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Abstract: In time series analysis, statistics based on collections of es-
timators computed from subsamples play a crucial role in an increasing
variety of important applications. Proving results about the joint asymp-
totic distribution of such statistics is challenging, since it typically involves
a nontrivial verification of technical conditions and tedious case-by-case
asymptotic analysis. In this paper, we provide a novel technique that allows
to circumvent those problems in a general setting. Our approach consists
of two major steps: a probabilistic part which is mainly concerned with
weak convergence of sequential empirical processes, and an analytic part
providing general ways to extend this weak convergence to functionals of
the sequential empirical process. Our theory provides a unified treatment
of asymptotic distributions for a large class of statistics, including recently
proposed self-normalized statistics and sub-sampling based p-values. In ad-
dition, we comment on the consistency of bootstrap procedures and obtain
general results on compact differentiability of certain mappings that are of
independent interest.
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1. Introduction and motivation

In time series analysis, a large class of statistics can be expressed as smooth
functions of estimators computed on consecutive portions (i.e., subsamples) of
data. Since time series observations are naturally ordered by time, the use of
such statistics has been a common theme in time series inference and examples
are abundant in areas such as sequential monitoring [Chu andWhite (1995); Aue
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and Reimherr (2009)], retrospective change point detection [Csörgö and Horváth
(1997); Perron (2006)] and subsampling-based inference [Politis and Romano
(1994); Politis et al. (1999)], among others. More recent examples include the
self-normalized (SN, hereafter) statistic [Shao (2010a)], a new SN-based test
statistic for change point detection [Shao and Zhang (2010)] and the p-value
of the subsampling-based inference under the fixed-b asymptotics [Shao and
Politis (2013)]. To obtain the asymptotic distributions of statistics of such kind,
a traditional approach is to express the estimator as a sum of three parts,
including the parameter, an average of influence functions, and a remainder
term, followed by certain assumptions that ensure asymptotic negligibility of
remainder terms and a routine analysis of the leading term which is of linear
form. For many statistics of practical interest, theoretical analysis based on
this approach can be quite challenging and tedious. In particular verifying the
negligibility of remainder terms can be technically involved, since it requires
a careful case-by-case study. The situation is further complicated by the fact
that in time series settings, the underlying data are dependent. The aim of the
present paper is to provide a general approach which allows to easily obtain the
asymptotic distribution of statistics based upon infinite collections of subsample
estimates without long and tedious arguments.

In statistical applications, many important statistics can be expressed as
smooth [more precisely: compactly differentiable] functionals of simple quanti-
ties such as the empirical distribution function. The analysis of the asymptotic
properties of such statistics in the non-sequential setting can be elegantly per-
formed in two distinct steps: an analytic part which consists in establishing the
smoothness of the functional and a probabilistic part that is concerned with the
analysis of the underlying quantity. One of the many appealing features of such
an approach lies in the fact that the analytic properties need to be established
only once. Moreover, quantities such as the empirical distribution function are
often rather well analyzed for a wide range of data types. This approach has
been successfully applied to the analysis of quantiles [Doss and Gill (1992)],
survival data [Gill and Johansen (1990)], copulas and scalar measures of depen-
dence [Fermanian et al. (2004); Bücher and Volgushev (2013)] and to the setting
of dependent data.

A slightly more formal description of the situation above is as follows. As-
sume that we have a collection of estimators of a quantity F. A classical example
of such a collection is given by estimators computed from various fractions of
the sample X1, . . . , Xn. For illustration purposes, assume that F is the dis-
tribution function and F̂1,k denotes the empirical distribution function com-
puted from X1, . . . , Xk∨1. Also, assume that the parameter of interest, say θ,
can be expressed as φ(F) where φ denotes some functional. For example, it
is possible to express the copula as a functional of the cumulative distribu-
tion function. If the map φ is compactly differentiable, the asymptotic distri-
bution of a suitably normalized version of φ(F̂1,⌊nκ⌋) for fixed κ can be derived

from a corresponding result for F̂1,⌊nκ⌋. More precisely, denoting by αn a se-
quence diverging to infinity and by w(κ) a weight function, weak convergence

of Yn := αnw(κ)(F̂1,⌊nκ⌋ − F) in a suitable function space implies weak con-
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vergence of αnw(κ)(φ(F̂1,⌊nκ⌋) − φ(F)) for a finite collection of fixed values of
κ. However, in many important applications the joint weak convergence of the
whole collection Wn := (αnw(κ)(φ(F̂1,⌊nκ⌋) − φ(F))κ∈[0,1] in a suitable func-
tional sense is required.

Returning to a more general setting, we can say that the classical delta
method and a large collection of results on the behavior of general empirical
processes allow to establish weak convergence results for a wide class of statis-
tics as long as we consider a fixed, finite collection of values κ. Informally, we call
this the ‘non-sequential’ case. However, the tools available to date do not allow
the same conclusion when we are interested in collections of sub-samples, or,
stated informally, in the ‘sequential’ case. The fundamental aim of the present
article is to provide general ways of importing the tools mentioned above from
the ‘non-sequential’ into the ‘sequential’ setting.

For example, let us consider what is required to apply the delta method in
the ‘sequential’ case if only compact differentiability of the map φ in the ‘non-
sequential’ case is available. Essentially, such an approach would require us to
show compact differentiability of the map

Φ : (h(·;κ))κ∈[0,1] 7→
(

w(κ)φ
(h(·;κ)

w(κ)

))

κ∈[0,1]

viewed as a map between suitable metric spaces since we can write

Wn = αn

(

Φ
(

(w(κ)F̂1,⌊nκ⌋)κ∈[0,1]

)

− Φ
(

(w(κ)F)κ∈[0,1]

))

.

Given the fact that many important maps φ are known to be compactly differen-
tiable, we would like to make use of this information in the ‘sequential’ setting.
A natural question to ask thus is: given compact differentiability of φ, what can
we say about compact differentiability of Φ? As we shall see in Section 2, such
an implication does not hold in full generality, see in particular Example 2.2
and the discussion preceding it. At the same time, we obtain a positive result
if we additionally assume that the map φ possesses certain boundedness prop-
erties. Additionally, even when compact differentiability of Φ fails, there still
are many relevant settings where additional arguments can be applied to ob-
tain the desired weak convergence of Wn. In fact, in Section 4.1 we show that,
given weak convergence of Yn = (αnw(κ)(F̂1,⌊nκ⌋ − F))κ∈[0,1], we can derive
properties of Vn in a very general setup. Additionally, some general results on
compact differentiability that seem to be of independent interest can be found
in Section 5.

Another fundamental question that needs to be taken care of before we can
apply the functional delta method is the weak convergence of the process Yn.
Unfortunately, results on weak convergence of Yn in settings where the data
X1, . . . , Xn are allowed to be dependent are limited. A summary of available
results as well as new insights providing extensions of those findings are collected
in Section 4.2.

Throughout the paper, we will use standard notation from empirical process
theory. In particular, we denote by ℓ∞(D) the space of bounded, real-valued
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functions onD and by ‖·‖∞ the supremum distance. Weak convergence, denoted
by  , will always be understood in the sense of Hoffmann-Jørgensen [see
Van der Vaart and Wellner (1996), Chapter 1.3].

We conclude with an overview of the main theoretical results in this paper
and their connections.

• In Section 2, we provide an illustration of our approach based on empirical
distribution functions. The main result in this section is Theorem 2.5.
which states conditions that allow to obtain weak convergence of processes
of the type Wn defined above from weak convergence of Yn.

• In Section 4.1, we extend the results from Section 2. Essentially, we con-
sider a general collection of (potentially function-valued) estimators, say

(Ĝn(·;κ))κ∈K , which is indexed by a general compact metric space K.
The main result is Theorem 4.5, which describes settings where weak con-
vergence of (αnw(κ)(Ĝn(·;κ) − G(·)))κ∈K in a suitable functional sense

implies weak convergence of (αnw(κ)(φ(Ĝn(·;κ)) − φ(G(·))))κ∈K . This
contains Theorem 2.5 as a special case.

• In Section 4.2, we collect results on sequential empirical processes indexed
by general classes of functions. The main result here is Theorem 4.10,
which provides new criteria for the weak convergence of processes of the
form

( 1

⌊ns⌋

⌊ns⌋
∑

i=1

f(Xi)
)

f∈F ,s∈[0,1]

where F denotes a suitable of functions. In particular, this result can be
applied to obtain weak convergence of the ‘simple’ sequential empirical
process Yn.

• Section 4.3 contains a discussion of bootstrap procedures. In Theorem 4.11,
we provide a version of Theorem 4.5 in the bootstrap setting.

• In Section 5, we state a general result on compact differentiability of cer-
tain maps that play a role in the analysis discussed above [see Theorem 5.2
for details]. The specific example of the map Φ considered above is further
elaborated in Example 5.3.

We also provide applications of the general theoretical results to various
practical examples. Sections 3.1 and 3.2 contain a detailed discussion of self-
normalized statistics and sequential empirical copula processes, respectively. In
Section 4.4, we additionally discuss sub-sampling and fixed-b corrections. Fi-
nally, Section C in the appendix provides details on a test for change-points.

2. An illustration based on empirical distribution functions

In order to illustrate the kind of results that can be obtained with our method-
ology without overwhelming the reader with too much notation, we begin by
considering a particularly interesting special case. Throughout this section, as-
sume that we have a triangular array consisting of Rd-valued random vari-
ables X1,n, . . . , Xn,n that are defined on the same probability space (Ω,A,P).
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Throughout, we assume that Xi,n, i = 1, . . . , n have the same distribution for
all i, n but are not necessarily independent. For the sake of a simple notation,
we will denote the observations by X1, . . . , Xn. Many quantities of interest such
as L-statistics, quantiles, the copula or scalar measures of multivariate depen-
dence can be represented as a compactly differentiable map of the empirical
distribution function F̂1,n(v) := n−1

∑

i I{Xi ≤ v}.
Given smoothness of a map φ : ℓ∞(D) ⊃ Dφ → Rφ ⊂ ℓ∞(R) with D ⊂

Rd, R ⊂ Rk and weak convergence of
√
n(F̂1,n − F) as an element of ℓ∞(D),

the functional delta method [see e.g. Van der Vaart and Wellner (1996), Chap-

ter 3.9] asserts that
√
n(φ(F̂1,n)−φ(F)) also converges in distribution. However,

in many settings we are interested in a more general process. More precisely,
assume that for each k ≤ l = 1, . . . , n we compute the estimator of interest
from the observations Xk∨1, . . . , Xl∨k∨1 and denote the corresponding empiri-
cal distribution function by F̂k,l. In many cases, the asymptotic properties of

n−1/2(l−k)(φ(F̂k,l)−φ(F)) indexed by k ≤ l = 0, . . . , n are of interest. In other
words, we often are interested in the ‘sequential’ process

(

Wn(u; s, t)
)

u∈R,(s,t)∈K
∈ ℓ∞(R×K)

where K ⊆ ∆ := {(s, t) ∈ [0, 1]2|s ≤ t} and

Wn(u; s, t) := n−1/2(⌊nt⌋ − ⌊ns⌋)(φ(F̂⌊ns⌋,⌊nt⌋)(u)− φ(F)(u)).

For the sake of a shorter notation, we will often write Wn(·; s, t) for the process
(Wn(u; s, t))u∈R viewed as element of the space ℓ∞(R) and Wn for the process
(Wn(u; s, t))u∈R,(s,t)∈K viewed as element of ℓ∞(R ×K).

Processes of the kind discussed above are of particular interest in settings
where the data stem from a time series. To illustrate ideas, consider the following
simple example. More elaborate examples, including general versions of self-
normalized statistics and sequential empirical copula processes can be found in
Section 3.

Example 2.1. Testing change points in a time series is an important topic
in econometrics and statistics; see Perron (2006) for a recent review. A large
class of tests in the literature are based on comparing estimators from various
fractions of the data. For instance, denoting by ‖ · ‖ some norm on ℓ∞(R), one
could consider Kolmogorov-Smirnov type statistics of the form

max
k=1,...,n−1

n1/2 k(n− k)

n2
‖φ(F̂1,k)− φ(F̂k+1,n)‖.

The limiting distribution of the corresponding test statistics under the null can
typically be derived from the limit of the process Wn, which can be obtained
by the methods described in this section. Additional details for an alternative
test for change points are provided in Section C.

For fixed values of s, t, weak convergence of the quantity Wn(·; s, t) can be
derived by an application of the classical functional delta method. However, this
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is not the case if we are interested in the process indexed by (s, t) ∈ K with
infinite sets K. Is compact differentiability of φ together with weak convergence
of (

√
n(t− s)(F̂⌊ns⌋,⌊nt⌋−F))(s,t)∈K enough to yield process convergence in this

setting? A simple example given below shows that in full generality this cannot
be true.

Example 2.2. Consider the map φ that takes a distribution function to its
median. Consider a triangular array of data that is of the form Xjn = n for
1 ≤ j < n1/3 and Xjn ∼ U [0, 1] i.i.d. for n1/3 ≤ j ≤ n. Let K = {0}× [0, 1]. Let
F denote the uniform distribution function on [0, 1]. Elementary calculations

show that (n−1/2⌊nt⌋(F̂1,⌊nt⌋ −F))t∈[0,1] converges weakly to the Kiefer-Müller
process K with covariance Cov(K(t, y),K(t′, y′)) = min(t, t′)(min(y, y′) − yy′).
On the other hand, setting t = n−3/4 we have almost surely

Wn(·; 0, n−3/4) = n1/2n−3/4(φ(F̂1,⌊n1/4⌋)− φ(F)) = n−1/4(n− 1/2) → ∞,

and thus weak convergence of Wn cannot hold.

