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1. Introduction

The authors are to be congratulated for their excellent and thoughtful paper
on statistical inference for dynamic treatment regimens. They have addressed
several important and long-standing issues in this area. As discussed by the au-
thors, nonsmoothness of the problem in some of the parameters of interest leads
to estimators that are not smooth in the data. This in turn makes inference
for these parameters challenging. In the following, we comment on a few addi-
tional strategies to alleviate the resulting nonregularity due to nonsmoothness.
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First, we discuss replacing the nonsmooth objective functions via a SoftMax
Q-learning approach, which directly addresses the trade-off between bias and
variance of the maximum operation in the local asymptotic framework. Proofs
are given in the Appendix.

Nonregularity of the estimators for the parameters associated with the op-
timal treatment regimes is mainly due to the existence of non-responders to
treatments. Therefore, it would be useful and important if we could identify
these non-responders. In the second part, we review our existing work on non-
responder identification via penalization. We also discuss how this penalization
can alleviate, although not solve, some regularity issues.

For the third and final aspect we wish to discuss, we note that in some public
health settings, the parameters in the dynamic treatment regime are not as
important as the value function which reflects the overall population impact of
the estimated regime and is perhaps the most important quantity to focus on for
public health policy. We propose a truncated value function which only focuses
on those subjects who are expected to have large treatment effects. We claim
that this alternative value function is clinically meaningful and does not suffer
from nonregularity.

2. SoftMax Q-learning

In this section we study the effect of replacing the max operator with a smoother
version of it in the two-stage Q-learning algorithm discussed by Laber et al.
We show that this smoothing can reduce the bias and can be controlled un-
der local alternatives. The proposed SoftMax approach also sheds light on the
bias/variance tradeoff which can be obtained by using over/under smoothing.
In what follows, we briefly describe the SoftMax Q-learning algorithm, and then
present some theoretical and simulation results.

2.1. Proposed algorithm

Consider the Q-learning algorithm discussed by Laber et al. in Section 2. In
step 2 of the algorithm, the stage outcome is predicted by

Ỹ = max
a2

Q2(H2, a2; β̂2).

We propose replacing Ỹ with a SoftMax version of it. Define the SoftMax
function by (see Fig. 1)

SoftMax (x, y, α) =
1

α
log {eαx + eαy} , α > 0.

Let

Y̆ = SoftMax
(
Q2(H2, a2,1; β̂2), Q2(H2, a2,2; β̂2), α

)
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Fig 1. The function log{exp(x)+exp(0)} in blue and the function max(x, 0) in red. Note that

the functions roughly agree for x /∈ [−3, 3].

=
1

α
log

{
eαH

′
2,0β̂2,0 + eα(H

′
2,0β̂2,0+H′

2,1β̂2,1)
}

= H ′
2,0β̂2,0 +

1

α
log

{
1 + eαH

′
2,1β̂2,1

}
.

The estimator β̂1 of β1 is given by Σ̂−1
1 PnB1Y̆ . We note that the algorithm

discussed by Laber et al. is obtained as the limit, as α goes to infinity, of the
SoftMax Q-learning algorithm discussed here.

2.2. Theory

In the following we briefly discuss the asymptotic properties of β̂1. We first
discuss the limiting distribution of

√
n(β̂1 − β∗

1). We then discuss this limiting
distribution under local alternatives. Finally, we discuss the asymptotic bias.
The proofs appear in the Appendix.

Theorem 1. Assume (A1)–(A2) from Laber et al., and let αn → ∞ such that√
n/αn → a∞ for a∞ ∈ [0,∞). Then

(i) If a∞ = 0,

√
n(β̂1 − β∗

1) S∞ +Σ−1
1,∞P (T∞) .

(ii) If 0 < a∞ < ∞, then

√
n(β̂1 − β∗

1) S∞ +Σ−1
1,∞P (T∞) + a∞ log(2)Σ−1

1,∞PB11
{
H ′

2,1β
∗
2,1 = 0

}
,

where

T∞ = B1

(
H ′

2,1V∞1
{
H ′

2,1β
∗
2,1 > 0

}
+

1

2
H ′

2,1V∞1
{
H ′

2,1β
∗
2,1 = 0

})
.

