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1. Introduction

Long-range dependence (LRD, in short), also known as long memory, refers to
a second-order stationary time series X = {Xn}n∈Z

with the autocovariance
function decaying at large lags as

γX(h) = Cov(X0, Xh) ∼ Ch2d−1, as h→ ∞, (1.1)

or the spectral density diverging at zero as

fX(ω) ∼ c|ω|−2d, as ω → 0. (1.2)

Here, d ∈ (0, 1/2) is the LRD parameter, and C, c > 0 are two constants. See, for
example, Beran (1994), Doukhan, Oppenheim and Taqqu (2003), Palma (2007).
The conditions (1.1) and (1.2) are not equivalent in general, though they both
hold for most LRD models of interest. LRD is used to model real time series
in many areas as diverse as telecommunications (Park and Willinger (2000)),
economics and finance (Robinson (2003)), hydrology (Dmowska and Saltzman
(1999)).

Note that, under (1.1),

∞∑

h=−∞

|γX(h)| = ∞. (1.3)

Short-range dependence (SRD, in short), on the other hand, refers to the case
where the sum of the autocovariances is finite (i.e.

∑∞
h=−∞ |γX(h)| < ∞), for

example, when the autocovariance decays exponentially fast; or the spectral
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density satisfies (1.2) with d = 0. For the latter reason, the value d = 0 is often
associated with SRD, whereas again d ∈ (0, 1/2) corresponds to LRD.

A characteristic feature of LRD series is apparent changes in the local mean
level across a range of larger scales.1 Conversely, a series composed of several
changes in mean superimposed by a SRD series will exhibit LRD when using
common estimators of the LRD parameter. This confusion between LRD and
nonstationary models, such as the model involving changes in mean, has been
documented well (e.g. Klemeš (1974), Roughan and Veitch (1999), Diebold and
Inoue (2001), Mikosch and Stărică (2004), Mills (2007)) and has attracted a lot
of attention in the literature (e.g. Kuan and Hsu (1998), Berkes et al. (2006),
Bisaglia and Gerolimetto (2009), Qu (2011), Baek and Pipiras (2012)).

A number of statistical procedures started to emerge recently aiming at dis-
tinguishing LRD and nonstationary models. Jach and Kokoszka (2008) showed
that wavelet-based, maximum likelihood tests for SRD are robust to the pres-
ence of nonstationarities. Ohanissian, Russell and Tsay (2008) used temporal
aggregation to test against nonstationary models. Iacone (2010), McCloskey and
Perron (2013) employ common estimators of the LRD parameter in the Fourier
domain by selecting carefully the range of frequencies to be used in estimation.

Our work contributes to these efforts by focusing on LRD and changes in
mean. The changes-in-mean model (CM model, for short) is given by

Xj = µ+

R∑

r=1

∆r1{kr<j≤n} + ǫj, j = 1, . . . , n, (1.4)

where {kr, r = 1, ..., R} are the unknown R break points, µ + ∆1 + . . . + ∆r

represents the mean in the r-th regime (kr, kr+1] and {ǫj} is a SRD series. More
detailed assumptions on {ǫj} will be made below. When necessary to indicate
the number of break points R, we will also denote (1.4) as the CM-R model.
Testing and estimation for the CM models (1.4) are well developed, notably
in Bai (1997), Bai and Perron (1998); see also a nice paper by Robbins et al.
(2011). In this paper, we are interested in understanding here whether these, now
standard tools and approaches could be useful for our purpose at distinguishing
the CM models (1.4) and LRD.

Some progress in this direction was made in Berkes et al. (2006), Baek and
Pipiras (2012) and Yau and Davis (2012). Berkes et al. (2006) use standard
CUSUM-based methods to devise tests for CM models against LRD. As noted
in Baek and Pipiras (2012), however, these tests have very little power against
LRD. A test with a much larger power, based on the local Whittle estimation,
was suggested in Baek and Pipiras (2012) when testing for the CM model with
R = 1 break against LRD (with an obvious extension to multiple breaks). But
no suggestion was made as to how the test can be used to distinguish between
CM models and LRD. Yau and Davis (2012) also focus on the CM-1 and LRD
models, but use instead a full Whittle likelihood and a likelihood ratio test.

1For this reason, LRD is also known as the Joseph effect, a biblical reference to seven years
of great abundance, followed by seven years of famine.
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The approach suggested here follows Baek and Pipiras (2012) in using the
local Whittle estimation of the LRD parameter, in conjunction with the methods
to find breaks in CM models. The basic idea is the following. Modeling changes
in mean involves two key components: estimation of the break points kr in
(1.4), and estimation of the number of breaks R. We shall focus on sequential
procedures to find break points as in Bai (1997). In this case, selecting R can be
thought as a stopping rule. The break points kr for the CM model are commonly
found by using the CUSUM statistic (Berkes et al. (2006)) or the LSE statistic
(Bai (1997)). The two statistics are recalled below in Section 2, and differ by a
multiplicative factor. Common available stopping rules are based on the sup-F
test of Bai (1997), and the CUSUM-based test of Berkes et al. (2006), referred to
as the BHKS test below. These various statistics and rules are not very different,
and the resulting performances are comparable.

For the purpose of using these tools at distinguishing CM models and LRD,
we suggest another stopping rule to select R for CM models. The rule is based on
the local Whittle (LW) estimation of the LRD parameter (Robinson (1995a)).
More specifically, when the break points are found sequentially for CM models,
we suggest to estimate the LRD parameter in the series with the changes in
mean removed and stop when the hypothesis of SRD (d = 0) cannot be re-
jected. We will refer to this as the LW stopping rule or the LW test. As for
the available stopping rules, we show (Theorem 3.2 below) that under suitable
assumptions, the LW stopping rule estimates consistently the number of breaks
R. Moreover, for CM models, the finite sample performance when using the LW
test is comparable to those when using the available sup-F and BHKS tests.

How does this help at distinguishing CM models and LRD? Under LRD,
the number of breaks estimated by the LW test is shown to converge to +∞
(Theorem 3.3 below). The same is expected for the available stopping rules, for
example, this is implied by Berkes et al. (2006) for the BHKS test. However,
the finite sample simulations suggest that the LW stopping rule performs very
differently from the available rules when applied to a LRD series. As in Baek
and Pipiras (2012), the LW test has a much larger power when testing for a CM
model against LRD. In terms of the estimated number of breaks, this translates
into that, for a LRD series, the number of breaks found by the LW stopping
rule is now much larger than that found by the available stopping rules.

This discussion suggests a procedure for distinguishing CM models and LRD.
Specifically, estimate a CM model by using the available stopping rules and the
proposed LW rule. If the results are comparable, this suggests a CM model. If a
much larger number of breaks is found using the LW stopping rule, this suggests
a LRD model.

We formalize this idea through a test based on the difference between the
estimated numbers of breaks where under the null of a CM model, the p-value
is obtained using the bootstrap. Justifying the bootstrap approach goes beyond
the scope of this work and will be addressed in the future (some recent works
on the bootstrap and changes-in-mean models are mentioned in Section 4.4).

The proposed procedure has a number of attractive features. Note that com-
parable results not only point to a CM model, but also estimate it. Under a
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CM model, this is a result of the consistency of the employed procedures – the
consistency of the LW test is proved in this work. The difference in the behavior
for LRD series is a result of different powers of the tests against LRD (which
is also a consequence of the fact that only the LW test is an MLE-based test
under the assumption of LRD).

The proposed procedure performs very well in simulations. Moreover, the
results are also very encouraging when the procedure is applied to real data
exhibiting LRD. Several series of stock price volatility are found to be more
consistent with CM models. Several series from telecommunications and hy-
drology are found to be more in line with LRD. The same conclusions were
reached by McCloskey and Perron (2013) using a different approach, and likely
conform to the viewpoint held by many researchers working in the area. In a
perhaps less known application of LRD series, the procedure is also applied to
a series representing the congressional approval in the US.

The structure of the paper is as follows. We start by reviewing popular meth-
ods to find breaks, namely the least squares method (LSE) and the so-called
CUSUM method in Section 2. The available stopping rules are discussed in
Section 3. Also, our proposed method based on the local Whittle estimation
is introduced and its consistency result for CM models and the divergence re-
sult for LRD models are stated. The method is examined through simulations,
and the procedure to compare the number of estimated breaks is introduced
in Section 4. Applications to several real data sets can be found in Section 5.
Concluding remarks are in Section 6. Proofs of the consistency and divergence
results are provided in Appendix.

2. Finding break points

Finding break points and change-point analysis in general have been an active
research area over the past few decades. See, for example, Csörgő and Horváth
(1997), Perron (2006) for comprehensive reviews. Here, we briefly review two
popular methods to find break points and discuss their asymptotic results. We
focus on linear sequences {ǫj} in the CM-R model (1.4) given by

ǫj =

∞∑

i=0

ψiZj−i,

∞∑

i=0

i|ψi| <∞,

∞∑

i=0

ψi 6= 0, (2.1)

where {Zj} are martingale differences satisfying E(Zj |Fj−1) = 0 with Fj =
σ{Zi, i ≤ j}, EZ2

j = σ2
Z and supj E|Zj|2+δ <∞ for some δ > 0.

