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We thank the discussants for their thoughtful and provocative discussions;
they have raised several fundamental philosophical questions, suggested new
and interesting directions for research, and established new properties of our
proposed confidence interval approach. We also thank the Editor for organiz-
ing these discussions and for providing helpful feedback on earlier versions of
our manuscript. Because the discussants touched on similar themes, we have
organized our responses into categories: (i) choosing an appropriate target for
inference; (ii) new approaches to estimation and inference; and (iii) scalability
and direct estimation.

1. Choosing an appropriate target for inference

1.1. Confidence intervals for c⊺β∗

1

Consider two potential applications of confidence intervals for c⊺β∗
1 : (U1) form-

ing a confidence interval for Q1(h1, 1) − Q1(h1,−1) to determine if there is
sufficient evidence to recommend one treatment over the other for a patient
presenting at baseline with H1 = h1; and (U2) to construct confidence intervals
for individual components of β∗

1 to determine which patient characteristics are
important for tailoring treatment. Robins and Rotnitzky (RR hereafter) argue
that for (U1) β∗

1 is not clinically meaningful as it assumes that the decision

maker will select treatment using πdp
2 at the second stage, which is likely un-

true. RR propose developing confidence intervals for c⊺β∗
1(π̂2) defined as follows.

For any second stage decision rule, say π2, define

β∗
1 (π2) = argmin

β1

P
{
H⊺

2,0β
∗
2,0 + π2(H2)H

⊺

2,1β
∗
2,1 −H⊺

1,0β1,0 −A1H
⊺

1,1β1,1

}2
,

so that β∗
1(π2) denotes the optimal first stage coefficients assuming that a de-

cision maker will assign treatments according to π2 at the second stage. Thus,
RR argue that if the estimated optimal regime π̂2 is to be used to assign treat-
ments at the second stage then the data-dependent parameter β∗

1 (π̂2) may be
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more clinically meaningful than β∗
1( = β∗

1(π
dp
2 ) in their notation). In a pleasant

surprise for us, RR showed that our proposed adaptive confidence interval c⊺β∗
1

is also a valid confidence interval for c⊺β∗
1 (π̂2) at least in the case of binary

predictors. We look forward to generalizations of this result.
We maintain that if (U2) is of interest, that is, the confidence intervals are

used to inform scientific theory and generate hypotheses for subsequent studies,
then confidence sets for β∗

1 are scientifically meaningful. In this context it may
be of interest to identify which patient covariates are important for optimal
treatment choice at each stage. One way to identify important covariates under
the optimal regime is to look at confidence intervals for components of β∗

2,1

and β∗
1,1. In our experience, estimation of optimal DTRs is often conducted as

a secondary, exploratory analysis in which case confidence intervals for β∗
1 are

likely of interest.

1.2. An alternative value function

Goldberg, Song, Zeng, and Kosorok (GSZK hereafter) propose a new measure
of the quality of a DTR. Traditionally the value of a DTR, say π, is defined as
the expected outcome if all patients in the population of interest are assigned
treatment according to π (see Schulte et al., 2013). Because the value of an
estimated optimal DTR is nonregular when a non-null subgroup of patients have
a small treatment effect in one or more of the treatment stages, GSZK propose
a new estimand, called the truncated value of π, which is the expected outcome
under π but restricted to the population of patients with clinically meaningful
treatment effects at each stage. It is claimed (p. 6) that the truncated value can
be made to be arbitrarily close to the value yet is regular and asymptotically
normal under regularity conditions. We show that if one can obtain a regular
estimand whose distance from the value can be controlled then one can obtain
valid confidence intervals for value. We also demonstrate in a one-stage setting
that the proposed truncated value may be arbitrary far from the value under
certain generative models.

