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Abstract: We consider an acceptance-rejection sampler based on a deter-
ministic driver sequence. The deterministic sequence is chosen such that
the discrepancy between the empirical target distribution and the tar-
get distribution is small. We use quasi-Monte Carlo (QMC) point sets
for this purpose. The empirical evidence shows convergence rates beyond
the crude Monte Carlo rate of N−1/2. We prove that the discrepancy of
samples generated by the QMC acceptance-rejection sampler is bounded
from above by N−1/s. A lower bound shows that for any given driver
sequence, there always exists a target density such that the star discrep-
ancy is at most N−2/(s+1). For a general density, whose domain is the
real state space Rs−1, the inverse Rosenblatt transformation can be used
to convert samples from the (s − 1)-dimensional cube to Rs−1. We show
that this transformation is measure preserving. This way, under certain
conditions, we obtain the same convergence rate for a general target den-
sity defined in Rs−1. Moreover, we also consider a deterministic reduced
acceptance-rejection algorithm recently introduced by Barekat and Caflisch
[F. Barekat and R. Caflisch, Simulation with Fluctuation and Singular
Rates. ArXiv:1310.4555 [math.NA], 2013.]
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1. Introduction

The Monte Carlo (MC) method is one of the widely used numerical methods for
simulating probability distributions. However, sometimes it is not possible to
sample from a given target distribution. Markov chain Monte Carlo (MCMC)
methods have been developed to address this problem. Instead of sampling in-
dependent points directly, MCMC samples from a Markov chain whose limiting
distribution is the target distribution. MCMC has widened the applications of
MC in many different fields [5, 22]. Another deficiency of MC algorithms is
its slow convergence rate. Quasi-Monte Carlo (QMC) algorithms on the other
hand perform better in improving the convergence rate of Monte Carlo which
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partially depends on generating samples with small discrepancy. For a survey of
QMC we refer to [10, 11]. Putting the QMC idea into MCMC is a good way to
improve the convergence rate and widen practical applications. Recently many
results in this direction have been achieved [6, 7, 39, 40]. With this paper we add
another result in this direction by using a deterministic driver sequence in an
acceptance-rejection algorithm. We prove discrepancy bounds of order N−1/s,
where the dimension of the state space is s− 1 and N is the number of samples.
The discrepancy here is a generalization of the concept of the Kolmogorov-
Smirnov test between the empirical distribution of the samples and the target
distribution to higher dimension. A more detailed description of our results will
be provided below.

1.1. Previous work on MCMC and QMC

In the following we describe some previous research on QMC and MC. L’Ecuyer
studied the convergence behavior of randomized quasi-Monte Carlo for discrete-
time Markov chains in [21], known as array-RQMC. The general idea is to ob-
tain a better approximation of the target distribution than with the plain Monte
Carlo method by using randomized QMC. In a different direction, Tribble [39]
and Tribble and Owen [40] established a condition under which low discrep-
ancy sequences can be used for consistent MCMC estimation for finite state
spaces. It has been shown that replacing an IID sequence by a completely uni-
formly distributed sequence also implies a consistent estimation in finite state
spaces. A construction of weakly completely uniformly distributed sequences is
also proposed in [40]. As a sequel to the work of Tribble, Chen in his thesis
[6] and Chen, Dick and Owen [7] demonstrated that Markov chain quasi-Monte
Carlo (MCQMC) algorithms using a completely uniformly distributed sequence
as driver sequence gives a consistent result under certain assumptions on the
update function and Markov chain. Further, Chen [6] also showed that MCQMC
can achieve a convergence rate of O(N−1+δ) for any δ > 0 under certain condi-
tions, but he only showed the existence of a driver sequence.

In our recent work [12], done with Rudolf, we prove upper bounds on the dis-
crepancy under the assumptions that the Markov chain is uniformly ergodic
and the driver sequence is deterministic rather than independent uniformly
distributed random variables. In particular, we show the existence of driver
sequences for which the discrepancy of the Markov chain from the target dis-
tribution with respect to certain test sets converges with (almost) the usual
Monte Carlo rate of N−1/2. A drawback of this result is that we are currently
not able to give an explicit construction of a driver sequence for which our dis-
crepancy bounds hold for uniformly ergodic Markov chains. Garber and Chop-
pin in [14] adapted low discrepancy point sets instead of random numbers in
sequential Monte Carlo (SMC). They proposed a new algorithm named sequen-
tial quasi-Monte Carlo (SQMC). They constructed consistency and stochastic
bounds based on randomized QMC point set for this algorithm. It is an open
problem to obtain deterministic bounds for SQMC. More literature review about
applying QMC to MCMC problems can be found in [7, Section 1].
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1.2. Acceptance-rejection algorithms

We now give a description of the algorithms in this paper. Let ψ : D → R+ =
[0,∞) be our target density function, where D ⊆ Rs−1 and R+ = [0,∞). We
consider the cases where D = [0, 1]s−1 or D = Rs−1. Assume that it is not
possible to sample directly from the target distribution. One possible solution
to obtain samples from ψ is to choose a proposal density H from which we can
sample and then use an acceptance-rejection algorithm. Assume there exists a
constant L <∞ such that ψ(x) < LH(x) for all x ∈ D. The following algorithm
can be used to obtain samples with distribution ψ.

Algorithm 1 (Random acceptance-rejection (RAR) algorithm). Given a target
density ψ : D → R+ and a proposal density H : D → R+. Assume that there
exists a constant L < ∞ such that ψ(x) < LH(x) for all x in the domain D.
We introduce another random variable u having uniform distribution in the unit
interval, i.e. u ∼ U([0, 1]). Then the acceptance-rejection algorithm is given by

1. Draw X ∼ H and u ∼ U([0, 1]).

2. Accept Y = X as a sample of ψ if u ≤ ψ(X)
LH(X) , otherwise go back to step 1.

See also [4, 9, 19] for a discussion of related algorithms. For a discussion on
how to select proposal densities see for instance [4] and the references therein.
The acceptance-rejection sampler works to sample from an unknown density
based on a proposal density.

Acceptance-rejection sampling and importance sampling [34, Section 3] are
quite similar ideas. Both of them distort a sample from a distribution in order
to sample from another one. However, there is a difference in the selection of
the constant L > ψ(x)/H(x) for x in the domain D. The acceptance-rejection
method does not work when supx∈D ψ(x)/H(x) = ∞, while importance sam-
pling is still available [33]. In this paper, we only use the acceptance-rejection
sampler to get samples of a given target density, since we are interested in ob-
taining discrepancy bounds for MCQMC. More information on general strategies
for generating nonuniform random variables can be found in the monographs
[9, 19].

The acceptance-rejection algorithm with deterministic driver sequence is one
special class of MCQMC. From the superior distribution properties in terms of
the discrepancy of the Sobol sequence [37] one could expect an improvement in
the discrepancy of the samples obtained from the acceptance-rejection algorithm
based on the Sobol sequence. In one dimension the discrepancy we study is
the Kolmogorov-Smirnov test between the target distribution and the empirical
distribution of the sample points. For a given point set in the s-dimensional
unit cube, the star discrepancy measures the difference between the proportion
of points in a subinterval of [0, 1]s and the Lebesgue measure of this subinterval.
We defer the precise definition of discrepancy to Section 3.

In this paper, we replace the IID initial samples with an explicit construction
of the driver sequence by using (t,m, s)-nets [11, 27] (obtained from the Sobol
sequence). Figure 1 shows a comparison between different driver sequences: de-
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Fig 1. Different driver sequences: deterministic and pseudo-random points (the total number
of points in each case is 29) and histograms are w.r.t. samples we accepted.

terministic points (Sobol points) and pseudo-random uniform points (they both
have 29 points). The acceptance-rejection sampler works by only accepting those
points under the target density curve. The difference of driver sequences will
affect the samples we obtain by the acceptance-rejection algorithm, hence the
distribution properties of the points which were accepted will be influenced. The
right two figures in Fig. 1 show the histograms of the points which we accepted
in both cases. Note that the deterministic samples better estimate the density
function. Our interest in this paper is in entirely deterministic methods. How-
ever, one could also use randomized quasi-Monte Carlo point sets [30, 31, 32]
and study a randomized setting.

1.3. Previous work on deterministic acceptance-rejection algorithms

The deterministic acceptance-rejection algorithm has also been discussed by
Moskowitz and Caflisch [24] and Wang [41, 42]. Therein a smoothing tech-
nique was introduced to improve the numerical performance of the acceptance-
rejection algorithm. Wang [42] gave a heuristic argument to indicate a con-

vergence rate of order N− s+2
2(s+1) . This argument assumes that the points in

elementary intervals are uniformly distributed. Thus this reasoning is not fully
deterministic. Our lower bound on the discrepancy (Theorem 2) indicates that
this reasoning does not apply in our case. The numerical experiments in [42]
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also indicate an improvement using a well chosen deterministic driver sequence
(in this case the so-called Halton sequence [17]) compared to a random driver
sequence. Recently, Nguyen and Ökten in [25] presented a consistency result of
an acceptance-rejection algorithm for low-discrepancy sequences. This algorithm
yielded good numerical performances on standard deviation and efficiency. How-
ever, proving an explicit convergence rate of the discrepancy for this algorithm
is still an open problem. See also [23, 25] for numerical experiments using quasi-
Monte Carlo point sets for the related problem of integrating indicator functions.

