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Abstract: The varying coefficient model is a useful alternative to the clas-
sical linear model, since the former model is much richer and more flexible
than the latter. We propose estimators of the coefficient functions for the
varying coefficient model in the case where different coefficient functions
depend on different covariates and the response is subject to random right
censoring. Since our model has an additive structure and requires multi-
variate smoothing we employ a smooth backfitting technique, that is known
to be an effective way to avoid “the curse of dimensionality” in structured
nonparametric models. The estimators are based on synthetic data ob-
tained by an unbiased transformation. The asymptotic normality of the
estimators is established, a simulation study illustrates the reliability of
our estimators, and the estimation procedure is applied to data on drug
abuse.
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1. Introduction and model

Investigating a relation between a response and a set of covariates is a key issue
in many statistical problems. Among others, mean regression models extract
central trends of data by specifying the conditional mean function of a response
variable given values of the covariates. A number of regression models and esti-
mation methods have been proposed in the literature. The most traditional and
simplest way to model the relation is to employ the classical linear regression
model. However, this model is often too restrictive and unable to capture com-
plicated characteristics which might exist in the data. From this point of view,
the varying coefficient model is a very useful alternative. It was first proposed
by [9] and takes the following form:

m(X,Z) = Z1α1(X1) + · · ·+ Zdαd(Xd), (1)

where X = (X1, . . . , Xd)
⊤, Z = (Z1, . . . , Zd)

⊤ and m(x, z) is a conditional
mean function of some response given X = x and Z = z. The αj ’s are unknown
coefficient functions. This model allows each coefficient function to depend on
different covariates, which is not the case for many other models available in
the literature. It makes the model much more flexible compared to the classi-
cal linear model, since each coefficient function is modelled nonparametrically.
Moreover, by considering this model, one can incorporate nonlinear interaction
effects into the model. The structure of the model is simple, since the condi-
tional mean function is still linear in the Zj variables. If all coefficient functions
are constant functions, the model reduces to the classical linear model.

On the other hand, situations in which a response is not fully observed due to
random right censoring are often encountered, for example, in medical research
where patients may leave a study for various reasons. In this case, well-known re-
gression techniques are not directly applicable since the response is only partially
observed. To deal with this random right censoring, the synthetic data approach
based on unbiased transformations has been studied by many authors. [11] and
[15] first proposed estimators based on different types of transformations in the
classical linear model, and they were further studied by [27, 28, 23, 12] and
many others. [6] extended these results to nonparametric regression models and
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they considered a more general transformation including the transformations
given in [11] and [15] as special cases. [5] further generalized the transformation
and adapted the method to dependent censored data. By using a synthetic data
method, one first transforms data preserving the conditional mean, and one then
applies existing regression techniques as if the responses were not censored.

In this paper, for a response variable Y which is subject to random right
censoring, we consider the problem of estimating the conditional mean regression
function of φ(Y ) given covariates for some known function φ. We assume that
the regression function has the varying coefficient structure, that is,

E(φ(Y )|X,Z) =

d
∑

j=1

Zjαj(Xj).

Note that we are estimating the conditional mean of φ(Y ) rather than that
of Y . In accordance with one’s interest, various choices are possible for φ. For
example, the choice φ(y) = I(y ≤ t) (for fixed t) corresponds to the estimation
of the conditional probability function and letting φ be the identity function
leads to the estimation of the conditional mean of Y . For the estimation of our
model, we employ a smooth backfitting (SBF) technique that is known to be
an effective estimation method for structured nonparametric models. Note here
that model (1) has an additive structure similar to the additive model. The SBF
method was originally introduced by [21] for the additive model, and [13] studied
it under the varying coefficient model. Unlike marginal integration methods,
see for example [26], it is known that the SBF method is free of the curse of
dimensionality which usually arises when multivariate smoothing is required,
since it requires only one and two dimensional smoothing. It is worthwhile to
mention that model (1) has some advantages over the additive model. As pointed
out before, nonlinear interaction effects can be dealt with in the former model
but not in the latter model. The additive model assumes that each covariate
affects the response separately. Another advantage is that the former model
allows discrete variables, whereas all covariates of the latter model have to be
continuous. The major hurdle of model (1) is that covariates need to pair up,
which sometimes appears to be artificial. Nevertheless, even if this model is not
true, it may still be used to approximate the true regression function. Recently,
[14] introduced a more flexible varying coefficient model. They allow the cases
where the model can contain all possible interaction effects between Zj variables
and Xj variables. In this paper, we restrict our attention to model (1) in the
censored data context. We believe that our results can be extended to the model
given in [14].