This example demonstrates that employing results from the ‘non-sequential’
in the ‘sequential’ setting requires careful consideration. Taking a closer look
at what goes wrong in Example 2.2 we see that, due to the scaling, weak con-
vergence of the process (n−1/2⌊nt⌋(F̂1,⌊nt⌋ − F))t∈[0,1] is not very informative

about the estimator F̂1,⌊nt⌋ when nt → 0, so that a pathological behavior of

F̂1,⌊nt⌋ in those instances cannot be excluded. There are two ways of handling
this problem. First, we could still hope for sensible results if we restrict our
attention to values of s− t that are bounded away from zero. Second, if the map
φ is bounded, the process Wn(·; s, t) will still be well-behaved near zero due to
the scaling with ⌊ns⌋ − ⌊nt⌋. Below, we provide a detailed discussion of both
settings.

We now give the assumptions that are needed to ensure weak convergence of
the process Wn.

The first assumption states that φ is smooth in a suitable sense. This as-
sumption is needed to apply the classical functional delta method in the non-
sequential setting.

(C) The map

φ : ℓ∞(D) ⊃ Dφ → Rφ ⊂ ℓ∞(R)

is compactly differentiable at F tangentially to the vector space V ⊂
ℓ∞(D). Denote the derivative by φ′

F
.

Note that assumption (C) is a completely ‘non-sequential’ assumption. In the
‘non-sequential’ setting, compact differentiability is known to provide a good
balance between strength of the differentiability concept that is needed for es-
tablishing a general functional delta method and the number of statistically
relevant functionals that can actually be shown to be compactly differentiable.
Examples include quantiles, copulas, dependence measures, M- and L-estimators
to name just a few. For a more detailed list we refer the interested reader to
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Chapter 3.9 in Van der Vaart and Wellner (1996) and the recent paper by Gao
and Zhao (2011). The next assumption is an analogue of the weak convergence
of the sequential empirical process.

(W) Assume that for

Yn(v; t) := n1/2t(F̂1,⌊nt⌋(v)− F(v))

we have
Yn  Y in ℓ∞(D × [0, 1])

where Y denotes a centered process such that ω 7→ Y is (A,B)-measurable
[here, B denotes the Borel sigma-Algebra on (ℓ∞(D × [0, 1]), ‖ · ‖∞)].

Assumption (W) was established in a variety of settings. Results for d ≥ 1 are
derived by Sen (1974) and Rüschendorf (1974) under φ−mixing and by Yoshi-
hara (1975), Inoue (2001) and Bücher (2013) under strong mixing. Additionally,
in Section 4.2 we will show how a similar result can be derived under the so-
called GMC property which provides an alternative measure of dependence that
has been recently introduced in Wu and Shao (2004). The case d = 1 has been
considered in Berkes et al. (2009) under S-mixing, where the authors derived
a stronger result than weak convergence of the process. The paper by Dehling
and Taqqu (1989) establishes a condition that is similar to (W) for long-range
dependent data with a scaling different from n1/2.

Finally, we need some additional assumptions on the sample paths of the
limiting processes Y in condition (W). As discussed below, these assumptions
are not very restrictive.

(A1) Assume that sup|t−t′|≤δ supv∈D |Y(v; t)− Y(v; t′)| = oP (1) as δ → 0.
(A2) Define the set

UK :=
{

(ht)t∈[0,1] : ht ∈ V ∀ t ∈ [0, 1], sup
t∈[0,1]

‖ht‖ < ∞
}

where V is the vector space from condition (C). Assume that the sample
paths of Y are in UK with probability one.

Condition (A2) is non-restrictive in the sense that it is needed to apply the
classical functional delta method for each fixed (s, t). Assumption (A1) is needed
for the application of the general compact differentiability result in Section 5.
As we shall discuss in Section 4.2, both conditions are satisfied for a wide variety
of dependent data.

Remark 2.3. At first glance, it might be surprising that we state conditions
(W), (A1), (A2) for the process

√
nt(F̂1,⌊nt⌋−F) indexed by t ∈ [0, 1] instead of√

n(t−s)(F̂⌊ns⌋,⌊nt⌋−F) indexed by (s, t) ∈ ∆. However, some simple arguments

[which essentially boil down to observing that (t − s)F̂⌊ns⌋,⌊nt⌋ ≈ tF̂1,⌊nt⌋ −
sF̂1,⌊ns⌋] show that this is already sufficient to obtain results for the more general
process. More details in a general setting are provided in Section 4.
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Assumptions (C), (W), (A1), (A2) are sufficient to establish weak conver-
gence of the process Wn(·; s, t) if we index it by (s, t) ∈ K ⊂ ∆ such that
inf(s,t)∈K(t − s) > 0. As we have seen in Example 2.2, those conditions are
not sufficient if inf(s,t)∈K(t − s) = 0. In the latter case, we need the following
additional condition

(A3) For any kn → 0 we have sup(s,t)∈K,|t−s|≤kn
(t − s)‖φ(F̂⌊ns⌋,⌊nt⌋)‖ → 0 in

outer probability.

Remark 2.4. Note that condition (A3) is automatically satisfied if the quantity

sup(s,t)∈K ‖φ(F̂⌊ns⌋,⌊nt⌋)‖ is bounded in outer probability. This is trivially true
for uniformly bounded maps φ, which includes many interesting examples such
as copulas, dependence measures or the Kaplan-Meier estimator [which per defi-
nition is a distribution function]. Moreover for specific sets K, further conditions
implying (A3) can be derived. For instance, Remark 4.9 in Section 4.2 shows
that (A3) holds if we take K = {0}× [0, 1] under the additional assumption that

the data X1, X2, . . . form a strictly stationary sequence and if F̂1,n converges to
F outer almost surely.

We are now ready to state our main result.

Theorem 2.5. For any compact K ⊂ ∆ with inf(s,t)∈K(t − s) > 0 conditions
(C), (W), (A1) and (A2) imply Wn  W in ℓ∞(R×K) where

W(u; s, t) :=
(

φ′
F
(Y(·; t)− Y(·; s))

)

(u).

If additionally (A3) holds, the assumption inf(s,t)∈K |t − s| ≥ a > 0 can be
dropped.

Informally, one could say that if the map φ is bounded, applicability of the
delta method in the ‘non-sequential’ setting implies a stronger, ‘sequential’ ver-
sion of this result without additional restrictions. Without boundedness of φ,
the ‘sequential’ version follows for certain types of sets K. The usefulness of
Theorem 2.5 in various settings is demonstrated in the next section.

Moreover, the findings in this section can be generalized in several direc-
tions. First, the collection of empirical distribution functions can be replaced
by a general collection of estimators indexed by a compact subset of Rd, or,
even more generally, by a compact metric space K. Second, the map φ can be
defined to live on general metric spaces. Those generalizations are discussed in
Section 4.1. Moreover, Section 4.2 contains results that imply condition (W)
while in Section 4.3 we briefly discuss bootstrap procedures. Additionally, com-
pact differentiability can be replaced by quasi Hadamard differentiability [see
Beutner and Zähle (2010)]. General results in this direction can be found in
Section 5.

3. Some examples and applications

In order to demonstrate the power of the results from the previous section, we
consider two applications. The first application discusses a recently proposed
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approach to inference for time series data, also called self-normalization. The
second application concerns a generalization of the sequential empirical copula
process. Here, we show that results derived in Bücher and Kojadinovic (2013)
by long and tedious proofs follow easily with our general theory. Details for an
additional application to change-point detection are provided in the Appendix
[see Section C].

3.1. Self-normalization

For a weakly dependent stationary time series, inference on a finite-dimensional
quantity (say, mean or median) typically involves a consistent estimation of the
asymptotic variance matrix of the sample estimator. The difficulty with this
traditional approach lies in the bandwidth parameter(s) involved in the consis-
tent estimation, which also occurs for other existing approaches, such as sub-
sampling [Politis and Romano (1994)], moving block bootstrap [Künsch (1989)]
and block-wise empirical likelihood [Kitamura (1997)]. To avoid the bandwidth
selection, a general self-normalized approach to confidence interval construction
and hypothesis testing for a stationary time series has been developed in Shao
(2010a). The basic idea is to use recursive estimates to form an inconsistent
estimator of asymptotic variance (matrix) of a statistic and use a non-standard
but pivotal limiting distribution to perform the inference. The SN approach is
convenient to implement as recursive estimates can be easily calculated with no
need to develop new algorithms. Moreover, it does not involve any bandwidth
parameters and its finite sample performance is comparable or could be supe-
rior to some other existing bandwidth-dependent inference methods, as shown
in Shao (2010a). Owing to these nice features, it has been recently extended
to a class of important inference problems in time series; see Shao and Zhang
(2010); Shao (2011, 2012); Zhou and Shao (2013), among others.

The theory for the SN approach was first developed in Shao (2010a,b) by
adopting a traditional approach, which is based on a linearization of the statis-
tic and assumptions on uniform negligibility of the remainder terms. To be
precise, assume that we observe data X1, . . . , Xn that stem from a strictly sta-
tionary time series. Let θ ∈ Rq be the quantity of interest which depends on the
distribution of Xt, and assume that it can be represented as θ = φ(F) with F

denoting the distribution function of X1. Also, denote by θ̂1,k an estimator for θ
that is computed from the sub-sample X1, . . . , Xk. In what follows, we assume
that it is of the form θ̂1,k = φ(F̂1,k). Given the above notation, Shao (2010a)
assumed that

φ(F̂1,k) = θ + k−1
k
∑

i=1

L(Xi) +Rn(k/n) (1)

where {Rn(k/n)}nk=1 denotes a sequence of remainder terms that are negligible
uniformly in k. To describe the basic idea of Shao’s approach, note that we
generally expect that for a weakly dependent stationary time series and smooth
functional φ, Rn(1) = oP (n

−1/2) and
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n−1/2
n
∑

j=1

L(Xj)  N(0,Σ), (2)

where Σ =
∑

k∈Z
cov(L(X0), L(Xk)) > 0 is the so-called long run variance

matrix. Further note that we implicitly assume E[L(Xj)] = 0, which is trivially
satisfied in many cases. Inference on θ is then based on estimating the covariance
matrix Σ consistently, which can be difficult as it involves a choice of bandwidth
parameters. To avoid those complications, Shao (2010a) proposed to consider
the self-normalized quantity

Gn = n(φ(F̂1,n)− θ)TV −1
n (φ(F̂1,n)− θ),

where Vn = n−2
∑n

j=1 j
2(φ(F̂1,j) − φ(F̂1,n))(φ(F̂1,j) − φ(F̂1,n))

T is the self-
normalization matrix.

In Shao (2010a,b), the asymptotic distribution of Gn was derived under the
following assumptions:

(

n−1/2
∑⌊nt⌋

j=1 L(Xj)
)

t∈[0,1]
 Σ1/2(Bt)t∈[0,1], (3)

Rn(1) = oP (n
−1/2), n−2

∑n
j=1 |jRn(j/n)|2 = op(1) (4)

with (Bt)t∈[0,1] denoting a q-dimensional vector of independent Brownian mo-
tions on [0, 1]. To verify (4), a common approach is to derive a uniform Bahadur

representation for θ̂1,⌊nt⌋ and control the order of Rn(t) uniformly over t ∈ [0, 1].
Such a task is in general not easy and it requires a tedious case-by-case study.
Under the assumptions above, Shao (2010a) proved that

Gn  Uq := B
T
1

(

∫ 1

0

(

Bt − tB1

)(

Bt − tB1

)T

dt
)−1

B1, (5)

where the limiting distribution is pivotal and does not depend on the unknown
covariance matrix Σ. Then the SN-based 100(1−α)% confidence region for θ is
of the form

{θ : n(φ(F̂1,n)− θ)TV −1
n (φ(F̂1,n)− θ) ≤ Uq,α}, (6)

where Uq,α is the 100(1− α)th percentile of the distribution for Uq. See Lobato
(2001) for simulated critical values for Uq.

Using the results in Section 4, we can both considerably generalize the find-
ings in Shao (2010a) and at the same time avoid tedious calculations required to
bound remainder terms. The key observation is that the only result required to
derive (5) is weak convergence of the process (

√
nt(φ(F̂1,⌊nt⌋)− θ))t∈[0,1] where

we make use of the notation from Section 2. In the language of Section 2, this
amounts to setting K = {0}×[0, 1]. Assuming that φ(F) is an element of Rq, the
quantity Wn(·; s, t) can be viewed as a Rq−valued vector. Some straightforward
calculations show that under assumptions (A1)–(A3), (C), (W) the statistic Gn
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can be represented as

Gn = Wn(·; 0, 1)T
[

∫ 1

0

(

Wn(·; 0, t)− tWn(·; 0, 1)
)

×
(

Wn(·; 0, t)− tWn(·; 0, 1)
)T

dt
]−1

Wn(·; 0, 1) + oP (1).

