
Electronic Journal of Statistics

Vol. 8 (2014) 328–354
ISSN: 1935-7524
DOI: 10.1214/14-EJS883

Estimation and variable selection

with exponential weights

Ery Arias-Castro

Department of Mathematics

University of California, San Diego

9500 Gilman Drive

La Jolla, California 92093-0112

USA

e-mail: eariasca@ucsd.edu

and

Karim Lounici∗

School of Mathematics

Georgia Institute of Technology

Atlanta, Georgia 30332-0160

USA

e-mail: klounici@math.gatech.edu

Abstract: In the context of a linear model with a sparse coefficient vector,
exponential weights methods have been shown to be achieve oracle inequal-
ities for denoising/prediction. We show that such methods also succeed at
variable selection and estimation under the near minimum condition on
the design matrix, instead of much stronger assumptions required by other
methods such as the Lasso or the Dantzig Selector. The same analysis yields
consistency results for Bayesian methods and BIC-type variable selection
under similar conditions.

MSC 2010 subject classifications: Primary 62J99.
Keywords and phrases: Estimation, variable selection, model selection,
sparse linear model, exponential weights, Gibbs sampler, identifiability con-
dition.

Received October 2013.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

2.1 Exponential weights . . . . . . . . . . . . . . . . . . . . . . . . . 332
2.2 A concentration result for the posterior . . . . . . . . . . . . . . 333
2.3 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
2.4 Support recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
2.5 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
2.6 Example: Gaussian design . . . . . . . . . . . . . . . . . . . . . . 337

∗Supported in part by NSF Grant DMS-11-06644 and Simons Foundation Grant 209842.

328

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/14-EJS883
mailto:eariasca@ucsd.edu
mailto:klounici@math.gatech.edu


Estimation and variable selection with EW 329

3 A comparison with the literature . . . . . . . . . . . . . . . . . . . . . 338
3.1 Denoising and prediction for exponential weights . . . . . . . . . 338
3.2 Bayesian model selection and BIC estimator . . . . . . . . . . . . 338
3.3 The Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
3.4 The mcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

5.1 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 342
5.2 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . 344
5.3 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 346
5.4 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 348
5.5 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 348
5.6 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 348
5.7 Proofs of auxiliary results . . . . . . . . . . . . . . . . . . . . . . 350

5.7.1 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . 350
5.7.2 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . 351

5.8 An irrepresentability result . . . . . . . . . . . . . . . . . . . . . 351
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

1. Introduction

Consider the standard linear regression model:

y = Xβ⋆ + z, (1)

where y ∈ R
n is the response vector; X ∈ R

n×p is the regression (or design)
matrix, assumed to have normalized columns; β⋆ ∈ R

p is the coefficient vector;
and z ∈ R

n is white Gaussian noise, i.e., z ∼ N (0, σ2In). As in general the
model (1) is not identifiable, we let β⋆ denote one of the coefficient vectors of
minimal support size such that Xβ = E(y). Then J⋆ and s⋆ denote the support
and support size of β⋆. We are most interested in the case where the coefficient
vector is sparse, meaning s⋆ is much smaller than p. As usual, we want to
perform inference based on the design matrix X and the response vector y. The
four main inference problems are:

• Denoising: estimate the mean response vector Xβ⋆;
• Prediction: estimate Uβ⋆ for a new observation U ∈ R

p;
• Estimation: estimate the coefficient vector β⋆;
• Support recovery: estimate the support J⋆.

These problems are not always differentiated and often referred to jointly as
variable/model selection in the statistics literature, and feature selection in the
machine learning literature. Being central to statistics, a large number of papers
address these problems. We review the literature with particular emphasis on
papers that advanced the theory of model selection. We find [38], who provides
necessary conditions and sufficient conditions under which the AIC/Mallows’
Cp criteria and the BIC criteria are consistent. For example, AIC/Mallows’
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Cp are consistent when there is a unique β such that E(y) = Xβ, and this
β has a support of fixed size as n, p → ∞. Also, BIC is consistent when the
dimension p is fixed and the model is identifiable — a condition that appears
to be missing in that paper. BIC was recently shown in [14] to be consistent
when the model is identifiable, p = O(na) with a < 1/2 and the true coefficient
vector has a support of fixed size as n, p → ∞. They also propose an extended
BIC for when a is larger. Closely related is the work of [1], who consider the
maximum a posteriori (MAP) estimator for essentially the same sparsity prior.
They derive the denoising performance of this estimator, together with sharp
minimax prediction oracle inequalities for the sparse regression model (1).

Assuming the size of the support of β⋆ is known, [34] establish denoising and
estimation performance bounds for best subset selection, and obtain information
bounds for these problems. Relaxing to the ℓ1-norm penalty, the Lasso and the
closely related Dantzig Selector were shown to be consistent when the design
matrix satisfies a restricted isometric property (RIP) or has column vectors with
low coherence; see [4, 33, 6, 29, 8, 49, 12, 10] among others. [45] used a different
set of conditions called cone invertibility factors or also sensitivity conditions
and established oracle inequalities for the estimation problem with the Lasso
and Dantzig Selector. [22] also exploited this approach to build computation-
ally tractable confidence bands for the Dantzig Selector. With a carefully cho-
sen nonconcave penalty, [21] shows that consistent variable selection is possible
when p = O(n1/3). This condition on p was weaken in the follow-up paper [20],
though with an additional restriction on the coherence (Condition (16) there).
The strongest results in that line of work seem to appear in [47, 48], which sug-
gests a minimax concave penalty that leads to consistent variable selection under
much weaker assumptions. The classical forward stepwise selection, also known
as orthogonal matching pursuit, which is shown in [9] to enable variable selec-
tion under an assumption of low coherence on the design matrix. Screening was
studied in [19] in the ultra high-dimensional setting, assuming the design is ran-
dom. A combination of screening and penalized regression is explored in [24, 25],
with asymptotic optimality when the Gram matrix X⊤X/n is (mildly) sparse.

A distinct line of research considered the use of exponential weighting in high-
dimensional denoising/prediction problems [7, 13, 43, 18, 23, 26, 28, 16, 17]. This
methodology has the potential of striking a good compromise between statis-
tical accuracy and computational complexity. While computational tractability
has only been demonstrated in simulations, a number of sharp statistical re-
sults exist for the denoising/prediction problems. In particular, [2, 35] propose
exponential weights procedures that achieve sharp sparsity oracle inequalities
with no assumptions of the design matrix X. For a recent survey of the expo-
nential weights literature, see [36]. We emphasize that there exists no result in
the literature concerning the estimation and support recovery problems with an
exponential weights approach and that our results are the first of this nature.

Our contribution is the following. We establish performance bounds for the
version of exponential weights studied in [2] for the three inference problems
of denoising, estimation and support recovery. The methodology developed in
the present paper is new and brings novel and interesting results to the sparse
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regression literature. The main feature of this methodology is that it only re-
quires comparatively almost minimum assumptions on the design matrix X and
the target β⋆. In particular, for estimation and support recovery, the conditions
are slightly stronger than identifiability. Moreover, when the size of support is
known, the exponential weights method is consistent under the minimum iden-
tifiability condition as long as the nonzero coefficients are large enough, close
in magnitude to what is required by any method, in particular matching the
performance of best subset selection [34]. See also [41, 11, 46].

