
halfway, and then a bulge towards the bottom corresponding to the peak in
torsion, which results in the abrupt change in the top due to the drift in shape.

4. Conclusion

One of the purposes of the curve alignment has been to recover a structural

mean of the curves by taking into account the common structural information
or shape. Having this in mind, we have demonstrated through the juggling data
set how this could be achieved in three dimensional curves. Borrowing ideas
from shape analysis, we have introduced the Frenet-Serret framework to remove
phase variability and to define a mean shape. Our method effectively regularizes
the estimation of the geometry through curvature and torsion, and does not
require curve alignment to define a structural mean. On the other hand it is
desirable to be able to characterize the phase variation, and to understand
the link between the phase and shape variability. In particular for the juggling
data, the tangential speed is directly influenced by curvature and geometry,
and therefore, identifying the interplay between the phase and shape variability
warrants further investigation.
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