2.1. LSE method

Assume first that there is only one break R = 1 at time k. Then, the CM-1
model becomes

Xj =

{
µ+ ǫj, j = 1, . . . , k,
µ+∆1 + ǫj, j = k + 1, . . . , n.

(2.2)
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The break time k can be estimated by minimizing the sum of squared residuals

k̂L = argmin
1≤k≤n−1

(
k∑

j=1

(Xj −Xk)
2 +

n∑

j=k+1

(Xj −X
∗

k)
2

)
, (2.3)

where

Xk =
1

k

k∑

j=1

Xj , X
∗

k =
1

n− k

n∑

j=k+1

Xj (2.4)

estimate µ and µ +∆1 respectively. We refer to (2.3) as the least squares esti-
mation or the LSE method.

For later reference, observe also that

k̂L = argmax
1≤k≤n−1

{
n∑

j=1

(Xj −Xn)
2−
(

k∑

j=1

(Xj−Xk)
2+

n∑

j=k+1

(Xj −X
∗

k)
2

)}
(2.5)

since
∑n

j=1(Xj −Xn)
2 does not depends on k. It can be seen further that (2.5)

is equivalent to

k̂L = argmax
1≤k≤n−1

∣∣∣∣∣

(
k

n

(
1− k

n

))1/2 √
n
(
Xk −X

∗

k

)∣∣∣∣∣ . (2.6)

When the errors {ǫj} are i.i.d. Gaussian, k̂L is also the maximum likelihood
estimator (Csörgő and Horváth (1997), Section 1.6).

Multiple breaks for the CM-R model can be found by applying the LSE
method in a recursive way. For example, after finding k̂L in (2.3), the LSE
method is applied to the subsamples {X1, . . . , Xk̂L} and {Xk̂L+1, . . . , Xn}, and
so on. Stopping rules for the method are discussed in Section 3.

Asymptotic properties of the LSE break estimators were studied by Bai
(1997). Here, we briefly recall Bai’s results in two directions. In one direction,
the shifts ∆i are fixed as the sample size n goes to infinity. Let {τi} be the break
point fractions in the sense that

ki = [τin], 0 < τ1 < . . . < τR < 1. (2.7)

Then, under suitable assumptions and linear series (2.1), Bai (1997), Proposi-
tion 9, showed that

n(τ̂i
L − τi) = Op(1), (2.8)

where τ̂i
L = k̂Li /n. In the other direction, small shifts are considered in the

sense that ∆i = ∆i(n) = νn∆̃i, i = 1, . . . , R, where

νn → 0, but n1/2−δνn → ∞ (2.9)

for some δ ∈ (0, 1/2) as n → ∞. In this case, it is known (Bai (1997), Proposi-
tion 8) that

n∆2
i (τ̂

L
i − τi) = Op(1), (2.10)

which implies consistency of the break point fractions with a slower convergence
rate than in (2.8) where the shifts are fixed.
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2.2. CUSUM method

The celebrated CUSUM statistic is defined as

CUSUM(k) =
1√
n

(
k∑

j=1

Xj −
k

n

n∑

j=1

Xj

)
. (2.11)

The respective break point estimator is

k̂C = argmax
1≤k≤n

|CUSUM(k)|. (2.12)

It can be seen that

CUSUM(k) =
k

n

(
1− k

n

)√
n
(
Xk −X

∗

k

)
, (2.13)

where Xk and X
∗

k are given in (2.4).
Denoting

adjCUSUM(k) =

(
k

n

(
1− k

n

))−1/2

CUSUM(k), (2.14)

note from (2.6) that the LSE estimator is

k̂L = argmax
1≤k≤n−1

|adjCUSUM(k)| . (2.15)

Therefore, the CUSUM estimator k̂C differs from the LSE estimator k̂L only

by a multiplicative factor (k/n(1− k/n))
−1/2

. For this reason, the LSE method

is sometimes also called the adjusted CUSUM. The two estimators k̂L and k̂C

behave similarly, but it is also known (Csörgő and Horváth (1997)) that the
LSE estimator performs better when the true break occurs near the boundaries.

The asymptotics of the CUSUM estimator are also well studied (see, for
example, Csörgő and Horváth (1997)). However, most of the results are in the
so-called AMOC (at most one change) framework. For example, in the case of
small shifts (2.9) and under the CM-1 model, the CUSUM estimator satisfies

n∆2
1(τ̂

C
1 − τ1) = Op(1), (2.16)

where τ̂C1 = k̂C1 /n. The limiting distribution of n∆2
1(τ̂

C
1 − τ1) is also known

(Csörgő and Horváth (1997), Theorem 4.1.5). Asymptotics of the CUSUM es-
timator for fixed shifts is apparently not established yet.

3. Stopping rules

As referred to in the previous section, a common way to find multiple breaks
is to repeat the procedure for finding breaks to subsamples of the series before
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and after an already estimated break point. This way of discovering multiple
breaks needs a stopping rule. There are several ways to introduce such a rule.

One basic approach is to test within each subsample (starting with the whole
sample) whether a break is present. If the hypothesis of no break is not rejected,
the subsample is taken to have no break. Otherwise, a break is estimated and
testing is repeated on the two subsamples (before and after the estimated break).
This approach is illustrated in Section 3.1 through the sup-F test considered in
Bai (1997). It is also sometimes referred to as a binary segmentation (Sen and
Srivastava (1975)).

Another approach is to follow the binary segmentation, but also to introduce
an order in which the breaks are found. This can be thought as a sequential
testing procedure for additional breaks, stopping the first time the hypothesis
of a certain number of breaks is not rejected. In this sequential way of finding
breaks, a test for an additional break is usually based on a “global” statistic.
This approach is illustrated through the BHKS stopping rule in Section 3.2.

In Section 3.3, we discuss our stopping rule based on the local Whittle esti-
mation. It is introduced in the case where the multiple breaks are found sequen-
tially. Finally, the tests discussed in Sections 3.1 and 3.2 involve estimation of
the so-called long-run variance, which is discussed in Section 3.4.

Remark 3.1. An alternative way to find multiple breaks is through a simul-
taneous procedure (as in Bai and Perron (1998)), for example in conjunction
with a variable selection (as in Yao (1988), Liu, Wu and Zidek (1997), Lavielle
(2005)). We work with a binary segmentation and sequential procedures because
of their computational efficiency, and a relative ease of technical manipulation.

3.1. Sup-F rule for a binary segmentation

Within each segment of a binary segmentation, the presence of an additional
break could be tested by using a variety of tests. One such natural test is the
sup-F test proposed by Bai (1997). If the sample on a segment of interest is
denoted {X1, . . . , Xn}, the sup-F test statistic is defined as

supFn = sup
nη≤k≤n(1−η)

SSTn − SSEn(k)

σ̂2
, (3.1)

where

SSTn =

n∑

j=1

(Xj −Xn)
2,

SSEn(k) =
k∑

j=1

(Xj −Xk)
2 +

n∑

j=k+1

(Xj −X
∗

k)
2

are, respectively, the sums of squared errors under the hypothesis of no break
and a single break at time k (Xk and X

∗

k are defined in (2.4)). σ̂2 in (3.1) is a
consistent estimator of the long-run variance of {X1, . . . , Xn} under no break,
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and is discussed in more detail in Section 3.4 below. η ∈ (0, 1/2) is taken in
(3.1) to avoid the divergence of the statistic at the boundaries.

Under suitable assumptions on a linear series {ǫj} in (2.1) and supposing no
break, it is known (Bai (1997), Lemma 10) that

supFn
d→ sup

η≤t≤(1−η)

|B0(t)|2
t(1 − t)

, (3.2)

where {B0(t)}t∈[0,1] is a standard Brownian bridge, and
d→ denotes convergence

in distribution. The sup-F test against an additional break is then based on the
critical values of the limiting distribution in (3.2).

The binary segmentation procedure together with the sup-F test yield the
number of estimated breaks R̂. The following is the consistency result.

Theorem 3.1 (Bai (1997), Proposition 11). Suppose the CM-R model (1.4),
fixed shifts ∆i and the breaks ki satisfying (2.7). Let {ǫj} be a linear sequence

in (2.1). Suppose the number of breaks R̂ is estimated using the sup-F test with
the size of the test α = α(n) satisfying α(n) → 0 but lim infn→∞ nα(n) > 0.
Then

P
(
R̂ = R

)
→ 1, as n→ ∞. (3.3)

Remark 3.2. Even if Theorem 3.1 (Proposition 11, Bai (1997)) assumes fixed
shifts, its proof can be adapted to cover the case of small shifts.