The rest of the paper is organized as follows. In Section 2, we describe in
detail the methodology and state the main results concerning estimation and
support recovery with our exponential weights procedure. We also apply our
methodology to establish novel results in estimation and support recovery for the
Bayesian map estimator studied in [1], thus completing the theoretical study of
the map. In Section 3, we present further results and establish some connections
with the Bayesian theory and the BIC estimator. We also compare the results
we obtained for exponential weights with those established for other methods,
in particular the Lasso and mcp. In Section 4, we discuss our results in the light
of recent information bounds for model selection. The proofs of our main results
are in Section 5.

2. Main results

We consider the version of exponential weights studied in [2], shown there to en-
joy optimal oracle performance for the denoising problem. The procedure puts a
sparsity prior on the coefficient vector and selects the estimates using the poste-
rior distribution. We obtain a new denoising performance bound which is based
on balancing the sparsity level and the size of the least squares residuals. The
result does not assume any conditions on the design matrix. The task of support
recovery, to be amenable, necessitates additional assumptions. We show that
under near-identifiablity conditions on the design matrix, the posterior concen-
trates on the correct subset of nonzero components with overwhelming proba-
bility, provided that these coefficients are sufficiently large — somewhat larger
than the noise level. This immediately implies that the maximum a posteriori
(map) and the randomized exponential weights estimator (rew) are consistent.
We then derive estimation performance guarantees in Euclidean norm and l∞-
norm for the map, rew and the averaged exponential weights estimator (aew)
that can also be interpreted as the posterior mean by analogy with the bayesian
theory.

Throughout, we assume the noise variance σ2 is known. We also assume that
p ≥ n and remark that similar results hold when n ≥ p, with p replaced by n in
the bounds.

We use some standard notation. For any u = (u1, · · · ,ud)
⊤ ∈ R

d with d ≥ 1
and q ≥ 1, we define

‖u‖q =
( d∑

j=1

uj

)1/q

, ‖u‖∞ = max
1≤j≤d

|uj |.
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Without loss of generality, we assume from now on that the predictors are
normalized in the sense that

1√
n
‖Xj‖2 = 1, for all 1 ≤ j ≤ p. (2)

For a subset J ⊂ [p] := {1, . . . , p}, let XJ = [Xj , j ∈ J ] ∈ R
n×|J|, where Xj

denotes the jth column vector of X. For a subset J ⊂ [p], let MJ be the linear
span of {Xj , j ∈ J} and let P J be the orthogonal projection onto MJ . Then,

P⊥
J := In − P J is the orthogonal projection onto M⊥

J . We say that a vector is
s-sparse if its support is of size s.

2.1. Exponential weights

We start with the definition of a sparsity prior on the subsets of [p], which favors
subsets with small support. This leads to a pseudo-posterior, which is used in
turn to define various exponential weights estimators.

• The prior π. Fix an upper bound s ≥ 1 on the support size, and a sparsity
parameter λ > 0. The prior chooses the subset J ⊂ [p] with probability

π(J) ∝
(

p

|J |

)−1

e−λ|J|
1{|J|≤s}. (3)

• The posterior Π. Given that the noise is assumed i.i.d. Gaussian with
variance σ2, given a subset of variables J ⊂ [p], the coefficient vector that

maximizes the likelihood is the least squares estimate β̂J with a maximum
proportional to exp(−‖P⊥

J (y)‖22/(2σ2)). In light of this, we define the
following pseudo-posterior, which chooses J ⊂ [p] with probability

Π(J) ∝ π(J) exp

(
−‖P⊥

J (y)‖22
2σ2

)
. (4)

The prior π enforces sparsity and focuses on subsets of size not exceeding s.
Without additional knowledge, we shall take s = p. The exponential factor in
‖P⊥

J (y)‖22 in the posterior enforces fidelity to the observations. Note that Π is
not a true posterior because no prior is assumed for β⋆; we elaborate on this
point in Section 3.2. The variance term 2σ2 corresponds to the temperature T in
a standard Gibbs distribution. We will calibrate the procedure via the sparsity
exponent λ in (3), though we could have done so via the temperature as well.
Remember that we assume that σ2 is known. When the variance is unknown,
we can replace it with a consistent estimator σ̂2.

Based on the pseudo-prior Π, it is natural to consider the maximum a pos-
teriori (map) support estimate, defined as

Ĵmap = argmax
J

Π(J). (5)
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This leads to considering the map coefficient estimate. For any J ⊂ [p], let β̂J

denote the the least squares coefficient vector for the sub-model (XJ ,y) with

minimum Euclidean norm — so that β̂J is unique even when the columns of
XJ are linearly dependent. When the columns of XJ are linearly independent,
the standard formula applies

β̂J = (X⊤
J XJ )

−1X⊤
J y. (6)

The map coefficient estimate is then defined as β̂map = β̂Ĵmap
.

We can also consider a randomized version of the exponential weights (rew)
defined as follows

β̂rew = β̂Ĵrew
, Ĵrew ∼ Π. (7)

In words, we first draw a subset of variables Ĵ according to the posterior Π and
we compute the standard least squares estimator in the corresponding submodel
(X Ĵ ,y).

We also want to study the averaged exponential weights estimator (aew)

β̂aew =
∑

J

Π(J)β̂J . (8)

In the rest of this section, we establish denoising, support recovery and esti-
mation oracle inequalities for the map, rew and aew estimators.

2.2. A concentration result for the posterior

Our performance bounds for support recovery rely, as they should, on concen-
tration properties of the posterior Π. We first prove that, without any condition
on the design matrix X, the posterior Π concentrates on subsets of small size.

Proposition 1. Consider a design matrix X with p ≥ n and normalized column
vectors (2). For some ε > 0 and c ≥ 1, take

λ =
1 + ε

ε
(23 + 5c) log p. (9)

Then, with probability at least 1− 2p−c, Π(J) < Π(J⋆) for all J ⊂ [p] such that
|J | > (1 + ε)s⋆, and in fact

Π(J : |J | > (1 + ε)s⋆) ≤ 4p−cΠ(J⋆). (10)

2.3. Identifiability

Actual support recovery requires some additional conditions, the bare minimum
being that the model is identifiable.



334 E. Arias-Castro and K. Lounici

Condition I(s): For any subset J ⊂ {1, . . . , p} of size |J | ≤ s, the submatrix
XJ is full-rank.

This condition characterizes the identifiability of the model as stated in the
following simple result.

Lemma 1. Assuming β⋆ ∈ R
p is s⋆-sparse, it is identifiable if, and only if,

I(2s⋆) is satisfied.

In this paper, we establish that exponential weights, and also ℓ0-penalized
variable selection, allow for support recovery and estimation under the condition
I((2+ ε)s⋆) for any ε > 0 fixed, as long as the non-zero entries of the coefficient
vector are sufficiently large. In fact, I(2s⋆) suffices when s⋆ is known.

While I(s) is qualitative, results on estimation and support recovery necessar-
ily require a quantitative measure of correlation in the covariates. The following
quantity appears in the performance bounds we derive for exponential weights
and related methods: for any integer s ≥ 1, define

νs = min
J⊂[p] : |J|≤s

min
u∈R|J| : ‖u‖2=1

1√
n
‖XJ u‖2. (11)

The quantity νs is the smallest sparse singular value of among sub-matrices of
1√
n
X made of at most s columns. Note that, indeed, I(s) is equivalent to νs > 0.