An application of Theorem 4.5 with the set K = {0} × [0, 1] in combination
with the discussion at the beginning of this section and the continuous mapping
theorem yields

Gn  W(·; 0, 1)T
[

∫ 1

0

(

W(·; 0, t)− tW(·; 0, 1)
)

×
(

W(·; 0, t)− tW(·; 0, 1)
)T

dt
]−1

W(·; 0, 1).

Under the assumption that W(·; 0, t) = Σ1/2Bt, the limit of the statistic Gn

is pivotal. Note that the limiting process will typically have this form in most
settings with weakly dependent data, see Remark 4.8.

With the general machinery of Section 2 at hand, there are several exten-
sions and remarks that can be made to the self-normalization approach. First,
observe that we can replace the self-normalization matrix Vn with a more general
statistic of the form

Vn(H) :=

∫

∆

(φ(F̂⌊ns⌋,⌊nt⌋)− (t− s)φ(F̂1,n))

× (φ(F̂⌊ns⌋,⌊nt⌋)− (t− s)φ(F̂1,n))
T dH(s, t)

withH denoting an arbitrary probability measure on ∆. By the continuous map-
ping theorem, we have joint convergence of (Vn(H), φ(F̂1,n)) to (W (H),W(·; 0, 1))
where

W (H) :=

∫

∆

(

W(·; s, t)−(t−s)W(·; 0, 1)
)(

W(·; s, t)−(t−s)W(·; 0, 1)
)T

dH(s, t).

Assuming that W (H) is non-singular almost surely [which is the case as soon as
H places mass on sufficiently many different points], the asymptotic distribution
of the generalized self-normalized quantity Gn(H) follows. We thus have derived
the following result.

Proposition 3.1. Let assumptions (A1), (A2), (W), (C) hold and assume that
either the support of H is bounded away from the set {(t, t)|t ∈ [0, 1]} ⊂ ∆ or
that (A3) holds. Additionally, assume that W (H) is non-singular almost surely.
Then the generalized SN quantity Gn(H) satisfies

Gn(H) := Wn(·; 0, 1)TVn(H)−1
Wn(·; 0, 1)

 W(·; 0, 1)TW (H)−1
W(·; 0, 1) =: Uq(H).

The confidence region for θ can be constructed similarly as in (6) and the
critical values for Uq(H) can be approximated numerically as done in Lobato
(2001).
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3.2. A general version of the sequential empirical copula process

Denote by X a d-dimensional random vector with continuous distribution func-
tionF and marginal distribution functions F1, . . . ,Fd. As shown by Sklar (1959),
the joint distribution function of the vector X has a unique representation of
the form F(x) = C(F1(x1), . . . ,Fd(xd)) where the function C : [0, 1]d → [0, 1]
is called the copula of F. One interpretation of this decomposition is that the
copula captures all the dependence between the components of X while being
invariant under strictly increasing transformations of the marginals. For this
reason, copulas have recently received a lot of attention in various areas such
as econometrics [see e.g. Patton (2009)] and environmental modelling [see e.g.
Salvadori (2007)]. One question that is of particular interest in the analysis of
time series data is whether the dependency structure within a time series is con-
stant over time. To answer this question in a completely non-parametric fashion,
empirical copulas that are computed from various fractions of realizations, say
X1, . . . , Xn, from the time series must be compared. Here, the empirical copula
of the sample X1, . . . , Xn is defined through

C1,n(u1, . . . , ud) :=
1

n

n
∑

i=1

I{F̂(1)
1,n(Xi1) ≤ u1, . . . , F̂

(d)
1,n(Xid) ≤ ud}

where F̂
(j)
1,n(y) := n−1

∑

i I{Xij ≤ y} is the j’th marginal empirical distribution
function evaluated at y. One then needs to consider the following sequential
empirical copula process

Cn(u; s, t) := n−1/2(⌊nt⌋ − ⌊ns⌋)(C⌊ns⌋+1,⌊nt⌋(u)− C(u))

which was recently introduced by Bücher and Kojadinovic (2013). Here, for k ≥
l, Ck,l denotes the empirical copula of the observations Xk, . . . , Xl. Additionally
we define Ck,k−1 ≡ 0 for all k = 1, . . . , n.

An observation that is very useful in the analysis of empirical copulas is that,
given continuity of the marginal distribution functions F1, . . . ,Fd of F, the em-
pirical copula of the original sample X1, . . . , Xn and the transformed sample
Y1, . . . , Yn with Yi := (F1(Xi1), . . . ,Fd(Xid)) coincide almost surely. In condi-
tion (c2) given below it thus is sufficient to consider the empirical distribution
function of the Yi.

In order to establish weak convergence of Cn, Bücher and Kojadinovic (2013)
made the following assumptions.

(c1) For any j ∈ {1, . . . , d}, the partial derivatives Ċj := ∂C/∂uj of the copula
C exist and are continuous on the set {u ∈ [0, 1]d : uj ∈ (0, 1)}.

(c2) The dataX1, . . . , Xn are drawn from a strictly stationary sequence (Xi)i∈Z

with continuous marginal distributions F1, . . . ,Fd. Define the transformed
random variables Yi := (F1(Xi1), . . . ,Fd(Xid)) and denote by F̂Y

1,⌊nt⌋ the
corresponding empirical distribution functions. Assume that with those
definitions,

G̃
Y
n (u; t) := n−1/2⌊nt⌋(F̂Y

1,⌊nt⌋(u)− C(u))
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converges weakly in ℓ∞([0, 1]d+1) to a tight Gaussian process BC concen-
trated on

{

f ∈ C([0, 1]d+1) : f(v) = 0 if one of the components of v is 0,

f(1, . . . , 1; t) = 0 ∀t ∈ [0, 1]
}

.

Here C([0, 1]d+1) denotes the space of continuous functions on [0, 1]d+1.

Theorem 2.3 in Bücher and Kojadinovic (2013) states that under (c1) and (c2)
the process Cn converges weakly to the centered Gaussian process [recall that
u(j) = (1, . . . , 1, uj, 1, . . . , 1) with uj at position j]

CC(u; s, t) := BC(u; t)− BC(u; s)−
d

∑

j=1

Ċj(u)(BC(u
(j); t)− BC(u

(j); s)).

The proof given in Bücher and Kojadinovic (2013) is long and it involves many
technicalities. The reason is that they derive certain smoothness properties of
the map

(

F̂Y
⌊ns⌋+1,⌊nt⌋

)

s≤t∈[0,1]
7→

(

C⌊ns⌋+1,⌊nt⌋

)

s≤t∈[0,1]

in a direct way. Here, we demonstrate how a similar result can be obtained by
an application of Theorem 2.5. This approach is much simpler since we combine
known results about the ‘non-sequential’ copula map with our general results.
In the notation of Section 2, let D = R = [0, 1]d and denote by Dφ the set of
all distribution functions on [0, 1]d that have no mass in zero. Denote by φ the
‘copula map’ taking a distribution function F on [0, 1]d with no mass at zero to
the corresponding copula, i.e. let

φ(F) := F(F−1
1 , . . . ,F−1

d ), F−1
j (x) := inf{y ∈ [0, 1] : Fj(y) ≥ x}.

Compact differentiability of the map φ has been studied, among others, by
Fermanian et al. (2004) and Bücher and Volgushev (2013). The last named
authors established that φ is compactly differentiable at any copula C that
satisfies condition (c1) tangentially to the space

V := {f ∈ C([0, 1]d) : f(u) = 0 if one of the components of u is 0,

f(1, . . . , 1) = 0}.

The derivative of φ at C is given by (φ′
C(h))(u) = h(u) − ∑d

j=1 Ċj(u)h(u
(j)).

Thus condition (C) from the previous section holds. Now it is easy to see that
assumption (c2) implies conditions (W), (A1) and (A2) from the preceding
section. Finally, condition (A3) holds since the copula map is bounded by con-
struction. Thus all conditions of Theorem 2.5 are fulfilled and we obtain the
weak convergence C̃n  CC in ℓ∞([0, 1]d ×∆) where we defined

C̃n(u; s, t) := n−1/2(⌊nt⌋ − ⌊ns⌋)(φ(F̂⌊ns⌋,⌊nt⌋)(u)− C(u)).
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Additionally, by arguments similar to the ones given in the proof of Lemma 1
in Kojadinovic and Rohmer (2012), we obtain the bound

sup
u∈[0,1]d

|Ck,l(u)− φ(F̂k,l)| ≤
d

l − k
∀k < l

which shows that

C̃n(u; s, t) = n−1/2(⌊nt⌋ − ⌊ns⌋)(C⌊ns⌋,⌊nt⌋(u)− C(u)) + oP (1).

The only difference between the right-hand side of the above equation and the
processCn(u; s, t) of Bücher and Kojadinovic (2013) is the fact that C⌊ns⌋,⌊nt⌋(u)
is replaced by C⌊ns⌋+1,⌊nt⌋(u). However, standard calculations employing the
continuity of the sample paths of the limiting process C imply that

sup
u,s,t

|C⌊ns⌋,⌊nt⌋(u)− C⌊ns⌋+1,⌊nt⌋(u)| = oP (n
−1/2).

The details are omitted for the sake of brevity.

4. Extension to a general setting

In this section, we provide general versions of the results presented in Section 2.
This is motivated by the fact, that the setting of Section 2 excludes some inter-
esting examples. First, it does not allow to handle the Kaplan-Meier estimator
[see Example 4.3 for additional details]. Second, some processes such as the se-
quential empirical copula process considered by Rüschendorf (1976) do not fit
in the simple setting of Section 2, see Example 4.4.

To be able to handle those situations, we replace the empirical distribution
functions computed from fractions of the data by general collections of esti-
mators that need not be based on sub-samples and need not be indexed by
subsets of ∆. We begin by introducing some relevant notation. For arbitrary
sets F1, . . . ,FJ ,K define the vector space

L∞(F1, . . . ,FJ ;K) :=
{

(H(1)(·;κ), . . . , H(J)(·;κ))κ∈K :

H(j)(·;κ) ∈ ℓ∞(Fj)∀j, κ sup
κ

sup
j

sup
f∈Fj

|H(j)(f ;κ)| < ∞
}

with norm
‖(H(1), . . . , H(J))‖L := sup

κ
sup
j

sup
f∈Fj

|H(j)(f ;κ)|.

Note that L∞(F1, . . . ,FJ ;K) can be identified with ℓ∞(F1×K)× . . .×ℓ∞(FJ×
K) by considering the relation

(H(1)(·;κ), . . . , H(J)(·;κ))κ∈K ∈ L∞(F1, . . . ,FJ ;K)

↔
(

(f, κ) 7→ H(1)(f ;κ), . . . , (f, κ) 7→ H(J)(f ;κ)
)

.
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By the definition of L∞(F1, . . . ,FJ ;K), we have supκ supf |H(j)(f ;κ)| < ∞ for

all j = 1, . . . , J so that the maps (f, κ) 7→ H(j)(f ;κ) are indeed bounded and
thus elements of ℓ∞(Fj × K). In particular, if the product space
ℓ∞(F1 × K) × . . . × ℓ∞(FJ × K) is equipped with the maximum norm
‖(x1, . . . , xJ )‖max := maxj ‖xj‖∞ induced by the supremum norms on its com-
ponents, the identification given above is an isometry, that is

‖(H(1)(·;κ), . . . , H(J)(·;κ))κ∈K‖L
=

∥

∥

∥

(

(f, κ) 7→ H(1)(f ;κ), . . . , (f, κ) 7→ H(J)(f ;κ)
)∥

∥

∥

max
.

Weak convergence in L∞(F1, . . . ,FJ ;K) is henceforth understood as weak con-
vergence in the Hoffmann-Jørgensen sense in the space L∞(F1, . . . ,FJ ;K) as a
subspace of ℓ∞(F1 × K) × . . . × ℓ∞(FJ × K) [see Van der Vaart and Wellner
(1996), Chapters 1.4 and 1.5 for more details].

Remark 4.1. In many situations, the sets F1, . . . ,FJ can be viewed as sub-
sets of Rd. For example, the empirical distribution function (n−1

∑

I{Xi ≤
y})y∈Rd of a sample of d-dimensional random variables X1, . . . , Xn is natu-
rally indexed by the set Rd. Another approach that fits nicely into the empir-
ical process setting and will play a central role in Section 4.2, is to consider
classes of functions Fj. In this setting, the empirical process can be written
as (n−1

∑n
i=1 f(Xi) − Ef(Xi))f∈Fj , see Van der Vaart and Wellner (1996) for

examples. For example, the empirical distribution function can also be viewed
as element of ℓ∞(F) with F denoting the collection of indicators of rectangles,
that is F = {x 7→ I{x ≤ y}|y ∈ Rd}. By identifying the function x 7→ I{x ≤ y}
with the point y ∈ R

d we obtain a way to index F by R
d and vice versa. In

most of the following theoretical developments, the form of Fj will be arbitrary
unless explicitly specified otherwise.

The rest of this Section is organized as follows. In Section 4.1, we present
analytic considerations that can be viewed as a generalization of the findings
in Section 2. An overview of existing results regarding sequential empirical pro-
cesses under dependence as well as extensions of those findings will be considered
in Section 4.2. Section 4.3 contains some results on bootstrap approximation.
Finally, in Section 4.4 we demonstrate how those findings can be utilized for
fixed-b corrections of sub-sampling estimators.