For local alternatives the limiting distribution is given below.

Theorem 2. Assume (A1)–(A3) from Laber et al., and let αn → ∞ such that√
n/αn → a∞ for a∞ ∈ (0,∞). Then

√
n(β̂1 − β∗

1 ) S∞ +Σ−1
1,∞P (T∞) + Σ−1

1,∞P (W∞) ,
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where

T∞ = B1

(
H ′

2,1V∞1
{
H ′

2,1β
∗
2,1 > 0

}
+H ′

2,1V∞
[
a−1
∞ H ′

2,1s
]
+
1
{
H ′

2,1β
∗
2,1 = 0

})

W∞ = B1

(
a∞ log

{
1 + ea

−1

∞ H′
2,1s

}
−
[
H ′

2,1s
]
+

)
1
{
H ′

2,1β
∗
2,1 = 0

}
.

The bound of the bias, scaled by root-n, under both standard and local
alternatives asymptotics, is given below.

Corollary 1. Let Bias(β̂1, c) and Bias(β̂1, c, s) be defined as in Laber et al..
Assume (A1)–(A2) from Laber et al., and let αn → ∞ such that

√
n/αn → a∞

for a∞ ∈ (0,∞). Fix c ∈ Rp21 . Then

Bias(β̂1, c) ≤ a∞‖Σ−1
1,∞‖P‖B‖1

{
|H ′

2,1β
∗
2,1| = 0

}
+ op(1).

When (A3) from Laber et al. also holds, then

sup
s∈Rp21

Bias(β̂1, c, s) ≤ a∞‖Σ−1
1,∞‖P‖B‖1

{
|H ′

2,1β
∗
2,1| = 0

}
+ op(1).

The above results show that by choosing the scale of α, the bias can be
controlled. Theorem 2 shows that this control of the bias directly influences the
variance, at least under local alternatives.

For inference, we need to discuss two different settings. When holding α
fixed, as n goes to infinity, standard inference for the parameters is valid, as the
problem becomes regular. However, this comes with the price that the bias does
not vanish even asymptotically (see also the discussion in Section 4). As proved
in Theorem 2, when taking α to infinity, as n goes to infinity, the problem is
nonregular. Thus, adaptive confidence intervals, such as the one suggested by
Laber et al., are needed in order to perform valid inference.

2.3. Simulations for SoftMax

We compare the small-sample behaviour of SoftMax to that of soft-threshholding
using the example setting discussed in Section 3 of Laber et al. Let θ∗ =
max(µ∗

0, µ
∗
1). The max estimator is defined by

θ̂ ≡ max(µ̂0, µ̂1) =
µ̂0 + µ̂1

2
+

|µ̂0 − µ̂1|
2

.

A soft-thresholdling estimator is defined by

θ̂σ =
µ̂0 + µ̂1

2
+

|µ̂0 − µ̂1|
2

(
1− 4σ

n(µ̂0 − µ̂1)

)
.

Finally, the SoftMax estimator is defined by

θ̆ = SoftMax (µ̂0, µ̂1, α).
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Fig 2. Left: Bias for soft-thresholding. Right: Bias for SoftMax. In both panels the bias

is measured in units of 1/
√
n for n = 10, as a function of effect size and of the tuning

parameters, σ and α, for the soft-thresholding and SoftMax, respectively.

Let Y |A ∼ N(µa, 1), a = 0, 1, and assume that the treatment assignment
is perfectly balanced. We use 1000 Monte Carlo replicates to estimate the bias
for each parameter setting. Figure 2 below shows the bias as a function of the
treatment effect µ∗

1−µ∗
0 and with tuning parameters σ ∈ [0, 5] and α ∈ [1, 6] for

the soft-thresholding and SoftMax, respectively. It appears that the SoftMax
does not suffer from large bias on points away from µ∗

1 − µ∗
0 = 0. Also, as

expected from Theorem 1, the bias decreases as α increases.