3.2. BHKS rule for a sequential procedure

It may be convenient to introduce an order or a sequential procedure in which
breaks are found in a binary selection. A basic idea for doing this is to compare
the values of a test statistic across different segments and to test for an additional
break within the segment with the largest statistic value. We illustrate this with
the CUSUM statistic used in Berkes et al. (2006), though the sup-F (Bai (1997),
p. 330) and other statistics could also be used. When the CUSUM statistic is
used in a sequential procedure as in Berkes et al. (2006), we will refer to the
corresponding stopping rule as the BHKS rule.

To explain the BHKS stopping rule, let

T (s :e) =
1

σ̂
max

s+1≤k≤e
|CUSUM(k)| (3.4)

be the largest value of the CUSUM statistic (2.11) normalized by a square root
of a consistent estimator σ̂2 of the long-run variance (Section 3.4 below), both
based on a series {Xs+1, Xs+2, . . . , Xe}. The BHKS stopping rule is obtained
from a sequential testing of the hypothesis H0: CM-R against H1: CM-(R + 1)
for increasing R based on the test statistic (3.4). More specifically, when testing
H0: CM-0 (no break) against H1: CM-1, one expects under mild assumptions
(Berkes et al. (2006), Theorem 3.1) that

T (0 :n)
d→ sup

0≤t≤1
|B0(t)|, (3.5)
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under H0, where {B0(t)}0≤t≤1 is a standard Brownian bridge. If H0: CM-0 is

not rejected based on the asymptotic result (3.5), one sets R̂ = 0. Otherwise, let

k̂C be the break obtained through (2.12) based on the series {X1, . . . , Xn} and
proceed by testing H0: CM-1 against H1: CM-2. Under H0: CM-1, one similarly
expects that

max
{
T (0 : k̂C1 ), T (k̂

C
1 :n)

}
d→ max

i=1,2
sup

0≤t≤1
|B0

i (t)|, (3.6)

where {B0
i (t)}0≤t≤1, i = 1, 2, are two independent standard Brownian bridges.

If H0: CM-1 is not rejected based on the asymptotic result (3.6), one sets R̂ = 1.

Otherwise, the next break point k̂C2 is found through (2.12) based on the series

{X1, . . . , Xk̂C
1
} or {Xk̂C

1 +1, . . . , Xn} depending on T (0 : k̂C1 ) > T (k̂C1 : n) or

T (k̂C1 : n) > T (0 : k̂C1 ), respectively. This sequential procedure is continued till
the first R for which H0: CM-R is not rejected against H1: CM-(R+1), and the

value of R is taken for R̂.

If R̂ is thus obtained by using the BHKS rule, the corresponding consistency
result has not been stated explicitly or proved rigorously (though meant implic-
itly in Berkes et al. (2006) if their tests are consistent and the size of the tests

decreases). If R̂ is obtained through a sequential procedure using the sup-F test,
the consistency follows from the results of Bai (1997) (as mentioned on p. 331).

Under LRD, it is expected that R̂ → ∞ (in probability). Berkes et al. (2006)
proved the divergence of the test statistic for LRD series when testing for H0:
CM-1, and implicitly implied that the same happens when testing for H0: CM-R.
The latter fact implies that R̂ → ∞.

3.3. Local Whittle rule

We propose here a stopping rule in a sequential procedure based on the local
Whittle estimation of the LRD (or SRD) parameter. The local Whittle estimator
of the LRD (or SRD) parameter is defined as (Robinson (1995a))

d̂lw = argmin
d∈[Θ1,Θ2]

{
log

(
1

m

m∑

l=1

ω2d
l I(ωl)

)
− 2d

1

m

m∑

l=1

logωl

}
, (3.7)

where −1/2 < Θ1 < 0 < Θ2 < 1/2 are fixed, m denotes the number of lower
frequencies used in estimation, and

I(ωl) =
1

2πn

∣∣∣∣∣

n∑

j=1

Yje
−ijωl

∣∣∣∣∣

2

(3.8)

is the periodogram at Fourier frequencies ωl = 2πl/n.
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The number of breaks R̂ with the LW (Local Whittle) rule is found through
a sequential procedure as follows. Under the CM-0 model and suitable assump-
tions (Robinson (1995a)), one expects that

√
md̂lw

d→ N
(
0,

1

4

)
. (3.9)

Under the CM-1 model, one expects that
√
md̂lw

p→ +∞. Then, use these
asymptotic results to test for H0: CM-0 against H1: CM-1. If H0: CM-0 is not
rejected, set R̂ = 0. If H0 is rejected, find the first break k̂L1 through the LSE
method in (2.6). Then, proceed to testing for H0: CM-1 against H1: CM-2 by

using (3.9) but where d̂lw is now based on the residual series

R
(1)
j = Xj − X̂

(1)
j , j = 1, . . . , n, (3.10)

where X̂
(1)
j , 1 ≤ j ≤ k̂L1 , is a constant mean level till k̂L1 and X̂

(1)
j , k̂L1 +1 ≤ j ≤ n,

is a constant mean level after k̂L1 . If H0: CM-1 is not rejected, set R̂ = 1.

Otherwise, find the second break k̂L2 through the LSE method (2.15) based on

the series {X1, . . . , Xk̂L
1
} or {Xk̂L

1 +1, . . . , Xn} depending on S(0 : k̂L1 ) > S(k̂L1 :n)

or S(k̂L1 :n) > S(0 : k̂L1 ), respectively, where

S(s :e) = max
s+1≤k<e

|adjCUSUM(k)| (3.11)

is the largest adjusted CUSUM statistic (or equivalently, the smallest sum of
squared errors) based on {Xs+1, Xs+2, . . . , Xe}. Then, test for H0: CM-2 against

H1: CM-3 by using (3.9) but where d̂lw is based on the residual series

R
(2)
j = Xj − X̂

(2)
j , j = 1, . . . , n, (3.12)

where X̂
(2)
j corresponds to the constant mean levels of the series determined by

the two breaks k̂L1 and k̂L2 . This procedure is now continued till the first R for
which H0: CM-R is not rejected against H1: CM-(R + 1), each time removing
R constant local mean levels from the series and testing whether the LRD (or

SRD) parameter is in the SRD regime. The resulting values of R is taken for R̂.
The following result establishes the consistency of the estimated number of

breaks R̂ under CM models. The proof and the assumptions can be found in
Appendix A. In particular, we work in the setting of small shifts.

Theorem 3.2. Let R̂ be the estimated number of breaks as defined above. Sup-
pose the size of the test α = α(n) is such that α(n) → 0 but lim infn→∞ nα(n) >
0. Then, for the CM-R model under the assumptions stated in Appendix A,

P
(
R̂ = R

)
→ 1, as n→ ∞. (3.13)

The following result shows that the estimated number of breaks R̂ converges
to +∞ under LRD models. The proof and the assumptions can be found in
Appendix B.
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Theorem 3.3. Let R̂ be the estimated number of breaks as defined above. Sup-
pose the size of the test α = α(n) is such that α(n) → 0 but lim infn→∞ nα(n) >
0. Then, for a LRD model under the assumptions in Appendix B,

R̂
p→ ∞, as n→ ∞. (3.14)

3.4. Long-run variance estimation

The test statistics used in Sections 3.1 and 3.2 involve a consistent estimator
σ̂2 of the so-called long-run variance σ2 =

∑∞
h=−∞ γ(h). We briefly review here

several choices for σ̂2.
A popular choice is the heteroskedasticity and autocorrelation consistent

(HAC) estimator (Andrews (1991)) defined by

σ̂2
HAC =

n−1∑

h=−(n−1)

Kq(h)γ̂(h), (3.15)

where γ̂(k) = n−1
∑n−k

j=1 (Xj+k − Xn)(Xj − Xn) are sample autocovariances,
Kq(h) = K(h/q)/q is a scaled kernel function, e.g. with the Bartlett kernel
K(x) = (1− |x|)1{|x|≤1}, and q is a bandwidth.

Since σ2 = 2πf(0) with a spectral density f , the long-run variance is also
estimated in the frequency domain through

σ̂2 =

[n/2]∑

l=−[n/2]

Kq(l)I(ωl), (3.16)

where I(ωl) is the periodogram in (3.8). Furthermore, Robinson (2005) proposed
the memory autocorrelation consistent (MAC) estimator

σ̂2
MAC = p(d̂)

1

q

q∑

l=1

ω2d̂
l I(ωl), (3.17)

where p(d) is a constant given by

p(d) =

{
2Γ(1−2d) sin(πd)

d(1+2d) , d 6= 0,

2π, d = 0,
(3.18)

and d̂ is, for example, the local Whittle estimator of the LRD parameter.

4. Finite sample properties

In this section, we present the finite sample performance of the discussed meth-
ods through Monte Carlo simulations. The SRD errors {ǫj} in the CM model
follow a Gaussian AR(1) model with unit variance

ǫj = ρǫj−1 + uj , uj ∼ i.i.d. N (0, 1− ρ2) (4.1)
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for different parameter values ρ ∈ {.1, .2, . . . , .9}. Gaussian FARIMA(0,d,0) time
series with d ∈ {.1, .15, . . . , .45} are considered for LRD models, scaled to have
a unit variance. Specifically, the following tests are considered.