2.4. Support recovery

We now state the main result concerning the support recovery problem. It states
that, under I((2 + ε)s⋆), the posterior distribution Π concentrates sharply on
the support of β⋆ — which we assumed to be s⋆-sparse — as long as λ and the
nonzero coefficients are sufficiently large.

Theorem 1. Consider a design matrix X, with p ≥ n and normalized column
vectors (2), that satisfies Condition I((2 + ε)s⋆) for some fixed ε > 0. Assume
that (9) holds and

min
j∈J⋆

|β⋆,j | ≥ ρ :=
3σ
√
λ/n

ν(2+ε)s⋆

. (12)

Then, with probability at least 1− 2p−c, Π(J⋆) > Π(J) for all J , and in fact

Π(J⋆) ≥ 1− 4p−c.

Under the conditions of Theorem 1, some straightforward calculations imply
that Ĵrew = J⋆ with probability at least 1 − 6p−c. In particular, as p → ∞, the
REW consistently recovers the support of the coefficient vector. Note that the
same is immediately true for Ĵmap with probability at least 1− 2p−c. Thus, we
have the following corollary.

Corollary 1. Let the conditions of Theorem 1 be satisfied. Let Ĵ denote either
Ĵmap or Ĵrew. Then we have with probability at least 1− 6p−c that Ĵ = J⋆
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The result applies in the high-dimensional setting p > n, as long as the
conditions are met. Note that some classes of matrices like random Gaussian,
Rademacher or Fourier matrices are known to satisfy our conditions with prob-
ability close to 1. See for instance [37] for a review of existing results. Charac-
terizing all design matrices X that satisfy I((2 + ε)s⋆) in the high-dimensional
setting is an interesting open question beyond the scope of this paper.

We mention that, if s⋆ is known and we restrict the prior over subsets J
of size exactly s⋆, then the same conclusions are valid with ε = 0 and ν(2+ε)s⋆

replaced by ν2s⋆ in (12), yielding consistent support recovery under the minimum
identifiability condition I(2s⋆). In Section 3, we show that the Lasso estimator
requires much more restrictive conditions on the design matrix and β⋆ to ensure
it selects the correct variables with high probability.

Finally, we note that the concentration is even stronger. Under the same
conditions, if

λ =
(1 + ε)(23 + 5c) +m

ε
log p,

for some fixed constant m ≥ 1, then

∑

J⊂[p] : J 6=J⋆

|J |mΠ(J) ≤ 4p−cΠ(J⋆). (13)

We will use this refinement in the proof of Theorem 4.

2.5. Estimation

Armed with results for the support recovery, we establish corresponding bounds
for the estimation problem. Our first result is a simple consequence of Theorem 5
and Proposition 1.

Theorem 2. Consider a design matrix X with p ≥ n and normalized column
vectors (2). Let β̂ denote either β̂map or β̂rew. Assume λ satisfies (9) with
ε ≤ 1/2. Then with probability at least 1− 3p−c, we have

‖β̂ − β⋆‖2 ≤ σ

√
8s⋆λ

nν2(2+ε)s⋆

.

We continue with bounds on the estimation error, this time in terms of the
l∞-norm. Based on Theorem 1 (and its proof), we deduce the following.

Theorem 3. Let the conditions of Theorem 1 be satisfied. Let β̂ denote either
β̂map or β̂rew. Then, with probability at least 1− 7p−c, we have

‖β̂ − β⋆‖∞ ≤ σ

√
2(c+ 1) log p

nν2s⋆
. (14)
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We emphasize that this estimator requires only the near minimum condition
I((2 + ε)s⋆) and that the nonzero components of β⋆ are somewhat larger than
the noise level in (12) to achieve the optimal (up to logs) dependence on n, p of
the l∞-norm estimation bound. We will develop this point further in Section 3
below where we compare our procedure to the Lasso and mcp estimators.

We now study the performances of the aew β̂aew and that of the following
variant

β̃aew =
∑

J⊂[p] : νJ>0

Π(J)β̂J , νJ := min
u∈R|J| : ‖u‖2=1

1√
n
‖XJu‖2. (15)

Define the quantity νmin = minJ⊂[p] : νJ>0{νJ}, and note that νmin > 0.

Theorem 4. Let the conditions of Theorem 1 be satisfied and let c ≥ 1.

1. Take λ = (1+ε)(23+5c)+1
ε log p. Then, with probability at least 1− 4p−c,

‖β̃aew − β⋆‖∞ ≤ σ

√
2(c+ 1) log p

nν2s⋆

+
3

νmin pc

[
σ

√
(20 + 4c)

log p

n
+

‖Xβ⋆‖2√
n

+ νmin‖β⋆‖∞
]
.

2. If in addition I(s) is satisfied,

‖β̂aew − β⋆‖∞ ≤ σ

√
2(c+ 1) log p

nν2s⋆

+
3

νs pc

[
σ

√
(20 + 4c)

log p

n
+

‖Xβ⋆‖2√
n

+ νs‖β⋆‖∞
]
.

3. If in addition I(s⋆ + s) is satisfied and λ ≥ (62 + 4c) log p,

‖β̂aew − β⋆‖∞ ≤ σ

√
2(c+ 1) log p

nν2s⋆
+

2
√
10σ√

nνs⋆+s

[
2
√
s⋆

pc
+

1

ps⋆

]
. (16)

We note that β̂aew requires at least I(s). (Recall that we assume s is known
such that s⋆ ≤ s.) In practice, when the sparsity is unknown, we make a conser-
vative choice s ≫ 2s⋆ so that I(s) is substantially more restrictive that I(2s⋆).
Typically, we assume that s⋆ = O( n

log p ) and we take s of this order of magni-
tude. We will see below in Section 2.6 that for Gaussian design, the condition
I(s⋆ + s) is satified with probability close to 1. On the other hand, the esti-

mation result for β̃ holds true under the near minimum condition I((2 + ε)s⋆).
For both estimators, their estimation bounds depend on the quantities νmin, νs,
‖Xβ⋆‖2 and ‖β⋆‖∞ which can potentially yield a sub-optimal rate of estima-
tion. Note however the presence of the factor p−c in the bound. In particular, if
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the nonzero components of β⋆ are sufficiently large, then the quantities νmin, νs,
‖Xβ⋆‖2 and ‖β⋆‖∞ may be completely cancelled for a sufficiently large c > 0.
If I(s⋆ + s) is satisfied, then we can derive a bound that no longer depends on
‖Xβ⋆‖2 and ‖β⋆‖∞. We will also see below that this bound yields the optimal

rate of l∞-norm estimation (up to logs) for the estimator β̂aew when the design
matrix is Gaussian. Optimality considerations are further discussed in Section 4
based on recent information bounds obtained elsewhere.

2.6. Example: Gaussian design

The quintessential example is that of a random Gaussian design, where the row
vectors of X, denoted x1, . . . ,xn, are independent Gaussian vectors in R

p with
zero mean and p × p covariance matrix Σ. If we assume that Σ has 1’s on the
diagonal, the resulting (random) design is just slightly outside our setting, since
the columns vectors are not strictly normalized. Our results apply nevertheless.
Therefore, it is of interest to lower-bound νs for such a design.