It is worth noticing that all results given in previous work are empirical ev-
idence and the discrepancy of samples is not directly investigated. Our work
focuses on discrepancy properties of points produced by totally deterministic
acceptance-rejection methods. We also prove discrepancy bounds on determin-
istic acceptance-rejection algorithms, including an upper bound and a lower
bound. The combination with the reduced acceptance-rejection sampler pro-
vides further evidence of the good performance of the deterministic method.
Our algorithm here may also be combined with similar algorithms like the
acceptance-complement method, see for instance [9, Section II.5].

Before presenting the theoretical background, we briefly describe determinis-
tic algorithms and some numerical results which show a convergence rate com-
parison using Monte Carlo and quasi-Monte Carlo methods.

2. Our results

2.1. Construction of driver sequence

In this paper, we use low discrepancy point sets given by (t, s)-sequences (see
Definition 3 and Definition 4 below) in base b as driver sequences. The first
bm points of a (t, s)-sequence are a so called (t,m, s)-net in base b. Explicit
constructions of (t, s)-sequences in base 2 have been found by Sobol [37], in
prime base b ≥ s by Faure [13] and in prime-power base b by Niederreiter [26].
In all these constructions t depends only on s but not on m. In practice, since
digital nets (based on Sobol points) are included in the statistics toolbox of
Matlab, this method is very easy to implement. People seeking more discussion
of construction methods can also consult [11, Chapters 4&8].

In the following we describe the algorithm and present some numerical results.
Since in general it is computationally too expensive to compute the supremum
in the definition of the star-discrepancy exactly, we use a so-called δ-cover to es-
timate this supremum. An introduction to δ-covers is provided in the appendix.
In the numerical discussion, the driver sequence is generated by a (t,m, s)-net in
base 2. Specifically, we always use a Sobol sequence [37] to generate (t,m, s)-nets
for our experiments.

2.2. Deterministic algorithm for target densities defined on [0, 1]s

We consider now the case where the target density is defined on [0, 1]s−1. The
following algorithm is a deterministic version of Algorithm 1. For the proofs
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later, we need the technical assumption that the target density is pseudo-convex.
The definition of pseudo-convexity is discussed in Section 3.

Algorithm 2 (Deterministic acceptance-rejection (DAR) algorithm in [0, 1]s).
Let the target density ψ : [0, 1]s−1 → R+, where s ≥ 2, be pseudo-convex.
Assume that there exists a constant L < ∞ such that ψ(x) ≤ L for all x ∈
[0, 1]s−1. Let A = {x ∈ [0, 1]s : ψ(x1, . . . , xs−1) ≥ Lxs}. Suppose we aim to
obtain approximately N samples from ψ.

i) Let M = bm ≥ ⌈N/(
∫

[0,1]s−1 ψ(x)/Ldx)⌉, where m ∈ N is the smallest in-

teger satisfying this inequality. Generate a (t,m, s)-netQm,s = {x0,x1, . . . ,
xbm−1} in base b.

ii) Use the acceptance-rejection method for the points Qm,s with respect to
the density ψ, i.e. we accept the point xn if xn ∈ A, otherwise reject. Let

P
(s)
N = A ∩Qm,s = {z0, z1, . . . , zN−1} be the sample set we accept.

iii) Project the points P
(s)
N onto the first (s − 1) coordinates. Let P

(s−1)
N =

{y0,y1, . . . ,yN−1} ⊆ [0, 1]s−1 be the projections of the points P
(s)
N .

iv) Return the point set P
(s−1)
N .

The following example shows a better convergence rate when using a low-
discrepancy driver sequence rather than a random point set. In each example
the reported discrepancy for the acceptance-rejection algorithm using a random
diver sequence is the average of 10 independent runs, which is throughout all
the numerical experiments.

Example 1. In this example we consider a non-product target density in [0, 1]4.
Let the target density ψ be

ψ(x1, x2, x3, x4) =
1

4
(e−x1 + e−x2 + e−x3 + e−x4), (x1, x2, x3, x4) ∈ [0, 1]4.

Figure 2 shows the discrepancy by using deterministic points and pseudo-
random points as driver sequence. For the RAR algorithm, we observe a conver-
gence rate of order N−0.482, whereas the DAR algorithm shows a convergence
rate of the discrepancy of order N−0.659.

2.3. Deterministic algorithm for target density defined in real state

space

Now we extend the domain of the target density ψ to Rs−1 with s ≥ 2. Assume
that there is a proposal density function H : Rs−1 → R+ such that there exists
a constant L <∞ such that ψ(z) ≤ LH(z) holds for all z ∈ Rs−1.

The inverse Rosenblatt transformation is used to generate samples from the
proposal density in the real state space Rs−1. Let F be the joint CDF of H
and Fj(zj |z1, . . . , zj−1) be the conditional CDF of the proposal density for j =
1, . . . , s − 1. The transformation T is used to generate points in Rs−1 × R+

from the unit cube [0, 1]s, such that the projection of points onto the first s− 1
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Fig 2. Convergence order of the star discrepancy of Example 1.

coordinates has distribution H . More precisely, let T : [0, 1]s → R
s be the

transformation given by z = T (u), where z = (z1, . . . , zs),u = (u1, . . . , us) and

z1 = F−1
1 (u1),

zj = F−1
j (uj|u1, . . . , uj−1), 2 ≤ j ≤ s− 1,

zs = usH(z1, . . . , zs−1).

(1)

The first s− 1 coordinates are produced by the inverse Rosenblatt transforma-
tion which converts the points from the unit cube [0, 1]s−1 to Rs−1. The sth
coordinate is uniformly distributed on the line

{(1− v)(z1, . . . zs−1, 0) + v(z1, . . . z(s−1), H(z1, . . . , zs−1), 0 ≤ v ≤ 1}

if us is uniformly distributed in [0, 1]. More details with respect to the Rosenblatt
transformation and extensions can be found in [8, 29, 35].

Algorithm 3 (Deterministic acceptance-rejection algorithm in Rs). Let an un-
normalized target density function ψ : Rs−1 → R+, where s ≥ 2, be given.
Let H be a proposal density H : Rs−1 → R+, such that there exists a con-
stant L < ∞ such that ψ(z) ≤ LH(z) for all z ∈ R

s−1. Let A = {z ∈
Rs : ψ(z1, . . . , zs−1) ≥ LH(z1, . . . , zs−1)zs}. Suppose we aim to obtain approxi-
mately N samples from ψ.

i) Let M = bm ≥ ⌈N
∫

[0,1]s−1 H(x)dx/(
∫

[0,1]s−1 ψ(x)/Ldx)⌉, where m ∈ N
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is the smallest integer satisfying this inequality. Generate a (t,m, s)-net
Qm,s = {x0,x1, . . . ,xM−1} in base b.

ii) Transform the points into Rs−1×R+ from [0, 1]s using the transformation
T given in (1) to obtain {T (x0), T (x1), . . . , T (xM−1)}.

iii) Take the acceptance-rejection method for the sample T (xn) with respect
to H and ψ in Rs−1 × R+, i.e. accept the point T (xn) if T (xn) ∈ A,

otherwise reject. Let P
(s)
N = A ∩ T (Qm,s) = {z0, z1, . . . , zN−1}.

iv) Project the points P
(s)
N we accepted onto the first (s − 1)-dimensional

space. Denote the first s − 1 coordinates of the points we accept by the

acceptance-rejection method by P
(s−1)
N = {y0,y1, . . . ,yN−1} ⊆ Rs−1.

v) Return the point set P
(s−1)
N .

We provide an example to demonstrate the performance of Algorithm 3.

Example 2. Let the target density function be given by

ψ(x1, x2) =







4

π
e−(x1+x2)(x1x2)

1/2, x1, x2 > 0,

0, otherwise.

The proposal density function H , which we use to do the acceptance-rejection
to generate samples of ψ(x1, x2), is chosen as

H(x1, x2) =























































1

4
, 0 ≤ x1, x2 ≤ 1,

1

4x22
, 0 ≤ x1 ≤ 1, x2 > 1,

1

4x21
, x1 > 1, 0 ≤ x2 ≤ 1,

1

4x21x
2
2

, x1, x2 > 1,

0, otherwise.