• (sup-F ) The sup-F rule for a binary segmentation in Section 3.1 is used
with the Bartlett long-run variance estimator in (3.15). For the bandwidth
parameter q, we take the data dependent bandwidth of Andrews (1991),
which minimizes the asymptotic truncated MSE. For the AR(1) errors,
the bandwidth is given by

q̂B = 1.1447

(
4nρ̂2

(1− ρ̂2)2

)1/3

, (4.2)

where ρ̂ is an OLS estimator given by

ρ̂ =

n∑

j=2

XjXj−1/

n∑

j=2

X2
j−1. (4.3)

• (LW) Our proposed method described in Section 3.3 is considered with
the following tuning parameters. For the LW stopping rule, the number of
frequencies m in the LW estimation is to be selected. Asymptotic theory
suggests m = O

(
n4/5

)
when the errors are Gaussian (Robinson (1995a)).

Henry (2001) suggested a data dependent bandwidth by minimizing the
MSE for the LW estimator. For the AR(1) series, the bandwidth is

m̂H =

(
3

4π

)4/5 ∣∣∣∣
−ρ̂

1− ρ̂2

∣∣∣∣
−2/5

n4/5, (4.4)

where ρ̂ is the OLS estimator in (4.3). Observe, however, that as ρ̂ → 0,
m̂H diverges. To avoid the divergence, the actual bandwidth used here is

m̂ = min
{
m̂H , n

4/5
}
. (4.5)

Note also that the LW rule can be improved by removing the bias in
the LW estimation. It is well known (see, for example, Andrews and Sun
(2004)) that the LW estimator for the AR(1) series has the following bias
correction √

m
(
d̂lw − dbias

)
d→ N (0, 1/4), (4.6)

where

dbias =
2π2

9

(
m2

n2

)
2ρ

(1− ρ)2
.

Therefore, for the LW stopping rule, we use the result (4.6) instead of
(3.9), together with the estimated m̂ in (4.5) and ρ̂ in (4.3).

• (CUSUM) The BHKS rule for a sequential procedure discussed in Section
3.2 is applied with the Bartlett long-run variance estimator (3.15) and the
bandwidth in (4.2).
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• (CUSUM-MAC) The BHKS rule with the MAC long-run variance esti-
mator (3.17) is used. For the MAC estimator, m̂ in (4.5) was also used
to estimate the LRD parameter. This is because the MAC estimator also
achieves the MSE with the bandwidth of order n4/5 (Abadir, Distaso and
Giraitis (2007)).

• (CUSUM-JX) In addition to the tests introduced above, we include the
modification of the CUSUM test suggested by Juhl and Xiao (2009). Juhl
and Xiao (2009) consider the residuals from nonparametric regression,

ǫ̂j = Xj −
1

h

n∑

i=1

K

(
j − i

h

)
Xi. (4.7)

The Bartlett long-run variance estimator with the bandwidth (4.2) is cal-
culated from the residual series (4.7). The Epanechnikov kernel K is used
in (4.7) with the bandwidth h = 2n4/5 by following Juhl and Xiao (2009).

• (CUSUM-RO) This modification was recently proposed by Robbins et al.
(2011), and it improves the power of the CUSUM test for correlated ob-
servations. The idea of modification is to transform the original correlated
observations to uncorrelated ones. This is done by performing the CUSUM
test on the residuals obtained by fitting a parametric ARMA(p, q) model
to the given data.

All R programs for Monte Carlo simulations used in the section are available
at http://web.skku.edu/~crbaek.

4.1. Simulations for CM models

Three different models are considered here:

• (CM-0) Xj = ǫj ,
• (CM-1) Xj = .51{[n/2]<j≤n} + ǫj,
• (CM-2) Xj = .51{[n/3]<j≤n} − .51{[2n/3]<j≤n} + ǫj,

where {ǫj} are the AR(1) errors given in (4.1). The sample size is chosen as
n = 2, 000 and all results are based on 1,000 replications. The CM-2 model will
be considered only in Section 4.3 below.

First, in Table 1, we report the sizes of the tests for H0: CM-0 with significance
level α = .05. When the correlation parameter ρ is small, all methods achieve

Table 1

Size of test for H0: CM-0

ρ .1 .2 .3 .4 .5 .6 .7 .8 .9
sup-F 0.043 0.055 0.050 0.061 0.059 0.044 0.038 0.033 0.024

CUSUM 0.036 0.056 0.054 0.065 0.065 0.058 0.050 0.054 0.054
CUSUM-JX 0.040 0.059 0.060 0.074 0.076 0.071 0.067 0.074 0.083
CUSUM-RO 0.034 0.050 0.049 0.059 0.056 0.046 0.047 0.043 0.045
CUSUM-MAC 0.053 0.070 0.072 0.099 0.104 0.101 0.118 0.138 0.205

LW 0.045 0.043 0.055 0.051 0.055 0.058 0.081 0.067 0.097

http://web.skku.edu/~crbaek
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Table 2

Power of test for H0: CM-0 against H1: CM-1

ρ .1 .2 .3 .4 .5 .6 .7 .8 .9
sup-F 1.000 1.000 1.000 1.000 1.000 0.996 0.947 0.790 0.336

CUSUM 1.000 1.000 1.000 1.000 1.000 0.999 0.985 0.926 0.595
CUSUM-JX 1.000 1.000 1.000 1.000 1.000 0.999 0.986 0.948 0.680
CUSUM-RO 1.000 1.000 1.000 1.000 1.000 1.000 0.984 0.927 0.578
CUSUM-MAC 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.967 0.775

LW 1.000 1.000 0.998 0.994 0.957 0.896 0.760 0.569 0.353

the nominal significance level. As ρ is approaching 1, the CUSUM and CUSUM-
RO methods perform best while the sup-F test is too conservative (empirical
size is 2.4%). Empirical sizes are moderately distorted for the CUSUM-JX and
LW, 8.3% and 9.7%, respectively. The CUSUM-MAC test shows the largest size
distortion.

Table 2 shows the power of the tests for H0: CM-0 against H1: CM-1. All
tests considered have excellent power up to moderate correlations ρ. When the
correlations are very strong, the power is still acceptable but observe that the
CUSUM-based methods perform better than the sup-F and LW.

4.2. Simulations for LRD models

We consider the empirical power of the tests against LRD alternatives. When
LRD time series are considered, all tests are expected to reject CM models.
Here, we only report the empirical power of the tests at two stages where the
null hypothesis is either CM-0 or CM-1.

First, the tests of H0: CM-0 against H1: LRD are considered in Table 3.
Observe that the power of test is increasing as the LRD parameter d increases
for all the tests considered here. On the other hand, when the LRD parameter d
is small to moderate, the LW method outperforms both the sup-F and CUSUM-
based methods.

At the second stage, the empirical power for H0: CM-1 against H1: LRD is
reported in Table 4. (Note that the sup-F test is excluded because it is not
sequential.) The overall power is smaller than that in Table 3. For the LW
method, however, the power remains close to 1 for most of the LRD alternatives
considered.

Table 3

Power of test for H0: CM-0 against H1: FARIMA(0, d, 0)

d .1 .15 .2 .25 .3 .35 .4 .45
sup-F 0.296 0.429 0.544 0.633 0.687 0.735 0.773 0.772

CUSUM 0.302 0.401 0.536 0.632 0.656 0.735 0.781 0.781
CUSUM-JX 0.306 0.409 0.549 0.646 0.673 0.750 0.800 0.775
CUSUM-RO 0.348 0.521 0.696 0.806 0.881 0.930 0.963 0.973
CUSUM-MAC 0.429 0.638 0.806 0.873 0.948 0.941 0.872 0.680

LW 0.873 0.994 0.999 1.000 0.999 1.000 1.000 1.000
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Table 4

Power of test for H0: CM-1 against H1: FARIMA(0, d, 0)

d .1 .15 .2 .25 .3 .35 .4 .45
CUSUM 0.220 0.368 0.466 0.534 0.598 0.662 0.679 0.694

CUSUM-JX 0.235 0.397 0.486 0.563 0.629 0.705 0.705 0.715
CUSUM-RO 0.263 0.488 0.630 0.747 0.846 0.891 0.929 0.950
CUSUM-MAC 0.392 0.620 0.777 0.864 0.915 0.926 0.886 0.798

LW 0.779 0.962 0.997 0.998 0.998 1.000 1.000 1.000

4.3. Estimated number of breaks for distinguishing CM and LRD

models

Table 5 presents empirical frequencies of the estimated numbers of breaks for
the CM-2 model. Observe that when the correlation in the errors is moderate,
the estimated numbers of breaks are highly centered around the true number
of breaks R = 2 for all methods. In the case of larger correlations, on the other