We start by relating X and Σ. Consider J ⊂ [p], and let ΣJ denote the
principal submatrix of Σ indexed by J . By [40, Cor. 1.50 and Rem. 1.51], there
is a numeric constant C > 0 such that, when n ≥ C|J |/η2, with probability at
least 1− 2 exp(−η2n/C), we have

∥∥∥∥
1

n
X⊤

J XJ −ΣJ

∥∥∥∥ ≤ η‖ΣJ‖,

where ‖ · ‖ denotes the matrix spectral norm. When this is the case, by Weyl’s
theorem [39, Cor. IV.4.9],

λmin

(
1

n
X⊤

J XJ

)
≥ λmin(ΣJ )− ηλmax(ΣJ),

where λmin(A) and λmax(A) denote the smallest and largest eigenvalues of a
symmetric matrix A. Define

ηΣ(s) = max
J:|J|≤s

λmax(ΣJ)

λmin(ΣJ )
, λΣ(s) = min

J:|J|≤s
λmin(ΣJ).

Assume that

n ≥ aCs log p

ηΣ(s)2
,

for some a ≥ 2. Then, with probability at least 1− 2p−a/2,

νs ≥
λΣ(s)

1/2

2
.

For example, in standard compressive sensing whereΣ is the identity matrix, we
have ηΣ(s) = λΣ(s) = 1 for all s, in which case with high probability νs ≥ 1/2
when n ≥ 2Cs log p. Consequently, the l∞-norm estimation bounds in (14) and
(16) are of the order bσ

√
log(p)/n for some numerical constant b > 0. Again,

the constants are loose in this discussion.
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3. A comparison with the literature

3.1. Denoising and prediction for exponential weights

The existing literature on exponential weights focuses entirely on the denois-
ing/prediction problem. In particular, sharp oracle inequalities are available.
See the recent survey [36]. Our general approach, and what we established in
the previous section, allows us to also quantify the performance of exponential
weights at denoising. Indeed, as a direct consequence of Proposition 1, we estab-
lish new sparsity oracle inequalities in probability for the denoising problem. In
particular, we show without any assumption on X and β⋆ that the map, rew

and aew come within a log factor of that of the oracle estimator β̂J⋆
in terms

of denoising performance:

‖Xβ̂J⋆
−Xβ⋆‖2 = ‖P J⋆

z‖2 = OP (σ
√
s⋆).

Theorem 5. Consider a design matrix X with p ≥ n and normalized column
vectors (2). Assume λ = (62 + 12c) log p for some c > 0. Then with probability
at least 1− p−c,

‖Xβ̂map −Xβ⋆‖2 ≤ σ
√

8s⋆λ, (17)

and
‖Xβ̂aew −Xβ⋆‖2 ≤ σ

√
12s⋆λ. (18)

Note that here, and anywhere else in the paper, what is true of β̂map is true

of β̂J for any J such that Π(J) ≥ Π(J⋆).
In [2, 35], a sharp sparsity oracle inequality for the prediction problem is

established in expectation for the aew using the approach by Stein’s Lemma
from [27]. Note that [2] also established an oracle inequality in probability for
a different version of the rew that requires the knowledge of ‖β⋆‖1. Here, we
use instead the concentration property of the posterior Π and derive a sparsity
oracle inequality for denoising in probability that is minimax optimal up to a
logarithmic factor without knowing ‖β⋆‖1. An open question is to determine
whether our approach can be used to establish a similar result for the prediction
problem without the knowledge of ‖β⋆‖1.

Finally, note that there is no contradiction between Theorems 1 and 5 es-
tablished in the high-dimensional setting p ≥ n and Theorem 1 in [44] which
states the impossibility to achieve simultaneously consistent variable selection
and denoising. More precisely, [44] proved that for any procedure β̂ such that

P(J(β̂) = J⋆) → 1 as n → ∞, then we also have limn→∞ E[‖Xβ̂−Xβ⋆‖2] = ∞.
Indeed, the bound in (17)–(18) satisfies σ

√
8s⋆λ → ∞ as n → ∞ in the high-

dimensional setting p ≥ n.

3.2. Bayesian model selection and BIC estimator

Many Bayesian techniques for model selection have proposed in the literature;
see [15] for a comprehensive review. That same paper suggests a procedure
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similar to ours, except that it is a bonafide Bayesian model and they use the
following independence sparsity prior

π̃(J) = ω|J|(1− ω)p−|J|,

where ω ∈ (0, 1) controls the sparsity level. Roughly, λ for our prior corresponds
to log(1 − 1/ω) for this prior. Our main results remain valid under this prior.

[14] studied the performance of BIC in high-dimensional settings. Not only
showed that BIC was consistent when p <

√
n (under some mild conditions

on the design matrix), they also suggested a modification of the penalty term
to yield a method that is consistent for larger values of p when the number of
variables in the true (i.e., sparsest) model s⋆ is bounded independently of n or p.
[48] also proposed a variable selection result for the BIC estimator essentially
under the condition I((2+ ǫ)s⋆). By a simple modification of our arguments, we
can also recover these results under the same condition I((2+ ǫ)s⋆). Indeed, the

results we established for Ĵmap— in particular, Corollary 1 — apply to

Ĵbic = argmin
J:|J|≤s

1

σ2
y⊤(I − P J)y + λ|J |.

[1] considered a prior very similar to (3) and studied the map in the context
of the denoising problem. They established an oracle inequality as well as a
performance bound similar to Theorem 5, as well as minimax lower bounds for
the denoising problem for model (1).

3.3. The Lasso

The Lasso estimator is the solution of the convex minimization problem

β̂lasso = argmin
β∈Rp

{
1

n
‖y −Xβ‖22 + 2λ‖β‖1

}
,

where λ = Aσ
√
log(p)/n, A > 0 and ‖·‖1 is the l1-norm. The Lasso has received

considerable attention in the literature over the last few years [3, 6, 8, 32, 33, 49].
It is not our goal to make here an exhaustive presentation of all existing results.
We refer to Chapter 4 in [30] and the references cited therein for a comprehensive
overview of the literature.

Concerning the l∞-norm estimation and support recovery problems, the most
popular assumption is the Irrepresentable Condition [3, 30, 33, 42, 49] denoted
from now on by IC(s⋆). See for instance Assumption 4.2 in [30]. The condition
IC(s⋆) is strictly more restrictive than the identifiability I(2s⋆) and does not
hold true in general when the columns of the design matrix X are not weakly
correlated.

We say that a l∞-norm estimation rate is optimal if it is of the form
ασ
√
log(p)/n where α > 0 is an absolute constant as in the case of a Gaus-

sian sequence model where n = p, X = In is the n × n identity matrix and
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z ∼ N (0, σ2In). On the one hand, the best available estimation bound for
the LASSO with Gaussian design matrices and l∞-norm error is of the or-
der σ

√
s⋆(log p)/n and it is not clear whether this bound can be improved.

Based on this best available l∞-norm estimation bound, we can only guaran-
tee that the LASSO will be consistent for the support recovery problem when
ρ & σ

√
s⋆(log p)/n. See Section 4.3 in [30] for more details. On the other

hand, we established that our exponential weights procedure attains the op-
timal l∞-norm estimation rate and achieves support recovery provided that
ρ & σ

√
(log p)/n and Condition I((2 + ε)s⋆) holds true, a condition that allows

for non-negligible correlations between the columns of X.