3. Penalized and adaptive Q-learning

In Penalized Q-learning (Song et al., 2011) and adaptive Q-learning (Goldberg
et al., 2013), penalties were imposed on the term H ′

2,1β2,1 for each individual.
This use of penalized estimation allows us to simultaneously estimate the second
stage parameters and select individuals whose value functions are not affected
by treatments, i.e., those individuals whose true values of H ′

2,1β
∗
2,1 are zero.

Although the penalized method does not solve the non-regularity issue in esti-
mating β’s, our numerical studies have demonstrated that penalized Q-learning
is not only able to reduce bias, but also provides better coverage of confidence
intervals in a number of scenarios, as compared to the hard thresholding method
of Moodie and Richardson (2010) and some soft thresholding methods includ-
ing resampling approaches. Furthermore, the inference approach for penalized
methods described in Zhang and Zhang (2014) appears to be able to handle
diverging model perturbations. Finally, a nice feature of our penalized learning
is that it enables us to identify non-responders, who may also have small treat-
ment benefits even under a local alternative. Since it is clinically and practically
most useful to target groups whose treatment benefit is large, identifying those
subjects with small treatment benefits is useful for better allocation of resources
and for reducing costs.
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4. Truncated value function

The non-regularity issue arises primarily in settings where there are some sub-
jects who do not respond to treatments at the second stage and where inference
focuses on effect size. In the context of public health policy, we think that (i)
the overall benefit (value) may be of greater interest compared to individual
effect sizes and (ii) those subjects who are not sensitive to treatments (approx-
imate non-responders) should not have a large impact on the overall decision
making process. Thus, we propose an appropriate alternative criterion, namely
the ǫ-truncated value, for evaluating the optimal policy as follows:

Vǫ(d1, d2) = Ed [(Y1(d1) + Y2(d2))I(δ(X1) > ǫ, δ(X2) > ǫ)] ,

where δ(X1) and δ(X2) denote the expected treatment effects at the first and
second stages respectively. Here, ǫ is a small constant indicating a clinically
meaningful effect size.

Under a SMART trial with randomization probabilities πk at stage k (k =
1, 2), this truncated value is equal to

E [(Y1 + Y2)I(A1 = d1(X1), A2 = d2(X2), δ(X1) > ǫ, δ(X2) > ǫ)/(π1π2)] .

Compared to the usual value function, we can see that Vǫ(d1, d2) differs by
at most O(ǫ). Using the Q-learning model, the above value function for the
estimated rule is

Vǫ(d̂1, d̂2) =

E
[
(Y1 + Y2)I(A1β̂1X1 > 0, A2β̂2X2 > 0, |β̂1X1| > ǫ, |β̂2X2| > ǫ)/(π1π2)

]
.

One advantage of considering this value function is that non-regularity will no
longer be an issue since we have excluded the non-responders from the above
statistic. One can easily show

√
n(V̂ǫ(d̂1, d̂2)−Vǫ(d1, d2)) converges to the same

normal distribution under local alternatives whether P (β2X2 = 0) > 0 or not.

5. Concluding remarks

We again thank the authors for their very interesting work which likely stim-
ulate additional future research on this crucial topic. It is clear that there are
many fundamental and unresolved computational, methodological and theoret-
ical challenges remaining which will benefit from many diverse problem solving
approaches. We look forward to seeing this intriguing research area continue to
develop.

Appendix: Proofs

Sketch of proof of Theorem 1. Using the same arguments that lead to Eq. 2 in
Laber et al., we have

√
n(β̂1 − β∗

1 ) = Σ̂−1
1 PnB1

(
Y̆ −B′

1β
∗
1

)
= Sn + Σ̂−1

1 PnB1Un,
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where Sn is smooth and asymptotically normal and

Un =
√
n

(
1

αn
log

{
1 + eαnH

′
2,1β̂2,1

}
−
[
H ′

2,1β
∗
2,1

]
+

)
.