Table 5

Empirical frequencies (in percentage) of the estimated numbers of breaks for CM-2

sup-F CUSUM

ρ\R̂ 0 1 2 3 4 ≥ 5 0 1 2 3 4 ≥ 5
.1 0.0 0.0 78.0 18.7 2.6 0.7 0.0 0.0 94.3 5.7 0.0 0.0
.2 0.0 0.4 77.5 18.5 3.2 0.4 0.1 0.0 94.7 5.0 0.2 0.0
.3 0.0 4.1 76.7 16.7 2.3 0.2 0.4 0.0 95.1 4.4 0.0 0.1
.4 0.0 15.0 69.6 13.3 2.1 0.0 3.1 0.1 92.5 4.3 0.0 0.0
.5 0.0 36.2 52.1 10.4 1.1 0.2 13.2 0.4 82.2 4.1 0.1 0.0
.6 0.0 58.9 35.4 5.1 0.6 0.0 31.2 1.9 65.0 1.9 0.0 0.0
.7 0.0 77.8 19.8 2.3 0.1 0.0 49.6 7.1 42.3 1.0 0.0 0.0
.8 0.0 95.3 4.4 0.3 0.0 0.0 74.4 10.8 14.7 0.1 0.0 0.0
.9 0.0 99.7 0.3 0.0 0.0 0.0 89.2 7.9 2.9 0.0 0.0 0.0

CUSUM-JX CUSUM-RO

ρ\R̂ 0 1 2 3 4 ≥ 5 0 1 2 3 4 ≥ 5
.1 0.0 0.0 94.2 5.8 0.0 0.0 0.0 0.0 95.4 4.6 0.0 0.0
.2 0.1 0.0 94.5 5.3 0.1 0.0 0.1 0.0 96.6 3.3 0.0 0.0
.3 0.1 0.0 94.9 4.9 0.0 0.1 0.1 0.0 96.2 3.6 0.0 0.1
.4 1.8 0.1 93.6 4.4 0.1 0.0 1.9 0.0 95.1 3.0 0.0 0.0
.5 7.1 0.4 87.9 4.5 0.1 0.0 7.6 0.6 88.8 3.0 0.0 0.0
.6 19.7 2.0 75.4 2.9 0.0 0.0 22.9 2.4 72.7 1.9 0.1 0.0
.7 36.2 6.9 55.4 1.5 0.0 0.0 40.9 6.6 51.1 1.3 0.1 0.0
.8 61.5 11.4 26.6 0.5 0.0 0.0 66.1 11.3 22.3 0.3 0.0 0.0
.9 79.8 11.2 9.0 0.0 0.0 0.0 86.4 9.3 4.3 0.0 0.0 0.0

CUSUM-MAC LW

ρ\R̂ 0 1 2 3 4 ≥ 5 0 1 2 3 4 ≥ 5
.1 0.0 0.0 91.7 7.8 0.5 0.0 0.0 1.0 95.8 2.6 0.4 0.2
.2 0.0 0.0 89.4 9.3 1.2 0.1 0.1 3.1 91.7 4.2 0.4 0.5
.3 0.0 0.0 89.9 9.4 0.4 0.3 0.6 7.0 89.2 2.5 0.7 0.0
.4 0.2 0.0 89.1 9.8 0.9 0.0 1.6 14.1 78.9 4.4 0.5 0.5
.5 1.4 0.4 84.3 12.0 1.7 0.2 5.7 24.5 65.7 3.1 0.7 0.3
.6 4.7 0.6 79.8 12.3 2.5 0.1 15.7 31.0 48.9 3.5 0.4 0.5
.7 13.1 5.1 67.4 11.8 2.3 0.3 31.4 34.6 31.2 2.4 0.3 0.1
.8 27.8 8.9 48.8 11.6 2.6 0.3 49.7 28.9 18.2 2.5 0.4 0.3
.9 46.7 13.3 29.2 9.4 1.3 0.1 67.9 18.4 10.4 2.3 0.6 0.4
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Fig 1. Estimated number of breaks for FARIMA(0,d,0).

hand, all methods tend to underestimate the true number of breaks, but the
results are quite similar amongst all the methods considered. The results for the
CM-0 and CM-1 models (not reported here) are similar to or even better than
those for the CM-2 model.

The numbers of estimated breaks for LRD series are reported in Figure 1.
There is now a big difference in the results between the LW method and the
available methods based on the sup-F or CUSUM tests. (Note a different scale
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on the vertical axis for the LW method.) For all the LRD parameter values d
considered, the LW method finds a much larger number of estimated breaks.
We note again that this is due to the LW method having a better power against
LRD.

The above findings suggest a way to distinguish CM and LRD models. For a
given observed time series, apply all the procedures including the LW method
discussed in Section 3.3, and compare the estimated numbers of breaks. If the
estimated numbers of breaks are not that different across all the procedures,
the observed time series is consistent with a CM model. On the contrary, if the
LW method finds a much larger number of estimated breaks than the sup-F
or CUSUM-based methods, the observed time series is consistent with LRD.
This procedure is formalized and applied to several real time series in the next
sections.

4.4. Bootstrap procedure to test CM models against LRD

In Section 4.3, we argued that CM and LRD models can be distinguished by
comparing the numbers of estimated breaks. We formalize here this idea through
a test, and use bootstrap to compute p-values. Using bootstrap in CM models
has received attention only recently. See, for example, Huškova and Kirch (2008),
Seijo and Sen (2011), and Chang and Perron (2014). However, to the best of
our knowledge, bootstrapping the number of changes has not been considered
yet. Justifying our use of bootstrap goes beyond the scope of this work and will
be addressed in the future.

For the sake of simplicity, we will compare only the numbers of breaks esti-
mated through the CUSUM and LW methods. Other CUSUM based methods
can be considered similarly. Suppose that the number R̂ of breaks is estimated
using the CUSUM method. Write the residuals as

ǫ̂j = Xj − X̂j = Xj −
(
µ̂+

R̂∑

r=1

∆̂r1{k̂r<j≤n}

)
, j = 1, . . . , n. (4.8)

Further, denote the centered residuals as

ǫ̂∗j = ǫ̂j − n−1
n∑

i=1

ǫ̂i.

We now use the block bootstrap of block size L to obtain bootstrap residuals
(see, for example, Kunsch (1989), Lahiri (1999)). The block length L is taken
as

L = 2min{h ≥ 1 : |γ̂ǫ̂(h)| ≤ 1.96/
√
n},

where γ̂ǫ̂(h) is the sample ACF function of the residual series {ǫ̂j, j = 1, . . . , n}.
By superimposing the estimated CM model and the bootstrap residuals, we ob-
tain a bootstrap sample of observations {X∗

1 , . . . , X
∗
n}. Reapplying the CUSUM

and LW methods to the bootstrap sample {X∗
1 , . . . , X

∗
n} gives the estimated
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Table 6

Empirical size of test based on bootstrapping for CM-2.

ρ .1 .2 .3 .4 .5 .6 .7 .8 .9
Bootstrap 0.006 0.020 0.012 0.014 0.016 0.010 0.012 0.010 0.022

Table 7

Empirical power of test based on bootstrapping for FARIMA(0, d, 0).

d .1 .15 .2 .25 .3 .35 .4 .45
Bootstrap 0.084 0.266 0.438 0.692 0.896 0.948 0.978 0.982

numbers of breaks R̂C and R̂W , respectively. By repeating nB times, we pro-

duce bootstrap estimated numbers of breaks denoted by {R̂(1)
C , . . . , R̂

(nB)
C } and

{R̂(1)
W , . . . , R̂

(nB)
W }, respectively, as well as bootstrap differences in the estimated

numbers {R̂(1)
W − R̂

(1)
C , . . . , R̂

(nB)
W − R̂

(nB)
C }. We will reject the null hypotheses

of H0: CM model in favor of LRD for a given significance level α if the 100α%

sample quantile of the differences R̂
(i)
W − R̂(i)

C , i = 1, . . . , nB, is greater than zero.
This is equivalent to rejecting the null hypotheses if

1

nB

nB∑

i=1

1
{R̂

(i)
W

−R̂
(i)
C

≤0}
< α.

We will further apply a bias correction by centering the difference, with the final
decision rule to reject the null hypotheses in favor of LRD if

1

nB

nB∑

i=1

1
{R̂

(i)
W

−R̂
(i)
C

−min(0,RW−RC) ≤0}
< α, (4.9)

where RW = n−1
B

∑nB

i=1 R̂
(i)
W and RC = n−1

B

∑nB

i=1 R̂
(i)
C . The bias correction is to

account for possibly different means of the distributions of the number of breaks
obtained by the LW and CUSUM methods under CM models. Indeed, note from
Table 5, for example, that there is a slightly larger proportion of breaks less than
2 when using the LW method.

Table 6 presents the empirical size of the bootstrap test for the CM-2 model
with the Gaussian AR(1) errors described in Section 4.1. The results are based
on the sample size of n = 2, 000 with nB = 1, 000 and 500 replications under
5% significance level. The empirical power is examined by generating
FARIMA(0, d, 0) series of length n = 2, 000. Observe that the empirical sizes are
less than the 5% nominal level in all cases considered, indicating that the boot-
strapping procedure is conservative. However, the empirical power approaches 1
as d increases. For example, when d = .35, the empirical power is about 95%.