As mentioned before, regression models with censored data have been ex-
tensively studied, but most attention has been given to the case of univariate
covariates. Recently, there have been several papers in the context of more than
one covariate. Among others, [17] and [19] considered single index modelling,
which is known to be a useful dimension reduction technique. They proposed an
estimator of the parameter vector in this model when random right censoring is
present, and they derived their asymptotic properties. [2] studied the partially
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linear varying coefficient model with random right censoring, which is an exten-
sion of [8] to the censored data context. In fact, the model studied in [2] becomes
a particular case of our model by letting X1 = · · · = Xd in model (1) if we ignore
the parametric part. Its estimation is substantially simpler than ours, since each
coefficient function depends on the same univariate covariate so that only uni-
variate smoothing techniques are required. Additive regression modelling with
censored data was studied in [4] based on the backfitting algorithm proposed
by [22]. However, theoretical properties have not been established. The purpose
of this paper is to offer a very flexible model and to study its estimation with
censored data when there are several covariates.

The rest of the paper is organized as follows. In Section 2 we introduce
a well-known unbiased data transformation technique. Section 3 presents our
main theoretical results. The proposed method based on local linear fitting is
described and its asymptotic properties are established. In Section 4 we briefly
show the extension of the results to local polynomial fitting. Section 5 is devoted
to numerical studies, in Section 6 we discuss how to choose the bandwidth
parameter, and in Section 7 the estimation procedure is applied to data on drug
abuse. We conclude by giving some discussion in Section 8. The proofs of the
theorems and lemmas are given in the Appendix at the end of the paper.

2. Transformation of data

Let U = (X⊤,Z⊤)⊤, X ∈ [0, 1]d, be the vector of covariates and let Y and C
be a response and censoring variable, respectively. For randomly right censored
data, we observe (Ti, δi,Ui) i = 1, . . . , n, a random sample of (T, δ,U), where

T = Y ∧C and δ = I(Y ≤ C),

and where a∧b denotes the minimum value of a and b. Here, the problem is that
the Yi’s are not fully observed due to censoring so that E(φ(Y )|X = x,Z = z)
cannot be estimated in a direct way. For the unbiased transformation of the
data, the following assumptions are needed:

(A1) Y and C are independent.
(A2) P (Y ≤ C|U, Y ) = P (Y ≤ C|Y ).

These are common assumptions made when one uses the Kaplan-Meier estima-
tor for the censoring distribution. We consider the transformation given by [11]:

Y G =
δφ(T )

1−G(T−)
, (2)

where G is the distribution function of the censoring variable C. Under the
above assumptions, we have

E(φ(Y )|X = x,Z = z) = E(Y G|X = x,Z = z),
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so that the conditional mean is preserved under this transformation. The vari-
able Y G is observable as long as G is known. So, with Y G

i instead of φ(Yi) one
can apply existing regression techniques for uncensored data.

We impose another assumption on the function φ:

(A3) Let τ be the right endpoint of the support of T , and let I = (−∞, τ0] for
some τ0 < τ . We assume that φ is bounded on I, and equals 0 outside the
interval I.

This kind of truncation is common in the context of censored regression. It is
necessary to deal with the lack of information in the right tail of the distribu-
tion of Y . See, for example, [19] and [5]. The choice of the truncation point τ0
should be done carefully. If τ0 is too large, it may produce a very large syn-
thetic response in (2), possibly resulting in an estimator with large variance. In
any case, τ0 should not be larger than the largest observed time. On the other
hand, a relatively small τ0 may truncate data too much, which means loosing
more information. See Remark 3 below for more about this subject and for a
discussion on how to choose τ0 using the data.

We assume that (A1)–(A3) hold throughout the paper.

3. Estimation method with local linear fitting

We start with the (unrealistic) case where the distribution G is known. In a
second step we will verify what changes when G needs to be estimated.

3.1. Smooth backfitting with censored data when G is known

In kernel regression, it is widely known that procedures based on local linear
fitting have better theoretical properties than those based on local constant fit-
ting, which suffer from boundary problems. The local linear method corrects the
boundary problem. Moreover, the local constant SBF estimator does not have
the oracle property, but the local linear SBF estimator does. Here, the oracle
property means that the estimator of each component function has the same
asymptotic distribution as if we knew all other remaining coefficient functions.
This is demonstrated in [21] for the additive model and in [13] for the varying
coefficient model. In this section, we introduce the local linear SBF method
based on the unbiased transformation introduced in the previous section when
G is known. For this, we present the estimation method along the lines of [13]
and explain how one can apply the existing method to our case.

The local linear estimation technique can be applied to estimate the coeffi-
cient functions via the approximation αj(Xi,j) ≈ αj(xj) + (Xi,j − xj)α

′
j(xj).