For this choice of H , we use the transform T defined in Equation (1) to obtain
samples from H . The sample (xj,1, xj,2) is given by the following transformation

xj,1 =

{

2uj,1, 0 ≤ uj,1 ≤ 1/2,
1/2(1− uj,1), 1/2 < uj,1 ≤ 1,

xj,2 =

{

2uj,2, 0 ≤ uj,2 ≤ 1/2,
1/2(1− uj,2), 1/2 < uj,2 ≤ 1.

Note that (uj,1, uj,2) is the driver sequence given by a (t,m, 2)-net in base b.
The order of the star discrepancy is demonstrated in Figure 3 where N is

the number of accepted samples. The numerical experiments show that the star
discrepancy converges at a rate of N−0.720 for this example using quasi-Monte
Carlo samples as proposal. The RAR algorithm converges with order N−0.390.
Again, the DAR sampler outperforms the RAR sampler.
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Fig 3. Convergence order of the star discrepancy of Example 2.

2.4. A deterministic reduced acceptance-rejection sampler

In this subsection we consider an extension of the DAR sampler. The random
version of this reduced method was recently introduced by Barekat and Caflisch
in [2]. For a target density function ψ, we carefully select H such that for ψ−H
and H the inverse CDF can be computed. For the case ψ(x) > H(x), we write
ψ = (ψ −H) +H and get samples according to ψ −H and H respectively.

Figure 4 illustrates this method. The sample sets of ψ can be divided into
three subsets, R1,1, R1,2 and R2,2, where R1,2 and R2,2 can be directly gen-
erated by using the inverse CDF of H and ψ − H in a certain range. The
acceptance-rejection method is only used to obtain R1,1. Compared with the
ordinary acceptance-rejection sampler, one obvious merit of this method is that
we do not require ψ(x) ≤ H(x) in the whole domain. Also, this method might
give better convergence rates since R1,2 and R2,2 are obtained via inversion
and therefore have low discrepancy. Algorithm 4 gives a simple version of the
improved method. More discussion of a general version is available in Section 5.

Algorithm 4 (Deterministic reduced acceptance-rejection (DRAR) algorithm).
Let ψ : [0, 1] → R+ be a target density. Choose a proposal density H such that
ψ −H and H can be sampled from directly. Let

S := {x ∈ [0, 1] : ψ(x) < H(x)}
and

L := {x ∈ [0, 1] : ψ(x) ≥ H(x)}.
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Assume that
∫

S
ψ(x)dx/

∫

[0,1] ψ(x)dx,
∫

L
H(x)dx/

∫

[0,1] ψ(x)dx and
∫

L
(ψ −

H)(x)dx/
∫

[0,1]
ψ(x)dx can be calculated or estimated. Let F−1

H,S , F
−1
H,L be the

inverse CDF of the proposal density H in the domain S and L respectively and
F−1
ψ−H,L be the inverse CDF with respect to ψ − H in L. Suppose we aim to

generate approximately N samples from ψ. Let

N1 =

⌈

N

∫

S
ψ(x)dx

∫

[0,1] ψ(x)dx

⌉

, N2 =

⌈

N

∫

L
H(x)dx

∫

[0,1] ψ(x)dx

⌉

and N3 =

⌈

N

∫

L
(ψ −H)(x)dx
∫

[0,1] ψ(x)dx

⌉

.

i) Let {x0,x1,x2, . . .} ⊂ [0, 1]2 be a (t, 2)-sequence in base b.
ii) Use the acceptance-rejection method with the target density ψ and the

proposal density H on the domain S using {x0,x1, . . . ,xM−1} as driver
sequence. Choose M such that N1 points are accepted by the DAR algo-
rithm. Compute F−1

H,S(xn) for n = 0, 1, . . . ,M − 1. Let z0, z1, . . . , zN1−1

be the accepted points. Label the point set as R1,1.
iii) Compute the points F−1

H,L(xn) for n = 0, 1, . . . , N2 − 1. Let R1,2 =

{F−1
H,L(xn) : 0 ≤ n < N2}.

iv) Compute the points F−1
ψ−H,L(xn) for n = 0, 1, . . . , N3 − 1. Let R2,2 =

{F−1
ψ−H,L(xn) : 0 ≤ n < N3}.

v) Project the points in RN = R1,1 ∪ R1,2 ∪ R2,2 onto the first coordinate.

Return the point set R
(1)
N .
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Fig 5. Convergence order of the star discrepancy of Example 3.

Since the inverse transform is a measure-preserving transformation, it can
preserve the uniformities of the driver sequence. Thus R1,2 and R2,2 are low dis-
crepancy point sets. The following example verifies the efficiency of the DRAR
algorithm. A theoretical result about the discrepancy properties of samples ob-
tained by this class of algorithms is provided in Theorem 5.

Example 3. Let ψ(x) = sin(4x) + x2 be a density function defined on [0, 1].
Instead of seeking a proposal density H such that ψ(x) ≤ H(x), we notice that
inversion can be implied to sin(4x) and x2 independently. However, it can not
work for their sum. Choose H(x) = x2. We only do deterministic acceptance-
rejection with respect to the target density ψ and proposal density H in the
subinterval S = (π/4, 1]. In the remaining range L = [0, π/4], we apply the in-
verse transformation onH and ψ−H to obtain samples based on a deterministic
driver sequence.

The discrepancy of the point set generated by Algorithm 4 converges at the
rate of N−0.929, which is significantly better than the N−0.501 convergence rate
of a random driver sequence, see Figure 5.

3. Background on discrepancy theory and (t,m, s)-nets

In this section we first establish some notation and some useful definitions and
then obtain theoretical results. First we introduce the definition of (t,m, s)-nets
and (t, s)-sequence in base b (see [11]) which we use as the driver sequences. The
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following fundamental definitions of elementary interval and fair sets are used
to define a (t,m, s)-net and (t, s)-sequence in base b.

Definition 1 (b-asdic elementary interval). Let b ≥ 2 be an integer. An s-di-
mensional b-asdic elementary interval is an interval of the form

s
∏

i=1

[

ai
bdi

,
ai + 1

bdi

)

with integers 0 ≤ ai < bdi and di ≥ 0 for all 1 ≤ i ≤ s. If d1, . . . , ds are such
that d1 + · · ·+ ds = k, then we say that the elementary interval is of order k.

Definition 2 (fair sets). For a given set PN = {x0,x1, . . . ,xN−1} consisting
of N points in [0, 1)s, we say for a subset J of [0, 1)s to be fair with respect to
PN , if

1

N

N−1
∑

n=0

1J(xn) = λ(J),

where 1J(xn) is the indicator function of the set J and λ is the Lebesgue mea-
sure.

Definition 3 ((t,m, s)-nets in base b). For a given dimension s ≥ 1, an integer
base b ≥ 2, a positive integer m and an integer t with 0 ≤ t ≤ m, a point
set Qm,s of bm points in [0, 1)s is called a (t,m, s)-nets in base b if the point
set Qm,s is fair with respect to all b-asdic s-dimensional elementary intervals of
order at most m− t.

Definition 4 ((t, s)-sequence). For a given dimension s ≥ 1, an integer base
b ≥ 2 and a positive integer t, a sequence {x0,x1, . . .} of points in [0, 1)s is
called a (t, s)-sequence in base b if for all integers m ≥ t and k ≥ 0, the point
set consisting of the points xkbm , . . . ,xkbm+bm−1 forms a (t,m, s)-net in base b.

The concept of discrepancy is introduced in [16] to measure the deviation
of a sequence from the uniform distribution. Now we give the definition of the
so-called star discrepancy which enables us to distinguish the quality of point
sets with respect to the uniform distribution.

Definition 5 (star discrepancy). Let PN = {x0,x1, . . . ,xN−1} be a point set
in [0, 1)s. The star discrepancy D∗

N is defined by

D∗
N(PN ) = sup

J⊂[0,1)s

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

1J(xn)− λ(J)

∣

∣

∣

∣

∣

,

where the supremum is taken over all J =
∏s
i=1[0, βi) ⊆ [0, 1)s.

See Figure 6 for an illustration of the concept of discrepancy in the unit
square.

If we extend the supremum in Definition 5 over all convex sets in [0, 1]s,
we get another interesting discrepancy, the so-called isotropic discrepancy. It
is another measure of the distribution properties of point sets with respect to
convex sets.
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Fig 6. The discrepancy measures the difference between the proportion of points in each
rectangle J and the Lebesgue measure of J. The star discrepancy is defined by the supremum
of discrepancies over all rectangles J. If we change J to be convex sets, we obtain the so-called
isotropic discrepancy.

Definition 6 (isotropic discrepancy). Let PN = {x0,x1, . . . ,xN−1} be a point
set in [0, 1)s. The isotropic discrepancy JN is defined to be

JN (PN ) = sup
J∈C

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

1J(xn)− λ(J)

∣

∣

∣

∣

∣

,

where C is the family of all convex subsets of [0, 1)s.