Note that

Un =
√
n

(
1

αn
log

{
1 + eαnH

′
2,1β̂2,1

}
− 1

αn
log

{
1 + eαnH

′
2,1β

∗
2,1

})

+
√
n

(
1

αn
log

{
1 + eαnH

′
2,1β

∗
2,1

}
−
[
H ′

2,1β
∗
2,1

]
+

)

=
eαnH

′
2,1β

∗
2,1H ′

2,1

1 + eαnH′
2,1β

∗
2,1

√
n
(
β̂2,1 − β∗

2,1

)
+ oP

(√
n
(
β̂2,1 − β∗

2,1

))

+
√
nf(αn, H

′
2,1β

∗
2,1),

where the last equality follows by taking derivatives, and where

f(α, x) =
1

α
log {1 + eαx} −max(x, 0). (1)

For the remainder term, note that Lemma B.6 shows the consistency of β̂2,1,

and that the expectation of the Hessian of 1
αn

log{1 + eαnH
′β} is bounded by

Assumption (A1). Hence, by applying Lemma B.5 to the matrix Σ̂1 that appears
in the remainder term, we conclude that

√
n(β̂1 − β∗

1) = Sn + Tn +Wn + oP (1), (2)

where

Tn = Σ̂−1
1 PnB1

[
eαnH

′
2,1β

∗
2,1

1 + eαnH′
2,1β

∗
2,1

H ′
2,1

√
n
(
β̂2,1 − β∗

2,1

)]
,

Wn = Σ̂−1
1

√
nPnB1f

(
αn, H

′
2,1β

∗
2,1

)
.

Recall that by assumption, αn and thus fact that

eαnx

1 + eαnx
→





1 x > 0
1
2 x = 0
0 x < 0

,

we obtain that for a given h2,1,

eαnh
′
2,1β

∗
2,1

1 + eαnh′
2,1β

∗
2,1

→ 1
{
h′
2,1β

∗
2,1 > 0

}
+

1

2
1
{
h′
2,1β

∗
2,1 = 0

}
.

Define the function w : Dp1
× l∞(F)×Rp21 × [0, 1] 7→ Rp1 by w(Σ, µ, ν, a) =

Σ−1µ(g(ν,B1, H2,1, a)), where

g(ν, b1, h2,1, a) =





b1

[
e
h′
2,1β∗

2,1/a

1+e
h′
2,1β∗

2,1/a
h′
2,1ν

]
, a > 0

b1
[
(1
{
h′
2,1β

∗
2,1 > 0

}
+ 1

21
{
h′
2,1β

∗
2,1 = 0

}
)h′

2,1ν
]
, a = 0
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and where F = {g(ν, b1, h2,1, a), ‖ν‖ ≤ K}. Using the same arguments as those
used in Lemma B.11, one can show that w is continuous at (Σ1,∞, P,Rp21 , 0).
Thus, using the continuous mapping theorem, it can be shown that Sn + Tn

weakly converges to

Σ−1
1,∞

[
G∞

(
B1(H

′
2,0β

∗
2,0 +

[
H ′

2,1β
∗
2,1

]
+
−B′

1β
∗
1 )
)]

+Σ−1
1,∞

[
PB1

(
H ′

2,0Z∞,0 +H ′
2,1Z∞,1

(
1
{
H ′

2,1β
∗
2,1 > 0

}
+

1

2
1
{
H ′

2,1β
∗
2,1 = 0

}))]

where

(
Z
′
∞,0,Z

′
∞,1

)′
= Σ−1

2,∞G∞ [B2(Y −B′
2β

∗
2)] .