Next, we consider the following least squares criterion weighted by a kernel
function:

∫

1

n

n
∑

i=1



Y G
i −

d
∑

j=1

(αj(xj) + (Xi,j − xj)α
′
j(xj))Zi,j





2

Kh(x,Xi)dx, (3)
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where Zi,j and Xi,j denote the jth component of Zi and Xi, Kh(u,v) =
∏d

j=1 Khj
(uj , vj), x = (x1, . . . , xd)

⊤ and h = (h1, . . . , hd)
⊤ is a bandwidth vec-

tor. Observe that the criterion is a smoothed version of the kernel weighted local
least squares criterion obtained by doing integration. This is why this method
is called the “smooth” backfitting. A boundary corrected kernel is used for this
estimation as in [21] and [13]. It is given by

Khj
(u, v) =

K((u− v)/hj)
∫

K((w − v)/hj)dw
I(u, v ∈ [0, 1]), (4)

for some base kernel function K. If we let

f(x) = (α1(x1), α
′
1(x1)h1, . . . , αd(xd), α

′
d(xd)hd)

⊤, and

v(Xi,Zi;x) = (Zi,1, Zi,1(Xi,1 − x1)/h1, . . . , Zi,d, Zi,d(Xi,d − xd)/hd)
⊤,

then, (3) can be rewritten as

SLG(f) =

∫

1

n

n
∑

i=1

[

Y G
i − v(Xi,Zi;x)

⊤f(x)
]2

Kh(x,Xi)dx. (5)

When G is known, our estimator, let’s say α̂
G, is defined as the minimizer of

(5) over f , when this least squares criterion has finite values.
The SBF method can be better understood by the projection theory. So we

represent our estimator in the context of the projection theory. We define some
spaces of tuples of functions as follows:

L2(M̂) = {f : f(x) = (f1(x)
⊤, . . . , fd(x)

⊤)⊤, fj(x) = (fj0(x), fj1(x))
⊤,

fjk : Rd → R, k = 0, 1, ‖f‖2
M̂

< ∞},
H(M̂) = {f ∈ L2(M̂) : fjk(x) = gjk(xj) for some function gjk : R → R,

j = 1, . . . , d, k = 0, 1},

where

‖f‖2
M̂

=

∫

f(x)⊤M̂(x)f(x)dx, and

M̂(x) =
1

n

n
∑

i=1

v(Xi,Zi;x)v(Xi,Zi;x)
⊤Kh(x,Xi).

Note that (5) has finite values if and only if ‖f‖2
M̂

< ∞. Therefore, our mini-

mization problem takes place in the space H(M̂). Note further that (5) can be
decomposed into two parts as (see [13])

∫

1

n

n
∑

i=1

[

Y G
i − v(Xi,Zi;x)

⊤α̃G(x)
]2

Kh(x,Xi)dx + ‖α̃G − f‖2
M̂
,
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by introducing

α̃G(x) = M̂(x)−1 1

n

n
∑

i=1

v(Xi,Zi;x)Y
G
i Kh(x,Xi),

which is the minimizer of (5) in the space L2(M̂). Equipped with the norm
‖ · ‖

M̂
, the spaces defined above are Hilbert spaces and our estimator α̂

G can
be expressed as follows:

α̂
G = argmin

f∈H(M̂)

‖α̃G − f‖
M̂

= Π(α̃G|H(M̂)),

where the operator Π(·|S) stands for a projection onto S. Note that α̂
G is

unique since it is defined as a projection onto the Hilbert spaceH(M̂). Moreover,

by considering Gâteaux derivatives, one can show that α̂
G = (α̂G

1 , . . . , α̂
G
d )

⊤

satisfies the following SBF equation:

α̂
G
j (xj) = α̃G

j (xj)−
∑

k 6=j

∫

Q̂j(xj)
−1Q̂jk(xj , xk)α̂

G
k (xk)dxk, ∀j = 1, . . . , d, (6)

where

Q̂j(xj) =
1

n

n
∑

i=1





1
Xi,j−xj

hj

Xi,j−xj

hj

(

Xi,j−xj

hj

)2



Khj
(xj , Xi,j)Z

2
i,j ,

Q̂jk(xj , xk) =
1

n

n
∑

i=1





1
Xi,k−xk

hk

Xi,j−xj

hj

(

Xi,j−xj

hj

)(

Xi,k−xk

hk

)





×Khj
(xj , Xi,j)Khk

(xk, Xi,k)Zi,jZi,k, and

α̃G
j (xj) =

(

α̃G
j0(xj)

α̃G
j1(xj)

)

= Q̂j(xj)
−1 1

n

n
∑

i=1

(

1
Xi,j−xj

hj

)

Khj
(xj , Xi,j)Zi,jY

G
i . (7)

Note that in general α̃G(x) is not equal to (α̃G
1 (x1)

⊤, . . . , α̃G
d (xd)

⊤)⊤, since α̃G

does not belong to H(M̂). The solution of (6) is given by the following SBF
algorithm:

α̂
G,[r]
j (xj) = α̃G

j (xj)−
j−1
∑

k=1

∫

Q̂j(xj)
−1Q̂jk(xj , xk)α̂

G,[r−1]
k (xk)dxk (8)

−
d
∑

k=j+1

∫

Q̂j(xj)
−1Q̂jk(xj , xk)α̂

G,[r]
k (xk)dxk, ∀j = 1, . . . , d.
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One can iterate the above algorithm for r = 1, 2, . . . , with some initial values

α̂
G,[0]
j (xj) (j = 1, . . . , d), until it converges. Then, the limit of the algorithm is

the estimate of the coefficient function. Note that, here the first component of
α̂

G
j (xj) estimates αj(xj), and the second one estimates hjα

′
j(xj).