For further reading about the definition and properties of discrepancy, we
refer for instance to [11, 16].

For our purposes here we need the definition of pseudo-convex sets which
we introduce in the following (see also [1, Definition 2] and Figure 7 for an
example).

Definition 7 (pseudo-convex set). Let A be an open subset of [0, 1]s such that
there exists a collection of p convex subsets A1, . . . , Ap of [0, 1]s satisfying

1. Ai ∩ Aj = ∅ for i 6= j;
2. A ⊆ (A1 ∪ · · · ∪ Ap) of [0, 1]s;
3. either Aj is a convex part of A (Aj ⊆ A for j = 1, . . . , q) or the complement

of A with respect to Aj , A
′
j = Aj\A is convex.

Then A is called a pseudo-convex set and A1, . . . , Ap is an admissible convex
covering for A with p parts and with q convex parts of A.
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Fig 7. Shows a pseudo-convex set in the unit square given by the area below graph of the
density function and its admissible convex covering. Let A be given by the graph under the
curve. Then Ai, i = 1, . . . , 5, is an admissible convex covering of A, where A1, A2 and A3 are
convex parts in A, but A4 and A5 are the shadowed rectangles covering the remaining part
of A. The regions A4\A and A5\A are convex.

Remark 1. For convenience, we call a nonnegative function pseudo-convex if
and only if the region below its graph is a pseudo-convex set.

Next we present a bound on the isotropic discrepancy of points generated by
(t,m, s)-nets. A detailed proof is given in Appendix B.1.

Lemma 1. Let the point set Qm,s = {x0,x1, . . . ,xM−1} ⊆ [0, 1]s be a (t,m, s)-
net in base b where M = bm. For the isotropic discrepancy of Qm,s we have

JM (Qm,s) ≤ 2sbt/sM−1/s.

A slightly weaker result than Lemma 1 can also be obtained from [28, Korol-
lar 3].

Lemma 2. For any point set PN in [0, 1]s we have

JN (PN ) ≤ 2s

(

4s

s− 1

)(s−1)/s

(D∗
N (PN ))1/s.

Further it is known from [20] that the star discrepancy of a (t,m, s)-net Qm,s
in base b, where M = bm, satisfies

D∗
M (Qm,s) ≤M−1bt(logM)s−1 bs

(b+1)2s(s−1)!(log b)s−1
+CsM

−1bt(logM)s−2,
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for some constant Cs > 0. These two inequalities therefore yield a convergence
rate of order M−1/s(logM)1−1/s.

The following lemma will be used to get a discrepancy bound for a point set
on a pseudo-convex set. It is an extension of [1, Lemma 5] to the unit cube.

Lemma 3. Let A be a pseudo-convex subset of [0, 1]s with admissible convex
covering of p parts with q convex parts of A. Then for any point set PN =
{x0,x1, . . . ,xN−1} ⊆ [0, 1]s we have

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

1A(xn)− λ(A)

∣

∣

∣

∣

∣

≤ (2p− q)JN (PN ).

4. Discrepancy investigation of the deterministic
acceptance-rejection sampler

The first result we get is a discrepancy bound with respect to the target density
of samples generated by the acceptance-rejection algorithm with deterministic
driver sequences. The star discrepancy of points generated by the acceptance-
rejection algorithm with respect to the target density converges at the rate of
N−1/s, where N is the number of accepted samples. See Theorem 1 for details.
The proof uses a bound on the discrepancy of our driver sequence with respect
to convex sets (which is called isotropic discrepancy, see Definition 6 for details).

4.1. Upper bound

Let an unnormalized density function ψ : [0, 1]s−1 → R+ be pseudo-convex, and
∫

[0,1]s−1 ψ(z)dz > 0, but not necessarily 1. Assume that there exists a constant

L <∞ such that ψ(x) ≤ L for all x ∈ [0, 1]s−1. Let the subset under the graph
of ψ/L be defined as

A = {x ∈ [0, 1]s : ψ(x1, . . . , xs−1) ≥ Lxs}, (2)

which is pseudo-convex in [0, 1]s as ψ is a pseudo-convex function. Assume that
there is an admissible convex covering of A with p parts and with q convex parts
of A. Without loss of generality, let A1, . . . , Aq be the convex subsets of A and
Aq+1, . . . , Ap, such that A′

j = Aj\A is convex for q + 1 ≤ j ≤ p.
The definition of the star discrepancy of a point set {y0,y1, . . . ,yN−1} with

respect to a density function ψ is given as follows.

Definition 8. Let ψ : [0, 1]s−1 → R+ be an unnormalized target density.
Let {y0,y1, . . . ,yN−1} be a point set in [0, 1]s−1. The star discrepancy of
{y0,y1, . . . ,yN−1} with respect to the density ψ is defined by

D∗
N,ψ(P

(s−1)
N ) = sup

t∈[0,1]s−1

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

1[0,t)(yn)−
1

C

∫

[0,t)

ψ(z)dz

∣

∣

∣

∣

∣

,

where C =
∫

[0,1]s−1 ψ(z)dz and [0, t) =
∏s−1
j=1 [0, tj).
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Remark 2. Note that 1
Cψ is a probability density function on [0, 1]s−1. Thus

the discrepancy in Definition 8 measures the difference between the distribution
1
Cψ and the empirical distribution of the sample points with respect to the test
sets [0, t) for t ∈ [0, 1]s−1.

Theorem 1. Let the unnormalized density function ψ : [0, 1]s−1 → R+, with
s ≥ 2, be pseudo-convex. Assume that there is an admissible convex covering of
A given by Equation (2) with p parts and with q convex parts of A. Then the dis-
crepancy of the point set {y0,y1, . . . ,yN−1} ⊆ [0, 1]s−1 generated by Algorithm
2 using a (t,m, s)-net in base b, for large enough N , satisfies

D∗
N,ψ(P

(s−1)
N ) ≤ 8C−1Lsbt/s(2p− q)N−1/s,

where C =
∫

[0,1]s−1 ψ(z)dz and ψ(x) ≤ L for all x ∈ [0, 1]s−1.

We postpone the proof of this theorem to Appendix B.1.

4.2. Lower bound

In this section, we provide a lower bound on the star discrepancy with respect
to a convex density function. The general idea is to find, for a given driver point
set, a density function satisfying a certain convergence rate.

Theorem 2. Let PM be an arbitrary point set in [0, 1]s. Then there exists a con-
cave density function ψ defined in [0, 1]s−1 such that, for N samples generated
by the acceptance-rejection algorithm with respect to PM and ψ, we have

D∗
N,ψ(PN ) ≥ csN

− 2
s+1 ,

where cs > 0 is independent of N and PM but depends on s.

A detailed proof is provided in Appendix B.2. We would like to point out
that the lower bound also limits the convergence rates which we can obtain
in our current approach via convex sets. Note that a concave function is also
pseudo-convex as defined in Remark 1.

Additionally, note that [3] (in dimension s = 2) and [38] (for dimension
s > 2) showed the existence of points with discrepancy with respect to con-
vex sets bounded from above by N−2/(s+1)(logN)c(s) (where c(s) is a func-
tion of only s). This would yield an improvement of our results from N−1/s

to N−2/(s+1)(logN)c(s), however, those constructions are not explicit and can
therefore not be used in computation.

4.3. Generalization to real state space

We consider now the case where the target density is defined on Rs−1 with
s ≥ 2. The aim is to show a discrepancy bound on samples generated by the
deterministic acceptance-rejection method. The discrepancy with respect to a
given density function ψ : Rs−1 → R+ is defined as follows.
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Definition 9. Let PN = {z0, z1, . . . , zN−1} be a point set in Rs−1. Let ψ :
Rs−1 → R+ be an unnormalized probability density function. Then the star
discrepancy D∗

N,ψ(PN ) is defined by

D∗
N,ψ(PN ) = sup

t∈Rs−1

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

1(−∞,t](zn)−
1

C

∫

(−∞,t]

ψ(z)dz

∣

∣

∣

∣

∣

,

where C =
∫

Rs−1 ψ(z)dz and (−∞, t] =
∏s−1
j=1(−∞, tj] for t = (t1, . . . , ts−1).

We use the transformation T given in Equation (1) to generate samples of
H . For the sake of investigating discrepancy, the following result is helpful.
The lemma shows that the transformations T and its inversion T−1 are both
measure-preserving. For the proofs later, we assume that the proposal density
H is a product measure, i.e. H =

∏s−1
j=1Hj , where Hj is the marginal density

with respect to zj.

Lemma 4. The transformation T from the s-dimensional unit cube to R
s−1 ×

R+ given in (1) is measure-preserving, i.e. Volume(T (D)) = Volume(D) holds
for any measurable set D ⊆ [0, 1]s. This is true for T−1 as well.