3.4. The mcp

The mcp estimator initially proposed by [47] is the solution of the following
nonconvex minimization problem:

β̂mcp = argminβ∈Rp





1

n
‖y −Xβ‖22 +

p∑

j=1

Υ(|βj |, λ, γ)



 , (19)

where λ, γ > 0 and the mcp penalty function Υ is nonconvex, equal to 0 outside
a compact neighborhood of 0 and admits a nonzero right derivative at 0. See
equations (2.1)-(2.3) in [47] for more details. The performance of this estimator
is established in Theorem 1 and Corollary 1 of [47] for the following choice of
parameters:

d∗ = argmax{d ≥ 1 : νd > 0}, λ = σ

√
2 log p

n
, γ ≍ 1

νd∗

.

Define

κs := max
J⊂[p] : |J|≤s

min
‖u‖=1

1√
n
‖XJ u‖2. (20)

If

d∗/(κd∗/νd∗ + 1/2) ≥ s⋆ → ∞, and ρ & σ

√
log p

ν2d∗n
,

then P(J(β̂mcp) = J⋆) → 1. [48] consider a slightly different choice of the

parameters in Corollary 3 and the discussion below, γ > 1
ν(s⋆+m) where m is

potentially large number depending on the characteristics of the model and the
penalty function Υ (See equations (23) and (24) there).

We establish our support recovery result for the random exponential weights
estimator under the near minimum conditions ν(2+ǫ)s⋆ > 0 and

ρ & σ

√
log p

ν2(2+ǫ)s⋆
n
,

where ǫ > 0 is some small absolute constant. Our conditions are less restrictive
since for small s⋆ we will have (2 + ǫ)s⋆ ≤ d∗ and consequently ν(2+ǫ)s⋆ ≥ νd∗ .
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In the high-dimensional setting, we often have (2 + ǫ)s⋆ ≪ d∗ and very ill-
posed design matrices X whose νs decrease extremely fast as a function of s.
Consequently, we will have ν(2+ǫ)s⋆ ≫ νd∗ . In that situation, the randomized
exponential weights estimator will achieve support recovery under much weaker
conditions than those required in [47] to establish the support recovery consis-
tency of the mcp estimator.

We also note that Corollary 1 in [47] is obtained under the asymptotic setting
p ≫ n > s⋆ → ∞ while our results hold for any settings of p, n, s⋆ as long as
ν(2+ǫ)s⋆ > 0 and the above condition on ρ is met. This includes in particular
the setting of [47].

Finally, we remark that the optimal theoretical choice of γ for the mcp es-
timator in Corollary 1 in [47] depends on d∗ through νd∗ . For arbitrary design
matrices X where no theoretical bound on d∗ and νd∗ are available, we may
need to compute these quantities. This is a delicate combinatorial problem to
solve in high-dimension since it requires considering a very large number of sub-
matrices of X. The same parameter γ in Corollary 3 and the discussion below
in [48] depends on s⋆ which is typically unknown. Note that our exponential
weights estimators do not present the same limitation. Indeed, the tuning of λ
in (3) does not require computing any restricted eigenvalues and the parameter
s̄ can be chosen conservatively (for example, s̄ = [n/2] if no other informa-
tion is available). The randomized exponential weights and map estimators will
achieve support recovery under the near minimum condition I((2 + ε)s⋆) even
if s̄ is chosen conservatively (say s̄ = n

2 ).

4. Discussion

We established some performance bounds for exponential weights when ap-
plied to solving the problems of denoising, estimation and support recovery, and
deduced similar results for a slightly different Bayesian model selection proce-
dure [15] and ℓ0-penalized (BIC-type) variable selection. How sharp are these
bounds? We did not optimize the numerical constants appearing in our results,
simply because we believe our bounds are loose and also because there are no
known sharp information bounds for theses problems, except in specific cases
[25]. That said, there are some results available in the literature [41, 34, 31, 1]
and our bounds come close to these. For example, from [34] we learn that, when

I(2s⋆) holds, there is a universal constant C > 0 such that, for any estimator β̂
that knows s⋆,

‖β̂ − β⋆‖2 ≥ Cσ

√
s⋆ log(p/s⋆)

nκ2
2s⋆

with probability at least 1/2, where we recall that κs is defined in (20) and from
[41], we learn that, for another universal constant C′ > 0,

E ‖β̂ − β⋆‖22 ≥ C′σ2

(
s⋆ log(ep/s⋆)

κ2
2s⋆

∨ 1

ν22s⋆

)
.
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Thus we see that our estimation bounds (14) and (16) come quite close to these
information bounds. See also the detailed discussion in [1].

Of course, there is a trade-off with computational tractability, as computing
the exponential weights estimates (of even approximating them) in polynomial
time remains an open problem. That said, numerical experiments in [35] show
that these methods are promising.

5. Proofs

For the sake of brevity, we let ‖ · ‖ = ‖ · ‖2 throughout this section. The proofs
are rather lengthy but the driving idea is to show that

∑
J∈J : J 6=J⋆

Π(J) is
negligible in front of Π(J⋆) under suitable conditions. To this end, we study

the quantities Π(J)
Π(J⋆)

for all J 6= J⋆. An important part of the proofs consists

in deriving a sharp control on the magnitude of the noisy perturbations. For
the sake of clarity, this part is done separately in Lemmas 2–4 whose proofs are
given in the appendix. Armed with these intermediate results, we can tune the
parameter λ accurately in order to obtain the desired properties for the various
exponential weights estimators considered in this paper.

5.1. Proof of Theorem 5

Define ξJ = P J(y)−Xβ⋆. For J ⊂ [p] with |J | = s, we have

Π(J)

Π(J⋆)
=

(
p
s⋆

)
(
p
s

) exp

(
λ(s⋆ − s) +

1

2σ2
(‖P⊥

J⋆
(z)‖2 − ‖P⊥

J (y)‖2)
)

(21)

with
‖P⊥

J⋆
(z)‖2 − ‖P⊥

J (y)‖2 = 2zT (ξJ − ξJ⋆
) + ‖ξJ⋆

‖2 − ‖ξJ‖2. (22)

For the inner product on the RHS, note that ξJ ∈ span(XJ∪J⋆
) and ξJ⋆

∈
span(XJ⋆

), so that
∣∣2zT (ξJ − ξJ⋆

)
∣∣ =

∣∣2(P J∪J⋆
z)T (ξJ − ξJ⋆

)
∣∣ ≤ 2‖P J∪J⋆

z‖ ‖ξJ − ξJ⋆
‖, (23)

by Cauchy-Schwarz’s inequality.

Lemma 2. For any c > 0, with probability at least 1− p−c,

‖P J z‖2 ≤ (20 + 4c)σ2|J | log p, ∀J ⊂ [p]. (24)

Set ζJ =
√
(20 + 4c)(|J |+ s⋆) log p. Using Lemma 2 in (23), from (22) we

have

‖P⊥
J⋆
(z)‖2 − ‖P⊥

J (y)‖2 ≤ σζJ ‖ξJ − ξJ⋆
‖+ ‖ξJ⋆

‖2 − ‖ξJ‖2

≤ σζJ
(
‖ξJ‖+ ‖ξJ⋆

‖
)
+ ‖ξJ⋆

‖2 − ‖ξJ‖2

≤ 4σ2ζ2J +
3

2
‖ξJ⋆

‖2 − 1

2
‖ξJ‖2

≤ 6σ2ζ2J − 1

2
‖ξJ‖2, (25)
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where we used the identity ab ≤ 2a2+b2/2 in the third inequality, and Lemma 2
to bound ‖ξJ⋆

‖2 in the last inequality.