4.1. Analytic considerations

Denote by (K, dK) a compact metric space. Assume that we are given a col-

lection of estimators (Ĝn(·;κ))κ∈K of an ℓ∞(F1) × . . . × ℓ∞(FJ)-valued quan-

tity G. Assume that Ĝn(·;κ) are defined on a probability space (Ω,A,P) [in
principle, this space is allowed to depend on n. However, following Van der
Vaart and Wellner (1996) we will not stress this in the notation]. Denote by
φ : ℓ∞(F1)× . . .× ℓ∞(FJ ) → ℓ∞(G1)× . . .× ℓ∞(GL) some smooth map [this will
be made precise below]. For a deterministic sequence, say αn, of real numbers
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diverging to infinity and a bounded function w : K → R consider the following
two processes

Yn(f1, . . . , fJ ;κ) := αnw(κ)(Ĝn(f1, . . . , fJ ;κ)−G(f1, . . . , fJ))

and

Vn(g1, . . . , gL;κ) := αnw(κ)(φ(Ĝn(·;κ))(g1, . . . , gL)− φ(G)(g1, . . . , gL)).

This section is primarily concerned with the following question: given compact
differentiability of the map φ and weak convergence of the process Yn viewed
as element of L∞(F1, . . . ,FJ ;K), what can we say about weak convergence of
Vn?

Before proceeding, we illustrate the abstract setting described above with
several examples.

Example 4.2. Sequential empirical processes
Assume that we have a sample of identically distributed random variables, say
X1, . . . , Xn. Assume that the quantity G can be represented as

G =
(

(E[f(X)])f∈F1
, . . . , (E[f(X)])f∈FJ

)

for some classes of functions F1, . . . ,FJ [see, for instance, Example 4.3]. A prime

example for the quantity Ĝn(·;κ) with κ = (s, t) ∈ ∆ is given by the estimator
computed from the sub-sample X⌊ns⌋∨1, . . . , X⌊nt⌋∨1, that is

Ĝn(f1, . . . , fJ ; s, t) := (Ĝ(1)
n (f1; s, t), . . . , Ĝ

(J)
n (fJ ; s, t)) (7)

Ĝ(j)
n (·; s, t) :=

1

1 + ⌊nt⌋ ∨ 1− ⌊ns⌋ ∨ 1

(

⌊nt⌋∨1
∑

i=⌊ns⌋∨1

f(Xi)
)

f∈Fj

.

The reason for considering general classes of functions instead of just indi-
cators as we have done in Section 2 is that some interesting estimators are not
simply functionals of empirical distribution functions.

Example 4.3. Kaplan-Meier estimator
Assume that we have right-censored observations of the form (Yi, δi)i=1,...,n. It

is a well-known fact that the Kaplan-Meier estimator F̂KM [Kaplan and Meier
(1958)], viewed as a map into the set of distribution functions on [0, V ] for a
suitable V < ∞, is a compactly differentiable functional of the two functions

F̂1(t) :=
1

n

∑

i

δiI{Yi ≤ t}, F̂Y (t) :=
1

n

∑

i

I{Yi ≤ t},

see Chapter 3.9 in Van der Vaart and Wellner (1996). This suggests to consider
the classes of functions

F1 :=
{

(y, δ) 7→ δI{y ≤ t}
∣

∣

∣
t ∈ R

}

, F2 :=
{

(y, δ) 7→ I{y ≤ t}
∣

∣

∣
t ∈ R

}

.
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In particular, this example fits in the present setting while it cannot be handled
with the methods from Section 2.

Finally, we would like to point out that, while the setting of Example 4.2
occurs in practise most frequently, there are interesting processes that are of a
more general structure.

Example 4.4. Sequential empirical copula process [Rüschendorf (1976)]
The ‘classical’ sequential empirical copula process is of the form

C
◦
n(u; s) =

1√
n

⌊sn⌋∨1
∑

i=1

(

I
{

F̂
(1)
1,n(Xi1) ≤ u1, . . . , F̂

(d)
1,n(Xid) ≤ ud)

}

− C(u)
)

where F̂
(j)
1,n(y) := n−1

∑

i I{Xij ≤ y} is the j’th marginal empirical distribu-
tion function evaluated at y [see also Section 3.2] and C is the copula of the

distribution of X . Note that F̂
(j)
1,n depends on all the data regardless of the

value of s, so that the estimator Ĝn(u;κ) := 1
⌊κn⌋∨1

∑⌊κn⌋∨1
i=1 I{F̂(1)

1,n(Xi1) ≤
u1, . . . , F̂

(d)
1,n(Xid) ≤ ud)} is not of the form (7). Still, the process C◦

n(u; s) can
be coerced into the general framework of this section by considering the col-
lection of estimators Ĝn(·;κ) by setting K = [0, 1] and F1 := [0, 1]d. Weak
convergence of the process C◦

n under weak assumptions on the copula with pos-
sibly dependent data was recently established by Bücher and Volgushev (2013).

We now proceed to state the assumptions needed for the general result in
this section. Regarding the smoothness of φ, we impose the following condition
which corresponds to assumption (C)

(Cg) Denote by G1, . . . ,GL arbitrary sets. The map

φ : ℓ∞(F1)× . . .× ℓ∞(FJ) ⊃ Dφ → Rφ ⊂ ℓ∞(G1)× . . .× ℓ∞(GL).

is compactly differentiable atG tangentially to V ⊂ ℓ∞(F1)×. . .×ℓ∞(FJ ).
Additionally, 0 ∈ V as well as f ∈ V ⇒ cf ∈ V for all c > 0.

Regarding the process Yn, we make the following assumption.

(Wg) Assume that
Yn  Y in L∞(F1, . . . ,FJ ;K)

where
Y(f1, . . . , fJ ;κ) := (Y(1)(f1;κ), . . . ,Y

(J)(fJ ;κ))

and Y(j), j = 1, . . . , J are centered, Borel measurable random elements of
ℓ∞(Fj ×K).

A detailed discussion of condition (Wg) for estimators Ĝn(·;κ) of the form
(7) is provided in the next section.

The limit Y in assumption (Wg) needs to satisfy certain technical conditions
that correspond to assumptions (A1)–(A3) from Section 2.
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(Ag1) Assume that supdK(κ,κ′)≤δ supj supfj∈Fj
|Y(j)(fj;κ)−Y(j)(fj ;κ

′)| = oP (1)
as δ → 0.

(Ag2) Define the set

UK :=
{

(hκ)κ∈K : h(·;κ) ∈ V ∀ κ ∈ K, sup
κ∈K

‖h(·;κ)‖ < ∞
}

.

Assume that the sample paths of Y are in UK with probability one.
(Ag3) For any kn → 0 we have supκ∈K,|w(κ)|≤kn

w(κ)‖φ(Ĝn(·;κ))‖ = o∗P (1)
where the asterisk denotes outer probability. Additionally, it holds that
sup|w(κ)|≤δ ‖Y(·;κ)‖ = oP (1) as δ → 0.

Condition (Ag2) is nonrestrictive in the sense that it is needed to apply
the functional delta method to Vn(·;κ) for each fixed κ. Assumption (Ag1)
is needed for the application of the general compact differentiability result in
Section 5. As we shall discuss in the next section [see Remark 4.8], assumption
(Ag1) is typically satisfied in a wide variety of practically relevant settings. As
in Section 2, assumptions (Wg), (Ag1), (Ag2) are already sufficient to derive
weak convergence of Vn if the set K satisfies infκ∈K |w(κ)| > 0. If we want to
drop this condition, we additionally need (Ag3).

Our main result is a generalization of Theorem 2.5 from Section 2

Theorem 4.5. Assume that the function w is uniformly bounded. For any com-
pact metric space (K, dK), with infκ∈K |w(κ)| ≥ a > 0 conditions (Cg), (Wg),
(Ag1) and (Ag2) imply Vn  V in L∞(G1, . . . ,GL;K) where

V(g1, . . . , gL;κ) :=
(

φ′
GY(·;κ)

)

(g1, . . . , gL).

If additionally (Ag3) holds, the assumption infκ∈K |w(κ)| ≥ a > 0 can be
dropped.

Remark 4.6. Although assumption (Ag3) often holds, there are situations
where verifying it can be very tedious or requires additional assumptions on
the underlying data structure. For example, consider the setting where K =
∆ and φ denotes the map that takes a distribution function to its median.
In that case, assumption (Ag3) would require that 1

n maxi=1,...,n |Xi| = oP (1)
since the median of one observation is the observation itself. Effectively, this
places moment assumptions on X that are not needed for the median from
large samples to be well-behaved. A closer look at the proofs reveals that for
any γ ∈ (0, 1) the following modified version of the process Vn

Ṽn(g1, . . . , gL;κ) := w(κ)I{|w(κ)| ≥ α−γ
n }αn(φ(Ĝn(·;κ))− φ(G))(g1, . . . , gL)

converges to the same limit V without assumption (Ag3) or the additional con-
dition infκ∈K |w(κ)| ≥ a > 0. In the applications discussed in Section 3, the
modification above essentially amounts to not using information from extremely
small sub-samples. As the discussion above indicates, for certain sets K this can
be viewed as a robustification.
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Finally, we remark that applying Theorem 4.5 instead of Theorem 2.5 directly
leads to an extension of the findings in Section 3 to the more general setting
considered in the present section.

4.2. Probabilistic considerations

In this section, we focus our attention on the setting where Yn has a specific
structure that typically arises in applications. More precisely, consider the multi-
parameter sequential empirical process

Yn(f1, . . . , fJ ; s, t) :=
(

n1/2(t− s)(Ĝn(f1, . . . , fJ ; s, t)−G(f1, . . . , fJ))
)

(s,t)∈∆

where ∆ := {(s, t) ∈ [0, 1]2|s ≤ t} and the quantity Ĝn(f1, . . . , fJ ; s, t) :=

(Ĝ
(1)
n (f1; s, t), . . . , Ĝ

(J)
n (fJ ; s, t)) with

Ĝ(j)
n (·; s, t) :=

( 1

1 + ⌊nt⌋ ∨ 1− ⌊ns⌋ ∨ 1

⌊nt⌋∨1
∑

i=⌊ns⌋∨1

f(Xi)
)

f∈Fj

, j = 1, . . . , J

denotes an estimator forG that is based on the sub-sampleX⌊ns⌋∨1, . . . , X⌊nt⌋∨1.
It turns out that conditions (Wg), (Ag1), (Ag2) in the previous section can be
derived from simpler conditions that involve only a collection of ‘classical’ one-
parameter sequential processes

Gn(f1, . . . , fJ ; t) := (G(1)
n (f1; t), . . . ,G

(J)
n (fJ ; t))

where G
(j)
n (f ; t) := n1/2t(Ĥ

(j)
n (f ; t)−G(f)) and

Ĥ(j)
n (f ; t) :=

1

⌊nt⌋ ∨ 1

⌊nt⌋∨1
∑

i=1

f(Xi), j = 1, . . . , J.

Additionally, let

Ĥn(f1, . . . , fJ ; t) := (Ĥ(1)
n (f1; t), . . . , Ĥ

(J)
n (fJ ; t)). (8)

Consider the following assumptions

(W’) Assume that
Gn  G in L∞(F1, . . . ,FJ ; [0, 1])

where
G(f1, . . . , fJ ; t) := (G(1)(f1; t), . . . ,G

(J)(fJ ; t))

and G(j), j = 1, . . . , J are centered, Borel measurable random elements in
ℓ∞(Fj).

(A1’) Assume that sup|s−t|≤δ supj supfj∈Fj
|G(j)(fj ; t) − G(j)(fj ; s)| = o(1) as

δ → 0.
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The conditions above turn out to be sufficient for (Wg) and (Ag1).

Proposition 4.7. Under conditions (W’) and (A1’), we have

Yn  Y in L∞(F1, . . . ,FJ ; ∆)

where ∆ = {s, t ∈ [0, 1] : s ≤ t} and

Y(f1, . . . , fJ ; s, t) := G(f1, . . . , fJ ; t)−G(f1, . . . , fJ ; s).

Moreover, Y satisfies assumption (Ag1).

Remark 4.8. For many types of weakly dependent data [including, of course,
the independent case], the process G is a vector of centered Gaussian processes
with covariance of the form

Cov(G(f1, . . . , fJ ; s),G(g1, . . . , gJ ; t)) = (s ∧ t)η(f1, . . . , fJ , g1, . . . , gJ)

for some uniformly bounded covariance kernel η. In this case, assumption (A1’)
holds. To see this, note that under (W’) and Gaussianity of the limit, the
process G has paths that are uniformly continuous with respect to the met-
ric ρ2((s, f1, . . . , fJ), (t, g1, . . . , gJ)) := E[(G(f1, . . . , fJ ; s) − G(g1, . . . , gJ ; t))

2],
see Example 1.5.10 in Van der Vaart and Wellner (1996). The discussion at the
beginning of Example 1.5.10 in Van der Vaart and Wellner (1996) thus yields
the desired result. The special structure of Y implies that its sample paths have
the same property.