To prove a bound on the discrepancy of the samples generated by Algo-
rithm 3, the following assumption is needed.

Assumption 1. Let ψ be the target density and H be a product measure
proposal density function, which is chosen such that its inverse CDF can be
computed. Let A = {z ∈ R

s : ψ(z1, . . . , zs−1) ≥ LzsH(z1, . . . , zs−1)} and the
transformation T−1 is defined as the inversion of transform T . Then we assume
that T−1(A) is pseudo-convex.

As the mappings T and T−1 are measure preserving, and since there are the
same number of samples in an arbitrary subset D ⊆ [0, 1]s and the correspond-
ing subset T (D) ⊆ Rs−1 × R+, we can consider the discrepancy in the unit
cube instead of that in R

s−1 ×R+. Following by similar proof arguments as for
Theorem 1 and Theorem 2, we obtain the same discrepancy bounds including
an upper bound and a lower bound for the general density ψ defined in the real
state space R

s−1.

Theorem 3. Let the unnormalized target density ψ : Rs−1 → R+ and the
proposal density H : Rs−1 → R+ satisfy Assumption 1. Then the discrepancy

of the point set P
(s−1)
N = {y0,y1, . . . ,yN−1} ⊆ Rs−1 generated by Algorithm 3

satisfies

D∗
N,ψ(P

(s−1)
N ) ≤ 8LC−1sbt/s(2p− q)N−1/s,

for N large enough, where C =
∫

Rs−1 ψ(z)dz and L is such that ψ(x) ≤ LH(x)
for all x ∈ Rs−1.

Theorem 4. Let H be a product density function defined on Rs−1. Let T be
the transformation given in Equation (1) associated to H. Let PM be an ar-
bitrary point set in [0, 1]s, then T (PM ) is a point set in Rs−1. Then there ex-
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ists an unnormalized density function ψ defined in Rs−1 satisfying the assump-
tion in Theorem 3 such that the star discrepancy of the points generated by the
acceptance-rejection sampler with respect to ψ and H satisfies

D∗
N,ψ(P

(s−1)
N ) ≥ csN

− 2
s+1 ,

where cs is independent of N and PM , but only dependent on s.

5. Discrepancy properties of the deterministic reduced
acceptance-rejection sampler

Algorithm 4 can be extended to a more general case. Consider the target density
ψ(x) =

∑k
ℓ=1Hℓ(x), where x ∈ D ⊂ Rs. If it is possible to sample from Hℓ(x)

individually and the expectations of Hℓ can be calculated or estimated with low
cost, then we can use an embedded deterministic reduced acceptance-rejection
sampler in each step. Let

Sℓ = {x ∈ D : ψk−ℓ+1(x) < Hℓ(x)},
and (3)

Lℓ = {x ∈ D : ψk−ℓ+1(x) ≥ Hℓ(x)},

where ψk−ℓ+1(x) =
∑k

i=ℓHi(x) for ℓ = 1, . . . , k − 1, and, in particular, ψk is
the target density.

Suppose we aim to sample N points from the target density ψ. The sample
set can be divided into two types, namely, points generated from the sets Sℓ’s
and Lℓ’s respectively. We apply a deterministic acceptance-rejection method
given in Algorithm 3 in each Sℓ with respect to ψk−ℓ+1 and Hℓ. Note that we
get ⌈N

∫

Sℓ
ψk−ℓ+1(x)dx/

∫

D
ψk(x)dx⌉ points from Sℓ for ℓ = 1, . . . , k − 1. For

sampling from Lℓ, the remaining samples come from applying the inverse trans-
formation ofHℓ in Lℓ. Then we obtain additional ⌈N

∫

Lℓ
Hℓ(x)dx/

∫

D ψk(x)dx⌉
points from Lℓ for ℓ = 1, . . . , k. We conduct the procedure inductively until we
get samples from Hk(x). We assume that

∫

Sℓ
ψk−ℓ+1(x)dx/

∫

D ψk(x)dx and
∫

Lℓ
Hℓ(x)dx/

∫

D
ψk(x)dx can be calculated or estimated.

The following algorithm is an extension of the DRAR algorithm, which sum-
marizes the embedding idea.

Algorithm 5. Let ψ(x) =
∑k
ℓ=1Hℓ(x),x ∈ D ⊂ Rs−1, be a target density we

aim to sample from. Define ψk−ℓ+1(x) =
∑k

i=ℓHi(x) for ℓ = 1, . . . , k. Denote
Sℓ and Lℓ like in Equation (3) and assume that

∫

Sℓ
ψk−ℓ+1(x)dx/

∫

D ψ(x)dx

and
∫

Lℓ
Hℓ(x)dx/

∫

D
ψ(x)dx can be calculated or estimated. Further assume

that we can sample from Hℓ individually by applying the transformation THℓ,Sℓ
and THℓ,Lℓ given in Equation (1) in Sℓ and Lℓ respectively. Suppose we aim to
generate N samples from ψ. Let

N1,ℓ =

⌈

N

∫

Sℓ
ψk−ℓ+1(x)dx
∫

D
ψ(x)dx

⌉

and N2,ℓ =

⌈

N

∫

Lℓ
Hℓ(x)dx

∫

D
ψ(x)dx

⌉

.
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For ℓ from 1 to k do:

i) Let {x0,x1,x2, . . .} ⊂ [0, 1]s be a (t, s)-sequence in base b.
ii) Compute THℓ,Sℓ(xn) for n = 0, 1, 2, . . .. Use the acceptance-rejection meth-

od with respect to ψk−ℓ+1 and Hℓ on the domain Sℓ using {x0,x1, . . . ,
xM−1} as driver sequence. Choose M such that N1,ℓ points are accepted
by the DAR algorithm. Let R1,ℓ = {z0, z1, . . . , zN1,ℓ−1} be the accepted
points.

iii) Compute THℓ,Lℓ(xn) for n = 0, 1, . . . , N2,ℓ − 1. Let R2,ℓ = {THℓ,Lℓ(xn) :
0 ≤ n < N2,ℓ}.

Let R
(s)
N =

⋃k
ℓ=1(R1,ℓ ∪R2,ℓ) and let R

(s−1)
N denote the projection of R

(s)
N onto

the first s− 1 coordinates. Return the set R
(s−1)
N .

Now we consider the discrepancy properties of sample points produced by
this algorithm. Note that the sample set of ψ =

∑k
ℓ=1Hℓ can be decomposed

into several subsets with different star discrepancy.

Theorem 5. For a given target density ψ(x) =
∑k

ℓ=1Hℓ(x), for x ∈ D ⊂ Rs−1,

let ψk−ℓ+1(x) =
∑k

i=ℓHi(x), where ψ and Hℓ, for 1 ≤ ℓ ≤ k, are piecewise

continuous. Let Sℓ and Lℓ be given by (3). Let R
(s−1)
N be the sample set generated

by Algorithm 5, where

N1,ℓ =

⌈

N

∫

Sℓ

ψk−ℓ+1(x)dx/

∫

D

ψk(x)dx

⌉

,

which is the number of points generated from Sℓ, and

N2,ℓ =

⌈

N

∫

Lℓ

Hℓ(x)dx/

∫

D

ψk(x)dx

⌉

,

which is the number of points generated from Lℓ for ℓ = 1, . . . , k. Assume that
N1,ℓ and N2,ℓ can be calculated or estimated for the given target density ψ and N .
Then we have

D∗
N,ψ(R

(s−1)
N ) ≤

k−1
∑

ℓ=1

N1,ℓ

N
D∗

Sℓ,ψk−ℓ+1
+

k
∑

ℓ=1

N2,ℓ

N
D∗

Lℓ,Hℓ +
1

N
,

where D∗
Sℓ,ψk−ℓ+1

and D∗
Lℓ,Hℓ

is the discrepancy of the samples in Sℓ and Lℓ
respectively.

The proof of Theorem 5 is given in Appendix B.3. Note that this method
achieves an improved acceptance rate of points since we are only rejecting points
in a certain range. For the remaining domain, we get samples by applying the
inverse transform. To be more exact, all point sets from Lℓ have low discrepancy
since the inverse transformation is directly applied with respect to Hℓ for ℓ =
1, . . . , k. Now we consider the star discrepancy of points generated from Sℓ.

The following result from [20] gives an improved upper bound on the star
discrepancy on the first M terms of a (t, s)-sequence in base b with s ≥ 2.
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Lemma 5. The star discrepancy of the first M terms of a (t, s)-sequence PM
in base b with s ≥ 2 satisfies

D∗
M (PM ) ≤M−1bt(logM)s

bs(b− 1)

(b+ 1)2s+1(s)!(log b)s
+ CsM

−1bt(logM)s−1,

for some constant Cs > 0 depending only on s.