Remark 1. Let

M(x) = p(x)
[

E(ZZ⊤|X = x)⊗
(

1 0
0 0

)

+ diag(E(Z2
j |X = x)) ⊗

(

0 0
0
∫

u2K(u)du

)

]

,

where ⊗ denotes the Kronecker product and p is the density function of X.
Then, ‖f‖M, L2(M) and H(M) can be defined similarly as ‖f‖

M̂
, L2(M̂) and

H(M̂), respectively, by replacing M̂ by M. Note that M̂(x) converges to M(x)
in a certain sense under the assumptions given below.

[13] introduced the SBF algorithm to solve the SBF equation for non-censored
data. Using the same arguments as therein, one can show that, under Assump-
tion (B) below, as r → ∞, α̂G,[r] converges to

∞
∑

l=0

Û lr̂G, (9)

where

Û = P̂d · · · P̂1, P̂j = Π(·|Hj(M̂)⊥),

r̂G = (I − Û)α̃G,

where S⊥ stands for the orthogonal complement of S and Hj(M̂) (j = 1, . . . , d)

are subspaces of H(M̂) defined as

Hj(M̂) = {f ∈ L2(M̂) : fjk(x) = gjk(xj), for some function gjk : R → R,

flk(x) = 0, l 6= j, k = 0, 1}.
Formula (9) is very useful to derive asymptotic results since it gives an explicit
formula for the limit of the SBF algorithm. In the following, we collect the as-
sumptions needed for the convergence of the SBF algorithm and the asymptotic
results.

Assumption B.

(B1) E(ZZ⊤|X = x) is continuous and its smallest eigenvalue is bounded away
from zero on x ∈ [0, 1]d.

(B2) supx∈[0,1]d E(Z4
j |X = x) < ∞ for j = 1, . . . , d.

(B3) The density p of X is bounded away from zero and is continuous on [0, 1]d.
(B4) K is a bounded and symmetric density function supported on [−1, 1] and

is Lipschitz continuous.
(B5) The bandwidth hj satisfies hj → 0 and logn/nhj → 0 as n → ∞ for

j = 1, . . . , d.
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Assumption C.

(C1) E(ZZ⊤σ2
G(X,Z)|X = x) is continuous in x ∈ [0, 1]d, where σ2

G(X,Z) =
V ar(Y G|X,Z).

(C2) The function αj , j = 1, . . . , d, is twice continuously differentiable on (0,1)
and E(ZjZk|X = x) is continuously partially differentiable in x ∈ (0, 1)d

for j, k = 1, . . . , d.

Under Assumption (B), one can show that ‖Û‖op < 1 and ‖r̂G‖M < ∞ with
probability tending to one, where ‖ · ‖op denotes the operator norm defined in

the space H(M). If we choose a starting point satisfying ‖α̂G,[0]‖M < ∞, then
it can be shown that (9) is indeed the unique solution of the SBF equation (6).
The following Lemma is a direct application of Theorems 3 and 4 in [13].

Lemma 1. Under Assumption (B), α̂G,[r] converges to the unique solution α̂
G

of (6) with probability tending to one provided that the initial point satisfies

‖α̂G,[0]‖M < ∞. Moreover, under Assumptions (B) and (C), if hj and n−1/5

are of the same order, then for any x ∈ (0, 1)d and for j = 1, . . . , d, α̂G
j (xj) are

asymptotically independent, and

n2/5(α̂G
j (xj)−αj(xj)) → N(βj(xj),Vj(xj)),

where

βj(xj) =
b2j
2
αj

′′(xj)

(

µ2(K)
0

)

, and

Vj(xj) =
E(Z2

j σ
2
G(X,Z)|Xj = xj)

bjpj(xj)(E(Z2
j |Xj = xj))2





µ0(K
2) µ1(K

2)
µ2(K)

µ1(K
2)

µ2(K)
µ2(K

2)
µ2(K)2



 ,

with bj = limn→∞ n1/5hj, µl(K
m) =

∫

ulKm(u)du and pj is the marginal den-
sity of Xj.