Remark 4.9. Consider the special case K = {0}× [0, 1]. In this case, assump-

tion (Ag3) is satisfied as soon as Ĥn is of the form given in (8) with the data

X1, X2, . . . stemming from a strictly stationary sequence and Ĥn(·; 1) → G
outer almost surely. To see this, note that under the assumptions discussed
above we have supt ‖φ(Ĥn(·; t))‖ = maxj=1,...,n ‖φ(Ĥj(·; 1))‖ and that by the

continuous mapping theorem ‖φ(Ĥn(·; 1))‖ → ‖φ(G)‖ outer almost surely. This

in turn implies that (supn≥1 ‖φ(Ĥn(·; 1))‖)∗ [the asterisk denoting a measurable
majorant] is bounded in probability. For results implying almost sure conver-
gence of processes in a very general setting, see Adams and Nobel (2010) and
the references cited therein.

For independent data, assumption (W’) is known to hold as soon as the
classes of functions F1, . . . ,FJ are Donsker [see Van der Vaart and Wellner
(1996), Chapter 2.12.1]. For dependent data, much less is known. Available
results are, to the best of our knowledge, limited to classes of functions of the
form F1 = {u 7→ I{u ≤ y}|y ∈ Rd} [the inequality is understood component-
wise], and a list of corresponding results can be found in Section 2. To the best
of our knowledge, nothing is known for general classes of functions. Such results
can be established based on Theorem 4.10 provided below.

Note that by Lemma 1.4.3 in Van der Vaart and Wellner (1996), asymptotic

tightness of Gn is equivalent to asymptotic tightness of G
(j)
n for all j = 1, . . . , J .

Thus, Problem 1.5.3 in the same reference implies that in order to obtain weak
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convergence of Gn to G, we need to show that first G
(j)
n is asymptotically tight

for all j = 1, . . . , J and second that the following condition holds

(F) For all finite collections si,j ∈ [0, 1], i = 1, . . . , N , j = 1, . . . , J , fij ∈ Fj ,

i = 1, . . . , N , j = 1, . . . , J the collection (G
(j)
n (fij ; sij))j=1,...,J,i=1,...,N

converges weakly to (G(j)(fij ; sij))j=1,...,J,i=1,...,N in the usual RNJ -dimen-
sional sense.

There is a vast literature containing results that imply the finite-dimensional
convergence (F), see Dehling et al. (2002) and the references cited therein for

an overview. Criteria establishing asymptotic tightness of the processes G
(j)
n for

dependent data on the other hand are not as widely available, and one general
result along those lines is provided below. This result is of independent interest.
In particular, it can be used to verify condition (W’) in a number of settings
that have not been considered before.

Theorem 4.10. Assume that the process Gn is of the form

Gn(v; t) = n1/2t(Ĥn(v; t)−G(v))

where Ĥn(·; t) is defined in (8) and the data X1, X2, . . . come from a strictly
stationary sequence. Assume that for each j = 1, . . . , J there exists a semi-
metric ρj on Fj which makes Fj totally bounded. Define Fj,δ := {f − g|f, g ∈
Fj , ρj(f, g) ≤ δ}. Assume that the process G

(j)
n (·; 1) satisfies for some q > 2 and

j = 1, . . . , J

lim
δ↓0

lim sup
n→∞

E
∗ sup
f∈Fj,δ

‖G(j)
n (f ; 1)‖q = 0 (9)

[recall that the asterisk denotes outer expectation], that

max
j=1,...,J

sup
n∈N

sup
f∈Fj

E
∗‖G(j)

n (f ; 1)‖q < ∞, (10)

and that for every j the class of functions Fj has envelope Fj which has finite
q’th moment. Let condition (F) hold. Then Gn  G in L∞(F1, . . . ,FJ ; [0, 1]).

Condition (9) has been established by Andrews and Pollard (1994) for strongly
mixing data, and inequality (3.1) in Andrews and Pollard (1994) reveals that
(10) holds under the same assumption. Moreover Hagemann (2012) established
(9) for stationary sequences with geometric moment contraction properties [see
Wu and Shao (2004)], and the results in his appendix show that again (10) holds
under the same assumptions.
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4.3. Some comments on bootstrap procedures

In this section, we briefly discuss bootstrap procedures. In particular, we con-
sider the following bootstrap version of the quantity Ĝn defined in (7)

ĜB
n (f1, . . . , fJ ; s, t) := (Ĝ(1),B

n (f1; s, t), . . . , Ĝ
(J),B
n (fJ ; s, t)), (11)

Ĝ(j),B
n (·; s, t) :=

1

1 + ⌊nt⌋ ∨ 1− ⌊ns⌋ ∨ 1

(

⌊nt⌋∨1
∑

i=⌊ns⌋∨1

Mi,nf(Xi)
)

f∈Fj

,

with M1,n, . . . ,Mn,n denoting a triangular array of random variables indepen-
dent of the original sample X1, . . . , Xn. The corresponding bootstrap version of
the process Yn is given by

Y
B
n := αn(t− s)(ĜB

n (·; s, t)− Ĝn(·; s, t)) =: (Y(1),B
n , . . . ,Y(J),B

n ). (12)

In the literature, this approach is known under the name ‘multiplier bootstrap’,
see for example Section 2.9 in Van der Vaart and Wellner (1996) for the case of
independent multipliers and Bühlmann (1993) for an extension to the setting of
dependent observations. Under suitable assumptions on the data and random
variables M1,n, . . . ,Mn,n, a conditional version of assumption (W) holds [see
Remark 4.13 for a more detailed discussion]. Specifically, assume that

(WB) YB
n weakly converges to Y conditionally on the data in probability, that is

(Y(1),B
n , . . . ,Y(J),B

n )
P
 

M

(

Y
(1), . . . ,Y(J)

)

in L∞(F1, . . . ,FJ ;K).

Here, weak convergence conditional on the data in probability (
P
 

M
-convergence)

is understood in the Hoffmann-Jørgensen sense as defined in Kosorok (2008),

that is YB
n

P
 

M
Y if and only if

(i) supf∈BL1

∣

∣EMf(YB
n )− Ef(Y)

∣

∣ → 0 in outer probability,

(ii) EMf(YB
n )

∗ − EMf(YB
n )∗

P→ 0 for all f ∈ BL1,

where BL1 denotes the set of all functions f : L∞(F1, . . . ,FJ ;K) → R that are
bounded by 1 and are Lipschitz-continuous with Lipschitz constants bounded
by 1, and where the asterisks in (ii) denote measurable majorants (and mino-
rants, respectively) with respect to the joint data (X1, . . . , Xn,M1,n, . . . ,Mn,n).
Also, note that the map (M1,n, . . . ,Mn,n) 7→ YB

n is measurable conditionally
on the original data X1, . . . , Xn outer almost surely [for fixed X1, . . . , Xn, this
mapping is Lipschitz-continuous] and thus we do not need to consider mea-
surable majorants. Settings where results of this kind hold are discussed in
Remark 4.13.

The classical delta method for the bootstrap [see e.g. Theorem 12.1 in Kosorok
(2008)] asserts that for a map φ that is compactly differentiable at G with
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derivative φ′
G

and additionally satisfies suitable measurability conditions, we
have

αn(t−s)(φ(ĜB
n (·; s, t))−φ(Ĝn(·; s, t))) P

 

M
φ′
G
Y(·; s, t) in ℓ∞(G1)×. . .×ℓ∞(GL)

for every fixed (s, t). The next Theorem provides a generalization of this finding.
More precisely, it states conditions that allow for a generalization of Theorem 4.5
to conditional weak convergence in L∞(G1, . . . ,GL;K).

Theorem 4.11. With the notation above, assume that (WB), (Ag1), (Ag2) and
(Cg) hold. Then for any compact K ⊂ ∆ with inf(s,t)∈K |t− s| > 0 we have for

V
B
n (·; s, t) := αn(t− s)(φ(ĜB

n (·; s, t))− φ(Ĝn(·; s, t)))

that

V
B
n

P
 

M
φ′
G
Y = V in L∞(G1, . . . ,GL;K).

If additionally (Ag3) holds and sup(s,t)∈K,|t−s|≤kn
(t−s)‖φ(ĜB

n (·; s, t))‖ = o∗P (1),
the convergence holds for arbitrary compact K ⊂ ∆.

Remark 4.12. Suitable modifications of the extension discussed in Remark 4.6
continue to hold in the bootstrap setting. More precisely, conditional weak con-
vergence of the process

Ṽ
B
n =

(

αn(t− s)I{|t− s| > α−γ
n }(φ(ĜB

n (·; s, t))− φ(Ĝn(·; s, t))
)

(s,t)∈∆

holds without additional assumptions.

We conclude this section by providing some discussion of settings where con-
dition (WB) holds.

Remark 4.13. In the case of independent data, a mild assumption on the multi-
pliersMi,n suffices. More precisely, assuming thatM1,n, . . . ,Mn,n = M1, . . . ,Mn

where Mi are i.i.d., independent of the data Xi, and that
∫ √

P (|M1| > u)du
is finite [which follows if M1 has finite moment of order 2 + ε], the classes of
functions F1, . . . ,FJ being Donsker implies (WB). To see this, note that by
arguments similar to the ones given in the proof of Proposition 4.7 it suffices
to derive (WB) for the set K = {0} × [0, 1]. To do so, apply Lemma B.3 in the
appendix where the approximating mappings Ai and AB

i,n are defined through
projections on piecewise constant functions, see the arguments in the proof
of Theorem 1.5.6 in Van der Vaart and Wellner (1996). Then assumption (i) of
Lemma B.3 corresponds to conditional finite-dimensional convergence which can
be established by arguments similar to those given in Lemma 2.9.5 in Van der
Vaart and Wellner (1996). Condition (ii) corresponds to tightness of the limit
process Y. Condition (iii) follows from the unconditional asymptotic tightness of
YB

n , which can be established by combining Theorem 2.12.1 and 2.9.2 in Van der
Vaart and Wellner (1996).
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Under dependence, much less is known about bootstrap validity for empirical
processes, even in the non-sequential setting. For an overview of available results,
see Radulović (2009). In the sequential setting, some results along those lines
were recently considered by Bücher and Ruppert (2013) based on arguments
from Bühlmann (1993). More precisely, those authors proposed to consider vari-
ables M1,n, . . . ,Mn,n from a triangular scheme that satisfy certain conditions
[see assumptions A1–A3 in their paper]. In particular, the results in Bücher and
Kojadinovic (2013) imply (WB) for K = {0} × [0, 1] under strong mixing con-
ditions for the class of functions F = {u 7→ I{u ≤ w}|w ∈ Rd}. Moreover, using
the techniques in that paper, it should be possible to derive (WB) for more
general classes of functions F and K = {0} × [0, 1] by combining arguments
similar to those in the proof of Theorem 2.12.1 in Van der Vaart and Wellner
(1996) with the Ottaviani-type inequality of Bücher (2013) and results on the
validity of bootstrap procedures in the non-sequential setting. For an overview
of such results, see Radulović (2009) and the references cited therein.

4.4. An application to sub-sampling and fixed-b corrections

Sub-sampling [Politis and Romano (1994)] has been used in a wide range of
inference problems for time series. The basic idea is that the distribution of an
estimator computed from a sufficiently large sub-sample of the data should be
close to that of the estimator from the whole data set. Confidence intervals and
tests can then be constructed by approximating the unknown distribution of
the estimator with sub-sampling counterparts. To accommodate the time series
dependence non-parametrically, it involves the sub-sampling window width l,
which needs to go to infinity as the sample size goes to infinity but at a slower
rate to achieve consistent approximation. In practice, the choice of l affects
the sub-sampling distribution estimator and related operating characteristics,
although its role does not show up in the conventional first order asymptotics.
In Shao and Politis (2013), the traditional sub-sampling method was calibrated
using a p-value based argument under the so-called fixed-b asymptotics [Kiefer
and Vogelsang (2005)], where b = l/n. From now on, we will assume that we have
a sample of dataX1, . . . , Xn from a strictly stationary time series. The estimator
Ĝn(·; s, t) is assumed to be based on the sub-sample X⌊ns⌋∨1, . . . , X⌊nt⌋∨1, i.e. of
the form given in equation (7). In what follows, write θ = φ(G) for the parameter

of interest. For notational convenience, we also consider the quantity θ̂k,j which

is computed from the dataXk, Xk+1, . . . , Xj . Note that θ̂k,j = φ(Ĝ(·; k/n, j/n)).
For simplicity, assume that θ is R

d-valued. Defining N := n − l + 1, the sub-
sampling based estimator of the distribution function of ‖√n(θ̂1,n−θ)‖ evaluated
at x is given by

Ln,l(x) = N−1
N
∑

j=1

I{‖
√
l(θ̂j,j+l−1 − θ̂1,n)‖ ≤ x}.

The corresponding p-value of the test statistic ‖√n(θ̂1,n − θ0)‖ for the null
hypothesis θ = θ0 is
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p̂n(b) = N−1
N
∑

j=1

I{‖
√
n(θ̂1,n − θ0)‖ ≤ ‖

√
l(θ̂j+l−1 − θ̂1,n)‖}.