We tackle the bound in (17). By definition, Π(Ĵmap) ≥ Π(J⋆). Take any J
such that Π(J) ≥ Π(J⋆) and let s = |J |. Plugging in the bound (25) into (21),
and using some crude bounds, we have

1 ≤ Π(J)

Π(J⋆)
≤ exp

(
s⋆ log p+ λ(s⋆ − s) + 3(s+ s⋆)(20 + 4c) log p− 1

4σ2
‖ξJ‖2

)

≤ exp

(
s⋆
(
λ+ (61 + 12c) log p

)
− 1

4σ2
‖ξJ‖2

)
,

where we used the facts that
(
p
s⋆

)
≤ ps⋆ and λ ≥ (60 + 12c) log p. This in turn

implies
‖ξJ‖2 ≤ 4σ2 ·

(
λs⋆ + (61 + 12c) log p

)
≤ 8σ2λ,

and (17) follows from that.
For the bound in (18), define J = {J : ‖ξJ‖ > σ

√
10s⋆λ}. We have

‖Xβ̂aew −Xβ⋆‖ ≤
∑

J

‖ξJ‖Π(J)

≤ σ
√

10λs⋆
∑

J /∈J
Π(J) +

∑

J∈J
‖ξJ‖

Π(J)

Π(J⋆)
. (26)

By (21) and (25), we have

‖ξJ‖
Π(J)

Π(J⋆)
≤ ‖ξJ‖

(
p
s⋆

)
(
p
s

) exp

(
λ(s⋆ − s) + 3ζ2J − 1

4σ2
‖ξJ‖2

)

≤
√
10σ(
p
s

) exp

(
λ(s⋆ − s) + s⋆ log p+ 3ζ2J − 1

5σ2
‖ξJ‖2

)
,

where we used the fact that xe−x2 ≤ 1/
√
2 for all x, and

(
p
s⋆

)
≤ ps⋆ . Hence,

since λ ≥ (62 + 4c) log p, we have

∑

J∈J
‖ξJ‖

Π(J)

Π(J⋆)
≤

s∑

s=0

∑

J:|J|=s

√
10σ(
p
s

) exp
(
λ(s⋆ − s) + s⋆ log p+ 3ζ2J − 2λs⋆

)

≤
√
10σ

s∑

s=0

exp (−(s⋆ + s)(λ− (61 + 12c) log p))

=
√
10σ · 2 exp (−s⋆(λ− (61 + 12c) log p))

≤ 2
√
10σp−s⋆ . (27)

The result now follows from

σ
√

10λs⋆ + 2
√
10σp−s⋆ ≤

√
10σ(

√
λs⋆ + 1) ≤ σ

√
12λs⋆,

since p ≥ 2 and s⋆ ≥ 1, as well as λ ≥ 25.
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5.2. Proof of Proposition 1

Remember (21). We reformulate (22) in the following way

‖P⊥
J⋆
(z)‖2 − ‖P⊥

J (y)‖2

= y⊤(P J − P J⋆
)y

= −‖P⊥
J Xβ⋆‖2 − 2〈P⊥

J Xβ⋆, z〉+ z⊤(P J − P J⋆
)z. (28)

The natural idea is then to divide the possible subsets J into the following
classes Js,t = {J ⊂ [p] : |J | = s, |J ∩ J⋆| = t, J 6= J⋆} and study the behaviour
of the above difference on each of these classes (Note that a similar strategy was
carried out in [5] in a model selection framework to derive denoising/prediction
oracle inequalities for various models). We first bound the inner product in (28).

Lemma 3. For any c > 0, with probability at least 1− p−c,

〈P⊥
J Xβ⋆, z〉2

‖P⊥
J Xβ⋆‖2

≤ (10 + 2c)σ2(s ∨ s⋆ − t) log p, (29)

for all J ∈ Js,t with t ≤ s ∧ s⋆.

We now bound the quadratic term in (28).

Lemma 4. For any c > 0, with probability at least 1− p−c,

z⊤(P J − P J⋆
)z ≤ (20 + 4c)σ2(s ∨ s⋆ − t) log p, (30)

for all J ∈ Js,t with t ≤ s ∧ s⋆.

For a subset J ⊂ [p], set

γJ = ‖P⊥
J Xβ⋆‖. (31)

Assume that both (29) and (30) hold, which is true with probability at least
1− 2p−c. Then, we have that, for all J ∈ Js,t:

y⊤(P J − P J⋆
)y ≤ −γ2

J + 2γJσ
√
(10 + 2c)(s ∨ s⋆ − t) log p

+ (20 + 4c)σ2(s ∨ s⋆ − t) log p

≤ (40 + 8c)σ2(s ∨ s⋆ − t) log p− 1

2
γ2
J (32)

≤ (40 + 8c)σ2(s ∨ s⋆ − t) log p. (33)

The first inequality comes from (28), (29) and (30). The identity 2ab ≤ a2 + b2,
with a = γJ/

√
2 and b = σ

√
(20 + 4c)(s ∨ s⋆ − t) log p, justifies the second

inequality.
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Combining (21) and (33), we get

s∑

J : |J|>[(1+ε)s⋆]

Π(J)

Π(J⋆)

=

s∑

s=[(1+ε)s⋆]

s⋆∑

t=0

∑

J∈Js,t

(
p
s⋆

)
(
p
s

) exp

(
λ(s⋆ − s) +

1

2σ2
y⊤(P J − P J⋆

)y

)
(34)

≤
s∑

s=[(1+ε)s⋆]

s⋆∑

t=0

(
s⋆
t

)(
p−s⋆
s−t

)(
p
s⋆

)
(
p
s

) exp (λ(s⋆ − s) + (20 + 4c)(s− t) log p) ,

where we used the fact that |Js,t| =
(
s⋆
t

)(
p−s⋆
s−t

)
in the last inequality.

For the fraction of binomial coefficients, we have
(
s⋆
t

)(
p−s⋆
s−t

)(
p
s⋆

)
(
p
s

) =

(
s

t

)(
p− s

s⋆ − t

)
.

We then use the standard bound on the binomial coefficient

log

(
s

t

)
+ log

(
p− s

s⋆ − t

)
≤ (s− t) log

(
es/(s− t)

)

+ (s⋆ − t) log
(
e(p− s)/(s⋆ − t)

)

≤ 3(s ∨ s∗ − t) log p. (35)

Hence, we have so far that

s∑

J : |J|>[(1+ε)s⋆]

Π(J)

Π(J⋆)
≤

s∑

s=0

s⋆∑

t=0

exp (As,t) , (36)

where
As,t := ω(s− t) log p+ λ(s⋆ − s), ω := 23 + 4c.