We now discuss Wn, the third term in (3). By Lemma 1(i) below, when√
n/αn → 0,

∥∥∥Σ̂−1
1 Wn

∥∥∥ ≤
√
nPn

∥∥∥Σ̂−1
1

∥∥∥ ‖B1‖f(αn, H
′
2,1β

∗
2,1) ≤

√
n log 2

αn
Pn

∥∥∥Σ̂−1
1

∥∥∥ ‖B1‖ → 0,

which proves (i).
For (ii), let δn → 0 such that αnδn → ∞. Write

Σ̂1Wn =
√
nPn

(
B1f

(
αn, H

′
2,1β

∗
2,1

)
1
{
|H ′

2,1β
∗
2,1| > δn

})

+
√
nPn

(
B1f

(
αn, H

′
2,1β

∗
2,1

)
1
{
|H ′

2,1β
∗
2,1| ≤ δn

})

=
√
nPn

(
B1f

(
αn, H

′
2,1β

∗
2,1

)
1
{
|H ′

2,1β
∗
2,1| > δn

})

+
√
nPnB1f

(
αn, H

′
2,1β

∗
2,1

) (
1
{
|H ′

2,1β
∗
2,1| ≤ δn

}
− 1

{
|H ′

2,1β
∗
2,1| = 0

})

+
√
nPn

(
B1f

(
αn, H

′
2,1β

∗
2,1

)
1
{
|H ′

2,1β
∗
2,1| = 0

})

≡ An +Bn + Cn.

Note that by Lemma 1(vi),

‖An‖ ≤ Pn‖B1‖
√
n

αn
e−αnδn P→ 0.

Let p(δ) = P
(
1
{
|h′

2,1β
∗
2,1| ≤ δ

}
− 1

{
|h′

2,1β
∗
2,1| = 0

})
, and note that p(0) = 0

and thus p(δ) → 0 as δ → 0. Hence,

‖Bn‖ ≤ Pn‖B1‖
√
n

αn
log(2)‖

(
1
{
|H ′

2,1β
∗
2,1| ≤ δn

}
− 1

{
|H ′

2,1β
∗
2,1| = 0

})
‖ P→ 0.

Summarizing, we obtain that

Wn
P→ a∞ log(2)Σ−1

1,∞PB11
{
|H ′

2,1β
∗
2,1| = 0

}
,

which proves (ii).
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Sketch of proof of Theorem 2. Using the same arguments that lead to Eq. 2 in
Laber et al., we have

√
n(β̂1 − β∗

1,n) = Σ̂−1
1 PnB1

(
Y̆ −B′

1β
∗
1,n

)
= Sn + Σ̂−1

1 PnB1Un,

where Sn is smooth and asymptotically normal, and

Un =
eαnH

′
2,1β

∗
2,1,nH ′

2,1

1 + eαnH′
2,1β

∗
2,1,n

√
n
(
β̂2,1 − β∗

2,1,n

)
+ oP

(√
n
(
β̂2,1 − β∗

2,1,n

))

+
√
n

(
1

αn
log

{
1 + eαnH

′
2,1β

∗
2,1,n

}
−
[
H ′

2,1β
∗
2,1,n

]
+

)
.

Similarly to the proof of Theorem 1, we have

√
n(β̂1 − β∗

1,n) = Sn + Tn +Wn + oP (1), (3)

where

Tn = Σ̂−1
1 PnB1

[
eαnH

′
2,1β

∗
2,1,n

1 + eαnH′
2,1β

∗
2,1,n

H ′
2,1

√
n
(
β̂2,1 − β∗

2,1

)]
,

Wn = Σ̂−1
1

√
nPnB1f

(
αn, H

′
2,1β

∗
2,1,n

)
.

We obtain that for a given h2,1, and β∗
2,1,n = β∗

2,1 + s√
n
+ o(1/

√
n), and αn/√

n → a−1
∞ ,

eαnh
′
2,1β

∗
2,1,n

1 + eαnh′
2,1β

∗
2,1,n

→ 1
{
h′
2,1β

∗
2,1 > 0

}
+
[
a−1
∞ h′

2,1s
]
+
1
{
h′
2,1β

∗
2,1 = 0

}
.