5. Applications to real data

We first consider several time series of volatility of stock indices. As in Stărică
and Granger (2005) (and similarly to McCloskey and Perron (2013) and others),
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Fig 2. Estimated CM models for DJI volatility. CUSUM and CUSUM-JX find 5 breaks, sup-
F finds 6 breaks, CUSUM-RO and CUSUM-MAC find 7 breaks. LW method, on the other
hand, finds 10 breaks.

we consider the logarithm of the absolute daily log-returns

log |rt| = log |100(log(Pt)− log(Pt−1))| , (5.1)

where Pt is the daily closing stock index. Two such indices are examined:
S&P500 and Dow Jones Industrial (DJI) Average, both from the period of Jan
2, 2004 to Dec 31, 2013 (2515 observations).

Figure 2 shows a time series plot of the log absolute daily log-returns for DJI
with the estimated CM models. The number of estimated breaks are slightly dif-
ferent amongst the CUSUM-based methods. For example, CUSUM and CUSUM-
JX find 5 breaks, sup-F finds 6 breaks, CUSUM-RO and CUSUM-MAC find 7
breaks. The LW method, on the other hands, finds 10 breaks. Observe that the
estimated CM models are similar amongst all the methods considered, except
that the LW method finds more breaks in 2009–2012, which is roughly the pe-
riod of the financial crisis. Our proposed bootstrap test based on the CUSUM
and LW methods gives the p-value of .690, suggesting a CM model. The same
conclusion was reached by other bootstrap tests, for example, the CUSUM-MAC
and LW method gives the p-value of .589. The results for S&P500 are presented
in Figure 3. All CUSUM-based and sup-F methods find 6 breaks while the LW
method finds 12 breaks. But again, the estimated CM models are not that dif-
ferent, and the LW method finds more breaks in the period of the financial crisis
2008-2012. The bootstrap test based on CUSUM and LW gives the p-value of
.682, hence suggesting a CM model. The same conclusion was reached by Mc-
Closkey and Perron (2013) for S&P 500 in the period from July 13, 1962 to
March 25, 2004 and DJI in the period from March 4, 1957 to Oct 30, 2002, by
using a different approach.

The next celebrated data set consists of the water levels of the Nile river
measured at the Roda gauge during the years 622 to 1284 AD (663 observations).
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Fig 3. Estimated CM models for S&P500 volatility. CUSUM-based and sup-F methods find
6 breaks while LW method finds 12 breaks.
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Fig 4. Estimated CM models for the water levels of the Nile river. CUSUM-JX finds 0 breaks,
sup-F , CUSUM and CUSUM-RO find 1 and CUSUM-MAC find 2 breaks. LW method, on
the other hand, finds 7 breaks.

For this time series, our proposed LWmethod finds 7 breaks while other methods
find only 0 to at most 2 breaks (sup-F , CUSUM, CUSUM-RO find 1, CUSUM-
JX finds 0 and CUSUM-MAC finds 2 breaks). The big (relative) difference in
the estimated numbers of breaks suggests that the series is consistent with LRD.
The bootstrap test based on CUSUM-MAC and LW gives the p-value of .078,
and CUSUM and LW gives the p-value of .059. McCloskey and Perron (2013)
also advocated LRD.

The next data set considers the quarterly congressional job approval in the US
from 1969 to 2009. The total number of observations is 161. The congressional
job approval is modeled as a LRD series in, for example, Byers, Davidson and
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Fig 5. Estimated CM models for the congressional approval in the US. CUSUM-based methods
find 0 breaks, sup-F finds 1. LW method, on the other hand, finds 4 breaks.
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Fig 6. Estimated CM models for Internet packet traffic at Auckland. CUSUM-JX finds 0
breaks, sup-F finds 1 break, CUSUM and CUSUM-MAC find 2 breaks, CUSUM-RO finds 3
breaks. For LW method, CM-19 is selected.

Peel (1997), Box-Steffensmeier and Tomlinson (2000) and Lebo, Walker and
Clarke (2000). Figure 5 presents the estimated CM models. The CUSUM-based
method finds no break and the sup-F method finds only 1 break. Our proposed
method finds four breaks and captures more rapid changes, suggesting LRD.
However, the bootstrap test based on the sup-F and LW methods gives the
p-value of .216. Hence, there is not enough evidence to reject CM models in
favor of LRD. It is also plausible that the sample size is just not large enough
to reject the null.

The last data set considered is the Internet packet traffic data collected from
the popular Auckland IX depository for March 28, 2008 (the data can be down-
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loaded at http://wand.net.nz/wits/auck/9/). Internet packet traffic is ag-
gregated to 100 milliseconds. The difference between the LW method and the
CUSUM-based methods is now striking. CUSUM-JX fails to find any break,
sup-F finds 1 break, CUSUM and CUSUM-MAC find 2 breaks and CUSUM-
RO finds 3 breaks. However, our proposed LW method finds 19 breaks. This
suggests strongly that the series is more consistent with LRD. The bootstrap
test gives the p-value of .001 for CUSUM and LW, and the p-value of less than
.001 when CUSUM-MAC and LW methods are used, thus a strong evidence in
favor of a LRD model.

6. Conclusions

In this work, we have introduced a procedure at distinguishing CM and LRD
models. Our proposed method is based on the LW estimation of the LRD pa-
rameter from the residual series obtained by sequentially removing changes in
mean. It leads to a consistent new stopping rule to estimate the number of
breaks in CM models. A simulation study shows that our LW test has a bet-
ter power against LRD than the available CUSUM and sup-F methods. This
suggests that CM and LRD models can be distinguished by comparing the num-
bers of estimated breaks when using the LW method and the available sup-F
or CUSUM methods. Our approach is illustrated on several real data series.

Appendix A: Proof of Theorem 3.2

We will assume the following conditions throughout this section.

Assumptions

(A1) Suppose the CM-R model (1.4) with a linear sequence {ǫj} satisfying
(2.1) and also the assumptions of Theorem 2 of Robinson (1995a) with
H0 = 1/2.

(A2) ki = [nτi] for some τi ∈ (0, 1) such that τ1 < τ2 < . . . < τR.

(A3) ∆i = ∆i(n) = νn∆̃i, i = 1, . . . , R, where νn → 0, but n1/2−δνn → ∞ for
some δ ∈ (0, 1/2).

(A4) Suppose that the break points k̂i are estimated sequentially using the LSE
method (Section 2), and the stopping rule based on (3.11). In particular,

∆2
i (k̂i − ki) = Op(1), or equivalently n∆

2
i (τ̂i − τi) = Op(1)

(see (2.10)).
(A5) For the number of low frequenciesm used in the LW estimation, logn/m→

0 as n→ ∞, and m2/(n∆2
i ) → 0 for all i = 1, . . . , R.

(A6) There are no ties (in the asymptotic sense) when finding break points at
each stage. For the first break, this means that

lim(P )ν−2
n (Un(τi)− Un(τj)) < 0

for some i and all i 6= j, where Un(τ) = n−1SSEn([nτ ]) (see Bai (1997)).

http://wand.net.nz/wits/auck/9/
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Proof of Theorem 3.2. First, we will consider the case when R̂ < R, and show
that P (R̂ < R) → 0 as n→ ∞. Without loss of generality assume that R̂ = R−1
since the other cases can be argued similarly only with additional terms. Since
R̂ < R, in view of Proposition 8 of Bai (1997), the R̂ estimated break point
fractions are consistent estimators of (R − 1) true break point fractions. This
means that there is a break point, say ki, which failed to be detected in a
sequential procedure. Denote the (R − 1) estimated break points as

k̂1 < k̂2 < . . . < k̂i−1 < k̂i+1 < . . . < k̂R (A.1)

and let P = {0, 1, . . . , i− 1, i+ 1, . . . , R+ 1} be the index set. Then, the peri-

odogram based on R
(R−1)
j = Xj − X̂

(R−1)
j becomes

IR(ωl) =

∣∣∣∣∣
1√
2πn

n∑

j=1

R
(R−1)
j e−ijωl

∣∣∣∣∣

2

=

∣∣∣∣∣
1√
2πn

n∑

j=1

ǫje
−ijωl +

1√
2πn

k̂i+1∑

j=k̂i−1+1

(mj − X̂
(R−1)
j )e−ijωl

+
1√
2πn

∑

p∈P\{i−1}

k̂p+1∑

j=k̂p+1

(mj − X̂
(R−1)
j )e−ijωl

∣∣∣∣∣

2

, (A.2)

wheremj = µ+
∑R

r=1 ∆r1{kr<j≤n} with the convention that k̂0 = 0 and k̂R+1 =

n. We need to understand the behavior of the local Whittle estimator d̂lw based
on the periodogram IR(ωl). We will show that d̂lw

p→ Θ1. As will be seen below,

this yields the desired convergence P (R̂ < R) → 0.