With the help of Lemma 2, we obtain a bound on the isotropic discrepancy
of the first M points of a (t, s)-sequence.

Lemma 6. Let the point set PM = {x0,x1, . . . ,xM−1} ⊂ [0, 1]s be the first M
terms of a (t, s)-sequence. For the isotropic discrepancy of PM we have

JM (PM ) ≤ 2s

(

4s

s− 1

)(s−1)/s (bt/s
( bs(b−1)
(b+1)2s+1(s)!(log b)s

)1/s
logM

M1/s

+
C′
sb
t/s(logM)(s−1)/s

M1/s

)

,

for some constant C′
s > 0 depending only on s.

Hence, for the star discrepancy of R1,ℓ for 1 ≤ ℓ < k, using a (t, s)-sequence
as a diver sequence in the DAR algorithm we have a convergence rate of order

N
−1/s
1,ℓ logN1,ℓ. We omit a detailed proof since similar arguments as for proving

Theorem 1 can be used. The following corollary holds by substituting the proper
upper bounds and N1,ℓ, N2,ℓ in terms of N .

Corollary 1. Suppose that the target density ψ(x) =
∑k
ℓ=1Hℓ(x), for x ∈ D ⊂

Rs−1 satisfies all assumptions stated in Theorem 5 and ψ and Hℓ for 1 ≤ ℓ ≤ k
satisfy the conditions in Theorem 1 if D = [0, 1]s−1 or Theorem 3 if D = Rs−1.

Assume that Hℓ is a product density on Sℓ and Lℓ for 1 ≤ ℓ ≤ k. Let R
(s−1)
N be

the sample set generated by Algorithm 5. Then we have

D∗
N,ψ(R

(s−1)
N ) ≤

k−1
∑

j=1

CSℓ,ψk−ℓ+1
α
1−1/s
j log(αℓN)

N1/s
+

k
∑

ℓ=1

CLℓ,Hℓ(log βℓN)s−1

N
+

1

N
,

where

αℓ =

∫

Sℓ
ψk−ℓ+1(x)dx
∫

D ψ(x)dx
and βℓ =

∫

Lℓ
Hℓ(x)dx

∫

D ψ(x)dx
,

and CSℓ,ψk−ℓ+1
and CLℓ,Hℓ are constants associated with Sℓ, ψk−ℓ+1 and Lℓ, Hℓ

respectively.

6. Conclusion and outlook

As is well known, the integration error using a Monte Carlo method converges at
the rate of N−1/2. The acceptance-rejection sampler with a deterministic driver
sequence, which is a simple class of MCQMC methods, performs much better in
our numerical experiments than the theoretical result N−1/s of Theorem 1 or
Theorem 3, for a density defined on [0, 1]s−1 or Rs−1, would imply. The three
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examples even demonstrate that it is possible to achieve a better convergence
rate than with standard Monte Carlo using a well-chosen deterministic driver
sequence.

The main drawback of the acceptance-rejection sampler is that it might reject
many points in high dimension. Some methods to improve the acceptance rate
of points are included in [19]. For a special class of density functions given by a
finite sum, we propose an embedding deterministic reduced acceptance-rejection
algorithm. This algorithm produces a better star discrepancy convergence rate
in our numerical example.

Appendix A: δ-cover to approximate star discrepancy

Since it is computationally too expensive to compute the supremum in the
definition of the star-discrepancy exactly for dimensions larger than one, we use
a so-called δ-cover to estimate this supremum.

Definition 10. Let (G,B(G), ψ) be a probability space where G ⊆ Rs−1 and
B(G) is the Borrel σ-algebra defined on G. Let A ⊆ B(G) be a set of test sets.
A finite subset Γδ ⊆ A is called a δ-cover of A with respect to ψ if for every
A ∈ A there are sets U, V ∈ Γδ such that

U ⊆ A ⊆ V

and
ψ(V \ U) ≤ δ.

The concept of δ-cover is motivated by the following result [15]. Assume that
Γδ is a δ-cover of A with respect to the distribution ψ. For all {z0, z1, . . . , zN−1},
the following discrepancy inequality holds

sup
A∈A

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

1zn∈A − ψ(A)

∣

∣

∣

∣

∣

≤ max
U∈Γδ

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

1zn∈U − ψ(U)

∣

∣

∣

∣

∣

+ δ.

In the experiments we choose A to be the set of intervals [0, t), where t

runs through all points in the domain. For densities defined in [0, 1]s−1, we

set Γδ = {∏s−1
j=1 [0, aj2

−m) : aj ∈ Z, 0 ≤ aj ≤ 2m}, which means that the
δ-cover becomes finer as the number of samples increases, thus it can yield a
more accurate approximation of the star discrepancy. For densities defined in
Rs−1, we choose δ-covers with respect to m as Γδ = {∏s−1

j=1 [0, F
−1
j (aj2

−m)) :

aj ∈ Z, 0 ≤ aj ≤ 2m}, where F−1
j is the inverse marginal CDF with respect to

the proposal density H . Note that the approximation of the star-discrepancy is
computationally expensive, thus our experiments only go up to several thousand
sample points. However, the generation of samples using a (t,m, s)-net is fast.

Appendix B: Proofs

Before giving the proofs, we need some preparation.
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Consider the following elementary intervals

Wk =
s
∏

j=1

[

cj
bk
,
cj + 1

bk

)

, (4)

with 0 ≤ cj < bk (where cj is an integer) for j = 1, . . . , s. The diagonal of Wk

has length
√
s/bk and the volume is b−sk. Let J be an arbitrary convex set in

[0, 1]s. Let W o
k denote the union of cubes Wk fully contained in J ,

W o
k =

⋃

Wk⊆J

Wk. (5)

Let W k denote the union of cubes Wk having non-empty intersection with J or
its boundary ∂(J),

W k =
⋃

Wk∩(J∪∂(J)) 6=∅

Wk. (6)

Lemma 7. Let k ∈ N. Let J be an arbitrary convex set in [0, 1]s. For the W o
k

and W k constructed by (5) and (6), we have

λ(W k \ J) ≤ 2sb−k and λ(J \W o
k ) ≤ 2sb−k.

To illustrate the result we provide the following simple argument which yields
a slightly weaker result. Based on the construction of Wk, its diagonal length is√
s/bk. Then

W k \ J ⊆ B := {x ∈ [0, 1]s \ J :‖ x− y ‖≤ √
sb−k for some y ∈ J},

where ‖ · ‖ is the Euclidean norm. Therefore

λ(W k \ J) ≤ λ(B).

Note that the outer surface area of a convex set in [0, 1]s is bounded by the
surface area of the unit cube [0, 1]s, which is 2s. Thus the Lebesgue measure of
the set B is bounded by the outer surface area times the diameter. Therefore

λ(W k \ J) ≤ λ(B) ≤ 2s
√
sb−k.

The result for λ(J \W o
k ) follows by a similar discussion as the proof above.

Remark 3. Note that in [28] it was also shown that the constant 2s is best
possible.

Now we extend the result in Lemma 7 to pseudo-convex sets.

Corollary 2. Let J be an arbitrary pseudo-convex set in [0, 1]s with admissible
convex covering of p parts with q convex parts of J . For W o

k and W k given by
(5) and (6) we have

λ(W k \ J) ≤ 2psb−k and λ(J \W o
k ) ≤ 2psb−k.
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Proof. Let A1, . . . , Ap be an admissible convex covering of J with p parts. With-
out loss of generality, let A1, . . . , Aq be the convex subsets of J and Aq+1, . . . , Ap
be such that A′

j = Aj\J is convex for q + 1 ≤ j ≤ p. It can be shown that

J =

q
⋃

j=1

Aj ∪
p
⋃

j=q+1

(Aj\A′
j). (7)

Therefore

W k \ J ⊆





q
⋃

j=1

Bj ∪
p
⋃

j=q+1

B′
j



 ,

where

Bj =
{

y ∈ [0, 1]s \Aj :‖ x− y ‖≤ √
sb−k for some x ∈ Aj

}

, j = 1, . . . , q,

and

B′
j = {y ∈ A′

j :‖ x− y ‖≤ √
sb−k for some x ∈ [0, 1]s \A′

j}, j = q + 1, . . . , p.

Since Bj ∪Aj for j = 1, . . . , q, and B′
j ∪A′

j for j = q+1, . . . , p are convex, using
Lemma 7, we obtain

λ(W k \ J) ≤ λ





q
⋃

j=1

Bj



+ λ





p
⋃

j=q+1

B′
j



 ≤ 2psb−k.

The result for λ(J \W o
k ) follows by a similar discussion.