Using the same arguments given in the proof of Theorem 4.1 of Laber et al.
(see also proof of Theorem 1 above) it can be shown that

Sn + Tn  Σ−1
1,∞

{
G∞

(
B1(H

′
2,0β

∗
2,0 +

[
H ′

2,1β
∗
2,1

]
+
−B′

1β
∗
1)
)

+ PB1

(
H ′

2,0Z∞,0 +H ′
2,1Z∞,11

{
H ′

2,1β
∗
2,1 > 0

})

+PB1

([
a−1
∞ H ′

2,1s
]
+
1
{
H ′

2,1β
∗
2,1 = 0

})}
,

where

(
Z
′
∞,0,Z

′
∞,1

)′
= Σ−1

2,∞G∞ [B2(Y −B′
2β

∗
2 )] .

Note that Σ̂1Wn can be written as

√
nPn

(
B1f

(
αn, H

′
2,1β

∗
2,1,n

)
1
{
|H ′

2,1β
∗
2,1| > δn, |α−1

n H ′
2,1s| > δn/2

})

+
√
nPn

(
B1f

(
αn, H

′
2,1β

∗
2,1,n

)
1
{
|H ′

2,1β
∗
2,1| > δn, |α−1

n H ′
2,1s| ≤ δn/2

})

+
√
nPn

(
B1f

(
αn, H

′
2,1β

∗
2,1,n

) (
1
{
|H ′

2,1β
∗
2,1| ≤ δn

}
− 1

{
|H ′

2,1β
∗
2,1| = 0

}))
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+
√
nPn

(
B1f

(
αn, H

′
2,1β

∗
2,1,n

)
1
{
|H ′

2,1β
∗
2,1| = 0

})

≡ An +Bn + Cn +Dn.

The first three terms can be bounded as follows:

‖An +Bn + Cn‖

≤ Pn‖B‖
√
n

αn
log(2)‖1

{
|H ′

2,1s| > αnδn/2
}
‖+ Pn‖B‖

√
n

αn
e−αnδn/2

+ Pn‖B‖
√
n

αn
log(2)

∥∥1
{
|H ′

2,1β
∗
2,1| ≤ δn

}
− 1

{
|H ′

2,1β
∗
2,1| = 0

}∥∥ P→ 0.

Thus the limiting distribution of Wn depends on that of Dn. We have that Dn

equals

PnB1

(√
n

αn
log

{
1 + e

αn√
n
H′

2,1s+o(1/
√
n)
}
−
[
H ′

2,1s+ o(1)
]
+

)
1
{
|H ′

2,1β
∗
2,1| = 0

}

P→ PB1

(
a∞ log

{
1 + ea

−1

∞ H′
2,1s

}
−
[
H ′

2,1s
]
+

)
1
{
|H ′

2,1β
∗
2,1| = 0

}
,

which concludes the proof.

Proof of Corollary 1. We prove only the second assertion, the first can be proved
similarly. Noting that both S∞ and T∞ have mean zero, it is enough to bound
the bias of

Σ−1
1,∞P (W∞)

= Σ−1
1,∞PB1

(
a∞ log

{
1 + ea

−1

∞ H′
2,1s

}
−
[
H ′

2,1s
]
+

)
1
{
|H ′

2,1β
∗
2,1| = 0

}
.

Using Lemma 1(i) with α = a−1
∞ and x = H ′

2,1s, we obtain that the bias is
bounded by

a∞ log(2)‖Σ−1
1,∞‖P‖B‖1

{
|H ′

2,1β
∗
2,1| = 0

}
.

The following lemma is needed for the proofs of Theorems 1–2:

Lemma 1. Let f(α, x) = 1
α log {1 + eαx} −max(x, 0). Then

(i) 0 < f(α, x) ≤ log(2)/α.
(ii) argmaxx f(α, x) = 0 and f(α, 0) = log(2)/α.
(iii) f(α, x) → 0 as α → ∞.

(iv) Fix δ > 0. Then maxx∈(−∞,−δ]∪[δ,∞) f(α, x) =
e−αδ

α .

The proof is technical and therefore omitted.
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