Note that under the conditions l/n + 1/l = o(1) and additional regularity
assumptions, the asymptotic distribution of p̂n(b) is U [0, 1], see Politis et al.
(1999). Under the fixed-b asymptotic framework, l/n = b ∈ (0, 1] is held fixed.
Following an elementary approach, the limiting null distribution of p̂n(b), which
equals

G(b) = (1− b)−1

∫ 1−b

0

I{‖Σ1/2
B1‖ ≤ ‖Σ1/2(Bb+t − Bt − bB1)‖/

√
b}dt

[here, B denotes a vector of independent Brownian motions on [0,1] and Σ is
a positive definite matrix] was derived in Shao and Politis (2013) by assuming
that

θ̂j,j+l−1 = θ + l−1

j+l−1
∑

i=j

L(Xi) +Rn(j, j + l − 1),

that a similar representation holds for θ̂1,n, that (3) holds for {L(Xt)} with
remainder Rn(1, n), and that the remainder terms satisfy

√
n|Rn(1, n)| = op(1)

and
√
l supj=1,··· ,N |Rn(j, j+ l− 1)| = op(1). Verifying the latter assumption for

general functionals can be quite tedious and challenging.
Now, consider the general setup of Section 4 and let conditions (Cg), (Wg),

(Ag1) and (Ag2) hold. We apply Theorem 4.5 with K := {(t, t + b)|t ∈ [0, 1 −
b]} ∪ {(0, 1)} and assume that the map

h 7→ 1

1− b

∫ 1−b

0

I{‖h(0, 1)‖ ≤ ‖h(t, t+ b)− bh(0, 1)‖/
√
b}dt

is continuous on a set of functions that contains the sample paths of V with
probability one. In particular, this is the case if V(·; s, t) = (t− s)Σ1/2(Bt −Bs)
with Σ denoting a non-singular matrix and B a vector of independent Brownian
motions [see the arguments in Shao and Politis (2013)], which typically holds
for weakly dependent stationary time series. From now on, assume that this is
the case. Observe that for θ = θ0 we have in the setting discussed above

p̂n(b) =
1

1− b

∫ 1−b

0

I{Vn(·; 0, 1) ≤ ‖Vn(·; t, t+ b)− bVn(·; 0, 1)‖/
√
b}dt+ oP (1),

where the negligibility of remainder follows from an application of the contin-
uous mapping theorem. The results in Theorem 4.5 in combination with the
continuous mapping theorem thus yield

p̂n(b)  P :=
1

1− b

∫ 1−b

0

I{‖V(·; 0, 1)‖ ≤ ‖V(·; t, t+ b)− bV(·; 0, 1)‖/
√
b}dt

as soon as assumptions (Cg), (Wg), (Ag1) and (Ag2) hold.
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Unless θ is real-valued, the asymptotic distribution of the statistic p̂n(b) is
in general not pivotal. Shao and Politis (2013) proposed to estimate its distri-
bution based on further sub-sampling. An alternative is to consider block boot-
strap approximations such as those discussed in Section 4.2. More precisely,
consider a bootstrap version for Ĝn(·; s, t) which is of the form given in (11)

and denote it by ĜB
n (·; s, t). Define a bootstrap version for φ(Ĝn(·; s, t)) through

φ(ĜB
n (·; s, t)). Assume that the map φ is continuous. Now Theorem 4.11 com-

bined with the continuous mapping theorem for the bootstrap in probability [see
Theorem 10.8 in Kosorok (2008)] directly yields that if we additionally assume
condition (WB), it follows that

p̂Bn (b) :=
1

1− b

∫ 1−b

0

I
{√

n‖φ(ĜB
n (·; 0, 1))− θ0‖

≤
√
nb‖φ(ĜB

n (·; t, t+ b))− φ(ĜB
n (·; 0, 1))‖

}

dt
P
 

M
P.

Finally, note that the reasoning above does not rely on θ0 being Rp-valued and
that it is thus also possible to handle infinite dimensional parameters.

5. A general result on (quasi) Hadamard differentiability

This section contains an abstract result on compact differentiability is of inde-
pendent interest. It plays a crucial role in the proofs of Theorems 4.5 and 4.11.
The result in this section applies to both classical Hadamard differentiability
[also known as compact differentiability], and the more general concept of quasi-
Hadamard differentiability which was recently introduced by Beutner and Zähle
(2010). The main advantage of this more general approach is that it allows to
apply a modified delta method in settings where the classical delta method fails,
the simplest example being the mean. In particular, the distribution of U- and
V-statistics and value-at-risk functionals can be derived in settings where the
classical delta method fails. See Beutner and Zähle (2010, 2012); Beutner et al.
(2012) for further details. For the reader’s convenience, we state the definition
from Beutner and Zähle (2010).

Definition 5.1 (Beutner and Zähle (2010)). Consider a metrized topological
vector space (R, dR), a vector space D with subsets Dφ, D0 ⊂ D,C0 ⊂ D0 and
assume that (D0, dD) is a metrized topological vector space. A map φ : Dφ → R
is said to be quasi-Hadamard differentiable at x ∈ Dφ tangentially to C0〈D0〉
with derivative φ′

x if for every tn ց 0 and sequence hn → h with hn ∈ D0∀n,
h ∈ C0 such that x+ tnhn ∈ Dφ∀n we have

dR(t
−1
n (φ(x + tnhn)− φ(x)), φ′

xh) → 0

with φ′
x : C0 → R denoting a continuous map.

Consider the following general setting.
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(S) Denote by (R, dR) a metrized topological vector space. Consider a sec-
ond vector space D with subsets Dφ, D0 ⊂ D,C0 ⊂ D0 and assume
that (D0, dD) is a metrized topological vector space. Let φ : Dφ → R
be quasi Hadamard differentiable at x tangentially to C0〈D0〉 and denote
the derivative by φ′

x. Let (K, dK) be a compact metric space. Define the
sets

D :=
{

(h(·;κ))κ∈K

∣

∣

∣h(·;κ) ∈ D ∀κ
}

R :=
{

(h(·;κ))κ∈K

∣

∣

∣h(·;κ) ∈ R ∀κ, sup
κ,κ′

dR(h(·;κ), h(·;κ′)) < ∞
}

DΦ :=
{

(h(·;κ))κ∈K

∣

∣

∣h(·;κ) ∈ Dφ ∀κ, sup
κ,κ′

dR(φ(h(·;κ)), φ(h(·;κ′))) < ∞
}

D0 :=
{

(h(·;κ))κ∈K

∣

∣

∣h(·;κ) ∈ D0 ∀κ, sup
κ,κ′

dD(h(·;κ), h(·;κ′)) < ∞
}

C0 :=
{

(h(·;κ))κ∈K

∣

∣

∣h(·;κ) ∈ C0 ∀κ, sup
κ,κ′

dD(h(·;κ), h(·;κ′)) < ∞
}

On the sets R and D0, define the metrics

dR((h(·;κ))κ∈K , (g(·, κ))κ∈K) := sup
t

dR(h(·;κ), g(·, κ))

and
dDΦ

((h(·;κ))κ∈K , (g(·, κ))κ∈K) := sup
t

dD(h(·;κ), g(·, κ)),

respectively. For elements (h(·;κ))κ∈K , (g(·, κ))κ∈K set

(h(·;κ))κ∈K + a(g(·, κ))κ∈K := (h(·;κ) + ag(·, κ))κ∈K

and assume that with this definition, (D0, dD,Φ) and (R, dR,Φ) are metrized
topological vector spaces. Define the map

Φ :

{

DΦ → RΦ

(h(·;κ))κ∈K 7→ (φ(h(·;κ)))κ∈K .

Theorem 5.2. Under setup (S) the map Φ is quasi-Hadamard differentiable at
X := (x)κ∈K tangentially to U 〈D0〉 where

U :=
{

(h(·;κ))κ∈K : h(·;κ) ∈ C0 ∀κ ∈ K,

sup
dK(κ,κ′)≤δ

dD(h(·, κ′), h(·;κ)) = o(1) as δ → 0
}

and the derivative is given by

Φ′
X :

{

C0 → R

(h(·;κ))κ∈K 7→ (φ′
xh(·;κ))κ∈K .

If additionally the map φ′
x is linear, then so is the map Φ′

X .
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Note that Beutner and Zähle (2010) do not assume the derivative map φ′
x to

be linear. Additionally, as pointed out by a referee, a closer look at the proof of
the functional delta method [see e.g. Theorem 3.9.4 in Van der Vaart andWellner
(1996)] shows that linearity of the derivative map is in fact not required. On the
other hand, linearity of the derivative enters our proofs at several places and
also seems necessary for the bootstrap version of the functional delta method.
While we believe that some of our results can be generalized to settings where
the derivative is not linear, we do not pursue this question further in order to
not make the technical proofs even more involved.

Example 5.3. As an illustration of the above result, let us consider the spe-
cific setting of Section 4.1 where (R, dR) = (ℓ∞(G1) × . . . × ℓ∞(GL), ‖ · ‖max),
D = ℓ∞(F1)× . . .× ℓ∞(FJ), dD((f1, . . . , fJ), (f

′
1, . . . , f

′
J)) := maxj ‖fj − f ′

j‖∞.
Assume that φ satisfies condition (Cg). Consider the map

ΨK :

{

DΨ → RΨ

(h(·;κ))κ∈K 7→
(

w(κ)φ
(

h(·;κ)
w(κ)

))

κ∈K

where (K, dK) is a compact metric space, RΨ ⊂ L∞(G1, . . . ,GL;K) and

DΨ :=
{

(h(·;κ))κ∈K

∣

∣

∣

h(·;κ)
w(κ)

∈ Dφ∀κ ∈ K, sup
κ∈K

∥

∥

∥w(κ)φ
(h(·;κ)

w(κ)

)∥

∥

∥ < ∞
}

.

Note that with this definition, Vn(·;κ) = αn(ΨK(w(κ)Ĝn(·;κ))−ΨK(XK(·;κ)))
where we defined the map XK := ((f1, . . . , fJ , κ) 7→ w(κ)G(f1, . . . , fJ)). Ad-

ditionally we have Yn(·;κ) = αn(w(κ)Ĝn(·;κ) −XK(·;κ)). As long as it holds
that infκ∈K |w(κ)| > 0, compact differentiability of ΨK with derivative

(ΨK)′X :

{

VK → R

(h(·;κ))κ∈K 7→ (φ′
xh(·;κ))κ∈K .

is a direct consequence of Theorem 5.2 [here, VK is defined similarly to U with
C0 replaced by V ]. To see this, consider a sequence of real numbers rn ց 0 and
hn ∈ D such that XK + rnhn ∈ DΨ for all n ∈ N with hn → h ∈ VK . Then, by
compact differentiability of Φ,

r−1
n (ΨK(XK + rnhn)−ΨK(XK)) = r−1

n w(·)(ΦK (X̃K + rnh̃n)− ΦK(X̃K))

→ w(·)Φ′
K h̃.

where

X̃K := ((f1, . . . , fJ , κ) 7→ G(f1, . . . , fJ)),

h̃n := ((f1, . . . , fJ , κ) 7→ hn(f1, . . . , fJ ;κ)/w(κ)),

h̃ := ((f1, . . . , fJ , κ) 7→ h(f1, . . . , fJ ;κ)/w(κ)).

Finally, observing that Φ′
K is linear, compact differentiability of ΨK and the

definition of its derivative follow.
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This result is of independent interest. For example, Gao and Zhao (2011)
recently demonstrated that compact differentiability can be used to establish
large and moderate deviation principles. The findings above allow to carry their
results into the setting of statistics from subsamples and could for example be
used to analyze rejection probabilities of various breakpoint tests.
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Appendix A: Proofs of main results

Proof of Theorem 2.5. Theorem 2.5 is a consequence of the more general result
Theorem 4.5. This can be seen by considering the weight function w((s, t)) :=
t − s, setting J = 1, defining F1 := D, and considering the collection of es-
timators Ĝn(u; s, t) := F̂⌊ns⌋,⌊nt⌋(u). In particular, in this case the space of
functions L(F1;K) can be identified with ℓ∞(F1 × K). Assumption (Cg) is a
direct consequence of condition (C). Condition (Wg) follows from (W) by the
results in Proposition 4.7 while (Ag1) and (Ag2) are direct consequences of (A1)
and (A2), respectively. Similarly, the first part of (Ag3) follows directly from
(A3) while the statement supκ:|w(κ)|≤δ ‖Y(·;κ)‖ = oP (1) as δ → 0 follows since
|w((s, t))| ≤ δ is equivalent to |t− s| ≤ δ and since by construction Y(·; t, t) ≡ 0
almost surely.

Proof of Theorem 4.5. The proof consists of two steps. First, we show that the
convergence holds for K,w with infκ∈K |w(κ)| > 0, and second, we extend the
result to general K,w under assumption (Ag3). The first step follows by an
application of the functional delta method [see Theorem 3.9.4 in Van der Vaart
and Wellner (1996)] in combination with the discussion in Example 5.3.

For the second step, consider the approximating processes

Ai,n := αnw(κ)I{|w(κ)| ≥ 1/i}(φ(Ĝn(·;κ))− φ(G))

Ai := φ′
G

(

Y(·;κ)I{|w(κ)| ≥ 1/i}
)

.

It then suffices to verify the following three statements [see Lemma B.1 in Bücher
et al. (2011)]
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(i) For every i ∈ N : Ai,n  Ai for n → ∞,

(ii) Ai  φ′
G
Y(·;κ) for i → ∞,

(iii) For every ε > 0 : lim
i→∞

lim sup
n→∞

P
∗(‖Ai,n − Vn‖ > ε) = 0.