Note that, since σ2
G(x, z) ≥ V ar(φ(Y )|X = x,Z = z), the asymptotic vari-

ance Vj(xj) is larger than the corresponding asymptotic variance for the un-
censored case. This is a common situation that arises in censored data since the
synthetic data method inflates uncensored observations.

3.2. Smooth backfitting with censored data when G is unknown

We defined our estimator and derived its asymptotic distribution in the previous
section as if we knew the censoring distribution G. However in practice G is,
unfortunately, unknown, but it can be consistently estimated by the following
Kaplan-Meier estimator Ĝ given by

1− Ĝ(t) =

n
∏

i=1

(

1− (1 − δi)I(Ti ≤ t)
∑n

j=1 I(Tj ≥ Ti)

)

.
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Replacing G by Ĝ in (5) gives the following redefined loss function SLĜ(f):

SLĜ(f) =

∫

1

n

n
∑

i=1

[

Y Ĝ
i − v(Xi,Zi;x)

⊤f(x)
]2

Kh(x,Xi)dx, (10)

where Y Ĝ
i = δiφ(Ti)/(1− Ĝ(Ti−)). Then we define our estimator α̂Ĝ based on

the estimated transformed data Y Ĝ
i as follows:

α̂
Ĝ = argmin

f∈H(M̂)

SLĜ(f) = Π(α̃Ĝ|H(M̂)),

where

α̃Ĝ = argmin
f∈L2(M̂)

SLĜ(f) = M̂(x)−1 1

n

n
∑

i=1

v(Xi,Zi;x)Y
Ĝ
i Kh(x,Xi).

The estimator α̂
Ĝ satisfies the SBF equation (6) with G being replaced by

Ĝ. Unlike the case where G is known, the direct application of the theorems
in [13] is not valid when G is estimated by the Kaplan-Meier estimator since

Y Ĝ
1 , . . . , Y Ĝ

n are not independent. Below is a useful lemma for investigating the
properties of the SBF algorithm. Recall that the definition of α̃G

j (xj) is given

in (7). The estimator α̃Ĝ
j (xj) is defined by replacing G by Ĝ.

Lemma 2. Under Assumption (B) and for j = 1, . . . , d,

α̃Ĝ
j (xj)− α̃G

j (xj) = Op

(

sup
t≤τ0

|Ĝ(t)−G(t)|
)

,

uniformly in xj ∈ [0, 1].

This lemma tells us that the difference between α̃Ĝ
j (xj) and α̃G

j (xj) is uni-
formly bounded by the approximation error of the censoring distribution.

3.2.1. Convergence of the smooth backfitting algorithm

As in Section 3.1, one can find the solution of the SBF equation by the appli-
cation of the SBF algorithm with G being replaced by Ĝ. Since ‖Û‖op < 1 is
already established in [13], to show the convergence of the SBF algorithm, it

suffices to show that ‖r̂Ĝ‖M < ∞, where r̂Ĝ = (I − Û)α̃Ĝ, with an initial value

satisfying ‖α̂Ĝ,[0]‖M < ∞.

Theorem 1. Under Assumption (B), with probability tending to one, the SBF

algorithm converges to the unique solution α̂
Ĝ =

∑∞
l=0 Û

lr̂Ĝ, provided that the

initial point satisfies ‖α̂Ĝ,[0]‖M < ∞.
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There may exist many possible choices for the initial point. Among them,

α̂Ĝ,[0] = (α̃Ĝ
j (x1)

⊤, . . . , α̃Ĝ
j (xd)

⊤)⊤ can be a good suggestion since with this
choice,

‖α̂Ĝ,[0]‖M ≤ C1

d
∑

j=1

[∫

α̃Ĝ
j0(xj)

2qj(xj)dxj + µ2(K) ·
∫

α̃Ĝ
j1(xj)

2qj(xj)dxj

]
1

2

,

for some positive constant C1, where qj(xj) = E(Z2
j |Xj = xj)pj(xj).

Remark 2. Theorem 1 holds for any Ĝ satisfying supt≤τ0 |Ĝ(t)−G(t)| = op(1).
This condition holds for the Kaplan-Meier estimator; see e.g. [24]. On the other
hand, the uniform consistency of Ĝ is not necessary for the convergence of
the SBF algorithm. For that, one needs only to impose some finite moment

condition on the estimated transformed response Y Ĝ. However, the limit of the
algorithm may not estimate the true coefficient functions consistently unless Ĝ
is consistent.