For an estimated DTR, say π̂n, let V (π̂n) = E
π̂nY be the value of π̂n. Sup-

pose that there exists an alternative estimand Vǫ(π̂n) for which: (P1) there

exists estimator V̂ǫ,n(π̂n) so that
√
n(V̂ǫ,n(π̂n) − Vǫ(π̂n)) is regular and asymp-

totically normal; and (P2) |Vǫ(π̂n) − V (π̂n)| ≤ b(ǫ) + oP (1) for some (possibly

random) function b(ǫ) for which there exists consistent estimator b̂n(ǫ) that

satisfies P (|Vǫ(π̂n) − V (π̂n)| ≤ b̂n(ǫ)) = 1 − o(1). Because V̂ǫ,n(π̂n) is regular
and asymptotically normal for α ∈ (0, 1) we can apply standard methods to

construct consistent estimators, say ûn and ℓ̂n, of the (1 − α/2) × 100% and

(α/2)× 100% percentiles of the sampling distribution of
√
n(V̂ǫ,n(π̂n)−Vǫ(π̂n)).

Then [V̂ǫ,n(π̂n) − ûn/
√
n − b̂(ǫ), V̂ǫ,n(π̂n) − ℓ̂n/

√
n+ b̂(ǫ)] is a valid asymptotic

(1− α)× 100% confidence interval for V (π̂n) because:

P
(
V̂ǫ,n(π̂n)− ûn/

√
n− b̂(ǫ) ≤ V (π̂n) ≤ V̂ǫ,n(π̂n)− ℓ̂n/

√
n+ b̂(ǫ)

)
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≥ P
(
V̂ǫ,n(π̂n)− ûn/

√
n− b̂(ǫ) ≤ V (π̂n) ≤ V̂ǫ,n(π̂n)− ℓ̂n/

√
n+ b̂(ǫ),

|Vǫ(π̂n)− V (π̂)| ≤ b̂(ǫ)
)

≥ P
(
V̂ǫ,n(π̂n)− ûn/

√
n ≤ Vǫ(π̂n) ≤ V̂ǫ,n(π̂n)− ℓ̂n/

√
n,

|Vǫ(π̂n)− V (π̂)| ≤ b̂(ǫ)
)

= P
(
ℓ̂n ≤

√
n(V̂ǫ,n(π̂n)− Vǫ(π̂n)) ≤ ûn, |Vǫ(π̂n)− V (π̂)| ≤ b̂(ǫ)

)

= 1− α+ o(1).

Thus, one potentially fruitful direction for inference for the value function is
to develop smooth approximations to the value with a known or consistently
estimable bound on the approximation error.

However, the truncated value proposed by GSZK need not satisfy (P1). We
demonstrate this using a one-stage decision problem. The observed data are
{(Xi, Ai, Yi)}ni=1 where: X ∈ R

p denotes pre-treatment patient information;
A ∈ {−1, 1} denotes the treatment received; and Y ∈ R is the outcome coded
so that higher values are better. Let X0 ∈ R and X1 ∈ R

p be known features of
X and suppose that Y = X0β

∗
0 + AX⊺

1 β
∗
1/2 + δ where: δ ∼ Normal(0, τ2); and

X0 = L1X⊺

1
β∗=ǫ+M1X⊺

1
β∗=0 + η for constants M,L ∈ R and η ∼ Normal(0, γ).

Suppose that the postulated Q-function is Q(x, a;β) = x0β0 + ax⊺

1β1 and thus

is correctly specified. Let β̂ = argminβ Pn{Y − Q(X,A;β)}2. The estimated

optimal policy is π̂n(x) = sgn(x⊺

1 β̂1); under standard regularity conditions√
n(β̂ − β∗) is asymptotically normal. Assume A is randomly assigned with

P (A = 1|X) = P (A = −1|X) = 1/2 with probability one, then under sufficient
regularity conditions (Qian and Murphy, 2011; Zhao et al., 2012; Zhang et al.,
2012) the value is V (π̂n) = 2PY 1