Consider the regime (k̂i−1, k̂i+1] where the true break point ki is contained.

Here, for the shortness sake, we will only consider the case when k̂i−1 > ki−1,

k̂i+1 < ki+1. The other cases, for example when k̂i−1 ≤ ki−1 and k̂i+1 ≥ ki+1,
can be proved by using similar arguments. Observe that, in the case considered,

mj−X̂(R−1)
j =





−∆i
k̂i+1 − ki

k̂i+1 − k̂i−1

− 1

k̂i+1 − k̂i−1

k̂i+1∑

j=k̂i−1+1

ǫj, k̂i−1 < j ≤ ki,

∆i
ki − k̂i−1

k̂i+1 − k̂i−1

− 1

k̂i+1 − k̂i−1

k̂i+1∑

j=k̂i−1+1

ǫj , ki < j ≤ k̂i+1.

Therefore, the periodogram (A.2) can be written as

IR(ωl) =

∣∣∣∣∣
1√
2πn

n∑

j=1

ǫje
−ijωl − k̂i+1 − ki

k̂i+1 − k̂i−1

∆i√
2πn

ki∑

j=k̂i−1+1

e−ijωl
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+
ki − k̂i−1

k̂i+1 − k̂i−1

∆i√
2πn

k̂i+1∑

j=ki+1

e−ijωl

− 1√
2πn

k̂i+1∑

j=k̂i−1+1

ǫj
1

k̂i+1 − k̂i−1

k̂i+1∑

j=k̂i−1+1

e−ijωl

+
1√
2πn

∑

p∈P\{i−1}

k̂p+1∑

j=k̂p+1

(mj − X̂
(R−1)
j )e−ijωl
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2

=: |x1 + x2 + x3 + x4 + x5|2

and hence as

IR(ωl) =
n∆2

i

2π

(∣∣∣∣∣
1

n
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k̂i+1 − k̂i−1

ki∑

j=k̂i−1+1

e
−ijωl
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e
−ijωl
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2

+νl

)

,

(A.3)

where νl denotes the remaining term expressed as

n∆2
i

2π
νl = |x1|2 + |x4|2 + |x5|2 + 2ℜ

(
∑

1≤j<k≤5

xj x̄k

)
.

It follows that

d̂lw = argmin
Θ1≤d≤Θ2

{
log

1

m

m∑

l=1

ω2d
l IR(ωl)− 2d

1

m

m∑

l=1

logωl

}

= argmin
Θ1≤d≤Θ2

{
log

1

m
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l2dIR(ωl)− 2d
1

m
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log l

}
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l2d
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log l

}
. (A.4)

We will first show that for some constants c1(l)
2 and c2(l)

2 specified below,

sup
Θ1≤d≤Θ2

∣∣∣∣∣

m∑

l=1

l2d
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n
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e−ijωl
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2

+νl

)
−

∞∑

l=1

l2d−2
(
c1(l)

2 + c2(l)
2
)
∣∣∣∣∣

p→ 0.

(A.5)
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Observe that, by the assumptions (A3) and (A4) (and assuming for simplicity
that τin is an integer),

√
2π

n∆2
i

|x2| =
∣∣∣∣∣
1

n

k̂i+1 − ki

k̂i+1 − k̂i−1

ki∑
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e−ijωl
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n
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|1 − e−iωl |

=
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τi+1 − τi−1

∣∣∣∣∣
|e−iτi−12πl − e−iτi2πl|

2πl
+ op(1) =:

c1(l)

l
+ op(1)

uniformly in l = 1, . . . ,m. Similarly,

√
2π

n∆2
i

|x3| =
∣∣∣∣∣
1

n

ki − k̂i−1

k̂i+1 − k̂i−1

k̂i+1∑

j=ki+1

e−ijωl

∣∣∣∣∣
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|e−iτi2πl − e−iτi+12πl|

2πl
+ op(1) =:

c2(l)

l
+ op(1)

uniformly in l = 1, . . . ,m. For the remainder term νl, note first that

x1 = Op(1) (A.6)

uniformly in l = 1, 2, . . . ,m, since sup1≤l≤mE|x1| <∞ by Theorem 2 in Robin-
son (1995b); see also (3.16) in Robinson (1995a). It follows from the above that

x2 = Op

(√
n∆2

i

l2

)
, x3 = Op

(√
n∆2

i

l2

)
.

Note also that

x4 = Op

(
1

l

)

from the assumption (A1) by using a standard martingale central limit theorem
for {ǫj} (see Hall and Heyde (1980), Theorem 5.5, pp. 141-146, and note also
that

∑∞
i=0 i|ψi| <∞ implies (5.37) of Hall and Heyde (1980)).

For x5, consider the regime (k̂p, k̂p+1]. Observe that, for example, if k̂p > kp
and kp+1 < k̂p+1, then

1√
2πn

k̂p+1∑

j=k̂p+1

(mj − X̂
(R−1)
j )e−ijωl

=
1√
2πn

{
−∆p+1

k̂p+1 − kp+1

k̂p+1 − k̂p

kp+1∑

j=k̂p+1

e−ijωl
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+∆p+1
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2
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+
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(
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p+1

+
1

l

)
(A.7)

from the assumptions (A1)-(A4). The asymptotic orders for the other cases, for

example when k̂p ≤ kp and kp+1 ≥ k̂p+1, are exactly the same, and will not be
derived here. Hence,

x5 = Op

( ∑

p∈P\{i−1}

1√
n∆2

p+1

+
1

l

)
.

By factoring out n∆2
i ,

|l2νl| = Op

(√
m2

n∆2
i

)

uniformly in l = 1, . . . ,m. Therefore, (A.5) follows from

sup
Θ1≤d≤Θ2

∣∣∣∣∣

m∑

l=1

l2d−2l2νl

∣∣∣∣∣ = op(1)

because of the assumption (A5) and the absolute summability of
∑∞

j=1 j
2d−2 at

d = Θ2.
Note now that

0 <
∞∑

l=1

l2d−2(c1(l)
2 + c2(l)

2) <∞.

Since 1/m
∑m

l=1 log l → ∞, it follows from (A.4) that

d̂lw
p→ Θ2. (A.8)

Finally, from integration by parts,

P (N (0, 1/4) > z) <
1√
8π

1

z
e−2z2

< e−2z2

for sufficiently large z. This implies that for a given size of test

α(n) = P (N (0, 1/4) > c(n)),

the critical value c(n) <
√
−.5 logα(n). In particular, if α(n) = K/n for some

positive constantK, then c(n) <
√
−.5 log(K/n). Therefore, by using (A.8) and

the assumption (A5),

P (
√
md̂lw > c(n)) → 1
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for α(n) → 0 but lim infn→∞ nα(n) > 0. Therefore, P (R̂ < R) → 0 as the
sample size increases.

On the other hand, when R̂ > R, we will argue that when testing H0 : CM-R,

P (
√
md̂lw > c(n)) → 0, (A.9)

where c(n) is the critical value of N (0, 1/4) with significance level α(n). Thus,
the null hypotheses is rejected at the R-th stage with probability tending to 0,
yielding P (R̂ > R) → 0. The result (A.9) immediately follows by showing that
at the R-th stage and under H0 : CM-R,

√
md̂lw

d→ N (0, 1/4), (A.10)

since c(n) → ∞ as α(n) → 0.

To show (A.10), let k̂1, k̂2, . . . , k̂R be the R estimated break points at the

R-th stage, and set k̂0 = 1, k̂R+1 = n. Then, the periodogram based on R
(R)
j =

Xj − X̂
(R)
j becomes

IR(ωl) =
1

2πn
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n∑

j=1

ǫje
−ijωl ++

R∑
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j )e−ijωl
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2

. (A.11)

Since the true model is CM-R, the assumption (A4) implies that all true break
point fractions are estimated consistently. Therefore, as argued in (A.7), one
can verify that (A.11) can be written as

IR(ωl) = |x1|2 + νl, νl = Op

(
R∑

p=1

1√
n∆2

p

+
1

l

)

uniformly in l = 1, 2, . . . , n. The asymptotic normality in (A.10) follows by using
the same argument as in the proof of Theorem 3 of Baek and Pipiras (2012)
where a single break point is considered (along the results of Robinson (1995a)).
The basic idea is that νl is negligible since

m log2m

n∆2
p

→ 0

for all p = 1, . . . , R which follows from the assumption (A5).

Appendix B: Proof of Theorem 3.3

We assume the following conditions throughout the section.
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Assumptions

(B1) Assumptions of Theorem 1 in Robinson (1995a) hold for the time series
{Xn} with the true LRD parameter d∗ ∈ (0, 1/2) and the number of low
frequencies m used in the LW estimation.

(B2) Suppose that

1

nd∗+1/2

∑

1≤j≤nt

(Xj − EXj)
d→ σBd∗+1/2(t) in D[0, 1], (B.1)

where σ > 0 and Bd∗+1/2 is a standard fractional Brownian motion.