Some simple algebra yields

s∑

s≥[(1+ε)s⋆]

s⋆∑

t=0

exp (As,t) ≤
∑

s≥(1+ε)s⋆

e−(λ−ω log p)(s−s⋆)
s⋆∑

t=0

e(s⋆−t)ω log p

≤ e−(λ−ω log p)εs⋆

1− e−λ+ω log p
· e

(s⋆+1)ω log p

eω log p − 1
(37)

≤ p−c

(1− p−ω)(1− p−c)
, (38)

where we used the fact that pω ≥ 2, because p ≥ 2, and also −(λ−ω log p)εs⋆+
s⋆ω log p ≤ −c log p, because of (9). This shows that

Π(J : |J | > [(1 + ε)s⋆]) ≤ p−c

(1− p−ω)(1− p−c)
Π(J⋆)

≤ p−c

(1− p−c)2
Π(J⋆),
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using the fact that ω ≥ c. From this, and the fact that p−c ≤ 1/2, we conclude
the proof.

5.3. Proof of Theorem 1

Let ν = ν(2+ε)s⋆ for short. The proof of this result is identical to that of Propo-
sition 1 up to (32). We now need a lower bound on γJ . For this, we use the
following irrepresentability result.

Lemma 5. Let X = [X1X2], with smallest singular value δ, and let P 2 denote
the orthogonal projection onto X2. Then for any β1,

‖(I − P 2)X1β1‖ ≥ δ‖β1‖.

Note that for any J ∈ Js,t with s− t ≤ (1 + ε)s⋆, the smallest singular value
of [XJ⋆

XJ\J⋆
] is bounded from below by

√
nν; by Lemma 5, this implies that

γJ = ‖(I − P J)(XJ⋆
β⋆)‖ = ‖(I − P J )(XJ⋆\Jβ

∗
J⋆\J)‖ ≥ √

nν‖β∗
J⋆\J‖.

Hence,

γJ ≥ ρν
√
n(s⋆ − t), ∀J ∈ Js,t, such that 0 ≤ t ≤ s⋆∧ s and s ≤ t+(1+ ε)s⋆,

(39)
where we recall that ρ is defined in (12).

In view of (32) and (39) we have, with probability at least 1 − 2p−c, for all
J ∈ Js,t

y⊤(P J − P J⋆
)y ≤ (40 + 8c)σ2(s ∨ s⋆ − t) log p− 1

2
γ2
J

≤ (40 + 8c)σ2(s ∨ s⋆ − t) log p

− 1

2
ρ2ν2n(s⋆ − t)1{s≤t+(1+ε)s⋆}. (40)

Next, we have

1

Π(J⋆)
=

∑

J : |J|>[(1+ε)s⋆]

Π(J)

Π(J⋆)
+

∑

J : |J|≤[(1+ε)s⋆]

Π(J)

Π(J⋆)
. (41)

The first sum in the right-hand side was already bounded in Proposition 1. We
concentrate on the second sum.

Combining (21) and (40), we get

∑

J : |J|≤[(1+ε)s⋆]

Π(J)

Π(J⋆)

=

[(1+ε)s⋆]∑

s=0

s∧s⋆∑

t=0

∑

J∈Js,t

(
p
s⋆

)
(
p
s

) exp

(
λ(s⋆−s)+

1

2σ2
y⊤(P J −P J⋆

)y

)
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≤
[(1+ε)s⋆]∑

s=0

s∧s⋆∑

t=0

(
s⋆
t

)(
p−s⋆
s−t

)(
p
s⋆

)
(
p
s

) exp
(
λ(s⋆−s)+(20+4c)(s ∨ s⋆− t) log p−ηs,t

)
,

≤
[(1+ε)s⋆]∑

s=0

s∧s⋆∑

t=0

(
s

t

)(
p−s

s⋆− t

)
exp

(
λ(s⋆−s)+(20+4c)(s ∨ s⋆− t) log p−ηs,t

)
,

where ηs,t :=
1

4σ2 ρ
2ν2n(s⋆ − t)1{s≤t+[(1+ε)s⋆]}.

Next, we use again (35) to get

∑

J : |J|≤[(1+ε)s⋆]

Π(J)

Π(J⋆)
≤

[(1+ε)s⋆]∑

s=0

s∧s⋆∑

t=0

exp (As,t) , (42)

where

As,t := ω(s ∨ s⋆ − t) log p+ λ(s⋆ − s)− ηs,t, ω := 23 + 4c.

Let α = ν2nρ2

4σ2 − ω log p, and note that α ≥ 2λ ≥ λ+ c log p by (9) and (12).
When s ≤ s⋆, we have As,t = −α(s− t)− (α− λ)(s⋆ − s), so that

s⋆∑

s=0

s∑

t=0

exp (As,t) ≤
s⋆∑

s=1

e−(s⋆−s)c log p
s∑

t=0

e−α(s−t)

≤ 1

(1− e−α)(1− p−c)
. (43)

When s⋆ < s ≤ (1 + ε)s⋆, we have As,t = −α(s⋆ − t)− (λ− ω log p)(s− s⋆),
with λ ≥ ω log p+ c log p, leading to

[(1+ε)s⋆]∑

s=s⋆+1

s⋆∑

t=0

exp (As,t) ≤
∞∑

s=s⋆+1

e−(s−s⋆)c log p
s⋆∑

t=0

e−α(s⋆−t)

≤ p−c

(1− e−α)(1− p−c)
. (44)

Combining (38) with (41)-(44), we conclude that

1

Π(J⋆)
≤ 1

(1− e−α)(1− p−c)
+

p−c

(1 − e−α)(1 − p−c)
+

p−c

(1− p−ω)(1 − p−c)

≤ 1 + 2p−c

(1− p−c)2
,

using the fact that α ≥ ω ≥ c. From this, we get

Π(J⋆) ≥ (1− p−c)2(1 − 2p−c) ≥ (1− 2p−c)2 ≥ 1− 4p−c.

This concludes the proof of Theorem 1. We note that the proof of (13) is virtually
identical.
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5.4. Proof of Theorem 2

When (9) is satisfied with ε ≤ 1/2, then λ satisfies both the conditions of
Proposition 1 and Theorem 5. Hence, with probability at least 1−2p−c−p−c =
1− 3p−c, we have both that |Ĵmap| ≤ (1 + ε)s⋆ and (17). Hence, the support of

β̂map − β⋆ is of size at most (1 + ε)s⋆ + s⋆ = (2 + ε)s⋆, and we have

‖β̂map − β⋆‖ ≤ 1

ν(2+ε)s⋆

‖X(β̂map − β⋆)‖,

with
‖X(β̂map − β⋆)‖ = ‖Xβ̂map −Xβ⋆‖ ≤ σ

√
8s⋆λ,

and the result follows.

5.5. Proof of Theorem 3

We prove the result for β̂map. The proof for β̂rew is the same up to some trivial
modifications. For r > 0, we have

P

(
‖β̂map − β⋆‖∞ > r

)
≤ P

(
‖β̂J⋆

− β⋆‖∞ > r, Ĵmap = J⋆

)

+ P

(
‖β̂map − β⋆‖∞ > r, Ĵmap 6= J⋆

)

≤ P

(
‖β̂J⋆

− β⋆‖∞ > r
)
+ P

(
Ĵmap 6= J⋆

)
.

By Theorem 1, Ĵmap = J⋆ with probability at least 1− 2p−c, so that the second
term on the RHS is bounded by 2p−c.