AX
⊺

1
β̂1>0. For fixed ǫ > 0 the truncated value

is Vǫ(π̂n) = 2PY 1
AX

⊺

1
β̂1>01|X⊺

1
β̂1|>ǫ

. Define V̂ǫ,n(π̂n) = 2Pn1AX
⊺

1
β̂1>01|X⊺

1
β̂1|>ǫ

,

then

√
n(V̂ǫ,n(π̂n)− Vǫ(π̂n)) = 2

√
n(Pn − P )Y 1

AX
⊺

1
β̂1>01|X⊺

1
β̂n|>ǫ

= 2
√
n(Pn − P )Y 1

AX
⊺

1
β̂1>ǫ

= 2
√
n(Pn − P )1

AX
⊺

1

√
n(β̂1−β∗

1
)>01AX

⊺

1
β∗

1
=ǫ + op(1)

where the last term is not asymptotically normal and is highly sensitive to the
distribution of X1 and value of β∗

1 . Note also that if X⊺

1 β
∗
1 = 0 with probability

one then Vǫ(π̂n) − V (π̂n) = V (π̂n) = 2PM1
AX

⊺

1
β̂1>0 = M which can be made

arbitrarily large (small); this underscores the need for a data-dependent bound
on the approximation error.

Inspired by GSZK, we consider the alternative estimand VΨ(π̂n) =

2PYΨ(AX⊺

1 β̂1) where Ψ(u) is a continuously differentiable function used to ap-
proximate 1u>0. Furthermore, assume that the class of functions F = {f(y, x, a;
β1) = y(Ψ(ax⊺β1)− 1ax⊺β1>0) : β1 ∈ R

p} is Glivenko-Cantelli (Kosorok, 2008).
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A natural choice for Ψ is a sigmoid function though other choices are possible.
Let V̂Ψ(π̂n) = 2PnYΨ(AX⊺

1 β̂1); under mild moment assumptions a Taylor series

argument shows that
√
n(V̂Ψ(π̂n)− VΨ(π̂n)) is regular and asymptotically nor-

mal. The approximation error is bounded by b(ǫ) = |VΨ(π̂n)−V (π̂n)|+ ǫ which

is consistently estimated by b̂(ǫ) = |V̂Ψ(π̂n) − V̂ (π̂)| + ǫ =
∣∣PnY (Ψ(AX⊺

1 β̂1) −
1
AX

⊺

1
β̂1>0)

∣∣+ǫ. We conjecture that the performance of this method will be sensi-

tive to the choice of Ψ. If Ψ closely approximates the step function 1u>0 then the
approximation error bound b(ǫ) will be small but it may be difficult to form a

high-quality estimator of the sampling distribution of
√
n(V̂Ψ(π̂n)−VΨ(π̂n)) be-

cause the derivative of Ψ must be very large near the origin; on the other hand, if
the derivative of Ψ is not large near the origin then it may be possible to obtain
a high-quality estimator of the sampling distribution of

√
n(V̂Ψ(π̂n) − VΨ(π̂n))

but the approximation error bound may be large.

2. New directions for estimation and inference

2.1. Coherent confidence intervals

RR illustrate the perils of using separate confidence intervals for the decision
boundary at each patient history rather than a single joint confidence interval
for the entire decision boundary across all patient histories. In the RR exam-
ple, there are three possible patient histories coded x ∈ {−1, 0, 1}, two treat-
ments a ∈ {−1, 1}. Thus, there are eight regimes, each represented as a triple
(a−1, a0, a1), where ax ∈ {−1, 1} denotes the treatment assigned to a subject
with X = x. In the RR example, the postulated model class for the decision
boundary excludes the regime (1,−1, 1) yet this regime could be implemented
by a clinician who selects treatments using clinical judgment whenever a uni-
variate confidence interval for the decision boundary at a given patient history
contains zero. Thus, using separate confidence intervals for each patient history
can lead to “incoherent” clinician behavior. However, instead of evaluating the
performance of these confidence intervals by considering a population of clin-
icians, we argue that we should evaluate the performance across a population
of patients. Thus, the question from our point of view is whether any patients
are being treated inappropriately. A patient with history x = −1 is unaffected
by what their treatment would have been had their history been 0 or 1. In the
RR example suppose that all clinicians apply the “incoherent” regime (1,−1, 1).
Patients with x = 1 receive the (estimated) optimal treatment a = 1; patients
with x = −1 receive a = 1 which is not dominated by a = −1 and is thus
appropriate; and similarly, patients with x = 0 receive a = −1 which is not
dominated by a = 1 and thus appropriate.