3.2.2. Asymptotic distribution of the smooth backfitting estimator

In this subsection, the asymptotic distribution of the SBF estimator α̂Ĝ(x)
will be presented. Recall that the asymptotic distribution of α̂G(x) was already

given in Lemma 1. If we show that the difference between α̂Ĝ(x) and α̂
G(x) is

negligible at a certain rate, the desired result will follow. This can be done by

using the fact that α̂Ĝ and α̂
G are the further projections of α̃Ĝ and α̃G onto

H(M̂). We demonstrated in Lemma 2 that the difference between α̃Ĝ
j (xj) and

α̃G
j (xj) is bounded by the approximation error of G in probability. Note here

that (α̃G
1 (x1)

⊤, . . . , α̃G
d (xd)

⊤)⊤ differs in general from α̃G(x), which means that
α̂

G(x) is not the projection of (α̃G
1 (x1)

⊤, . . . , α̃G
d (xd)

⊤)⊤. The same is true when
G is replaced by Ĝ. However, since α̂

G
j (xj) (i.e., the jth component function

of the projection of α̃G) has the same asymptotic variance as α̃G
j (xj), we can

expect it is also true for α̂
Ĝ
j (xj) and α̃Ĝ

j (xj). We will prove the next lemma
using this idea.

Lemma 3. Under Assumption (B), if hj and n−1/5 are of the same order, then
for any x ∈ [0, 1]d,

α̂
Ĝ(x)− α̂

G(x) = Op

(

sup
t≤τ0

|Ĝ(t)−G(t)|
)

+ op(n
−2/5).

From Lemma 3, we conclude that α̂
Ĝ(x) − α̂

G(x) = op(n
−2/5) for any x ∈

[0, 1]d if G is continuous, since G is approximated at the rate Op((log n/n)
1/2)

by the Kaplan-Meier estimator (see e.g. [16]). We already know the asymptotic
distribution of α̂G(x) and its rate of convergence. So, a direct application of
Lemma 3 together with Lemma 1 gives the following theorem.
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Theorem 2. Under Assumptions (B) and (C), if hj and n−1/5 are of the same
order and if G is continuous, then for any x ∈ (0, 1)d and for j = 1, . . . , d,

α̂
Ĝ
j (xj) are asymptotically independent, and

n2/5(α̂Ĝ
j (xj)−αj(xj)) → N(βj(xj),Vj(xj)),

where βj(xj) and Vj(xj) are defined in the statement of Lemma 1.

Remark 3. The results obtained so far are based on the truncation of the
observed time beyond τ0. Choosing τ0 by using the available information in
the data would be more natural than some deterministic choice. One possible
way is to set τ0 = Tn−[nκ],n where κ ∈ (0, 1) is fixed and Tk,n denotes the kth
order statistic and [r] the integer part of r. In this case, the uniform rate of
convergence for the Kaplan-Meier estimator is the same as when we consider
a fixed truncation point τ0 = H−1(1 − κ), where H−1(1 − κ) is the (1 − κ)-
quantile of the distribution of T , both resulting in deleting 100×κ% of the data
corresponding to the largest observations. The theoretical choice of κ depends
on the censoring mechanism, see [3], for more details. If censoring is “light”, i.e.,
if condition (2.8) in [3] is satisfied, then one can choose τ0 as large as Tn,n. In
practice, the most used truncation value is the largest uncensored observation.

4. Extension to local polynomial fitting

In this section, we extend the results studied in the previous section to the local
polynomial setting. We focus on the case of odd orders since they are known
to be preferable to the even order cases; see Section 3.3.2 in [7]. We will briefly
show the results without proofs. The following is the redefined loss function to be
minimized for the estimation of the coefficient functions, where we approximate
the coefficient functions by a pth order Taylor expansion:

SLĜ
p (f) =

∫

1

n

n
∑

i=1



Y Ĝ
i −

d
∑

j=1

wj(xj , Xi,j)
⊤fj(xj)Zi,j





2

Kh(x,Xi)dx,

where f = (f⊤1 , . . . , f⊤d )⊤, fj = (fj0, . . . , fjp)
⊤ for univariate functions fjk,

wj(vj , uj) =

(

1,

(

uj − vj
hj

)

, . . . ,

(

uj − vj
hj

)p)⊤

,

and Ĝ is the Kaplan-Meier estimator of G. Let α̂Ĝ
p be the minimizer of SLĜ

p (f)

over f when SLĜ
p (f) < ∞. Then, α̂Ĝ

p (x) = (α̂Ĝ
p,1(x1)

⊤, . . . , α̂Ĝ
p,d(xd)

⊤)⊤ is the
local polynomial SBF estimator and satisfies the SBF equation analogous to
(6), which we will not present in detail. Moreover, the SBF algorithm to find
the minimizer can be given in the same way as in (8) and its convergence
is guaranteed with probability tending to one under Assumption (B). Note
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that the estimator of the kth derivative of αj(xj) is given by k!α̂Ĝ
p,jk(xj)/h

k
j ,

where α̂
Ĝ
p,j(xj) = (α̂Ĝ

p,j0(xj), . . . , α̂
Ĝ
p,jp(xj))

⊤, since α̂Ĝ
p,jk(xj) is an estimator of

hk
jα

(k)
j (xj)/k!.