The first statement is the weak convergence established in the first step. For
(ii), note that

∥

∥

∥Ai − φ′
GY(·;κ)

∥

∥

∥ ≤ ‖φ′
G‖op sup

κ:|w(κ)|∈[0,1/i]

sup
j

sup
f∈Fj

|Y(j)(f ;κ)|,

[here, ‖ · ‖op denotes the operator norm] and the right-hand side converges to
zero (as i → ∞) in probability, this is a direct consequence of assumption (Ag3).

Finally, for a proof of (iii) note that for βn := γn∨α
−1/2
n = o(1) with γn from

Lemma B.2

‖Ai,n − Vn‖ ≤ αn sup
κ:|w(κ)|∈[βnn−1/2,1/i]

|w(κ)|‖φ(Ĝn(·;κ))− φ(G)‖

+ sup
κ:|w(κ)|∈[0,βnn−1/2]

|w(κ)|‖φ(Ĝn(·;κ))− φ(G)‖

≤ cφ sup
κ:|w(κ)|∈[βnn−1/2,1/i]

sup
j

sup
f∈Fj

|Y(j)
n (f ;κ)|

+ sup
κ:|w(κ)|∈[0,βnn−1/2]

|w(κ)|
(

‖φ(Ĝn(·;κ))‖ + ‖φ(G)‖
)

+ I
{

sup
κ:|w(κ)|∈[βnn−1/2,1/i]

αn|w(κ)|‖Ĝn(·;κ)−G‖ > εφ

}

× αn sup
κ:|w(κ)|∈[βnn−1/2,1/i]

‖φ(Ĝn(·;κ))− φ(G)‖

=: Rn,1 +Rn,2 +Rn,3,

where cφ, εφ are from Lemma B.1. Here the second inequality follows by an
application of Lemma B.1 on the set

{

sup
κ:|w(κ)|∈[βnn−1/2,1/i]

αn‖Ĝn(·;κ)−G‖ ≤ εφ

}

after observing that by definition

αn‖Ĝn(·;κ)−G‖ =
1

w(κ)
sup
j

sup
f∈Fj

|Y(j)
n (f ;κ)|.

Condition (Ag3) implies that Rn,2 = o∗P (1). To see that Rn,1 + Rn,3 converge
to zero in outer probability, define the set

Sj(i, ε) :=
{

y ∈ ℓ∞(Fj ×K)
∣

∣

∣ sup
κ:|w(κ)|∈[0,1/i]

sup
f∈Fj

|y(f, κ)| ≥ ε
}

.
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This set is closed, and by the Portmanteau theorem [Theorem 1.3.4 in Van der

Vaart andWellner (1996)] combined with the weak convergence ofY
(j)
n we obtain

lim sup
n→∞

P ∗(Y(j)
n ∈ Sj(i, εφ)) ≤ P (Y(j) ∈ Sj(i, εφ))

for j = 1, . . . , J . By condition (Ag3), limi→∞ P (Y(j) ∈ Sj(i, ε)) = 0 for every
ε > 0. This shows that Rn,1 = o∗P (1) and Rn,3 = o∗P (1). Thus the proof is
complete.

Proof of Theorem 4.11. The first assertion follows by an application of the boot-
strap functional delta method [see e.g. Theorem 12.1 in Kosorok (2008)]. For
more details on the appropriate identification of spaces, see the proof of Theo-
rem 4.5. In order to prove the second part, define

AB
i,n := αnw(κ)I{|w(κ)| ≥ 1/i}(φ(ĜB

n (·;κ))− φ(Ĝn(·;κ)))
Ai := φ′

G

(

Y(·;κ)I{|w(κ)| ≥ 1/i}
)

.

By Lemma B.3 it then suffices to verify the following three statements which can
be regarded as adaptation of Theorem 4.2 in Billingsley (1968) to the present
setting

(i) For every i ∈ N : AB
i,n

P
 

M
Ai for n → ∞,

(ii) Ai  φ′
GY(·;κ) for i → ∞,

(iii) For every ε > 0 : lim
i→∞

lim sup
n→∞

P
∗(‖AB

i,n − V
B
n ‖ > ε) = 0.

Assertion (i) follows from the first part. Assertion (ii) can be established by
exactly the same arguments as the corresponding statement in the proof of

Theorem 4.5. For a proof of the third assertion, note that Y
B
n

P
 

M
Y implies

YB
n  Y, see e.g. the proof of Theorem 10.4, assertion (ii) ⇒ (i) in Kosorok

(2008). Thus assertion (iii) follows by exactly the same arguments as (iii) in the
proof of Theorem 4.5. Hence the proof is complete.

Proof of Proposition 4.7. First, observe that for s ≤ n−1, t ≥ n−1 we have

Ĝn(·; s, t)−G = Ĥn(·; t)−G.

Moreover, for t ≥ s ≥ n−1 we have

Ĝn(·; s, t)−G

=
n

1 + ⌊nt⌋ ∨ 1− ⌊ns⌋ ∨ 1

(⌊nt⌋ ∨ 1

n
(Ĥn(·; t)−G)

− −1 + ⌊ns⌋ ∨ 1

n
(Ĥn(·; s− n−1)−G)

)
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and thus setting ‘0/0 = 0’ we obtain that for t ≥ s ≥ n−1

Yn(·; s, t) =
n(t− s)

1 + ⌊nt⌋ ∨ 1− ⌊ns⌋ ∨ 1

(⌊nt⌋ ∨ 1

nt
Gn(·; t)

− −1 + ⌊ns⌋ ∨ 1

ns
Gn(·; s− n−1)

)

.

Observe that for t > 0 we have | ⌊nt⌋∨1
nt − 1| ≤ 1

⌊nt⌋∨1 and | n(t−s)
1+⌊nt⌋∨1−⌊ns⌋∨1 −

1| ≤ 3
(⌊nt⌋−⌊ns⌋)∨1 . Defining Ỹn(·; s, t) := Gn(·; t) − G̃n(·; s), where G̃n(·; s) :=

Gn(·; s)I{s ≥ n−1} observe that Ỹn  Y by the continuous mapping theorem

and some elementary calculations. Moreover, supt ‖ ⌊nt⌋∨1
nt Gn(·; t)−Gn(·; s)‖ =

o∗P (1) since for t ≥ n−1/4 the factor ⌊nt⌋∨1
nt tends to one uniformly and since

supt≤n−1/4 ‖Gn(·; t)‖ = o∗P (1) by arguments similar to those used to establish
the negligibility of Rn,1 at the end of the proof of Theorem 4.5. Thus it remains

to show that ( n(t−s)
1+⌊nt⌋∨1−⌊ns⌋∨1−1)Ỹn(·; s, t) is uniformly small. This can be done

by similar arguments (distinguish the cases t − s ≤ n−1/4 and t − s > n−1/4).
This completes the proof.

Proof of Theorem 4.10. Since it suffices to show asymptotic tightness of each

process G
(j)
n individually, we will focus on G

(1)
n . To simplify notation, define

Zn(t, f) := G
(1)
n (f ; t), F := F1, Fδ := F1,δ. For functions G ∈ ℓ∞(F) and

subsets G ⊂ F introduce the notation ‖G‖G := supf∈G |G(f)|. Start by noting
that under the assumptions of the theorem together with (10) we have for some
finite constant C1

sup
k∈N

E
∗‖Zk(1, ·)‖qF ≤ C1 < ∞. (13)

To see this, fix δ > 0 and cover the set F with countably many balls of radius
δ and centres {fj : j ∈ N}. Then make use of the bound

sup
k∈N

E
∗‖Zk(1, ·)‖qF ≤ max

1≤k≤n0

E
∗‖Zk(1, ·)‖qF + sup

k∈N

sup
j∈N

E
∗‖Zk(1, fj)‖q

+ sup
n≥n0

E
∗‖Zn(1, ·)‖qFδ

and conditions (9), (10).
In order to establish asymptotic tightness of Zn, apply Theorem 1.5.7 in

Van der Vaart and Wellner (1996) with the metric d((s, f), (t, g)) := ρ(f, g) +
|s− t|. By the triangle inequality, we have

sup
|s−t|+ρ(f,g)<δ

|Zn(s, f)− Zn(t, g)| ≤ 2 sup
0≤t≤1

‖Zn(t, ·)‖Fδ

+ sup
|s−t|<δ

‖Zn(s, ·)− Zn(t, ·)‖F

Start by considering the first term. Define Sk(g) =
∑k

j=1{g(Xi)−Eg(Xi)} and
note that

sup
0≤t≤1

‖Zn(t, ·)‖Fδ
≤ max

1≤k≤n
2

√

k

n
‖Zk(1, ·)‖Fδ

=
2√
n

max
1≤k≤n

‖Sk‖Fδ
.
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Fix ǫ ∈ (0, {1 − 2−1/2+1/q}q/(q−1)/2q/(2q−2)). Under (9), there exists a δ0 > 0
and n0 ∈ N, such that when δ ∈ (0, δ0) and n ≥ n0(ǫ), E

∗‖Zn(1, ·)‖qFδ
≤ ǫ2q.

Moreover, under (13) we have max1≤k≤n0
‖Sk‖Fδ

≤ C1
√
n0 for all n0 ∈ N. By

the Markov inequality and Proposition 1(ii) in Wu (2007), for q > 2, d = dn =
⌊logn/(log 2)⌋+ 1, we have

P ∗( max
1≤k≤n

‖Sk‖Fδ
>

√
nǫ)

≤ (
√
nǫ)−q

E
∗[ max

1≤k≤n
‖Sk‖qFδ

]

≤ (
√
nǫ)−q





d
∑

j=0

2(d−j)/q

{

E
∗ sup
g∈Fδ

|S2j |q
}1/q





q

≤ ǫ−qn−q/2



O(n) +







d
∑

j=⌊log n0/(log 2)⌋+1

2(d−j)/q(ǫ2q2jq/2)1/q







q



≤ ǫ−qO(n−q/2+1) + n−q/2ǫq





d
∑

j=⌊log n0/(log 2)⌋+1

2(d−j)/q(2jq/2)1/q





q

≤ ǫ−qO(n−q/2+1) +
2dn−q/2

{1− 2−1/2+1/q}q ǫ
q

< ǫ

for n ≥ n1(ǫ) ∨ n0(ǫ), where n1(ǫ) is chosen such that the last inequality holds.
Since ǫ was arbitrary, we have shown that lim supn→∞ P ∗(sup0≤t≤1 ‖Zn(t, ·)‖Fδ

>
ǫ) < ǫ for all δ < δ0. It thus remains to consider the second term. Since the
increments of Zn(s, f) in s are stationary, we obtain by arguments similar to
those given in the proof of Theorem 2.12.1 in Van der Vaart and Wellner (1996)
that it is sufficient to consider the term

⌈1
δ
⌉P ∗

(

sup
0≤s≤δ

‖Zn(s, ·)‖F > ǫ

)

≤ ⌈1
δ
⌉P ∗

(

max
1≤k≤nδ

2‖Sk‖F >
√
nǫ

)

.(14)

Let d(δ) = ⌊log(nδ)/(log 2)⌋+1. Again by the Markov inequality and Proposition
1(ii) in Wu (2007),

P ∗

(

max
1≤k≤nδ

‖Sk‖F >
√
nǫ

)

≤ (
√
nǫ)−q

E
∗ max
1≤k≤nδ

‖Sk‖qF

≤ (
√
nǫ)−q







d(δ)
∑

j=0

2(d(δ)−j)/q (E∗‖S2j‖qF)
1/q







q

≤ (
√
nǫ)−q







d(δ)
∑

j=0

2(d(δ)−j)/qC12
j/2







q
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≤ (
√
nǫ)−qCq

12
d(δ)q 1

{1− 2−(1/2−1/q)}q

≤ C2ǫ
−qδq/2

for n sufficiently large. Combined with (14), we get

lim sup
n→∞

P ∗( max
0≤jδ≤1

sup
jδ≤s≤(j+1)δ

‖Zn(s, ·)− Zn(jδ, ·)‖F > ǫ) < ǫ

when δ < (ǫq+1/C2)
1/(q/2−1). The proof is thus complete.

Proof of Theorem 5.2. Let an = o(1) and H(n) denote a sequence in D0 with
Hn → H ∈ U such that X + anHn ∈ DΦ ∀n ∈ N. We need to show that, with
respect to the metric dR,

a−1
n

(

Φ(X + anHn)− Φ(X)
)

→ Φ′
XH.

Assume that this does not hold. Then by definition there exists a b > 0 and a
sub-sequence nk such that

dR

(

a−1
nk

(

Φ(X + ank
Hnk

)− Φ(X)
)

,Φ′
XH

)

≥ 2b ∀k ∈ N

which by definition of dR implies that there exists a sequence κnk
in K such

that
dR

(

a−1
nk

(φ(x + ank
Hnk

(·;κnk
))− φ(x)), (φ′

x ·H(·;κn))
)

≥ b (15)

for all k ∈ N. On the other hand, the sequence Hnk
(·;κnk

) has a subsequence
Hnkj

(·;κnkj
) which converges to H(·;κ∞) for some κ∞ ∈ K. To see that this is

the case, start by noting that κnk
is a sequence in a compact metric space, and

thus it has a convergent subsequence κnkj
→ κ∞ with κ∞ ∈ K. The definition

of the set U then implies that H(·;κnk
) → H(·;κ∞). Together with the uni-

form convergence supκ dD(Hn(·;κ), H(·;κ)) = o(1) this yields Hnk
(·;κnkj

) →
H(·;κ∞). Now quasi compact differentiability of φ tangentially to C0〈D0〉 im-
plies

a−1
n

(

φ(x + anHnkj
(·;κnkj

))− φ(x)
)

→ φ′
xH(·;κ∞),

and together with continuity of φ′
x this contradicts (15). Thus the proof is com-

plete.