However moving to the multi-stage setting we appreciate RR’s point of view
in regards to potentially incoherent sequences of treatments being assigned to a
patient. Indeed some of us, Laber et al. (2014) define the set of feasible regimes
as those that are consistent with a partial ordering induced on the treatments
(e.g., a partial ordering induced by separate confidence intervals for each patient
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history) and representable in the postulated model space (they did not explore
incoherence further). We and others are currently working on this problem.

2.2. Soft-max Q-learning

GSZK propose a soft-max Q-learning as an alternative to Q-learning. Because
soft-max Q-learning involves only smooth operations of the data standard meth-
ods for inference apply. We show that soft-max Q-learning can be viewed as
regular Q-learning applied to a stochastic policy in which the propensity of
the clinician to follow the estimated optimal second stage policy varies with
the estimated second stage effect size. Soft-max Q-learning uses predicted
outcome Y̌ = H⊺

2,0β̂2,0 + α−1 log(1 + exp{αH⊺

2,1β̂2,1}). It can be shown that

supv∈R
|α−1 log(1+exp{αv})−expit(αv)v| = o(1/α) as α → ∞, where expit(u) =

exp(u)/(1 + exp(u)). Let D denote the observed data and let π̂α
2 (h2) be a

stochastic second stage policy that satisfies P (π̂α
2 (h2) = π̂2(h2)|H2 = h2,D) =

expit(αH⊺

2,1β̂2,1). A clinician acting according to π̂α
2 is increasingly more likely

to recommend treatments consistently with the Q-learning estimated optimal
second stage decision rule as the magnitude of the estimated second stage
effect size, H⊺

2,1β̂2,1, increases. Then, E(Q̂2(H2, π̂
α
2 (H2))|H2,D) = H⊺

2,0β̂2,0 +

expit(H⊺

2,1β̂2,1)H
⊺

2,1β̂2,1 ≈ Y̌ . Thus, soft-max Q-learning can be viewed as esti-
mating the optimal first stage decision rule assuming the clinician will follow
a stochastic policy described by π̂α

2 at the second stage. Because soft-max Q-
learning is smooth, it should possible to conduct the conditional inference for
the first stage Q-function as suggested by RR; such conditional inference would
therefore accommodate not only the data-driven decision rule at the second
stage (as suggested by RR) but also uncertain clinician behavior.

2.3. Variable screening for SMARTs

Hsu and Small (HS hereafter) propose a method for identifying variables that
may be of interest for follow-up investigation within the context of a SMART.
In the setup considered by HS the observed data on each subject are (A,D, Y )
where: A ∈ {0, 1} is a randomized treatment; D ∈ {0, 1} is an intermediate
(post-treatment) outcome; and Y ∈ R is a distal outcome. For simplicity, assume
that Y is binary and coded to take values in {0, 1}. HS’s idea is to use D as
an indicator that a subject’s initial treatment should have been switched; thus,
in a future study upon observing D the clinician has the opportunity to switch
from treatment a to treatment 1 − a. Let {(Y (a=j), D(a=j))}j=0,1 denote the
set of potential outcomes. Define Ck

j = P (Y (a=k) = 1, Y (a=1−k) = 0|D(a=k) =

j)−P (Y (a=k) = 0, Y (a=1−k) = 1|D(a=k) = j) for j, k ∈ {0, 1}. In this setting (1)
in HS is equivalent to C1