Proof of Theorem 3.3. Let d̂Rlw be the LW estimator of the LRD parameter after

removing R breaks where the R estimated break points, k̂1, . . . , k̂R, are obtained
through the LSE method in a sequential way. Set also k̂0 = 0 and k̂R+1 = n.
Then, (3.14) follows from

d̂Rlw
p→ d∗, (B.2)

since H0 : CM-R is rejected for any R as argued following (A.8) as long as α(n)
is such that α(n) → 0 but lim infn→∞ nα(n) > 0.

Observe that, after removing R break points, the periodogram becomes
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= IX(ωl) + νl,

(B.3)

where

Xp =
1

k̂p+1 − k̂p

k̂p+1∑

j=k̂p+1

Xj

is the sample average on the p-th regime (k̂p, k̂p+1],

IX(ωl) =

∣∣∣∣∣
1√
2πn

n∑

j=1

Xje
−ijωl

∣∣∣∣∣

2

=: |κ(ωl)|2

is the periodogram of LRD series {Xn} with parameter d∗ ∈ (0, 1/2), and νl
denotes remaining terms in the expansion.

The convergence (B.2) can be proved by the same argument as Theorem 4 in
Baek and Pipiras (2012) where a single break is considered. The key idea is that
the periodogram IR(ωl) is dominated by IX(ωl), and νl is negligible. Here, we
will only show that the asymptotic order of νl is the same as that in the proof of
Theorem 4 of Baek and Pipiras (2012) even if we subtract multiple local mean
levels.
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First, from the equation (3.16) in Robinson (1995a), note that

κ(ωl) = Op(g
1/2
l ) = Op

(
ω−d∗

l

)
(B.4)

uniformly in l = 1, . . . ,m, where gl = G0ω
−2d∗

l with G0 > 0 appearing in the
spectral density of X , fX(ω) ∼ G0ω

−2d∗

as ω → 0. Furthermore, note that

k̂p+1∑

j=k̂p+1

e−ijωl = Op

(
1

|1− e−iωl |

)
= Op

(
1

ωl

)
. (B.5)

To calculate the order of the sample average Xp on the p-th regime, rewrite
the break points as

k̂(1), k̂(2), . . . , k̂(R)

according to their sequential order. Observe from (B.1) that

1

nd∗
argmax
1≤k≤n−1

∣∣∣∣∣

(
k

n

(
1− k

n

))−1/2
1√
n

(
k∑

j=1

Xj −
k

n

n∑

j=1

Xj

)∣∣∣∣∣
d→ argsup

0<t<1

∣∣(t(1− t)
)−1/2

σ
(
Bd∗+1/2(t)− tBd∗+1/2(1)

)∣∣

= argsup
0<t<1

∣∣(t(1− t)
)−1/2

σWd∗+1/2(t)
∣∣,

where Wd∗+1/2 = Bd∗+1/2(t)− tBd∗+1/2(1). Therefore, in view of (2.6),

k̂(1)

n

d→ ξ(1) := argsup
0<t<1

∣∣(t(1 − t)
)−1/2

σWd∗+1/2(t)
∣∣. (B.6)

Similarly by using (B.1) and (B.6), if k̂(2) < k̂(1), then

1

nd∗
argmax
1≤k<k̂(1)

∣∣∣∣∣

(
k

k̂(1)

(
1− k

k̂(1)

))−1/2
1√
k̂(1)

(
k∑

j=1

Xj −
k

k̂(1)

k̂(1)∑

j=1

Xj

)∣∣∣∣∣

d→ argsup
0<t<ξ(1)

∣∣∣∣
(

t

ξ(1)

(
1− t

ξ(1)

))−1/2
σ√
ξ(1)

(
Bd∗+1/2(t)−

t

ξ(1)
Bd∗+1/2(ξ(1))

)∣∣∣∣

and if k̂(2) > k̂(1),

1

nd∗
argmax
k̂(1)<k<n

∣∣∣∣∣

(
k − k̂(1)

n− k̂(1)

(
1− k − k̂(1)

n− k̂(1)

))−1/2

× 1√
n− k̂(1)

(
k∑

j=k̂(1)+1

Xj −
k − k̂(1)

n− k̂(1)

n∑

j=k̂(1)+1

Xj

)∣∣∣∣∣
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d→ argsup
ξ(1)<t<1

∣∣∣∣
(
t− ξ(1)

1− ξ(1)

(
1− t− ξ(1)

1− ξ(1)

))−1/2
σ√

1− ξ(1)

×
(
Bd∗+1/2(t)−Bd∗+1/2(ξ(1))−

t− ξ(1)

1− ξ(1)
(Bd∗+1/2(1)−Bd∗+1/2(ξ(1)))

)∣∣∣∣.

This shows that k̂(2)/n converges in distribution. Proceeding similarly, one can
show that

k̂(i)

n

d→ ξ(i), (B.7)

for i = 1, 2, . . . , R. A similar argument also yields that

n1/2−d∗

Xp =
n1/2−d∗

k̂p+1 − k̂p

k̂p+1∑

j=k̂p+1

Xj
d→ 1

ξp+1 − ξp

(
Bd∗+1/2(ξp+1)−Bd∗+1/2(ξp)

)
,

and hence that
Xp = Op(n

d∗−1/2). (B.8)

Therefore, from (B.4), (B.5) and (B.8), the order of νl becomes

νl = Op

(
n2d∗

ld∗+1

)
, (B.9)

which is exactly the same order as in the proof of Theorem 4 in Baek and Pipiras
(2012).
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Mikosch, T. and Stărică, C. (2004). Changes of structure in financial
time series and the GARCH model. REVSTAT Statistical Journal 2 41–73.
MR2259345

Mills, T. C. (2007). Time series modelling of two millennia of northern hemi-
sphere temperatures: long memory or shifting trends? Journal of the Royal
Statistical Society. Series A. Statistics in Society 170 83–94. MR2339099

Ohanissian, A., Russell, J. R. and Tsay, R. S. (2008). True or Spurious
Long Memory? A New Test. Journal of Business & Economic Statistics 26

161–175. MR2420145
Palma, W. (2007). Long-Memory Time Series. John Wiley & Sons, Inc., Hobo-
ken, New Jersey, USA. MR2297359

Park, K. and Willinger, W. (2000). Self-Similar Network Traffic and Per-
formance Evaluation. John Wiley & Sons, Inc., New York, NY, USA.

Perron, P. (2006). Dealing with Structural Breaks. In Palgrave Handbook of
Econometrics 278–352. Palgrave Macmillan, London.

Qu, Z. (2011). A test against spurious long memory. Journal of Business and
Economic Statistics 29 423–438. MR2848513

Robbins, M., Gallagher, C., Lund, R. and Aue, A. (2011). Mean shift
testing in correlated data. Journal of Time Series Analysis 32 498–511.
MR2835683

Robinson, P. M. (1995a). Gaussian semiparametric estimation of long range
dependence. The Annals of Statistics 23 1630–1661. MR1370301

Robinson, P. M. (1995b). Log-periodogram regression of time series with long
range dependence. The Annals of Statistics 23 1048–1072. MR1345214

Robinson, P. M. (2003). Time Series with Long Memory. Oxford University
Press, Oxford. MR2083220

Robinson, P. M. (2005). Robust covariance matrix estimation: HAC estimates
with long memory/antipersistence correction. Econometric Theory 21 171–
180. MR2153861

http://www.ams.org/mathscinet-getitem?mr=1665953
http://www.ams.org/mathscinet-getitem?mr=1015147
http://www.ams.org/mathscinet-getitem?mr=1701117
http://www.ams.org/mathscinet-getitem?mr=1466692
http://www.ams.org/mathscinet-getitem?mr=3148830
http://www.ams.org/mathscinet-getitem?mr=2259345
http://www.ams.org/mathscinet-getitem?mr=2339099
http://www.ams.org/mathscinet-getitem?mr=2420145
http://www.ams.org/mathscinet-getitem?mr=2297359
http://www.ams.org/mathscinet-getitem?mr=2848513
http://www.ams.org/mathscinet-getitem?mr=2835683
http://www.ams.org/mathscinet-getitem?mr=1370301
http://www.ams.org/mathscinet-getitem?mr=1345214
http://www.ams.org/mathscinet-getitem?mr=2083220
http://www.ams.org/mathscinet-getitem?mr=2153861


964 C. Baek and V. Pipiras

Roughan, M. andVeitch, D. (1999). Measuring long-range dependence under
changing traffic conditions. In Proceedings of IEEE INFOCOM 3 1513–1521.

Seijo, E. and Sen, B. (2011). Change-point in stochastic design regression and
the bootstrap. The Annals of Statistics 39 1580–1607. MR2850213

Sen, A. and Srivastava, M. S. (1975). On tests for detecting change in mean
when variance is unknown. Annals of the Institute of Statistical Mathematics
27 479–486. MR0415864
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