We need an additional smoothness condition for the asymptotic distribution
of the local polynomial SBF estimator:

(C2′) The function αj , j = 1, . . . , d, is p + 1 times continuously differentiable
on (0,1), and E(ZjZk|X = x) is continuously partially differentiable in
x ∈ (0, 1)d for j, k = 1, . . . , d.

The next lemma is analogous to Lemma 3 and gives the approximation error

between α̂
Ĝ
p (x) and α̂

G
p (x). The proof is omitted.

Lemma 4. Under Assumption (B), if hj and n−1/(2p+3) are of the same order,
then for any x ∈ [0, 1]d,

α̂
Ĝ
p (x)− α̂

G
p (x) = Op

(

sup
t≤τ0

|Ĝ(t)−G(t)|
)

+ op(n
−(p+1)/(2p+3)),

for odd p.

Now, the following theorem follows from Lemma 4.

Theorem 3. Under Assumptions (B), (C2) and (C2′), if hj and n−1/(2p+3)

are of the same order and if G is continuous, then for any x ∈ (0, 1)d and for

j = 1, . . . , d, α̂Ĝ
p,j(xj) are asymptotically independent, and

n(p+1)/(2p+3)(α̂Ĝ
p,j(xj)−αj(xj)) → N(βp,j(xj),Vp,j(xj)),

for odd p, where

βp,j(xj) =
bp+1
j

(p+ 1)!
α
(p+1)
j (xj)Ω

−1
1 η

Vp,j(xj) =
E(Z2

j σ
2
G(X,Z)|Xj = xj)

bjpj(xj)(E(Z2
j |Xj = xj))2

Ω−1
1 Ω2Ω

−1
1

(Ω1)l,m = µl+m(K), l,m = 0, . . . , p

(Ω2)l,m = µl+m(K2), l,m = 0, . . . , p

(η)l = µp+1+l(K), l = 0, . . . , p,

with bj = limn→∞ n1/(2p+3)hj and pj is the marginal density of Xj.

5. Simulation study

In this section, we will present the finite sample performance of the proposed
estimator. We generate random samples from the following model:

Y = m(X,Z) + σ(X,Z)ǫ,
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where m(X,Z) = Z1α1(X1)+Z2α2(X2)+Z3α3(X3). The variables X1, X2 and
X3 are generated from U [0, 1], and the vector (Z2, Z3)

⊤ from a bivariate normal
distribution with mean (0, 0)⊤, and variance

(

1 0.5
0.5 1

)

, independently of X =

(X1, X2, X3)
⊤. We take Z1 ≡ 1, α1(x) = 1 + exp(2x− 1), α2(x) = 0.5 cos(2πx)

and α3(x) = x2. The standard deviation function is set to σ(x, z) = 0.5 +
z2

2
+z2

3

1+z2

2
+z2

3

exp(−2+ x1+x2

2 ). The error ǫ was generated from a normal distribution

with mean 0 and standard deviation γ. A similar model was considered in [26]
and [13]. We also generate a normal censoring variable with mean µ and variance
1.5. Here, µ was selected to control the percentage of censoring (PC). We set
φ(t) = tI(t ≤ τ0) so that the objective of this study is to estimate the truncated
conditional mean of Y given X = x and Z = z. For truncation, τ0 = 5 was used,
which means that only a small proportion of the observed Ti’s are truncated.
We examine the performance of our estimator for several choices of PC. We try
three cases µ = 4.4197, 3.1083 and 2.2, which yields approximately 10%, 30%
and 50% of censoring, respectively. The noncensored case is also considered to
see how random right censoring affects the estimation in our model.

The coefficient functions are estimated by the local linear SBF method. The
trapezoidal rule with 51 equally spaced grid points on [0,1] is used for the nu-
merical integration. We compute the estimated mean integrated squared error
(MISE) of the regression function:

MISE =
1

T

1

N

T
∑

k=1

N
∑

j=1

(

m̂[j](Xk,Zk)−m(Xk,Zk)
)2

=
1

T

1

N

T
∑

k=1

N
∑

j=1

(

m̂[j](Xk,Zk)−
1

N

N
∑

l=1

m̂[l](Xk,Zk)

)2

+
1

T

T
∑

k=1

(

1

N

N
∑

l=1

m̂[l](Xk,Zk)−m(Xk,Zk)

)2

= IV + IB2,

where N stands for the number of replications, T for the size of a test sample
and m̂[j], j = 1, . . . , N, is the local linear SBF estimator for each replication.
We choose N = 500 and T = 500. We try 83 bandwidth choices (h1, h2, h3) ∈
{0.05, 0.15, . . . , 0.75}3, and the Epanechnikov kernel is used for the kernel K.