1 > C1
0 . For clarity we describe this in words. (1) only

considers a population of individuals who start off on treatment, a = 1. C1
1 > 0

means that among the subpopulation of individuals experiencing D = 1 in
response to a = 1, a higher fraction have started off on their optimal treatment
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than have started off on their non-optimal treatment. Similarly C1
0 > 0 means

that among the subpopulation experiencing D = 0 in response to a = 1, a
higher fraction have started off on their non-optimal treatment than have started
off on their optimal treatment. Thus C1

1 > C1
0 is a comparison of differences

in fractions, one difference per subpopulation. Among those who experience
D = 1 the difference in fractions of individuals who started off on their optimal
treatment versus did not start off on their optimal treatment is higher than the
same fraction among those who experience D = 0.

At first it was unclear to us how (1) in HS’s discussion might be used to
inform treatment decisions. However suppose we are willing to assume no carry-
over effect. That is, if a patient switches treatment then the patient’s long run
outcome Y will only depend on the new treatment. In this case consider instead
testing if C1

jC
0
j < 0 for each j = 0, 1; if the test indicates that C1

jC
0
j < 0,

assuming that there is no carry-over effect, D could be used with future patients
to dictate a treatment switch. If the estimated Ĉk

j < 0 but Ĉ1−k
j > 0 then future

patients initially treated with a = k experiencing intermediate outcome D = j
might be switched to a = 1 − k. Thus, in this sense, the method proposed by
HS can be used to inform treatment decisions.

3. Scalability and the definition of a direct estimator

3.1. Scaling estimation an inference to large problems

Banerjee (B hereafter) asked about computation and asked how the methods and
technical issues scale to settings with high-dimensional or continuous actions.
Computation of the bounds requires solving a non-convex optimization problem
of the form

min
γ∈Rp

n∑

i=1

ωi

(
[r⊺i γ + di]+ − [r⊺i γ + ei]+

)
, (1)

where ω1, . . . , ωn, d1, . . . , dn, e1, . . . , en ∈ R and r1, . . . , rn ∈ R
p are known fixed

constants. In our simulations the dimension of γ was sufficiently small so that we
could compute an approximate solution using a stochastic search; the search was
tuned to ensure a sufficient number of points were evaluated before termination.
However, there are several other approaches that could be used to compute an
approximate solution to (1). One approach that scales well to high-dimensional
(large p) problems is coordinate descent. Note that (1) is continuous and piece-
wise linear. Suppose first that p = 1. In this case it can be seen that any optimal
solution γ∗ must solve riγ

∗ + di = 0 or riγ
∗ + ei = 0 for some 1 ≤ i ≤ n. Thus,

there are at most 2n candidate solutions that must be examined to find an opti-
mal solution in the 1d case. For any v ∈ R

p let v(j) = (v1, . . . , vj−1, vj+1, . . . , vp)
and define

γ̂j(v(j)) = argmin
τ∈R

n∑

i=1

ωi

([
rijτ + r⊺

i(j)v(j) + di

]
+
−
[
rijτ + r⊺

i(j)v(j) + ei

]
+

)
.

(2)
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Computing (2) is equivalent to solving (1) with p = 1 and thus requires eval-
uation of 2n potential solutions. The coordinate descent algorithm is as fol-
lows: (i) initialize γ to a starting value in R

p; (ii) repeat updates of the form
γj = γ̂j(γ(j)) cycling over j = 1, . . . , p until changes in γ are sufficiently small.
Coordinate descent is easily to implement and the evaluation of the 2n po-
tential solutions required for each update is trivial to parallelize; we have had
success with this approach in other contexts with similar non-differentiable but
continuous objectives (Laber and Murphy, 2013).