Next, we know that β̂J⋆
∼ N(β⋆, σ

2 1
nΨ

−1
⋆ ) with Ψ⋆ := 1

nX
⊤
J⋆
XJ⋆

, and in

particular, β̂J⋆,j − β⋆,j ∼ N (0, σ2τ2j /n), where τ2j is the jth diagonal entry of

Ψ−1
⋆ . This matrix being positive semi-definite, its diagonal terms are all bounded

from above by its largest eigenvalue, which is the inverse of the smallest eigen-
value of Ψ⋆, which in turn is larger than ν2s⋆ . Hence, Var(β̂J⋆,j) ≤ σ2/(nν2s⋆) for
all j ∈ J⋆, so that a standard tail bound on the normal distribution and the
union bound give

P

(
‖β̂J⋆

− β⋆‖∞ > r
)
≤ s⋆ exp

(
−nν2s⋆r

2

2σ2

)
. (45)

Taking r = σ
√
2(c+ 1) log(p)/(nν2s⋆) bounds this by p−c, and the desired result

follows.

5.6. Proof of Theorem 4

Again, we only prove the result for β̂map. The proof for β̂rew is also almost
identical up to some trivial modifications.
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We have

‖β̂map − β⋆‖∞ ≤
∑

J

‖β̂J − β⋆‖∞Π(J)

≤ ‖β̂J⋆
− β⋆‖∞Π(J⋆) +

∑

J 6=J⋆

‖β̂J − β⋆‖∞Π(J)

≤ ‖β̂J⋆
− β⋆‖∞ +

∑

J 6=J⋆

‖β̂J − β⋆‖∞Π(J). (46)

For any c > 0, we have with probability at least 1− p−c, for any J ⊂ [p] with
νJ > 0, that

‖β̂J‖∞ ≤
√
|J |‖β̂J‖

≤
√
|J |√
nνJ

‖Xβ̂J‖

≤
√
|J |√
nνJ

[
‖P J(z)‖ + ‖P⊥

J (Xβ⋆)‖
]

≤
√
|J |√
nνJ

[
σ
√

(20 + 4c)|J | log p+ ‖Xβ⋆‖
]
,

where we have used Cauchy-Schwarz’s inequality in the first line and (24) in the
last line.

We now assume that νs > 0, which implies that νJ > 0 for any J ⊂ [p] with
|J | ≤ s. Combining the previous display with (45) and (46) and a union bound
argument, we get with probability at least 1− 2p−c,

‖β̂map − β⋆‖∞ ≤ σ

√
2(c+ 1) log p

nνs⋆

+
∑

J 6=J⋆

[
σ|J |
νs

√
(20 + 4c) log p+

√
|J |√
nνs

‖Xβ⋆‖+ ‖β⋆‖∞
]
Π(J).

Next, we combine the above display with (13) and a union bound argument to
get with probability at least 1− 4p−c that

‖β̂map − β⋆‖∞ ≤ σ

√
2(c+ 1) log p

nνs⋆

+
4p−c

νs

[
σ

√
(20 + 4c)

log p

n
+

‖Xβ⋆‖√
n

+ νs‖β⋆‖∞
]
.

Note that the same reasoning applied to β̃ yields the same l∞-norm estimation
bound with νs replaced by νmin.

We now assume that νs⋆+s > 0. Then, for any J ⊂ [p] with |J | ≤ s, we have

‖β̂J − β⋆‖∞ ≤ ‖β̂J − β⋆‖ ≤ ‖Xβ̂J −Xβ⋆‖√
nνs⋆+s

.
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Combining this last inequality with (46), we get

‖β̂map − β⋆‖∞

≤ ‖β̂J⋆
− β⋆‖∞ +

1√
nνs⋆+s

∑

J /∈J ,J 6=J⋆

‖ξJ‖Π(J) +
1√

nνs⋆+s

∑

J∈J
‖ξJ‖Π(J)

≤ ‖β̂J⋆
− β⋆‖∞ +

σ
√
10s⋆√

nνs⋆+s
Π(J c \ J⋆) +

1√
nνs⋆+s

∑

J∈J
‖ξJ‖Π(J),

where we recall that ξJ = Xβ̂J −Xβ⋆ and J =
{
J ⊂ [p] : ‖ξJ‖ > σ

√
10s⋆λ

}
.

In view of Theorem 1, we have with probability at least 1− 2p−c that

Π(J c \ J⋆) ≤ 1−Π(J⋆) ≤ 4p−c;

and in view of (27), ∑

J∈J
‖ξJ‖Π(J) ≤ 2

√
10σp−s⋆ .

Combining the three last displays with (45), we get the result.

5.7. Proofs of auxiliary results

Lemma 2 is a special case of Lemma 4 where J⋆ = ∅, and we prove Lemma 4
below.

5.7.1. Proof of Lemma 3

First, note that uJ := 〈P⊥
J Xβ⋆, z〉 ∼ N (0, σ2γ2

J ), where γJ is defined in (31),
so that vJ := uJ/(σγJ ) ∼ N (0, 1). By the union bound and a standard tail
bound on the normal distribution, for a > 0, we have

P

(
max
J∈Js,t

v2J > a2
)

≤
(
s⋆
t

)(
p− s⋆
s− t

)
exp(−a2/2).

As in (35), we have

log

(
s⋆
t

)
+ log

(
p− s⋆
s− t

)
≤ (s⋆ − t) log(es⋆) + (s− t) log(ep)

≤ 3(s ∨ s⋆ − t) log p. (47)

Hence,

P

(
max
J∈Js,t

v2J > (10+2c)(s∨s⋆−t) log p

)
≤ exp

(
−(2+c)(s∨s⋆−t) log p

)
≤ p−(2+c),

since s∨ s⋆ − t = 0 would imply J = J⋆. We then apply the union bound again,

P

(
max
s,t

max
J∈Js,t

v2J
s ∨ s⋆ − t

> (10 + 2c)σ2 log p

)
≤ s (s ∧ s⋆ + 1)p−(2+c) ≤ p−c,

which the result we wanted.
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5.7.2. Proof of Lemma 4

Fix J ∈ Js,t. First, we notice that

z⊤(P J−P J⋆
)z = z⊤(P J−P J∩J⋆

)z−z⊤(P J⋆
−P J∩J⋆

)z ≤ z⊤(P J−P J∩J⋆
)z,

since P J⋆
−P J∩J⋆

is an orthogonal projection, and therefore positive semidefi-
nite. And QJ := P J −P J∩J⋆

is also an orthogonal projection, of rank s− t, so
that ‖QJz‖2 ∼ σ2χ2

s−t. Chernoff’s Bound applied to the chi-square distribution
yields

logP
(
χ2
m > a

)
≤ −m

2
(a/m− 1− log(a/m)) ≤ −a

4
, ∀a ≥ 2m.

The union bound and (47), and this tail bound, yields

P

(
max
J∈Js,t

‖QJz‖2 > (20+4c)σ2(s∨s⋆−t) log p

)
≤ exp (−(2 + c)(s ∨ s⋆ − t) log p) .

The rest of the proof is exactly the same as that of Lemma 3.

5.8. An irrepresentability result

We have

‖(I − P 2)X1β1‖2 = min
β2

‖X1β1 +X2β2‖2

= min
β2

βX⊤Xβ

≥ min
β2

δ2‖β‖2

= δ2‖β1‖2,

where β := (β1,β2), implying ‖β‖2 = ‖β1‖2 + ‖β2‖2.
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