B.1. Proof of upper bound

Proof of Lemma 1. For the point set Qm,s = {x0,x1, . . . ,xM−1} ⊆ [0, 1]s gen-
erated by a (t,m, s)-net in base b with M = bm, let k = ⌊m−t

s ⌋. Let J be an
arbitrary convex set in [0, 1]s. Consider the elementary interval Wk given by
Equation (4). For W o

k and W k given by (5) and (6), obviously, W o
k ⊆ J ⊆W k.

The sets W o
k and W k are fair with respect to the net, that is

1

M

M−1
∑

n=0

1Wk
(xn) = λ(W k) and

1

M

M−1
∑

n=0

1Wo
k
(xn) = λ(W o

k ).

Then

1

M

M−1
∑

n=0

1J(xn)− λ(J) ≤ 1

M

M−1
∑

n=0

1Wk
(xn)− λ(W k) + λ(W k \ J)

=λ(W k \ J),
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and

1

M

M−1
∑

n=0

1J(xn)− λ(J) ≥ 1

M

M−1
∑

n=0

1Wo
k
(xn)− λ(W o

k )− λ(J \W o
k )

=− λ(J \W o
k ).

By Lemma 7, we have

λ(W k \ J) ≤ 2sb−k and λ(J \W o
k ) ≤ 2sb−k.

Thus we obtain
∣

∣

∣

∣

∣

1

M

M−1
∑

n=0

1J(xn)− λ(J)

∣

∣

∣

∣

∣

≤ 2sb−k ≤ 2sbt/sM−1/s.

Since the bound holds for arbitrary convex sets, the proof is complete.

Proof of Theorem 1. Let J∗
t
= ([0, t)× [0, 1])

⋂

A, where t = (t1, . . . , ts−1) and
A = {x ∈ [0, 1]s : ψ(x1, , . . . , xs−1) ≥ Lxs}. Since yn are the first s− 1 coordi-
nates of zn ∈ A for n = 0, . . . , N − 1, we have

M−1
∑

n=0

1J∗

t
(xn) =

N−1
∑

n=0

1J∗

t
(zn) =

N−1
∑

n=0

1[0,t)(yn).

Therefore
∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

1[0,t)(yn)−
1

C

∫

[0,t)

ψ(z)dz

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

N

M−1
∑

n=0

1J∗
t
(xn)−

1

λ(A)
λ(J∗

t
)

∣

∣

∣

∣

∣

.

The right-hand side above is now bounded by

M

N

∣

∣

∣

∣

∣

1

M

M−1
∑

n=0

1J∗

t
(xn)− λ(J∗

t )

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

λ(J∗
t )

(

M

N
− 1

λ(A)

)∣

∣

∣

∣

≤ M

N

(∣

∣

∣

∣

∣

1

M

M−1
∑

n=0

1J∗

t
(xn)− λ(J∗

t )

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

λ(A) − 1

M

M−1
∑

n=0

1A(xn)

∣

∣

∣

∣

∣

)

,

where we used the estimation λ(J∗
t ) ≤ λ(A) and the fact thatN =

∑M−1
n=0 1A(xn).

Since J∗
t
is also pseudo-convex, it follows from Lemma 3 that we can bound the

above expression by

M

N
2(2p− q)JM (P

(s)
M ).

In addition, limM→∞
N
M = λ(A), which means limM→∞

N
M =

∫

[0,1]s−1 ψ(z)dz/

L = C/L. Hence there is an M0 such that N
M ≥ C/(2L) for all M ≥ M0. Thus

M
N ≤ 2L

C for all M ≥ M0. Further we have N ≤ M . Using Lemma 1 we obtain
the bound

M

N
2(2p− q)JM (P

(s)
M ) ≤ 8LC−1sbt/s(2p− q)N−1/s.
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B.2. Proof of lower bound

Let

S
s−1 =

{

x ∈ R
s :
∥

∥

∥x−
(1

2
, . . . ,

1

2
, 1− s

)

∥

∥

∥ = s

}

,

where ‖ · ‖ denotes the Euclidian distance. Let

Υs−1 = [0, 1]s ∩ S
s−1.

This set is the part of a sphere of radius s and centre (1/2, . . . , 1/2, 1− s) which
lies in the cube [0, 1]s. The radius has been chosen such that Υs−1 is the graph
of a concave function.

The (closed) spherical cap C(y, ρ) ⊆ Ss−1 with center y ∈ Ss−1 and angular
radius ρ ∈ [0, π] is defined by

C(y, ρ) =
{

y ∈ S
s−1|x · y ≥ s2 cos ρ

}

.

The packing of Υs−1 considered here is constructed by identical spherical caps
which are non-overlapping, that is, C(yi, ρ), C(yj , ρ) ⊆ Ss−1 with i 6= j touch
at most at their boundaries, and such that the C(yi, ρn) are fully contained in
Υs−1.

Lemma 8. Let s ≥ 1. For any n ∈ N there exist Mn points y1, . . . ,yMn
on

Υs−1 ⊂ [0, 1]s and an angular radius ρn, with

ρn = c1(2n)
−1/(s−1),

n ≤Mn ≤ c2n,

such that the caps C(yi, ρn), i = 1, . . . ,Mn, form a packing of Υs−1. The positive
constants c1 and c2 depend only on the dimension s.

The lemma is essentially well-known for spheres. The explicit proof is due to
Winer [43] and Hesse gives a summary in [18, Lemma 1]. A similar argument
can be used for our case.

Now we give the proof of Theorem 2 whose proof follows the argument from
the proof of [36, Theorem 1].

Proof. We may suppose s ≥ 2. Let B be the intersection of the unit cube [0, 1]s

with the ball of radius s and centre (1/2, . . . , 1/2, 1− s), that is,

B = [0, 1]s ∩
{

x ∈ R
s :
∥

∥

∥
x−

(1

2
, . . . ,

1

2
, 1− s

)

∥

∥

∥
≤ s

}

.

Let C be a closed spherical cap on Ss−1 with spherical radius ρ. The convex
hull C of C is a solid spherical cap. For 0 < ρ < π/2, the normalized Lebesgue
surface measure λ(C) is a continuous function of ρ with

c1ρ
s+1 < λ(C) < c2ρ

s+1. (8)
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If N is sufficiently large, there is a positive real number ρ0 such that a cap C
of spherical radius ρ0 has measure

λ(C) =
1

2N
.

In view of (8), we have 0 < ρ0 < c3N
−1/(s+1). We now pick as many pairwise

disjoint caps, which are fully contained in Υs−1 and which have radius ρ0, as
possible, say C1, . . . , CM . By Lemma 8, for large N and hence small ρ0 we have

M ≥ c4ρ
−(s−1)
0 , hence

M ≥ c5N
(s−1)/(s+1). (9)

Given a sequence of numbers σ1, . . . , σM , with each σi either 1 or −1, let
B(σ1, . . . , σM ) consist of all x ∈ B which do not lie in a cap Ci with σi = −1.
In other words, B(σ1, . . . , σM ) is obtained from B by removing the solid caps
Ci for which σi = −1.

Now the local discrepancy function ∆PN (H) defined by ∆PN (H) =
∑N
i=1 1H(PN )−Nλ(H) is additive, i.e. it satisfies

∆PN (H ∪H ′) = ∆PN (H) + ∆PN (H
′)

if H ∩H ′ = ∅. It follows easily that

∆PN (B(σ1, . . . , σM ))−∆PN (B(−σ1, . . . ,−σM )) =

M
∑

i=1

σi∆PN (Ci).

We have

∆PN (Ci) =

N
∑

i=1

1Ci(PN )−Nλ(Ci) =

N
∑

i=1

1Ci(PN )− 1

2
.

Hence for every i, either ∆PN (Ci) ≥ 1
2 or ∆PN (Ci) = − 1

2 . Choose σi such that

σi∆PN (Ci) ≥ 1/2 for 1 ≤ i ≤M . Then

∆PN (B(σ1, . . . , σM ))−∆PN (B(−σ1, . . . ,−σM )) ≥M/2,

and either J = B(σ1, . . . , σM ) or J = B(−σ1, . . . ,−σM ) has |∆PN (J)| ≥ M/4.
In addition, J is a convex set due to its construction.

Thus by (9),

D∗
N(λ, J) ≥

1

4

M

N
≥ c6N

−2/(s+1).

We take ψ as the boundary of J excluding the boundary of [0, 1]s, which com-
pletes the proof.
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B.3. Proof of Theorem 5

Proof. In what follows we restrict our investigations to the case k = 2 for
simplicity, the general case can be proved by similar arguments. Let ψ = H1+H2

be the target density function. Assume that we can apply the inverse CDF on
H1 and H2 to generate samples. Let

S := {x ∈ D : ψ(x) < H1(x)},
and

L := {x ∈ D : ψ(x) ≥ H1(x)}.