An alternative approach to computing (1) is to recognize that it can be
written as

inf
γ∈Rp

n∑

i=1

{(
[ωi]+ [r⊺i γ + di]+ + [ωi]− [r⊺i γ + ei]+

)

−
(
[ωi]− [r⊺i γ + di]+ + [ωi]+ [r⊺i γ + ei]+

)}

which is the difference of two convex functions and thus (1) is a DC programming
problem. Hence, one can apply DC algorithms (see Horst and Thoai, 1999, and
references therein) to approximate (1). The DC algorithm has a track record
of being effective in large problems but our experience with this algorithm is
limited.

B also asked about nonregularity in the contexts of continuous treatments.
This could arise in the context of clinical practice, say when optimizing dose. To
illustrate how nonregularity can occur in the context of a continuous treatments
suppose that a2 ∈ [−d, d] and consider a nonlinear model for the second stage
Q-function of the form

Q2(h2, a2;β2, σ) = h⊺

2,0β2,0 + exp
{
(a2 − h⊺

2,1β2,1)
2/σ + h⊺

2,2β2,2

}
, (3)

where h2,0, h2,1, h2,2 are known features of h2. In (3) the optimal dosage is the
projection of h⊺

2,1β2,1 onto [−d, d], and σ, h⊺

2,2β2,2 govern the treatment effect

size. Let β̂2, σ̂ denote the non-linear least squares estimators of the parameters
indexing the working second-stageQ-function. The maximized estimated second
stage Q-function is

sup
a2∈[−d,d]

Q2(h2, a2; β̂2, σ̂) = h⊺

2,0β̂2,0 + exp
{
h⊺

2,2β̂2,2

}
1|h⊺

2,1
β̂2,1|≤d

+ exp
{
(d− |h⊺

2,1β̂2,1|)2/σ̂ + h⊺

2,2β̂2,2

}
1|h⊺

2,1
β̂2,1|>d

,

which is not smooth in the data. Thus, non-regularity can occur even with
continuous treatments.

A related problem raised by B is a discrete but high-dimensional treatment.
However, unlike the continuous treatment setting, with a high-dimensional dis-
crete treatment there may be no notion of smoothness across values of treatment
thereby making it difficult to pool information across units of observation. With-
out massive amounts of data additional structure must be introduced into the
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working models. One setting in which this occurs is when treatments are made
at each time point across a series of spatial locations. Suppose for simplicity
that one can apply one of two treatments, say 0 or 1 at each of N locations;
in this setting a ∈ {0, 1}N . However, it may be reasonable to assume that a
treatment applied at a given location diffuses quickly over space and that any
heterogeneity in the treatment effect over space can be modeled parametrically
using observable covariates at each location.

3.2. Definition of a direct estimator

RR correctly note that the estimator that we discuss in Appendix A should
not be viewed as providing an estimator of the optimal DTR. Note that our
asymptotic results describe the behavior of the parameter estimators about
their limiting values and do not refer to an optimal DTR. Unfortunately, this
was not clear in our description.

We believe that in some settings there are other, equally valid or better, crite-
ria for assessing the quality of direct estimators than consistent estimation of the
parameters indexing the estimated optimal DTR. In some settings, construct-
ing a high-quality DTR from within a pre-specified class, e.g., restricted to be
parsimonious, logistically feasible, low-cost, etc., may be more of a priority than
constructing a consistent estimator of πopt (Orellana et al., 2010; Zhang et al.,
2012, 2013). In such cases, performance guarantees in the form of error bounds,
i.e., bounds on the difference between the value of an estimated policy and the
value of πopt, may be more appropriate. Error bounds have been used exten-
sively in computer science (e.g., Bartlett et al., 2006, and references therein)
where the focus is primarily on performance rather than making statements
about the true structure of the optimal DTR. For example, Zhao et al. (2012)
derive error bounds on a direct estimator of the form used in Appendix A.
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