Appendix B: Auxiliary technical results

Lemma B.1. Denote by (R, ‖ · ‖R) a normed vector space. Consider a second
vector space D with subsets Dφ, D0 ⊂ D,C0 ⊂ D0 and assume that (D0, ‖ · ‖D)
is a normed vector space. Let φ : Dφ → R be quasi compactly differentiable
at x tangentially to C0〈D0〉 and assume 0 ∈ C0. Then there exist constants
εφ > 0, cφ < ∞ such that

‖φ(x) − φ(x + y)‖R ≤ cφ‖y‖D ∀y ∈ D0 : ‖y‖D ≤ εφ, x+ y ∈ Dφ. (16)
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Proof of Lemma B.1. Assume that (16) does not hold. Then for any pair ε >
0, c < ∞ there exists a yc,ε ∈ D0 such that x + yc,ε ∈ Dφ, ‖yc,ε‖D ≤ ε and
‖φ(x) − φ(x + yc,ε)‖R > c‖yc,ε‖D. Consider the sequence zn := yn2,n−2 and
define αn := ‖zn‖D 6= 0. Then

∥

∥

∥

φ(x+ nαn(nαn)
−1zn)− φ(x)

nαn

∥

∥

∥

R
>

n2αn

nαn
= n −→ ∞.

Moreover ‖(nαn)
−1zn‖D = n−1 = o(1), i.e. (nαn)

−1(zn) → 0. This yields a
contradiction since quasi compact differentiability of φ implies that [note that
nαn ≤ n−1 = o(1)]

φ(x + nαn(nαn)
−1zn)− φ(x)

nαn
−→ φ′

x0.

Thus the proof is complete.

Lemma B.2. Under assumptions (Wg) and (Ag3) there exists a sequence of

real numbers γn = o(1) such that supκ:|w(κ)|≥α−1
n γn

‖Ĝn(·;κ) − G‖ = o∗P (1)

[recall that the sequence αn appears in assumption (Wg)].

Proof of Lemma B.2. Define

Bn := sup
κ:|w(κ)|≤α

−1/2
n

sup
f1,...,fJ

‖Yn(f1, . . . , fJ ;κ)‖.

By the Portmonteau Theorem, we have for any ε > 0, δ > 0

lim sup
n→∞

P ∗(Bn ≥ ε) ≤ P
(

sup
κ:|w(κ)|≤δ

sup
f1,...,fJ

‖Y(f1, . . . , fJ ;κ)‖ ≥ ε
)

.

By assumption (Ag3), the right-hand side of the above display tends to zero for
δ → 0, and thus Bn = o∗P (1). This implies

∀ε > 0 ∃n0(ε) ∈ N : (∗) ∀n ≥ n0(ε) P
∗(Bn > ε) < ε.

Note that a 7→ n0(a) is decreasing since for any a < b we have P ∗(Bn > a) <
a ⇒ P ∗(Bn > b) < b. Set N0(ε) := 2 inf{n0(ε)|(∗) holds} and define

δn := 2 inf{ε > 0|n > N0(ε)}.

By construction N0(δn) < n, and thus P ∗(Bn > δn) < δn. Moreover, δn → 0

since by construction δn ≤ ε ∀n ≥ N0(ε/3). Defining γn = δ
1/2
n yields Bn =

o∗P (γn). Note that

sup
κ:|w(κ)|≥α−1

n γn

‖Ĝn(·;κ)−G‖ ≤ sup
κ:|w(κ)|≥α

−1/2
n

‖Ĝn(·;κ)−G‖

+ sup
κ:|w(κ)|∈[γnα

−1
n ,α

−1/2
n ]

‖Ĝn(·;κ)−G‖.
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Now observe that

sup
κ:|w(κ)|≥α

−1/2
n

‖Ĝn(·;κ)−G‖ ≤ 2α−1/2
n sup

κ:|w(κ)|≥α
−1/2
n

‖Yn(·;κ)‖ = o∗P (1),

by arguments similar to those used to establish the negligibility of Rn,1 at the
end of the proof of Theorem 4.5. Similarly

sup
κ:|w(κ)|∈[γnα

−1
n ,α

−1/2
n ]

‖Ĝn(·;κ)−G‖≤γ−1
n sup

κ:|w(κ)|≤α
−1/2
n

‖Yn(·;κ)‖=γ−1
n Bn=o∗P (1)

This completes the proof.

Lemma B.3. Given a triangular array random variables M1,n, . . . ,Mn,n, and a
sequence of random elements VB

n (M1,n, . . . ,Mn,n) in a normed space (D, ‖·‖D),
assume that the map (M1,n, . . . ,Mn,n) 7→ VB

n (M1,n, . . . ,Mn,n) is measurable
for every n ∈ N outer almost surely [the randomness in VB

n is allowed to come
from sources apart from the M1,n, . . . ,Mn,n]. Assume that for i ∈ N there exist
approximations AB

i,n, Ai such that (M1,n, . . . ,Mn,n) 7→ AB
i,n(M1,n, . . . ,Mn,n) is

measurable for every i, n ∈ N outer almost surely and that additionally

(i) For every i ∈ N : AB
i,n

P
 

M
Ai for n → ∞,

(ii) Ai  V for i → ∞,

(iii) For every ε > 0 : lim
i→∞

lim sup
n→∞

P
∗(‖AB

i,n − V
B
n ‖ > ε) = 0.

where Ai,V denote a tight processes. Then VB
n

P
 

M
V.

Proof of Lemma B.3. We need to show that

(a) supf∈BL1

∣

∣EMf(VB
n )− Ef(V)

∣

∣ → 0 in outer probability,

(b) EMf(VB
n )

∗ − EMf(VB
n )∗

P→ 0 for all f ∈ BL1.

Begin by observing that for every i ∈ N, every ω, and every f ∈ BL1

∣

∣EMf(VB
n )− Ef(V)

∣

∣

≤
∣

∣EMf(VB
n )− EMf(AB

i,n)
∣

∣ +
∣

∣EMf(AB
i,n)− Ef(Ai)

∣

∣+ |Ef(Ai)− Ef(V)| .

Moreover, for every ω

sup
f∈BL1

∣

∣EMf(VB
n )− EMf(AB

i,n)
∣

∣ ≤ sup
f∈BL1

EM

∣

∣f(VB
n )− f(AB

i,n)
∣

∣

≤ EM

[

‖VB
n −AB

i,n‖∗ ∧ 2
]

.

In particular, this implies that for any γ > 0

E
∗
[

sup
f∈BL1

∣

∣EMf(VB
n )− EMf(AB

i,n)
∣

∣

]

≤ E
[

‖VB
n −AB

i,n‖∗ ∧ 2
]

≤ 2P(‖VB
n −AB

i,n‖∗ > γ) + γ.
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Thus (iii) yields

lim
i→∞

lim sup
n→∞

E
∗
[

sup
f∈BL1

∣

∣EMf(VB
n )− EMf(AB

i,n)
∣

∣

]

= 0.

Fix arbitrary ε, η > 0. The computations above yield the existence of an i1 ∈ N

such that for all i ≥ i1

lim sup
n→∞

P
∗
(

sup
f∈BL1

∣

∣EMf(VB
n )− EMf(AB

i,n)
∣

∣ > ε/3
)

< η/3.

Moreover, by (ii) and the definition of weak convergence, there exists an i2 ∈ N

such that for all i ≥ i2

P
∗
(

sup
f∈BL1

|Ef(Ai)− Ef(V)| > ε/3
)

< η/3.

Set k = i1 ∨ i2. Then (i) implies as n → ∞

sup
f∈BL1

∣

∣EMf(AB
k,n)− Ef(Ak)

∣

∣ = oP∗(1),

and combining all the results above we see that

lim sup
n→∞

P
∗
(

sup
f∈BL1

∣

∣EMf(VB
n )− Ef(V)

∣

∣ > ε
)

< η.

Since η, ε were arbitrary, this establishes (a). For a proof of (b), note that (i)
implies AB

i,n  Ai since conditional weak convergence implies unconditional
weak convergence [see the proof of Theorem 10.4, assertion (ii) ⇒ (i) in Kosorok
(2008)]. Thus, by Lemma B.1 in Bücher et al. (2011), (i)–(iii) imply that VB

n  

V. In particular, this implies asymptotic measurability of VB
n [see Section 1.3 in

Van der Vaart and Wellner (1996)], and together with the continuity of f ∈ BL1

this shows that f(VB
n )  f(V) by an application of the continuous mapping

theorem. Thus EMf(VB
n )

∗ − EMf(VB
n )∗ converges to zero in L1, hence also in

probability. Now the proof is complete.

Appendix C: Details an a test for change points

As is clear from the recent review of Perron (2006), testing change points in a
time series has many important applications in econometrics and statistics. A
large class of tests in the literature is based on the so-called CUSUM (cumula-
tive sum) process and the test statistic is a smooth functional of the CUSUM
process with Kolmogorov-Smirnov (L∞) test and Cramer-von-Mises (L2) test
being two prominent examples. To accommodate the time series dependence
and make the limiting null distribution pivotal, one needs to obtain a consistent
estimator of the long run variance as a studentizer. As mentioned previously,
consistent estimation involves a bandwidth parameter, the choice of which is
even more difficult in the change point testing problem. In particular, the fixed
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bandwidth (e.g., n1/3) is not adaptive to the magnitude of dependence and the
data-dependent bandwidth could lead to the so-called non-monotonic power
problem [Vogelsang (1999)], i.e., the power of the test can decrease when the
alternative gets farther away from the null. To overcome the non-monotonic
power problem, Shao and Zhang (2010) proposed a SN-based tests in a general
framework. More precisely, consider the following setup. Assume that we ob-
serve data X1, . . . , Xn that stem from a not necessarily stationary time series.
Let θk = φ(F(k)) ∈ Rq be the quantity of interest which depends on the distri-
bution function of Xk denoted by F(k). The goal is to test if there is a change
point in {θk}nk=1, i.e.

H0 : θ1 = · · · = θn

and a commonly considered alternative is

H1 : θ1 = · · · = θk∗ 6= θk∗+1 = · · · = θn for some unknown k∗, 1 ≤ k∗ < N.

This framework is general enough to include mean, median, autocorrelation at
certain lags of a univariate time series. Define

Vn(k) = n−2
{

k
∑

j=1

j2(φ(F̂1,j)− φ(F̂1,k))(φ(F̂1,j)− φ(F̂1,k))
T

+

n
∑

j=k+1

(n− j + 1)2(φ(F̂j,n)− φ(F̂k+1,n))(φ(F̂j,n)− φ(F̂k+1,n))
T
}

.

Then the test statistic is defined as Gn = supk=1,··· ,n−1 Tn(k)
TVn(k)

−1Tn(k).
The asymptotic null distribution of Gn was derived in Shao and Zhang (2010)

using an elementary approach. Specifically, they rely on the expansion of φ(F̂k,j),
i.e. they assume the following representation

φ(F̂k,j) = θ + (j − k + 1)−1

j
∑

l=k

L(Xl) +Rn(k, j).

Again the functional central limit theorem is assumed for {L(Xk)} (i.e., (3)
holds) and the remainder terms are assumed to be asymptotically negligible. In
particular, Shao and Zhang (2010) assume that

sup
k=1,··· ,n

|kRn(1, k)| = op(n
1/2), sup

k=1,··· ,n
|kRn(n− k + 1, n)| = op(n

1/2). (17)

The above condition (17) is not easy to verify and a detailed case-by-case study
is needed.

Alternatively, consider the setting of Section 2. Under conditions (W), (A1),
(A2) and (A3) with K = ({0}× [0, 1])∪ ([0, 1]×{0}) it is possible to show that
Gn = supr∈[0,1]Hn(r) + oP (1) where

Hn(r) := (φ(F̂1,⌊nr⌋)− φ(F̂1,n))
T Ŵ−1

r,n (φ(F̂1,⌊nr⌋)− φ(F̂1,n))
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with

Ŵr,n :=

∫ r

0

(φ(F̂1,⌊ns⌋)−
s

r
φ(F̂1,⌊nr⌋))(φ(F̂1,⌊ns⌋)−

s

r
φ(F̂1,⌊nr⌋))

T ds

+

∫ 1

r

(φ(F̂⌊ns⌋,n)−
1− s

1− r
φ(F̂⌊nr⌋,n))(φ(F̂⌊ns⌋,n)−

1− s

1− r
φ(F̂⌊nr⌋,n))

T ds.

Applying Theorem 2.5 in combination with the continuous mapping theorem
yields weak convergence of Gn to

sup
r∈[0,1]

(W(·; 0, r)− rW(·; 0, 1))TW−1
r (W(·; 0, r) − rW(·; 0, 1))

where

Wr :=

∫ r

0

(

W(·; 0, s)− s

r
W(·; 0, r)

)(

W(·; 0, s)− s

r
W(·; 0, r)

)T

ds

+

∫ 1

r

(

W(·; s, 1)− 1− s

1− r
W(·; r, 1)

)(

W(·; s, 1)− 1− s

1− r
W(·; r, 1)

)T

ds.
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