The final sample set R
(1)
N is a superposition of the three subsets, R1,1, R1,2 and

R2,2, see Figure 4. Define Ri,ℓ = {x(i,ℓ)0 , x
(i,ℓ)
1 , . . . , x

(i,ℓ)
Ni,ℓ−1} for i, ℓ = 1, 2. The

number Ni,ℓ of the points in each subset is given by

N1,1 =

⌈

N

∫

S ψ(x)dx
∫

D ψ(x)dx

⌉

, N1,2 =

⌈

N

∫

LH1(x)dx
∫

D ψ(x)dx

⌉

and N2,2 =

⌈

N

∫

LH2(x)dx
∫

D ψ(x)dx

⌉

.

Then there exists δi ∈ [0, 1) for i = 1, 2, 3 such that

N1,1 = N

∫

S
ψ(x)dx

∫

D ψ(x)dx
+ δ1, N1,2 = N

∫

L
H1(x)dx

∫

D ψ(x)dx
+ δ2 and N2,2 = N

∫

L
H2(x)dx

∫

D ψ(x)dx
+ δ3.

Therefore,

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

1(−∞,t]∩D(xn)−

∫

(−∞,t]∩D
ψ(x)dx

∫

D
ψ(x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

1(−∞,t]∩D(xn)−

∫

(−∞,t]∩L
H1(x)dx +

∫

(−∞,t]∩L
H2(x)dx +

∫

(−∞,t]∩S
ψ(x)dx

∫

D
ψ(x)dx

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

N

N1,1−1
∑

n=0

1(−∞,t]∩D(x(1,1)
n )−

∫

(−∞,t]∩L
H1(x)dx

∫

D
ψ(x)dx

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N1,2−1
∑

n=0

1(−∞,t]∩D(x
(1,2)
n )−

∫

(−∞,t]∩L
H2(x)dx

∫

D
ψ(x)dx

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N2,2−1
∑

n=0

1(−∞,t]∩D(x
(2,2)
n )−

∫

(−∞,t]∩S
ψ(x)dx

∫

D
ψ(x)dx

∣

∣

∣

∣

∣

∣

=
N1,1

N

∣

∣

∣

∣

∣

∣

1

N1,1

N1,1−1
∑

n=0

1(−∞,t]∩D(x(1,1)
n ) −

N

N1,1

∫

(−∞,t]∩S
ψ(x)dx

∫

D
ψ(x)dx

∣

∣

∣

∣

∣

∣

+
N1,2

N

∣

∣

∣

∣

∣

∣

1

N1,2

N1,2−1
∑

n=0

1(−∞,t]∩D(x
(1,2)
n )−

N

N1,2

∫

(−∞,t]∩L
H1(x)dx

∫

D
ψ(x)dx

∣

∣

∣

∣

∣

∣

+
N2,2

N

∣

∣

∣

∣

∣

∣

1

N2,2

N2,2−1
∑

n=0

1(−∞,t]∩D(x
(2,2)
n )−

N

N2,2

∫

(−∞,t]∩L
H2(x)dx

∫

D
ψ(x)dx

∣

∣

∣

∣

∣

∣
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=
N1,1

N





∣

∣

∣

∣

∣

∣

1

N1,1

N1,1−1
∑

n=0

1(−∞,t]∩D(x
(1,1)
n )−

∫

(−∞,t]∩S
ψ(x)dx

∫

S
ψ(x)dx

∣

∣

∣

∣

∣

∣

+
δ1

N1,1

∫

(−∞,t]∩S
ψ(x)dx

∫

S
ψ(x)dx





+
N1,2

N





∣

∣

∣

∣

∣

∣

1

N1,2

N1,2−1
∑

n=0

1(−∞,t]∩D(x(1,2)
n )−

∫

(−∞,t]∩L
H1(x)dx

∫

L
H1(x)dx

∣

∣

∣

∣

∣

∣

+
δ2

N1,2

∫

(−∞,t]∩L
H1(x)dx

∫

L
H1(x)dx





+
N2,2

N





∣

∣

∣

∣

∣

∣

1

N2,2

N2,2−1
∑

n=0

1(−∞,t]∩D(x(2,2)
n )−

∫

(−∞,t]∩L
H2(x)dx

∫

L
H2(x)dx

∣

∣

∣

∣

∣

∣

+
δ3

N2,2

∫

(−∞,t]∩L
H2(x)dx

∫

L
H2(x)dx





≤
N1,1

N
D∗

S,ψ +
N1,2

N
D∗

L,H1
+
N2,2

N
D∗

L,H2
+

1

N

∫

(−∞,t]∩D
ψ(x)dx

∫

D
ψ(x)dx

≤
N1,1

N
D∗

S,ψ +
N1,2

N
D∗

L,H1
+
N2,2

N
D∗

L,H2
+

1

N
,

where D∗
S,ψ is the star discrepancy of sample points in S associated with ψ and

the same notation is also applied to D∗
L,H1

and D∗
L,H2

. Since this result holds
for arbitrary t, the desired result follows then immediately.
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[19] Hörmann, W., Leydold, J. and Derflinger, G., Automatic Nonuni-
form Random Variate Generation. Statistics and Computing. Springer-
Verlag, Berlin, 2004. MR2143197

[20] Kritzer, P., Improved upper bounds on the star discrepancy of (t,m, s)-
nets and (t, s)-sequences. Journal of Complexity, 22, 336–347, 2006.
MR2229897

[21] L’Ecuyer, P., Lecot, C. and Tuffin, B., A randomized quasi-Monte
Carlo simulation method for Markov chains. Operation Research, 56, 958–
975, 2008.

[22] Meyn, M.P. and Tweedie, T.L., Markov Chain and Stochastic Stability.
Springer-Verlag, London, 1993. MR1287609

[23] Morokoff, W.J. and Caflisch, R.E., Quasi-Monte Carlo integration.
Journal of Computational Physics, 122, 218–230, 1995. MR1365433

[24] Moskowitz, B. and Caflisch, R.E., Smoothness and dimension reduc-
tion in quasi-Monte Carlo methods. Mathematical and Computer Mod-
elling, 23, 37–54, 1996. MR1398000
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i Matematičeskŏı Fiziki 7, 784–802, 1967 (in Russian); U.S.S.R Computa-
tional Mathematics and Mathematical Physics 7, 86–112, 1967 (in English).
MR0219238

[38] Stute, W., Convergence rates for the isotrope discrepancy. Annals of Prob-
ability, 5, 707–723, 1977. MR0455096

[39] Tribble, S.D., Markov chain Monte Carlo algorithms using completely
uniformly distributed driving sequences. PhD thesis, Stanford University,
2007. MR2710331

[40] Tribble, S.D. and Owen, A.B., Constructions of weakly CUD sequences
for MCMC. Electronic Journal of Statistics, 2, 634–660, 2008. MR2426105

[41] Wang, X., Quasi-Monte Carlo integration of characteristic functions and
the rejection sampling method. Comupter Physics Communication, 123, 16–
26, 1999.

[42] Wang, X., Improving the rejection sampling method in quasi-Monte Carlo
methods. Journal of Computational and Applied Mathematics, 114, 231–
246, 2000. MR1737076

[43] Wyner, A.D., Capabilities of bounded discrepancy decoding. The Bell Sys-
tem Technical Journal, 44, 1061–1122, 1965. MR0180417

http://www.ams.org/mathscinet-getitem?mr=1445791
http://www.ams.org/mathscinet-getitem?mr=1472202
http://www.ams.org/mathscinet-getitem?mr=1463564
http://www-stat.stanford.edu/~owen/mc/
http://www.ams.org/mathscinet-getitem?mr=2080278
http://www.ams.org/mathscinet-getitem?mr=0049525
http://www.ams.org/mathscinet-getitem?mr=0376593
http://www.ams.org/mathscinet-getitem?mr=0219238
http://www.ams.org/mathscinet-getitem?mr=0455096
http://www.ams.org/mathscinet-getitem?mr=2710331
http://www.ams.org/mathscinet-getitem?mr=2426105
http://www.ams.org/mathscinet-getitem?mr=1737076
http://www.ams.org/mathscinet-getitem?mr=0180417

	Introduction
	Previous work on MCMC and QMC
	Acceptance-rejection algorithms
	Previous work on deterministic acceptance-rejection algorithms

	Our results
	Construction of driver sequence
	Deterministic algorithm for target densities defined on [0,1]s
	Deterministic algorithm for target density defined in real state space
	A deterministic reduced acceptance-rejection sampler

	Background on discrepancy theory and (t,m,s)-nets
	Discrepancy investigation of the deterministic acceptance-rejection sampler
	Upper bound 
	Lower bound
	Generalization to real state space

	Discrepancy properties of the deterministic reduced acceptance-rejection sampler
	Conclusion and outlook
	delta-cover to approximate star discrepancy
	Proofs
	Proof of upper bound
	Proof of lower bound
	Proof of Theorem 5

	References