We run simulations for different sample sizes, different noise levels and dif-
ferent censoring percentages. Tables 1 and 2 report the results for sample sizes
n = 200 and 400, and for different values of γ and PC. Each time we report the
result for the bandwidth vector which minimizes the MISE. With the optimal
bandwidth, which yields the optimal result for each setting, the MISE values
for each coefficient function are also computed and presented in those Tables.
As expected we find overall increasing patterns in MISE as PC and γ increase.
In the censored cases, there is a tendency for the ratio IV/IB2 to decline when
PC=50%, which could be counterintuitive. One possible reason is that, with high
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Table 1

Optimal results when estimating the regression function m for n = 200. Here, γ is the
standard deviation of the error, PC is the percentage of censoring, FUN is the function of
interest, MISE is the mean integrated squared error, IV is the integrated variance, and IB2

is the integrated squared bias

n γ PC(%) FUN MISE IV IB2

200 1 0 α1 0.0185 0.0098 0.0087
α2 0.0270 0.0189 0.0081
α3 0.0194 0.0136 0.0058
m 0.0654 0.0429 0.0225

10 α1 0.0502 0.0236 0.0267
α2 0.0880 0.0697 0.0183
α3 0.0537 0.0447 0.0091
m 0.1900 0.1406 0.0494

30 α1 0.1633 0.0702 0.0932
α2 0.2029 0.1339 0.0690
α3 0.1479 0.1278 0.0201
m 0.5013 0.3350 0.1664

50 α1 0.4293 0.1568 0.2725
α2 0.3556 0.2703 0.0853
α3 0.2910 0.2368 0.0542
m 1.0254 0.6312 0.3942

1.5 0 α1 0.0501 0.0163 0.0338
α2 0.0470 0.0336 0.0134
α3 0.0322 0.0210 0.0112
m 0.1271 0.0701 0.0570

10 α1 0.0933 0.0345 0.0588
α2 0.1173 0.0796 0.0378
α3 0.0753 0.0586 0.0167
m 0.2750 0.1718 0.1032

30 α1 0.2535 0.1029 0.1507
α2 0.2416 0.1632 0.0784
α3 0.1968 0.1665 0.0303
m 0.6698 0.4252 0.2446

50 α1 0.5794 0.1985 0.3810
α2 0.3915 0.3014 0.0901
α3 0.3526 0.2926 0.0600
m 1.2723 0.7593 0.5130

PC, optimal bandwidths are selected to be very large to control the explosion of
the variance, which results in relatively large biases. We also find that the MISE
decreases as n doubles, and that the rate of decrease is close to 2−4/5 ≈ 0.57.
Note here that the asymptotic MISE of our estimator is proportional to n−4/5

with the optimal bandwidth rate hj ∼ n−1/5. These results confirm that the
proposed estimator works rather well.

6. Bandwidth parameter selection

In this section, we introduce a data-driven bandwidth selector for local linear
fitting, which is based on the method given in [13]. They proposed to estimate
the unknown quantities which appear in the optimal bandwidth minimizing the
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Table 2

Optimal results when estimating the regression function m for n = 400. Here, γ is the
standard deviation of the error, PC is the percentage of censoring, FUN is the function of
interest, MISE is the mean integrated squared error, IV is the integrated variance, and IB2

is the integrated squared bias

n γ PC(%) FUN MISE IV IB2

400 1 0 α1 0.0126 0.0056 0.0070
α2 0.0169 0.0134 0.0035
α3 0.0123 0.0069 0.0054
m 0.0382 0.0235 0.0147

10 α1 0.0316 0.0148 0.0168
α2 0.0560 0.0379 0.0181
α3 0.0334 0.0243 0.0091
m 0.1067 0.0688 0.0379

30 α1 0.0926 0.0394 0.0532
α2 0.1543 0.1114 0.0429
α3 0.0988 0.0792 0.0196
m 0.3059 0.2064 0.0995

50 α1 0.2594 0.1008 0.1586
α2 0.2710 0.1850 0.0860
α3 0.2106 0.1668 0.0438
m 0.6618 0.4096 0.2522

1.5 0 α1 0.0394 0.0079 0.0315
α2 0.0298 0.0170 0.0128
α3 0.0218 0.0104 0.0114
m 0.0829 0.0322 0.0507

10 α1 0.0615 0.0163 0.0451
α2 0.0740 0.0492 0.0248
α3 0.0494 0.0349 0.0145
m 0.1636 0.0890 0.0746

30 α1 0.1618 0.0589 0.1029
α2 0.1895 0.1254 0.0641
α3 0.1254 0.0973 0.0281
m 0.4228 0.2525 0.1703

50 α1 0.3957 0.1301 0.2656
α2 0.2942 0.2067 0.0875
α3 0.2420 0.1906 0.0514
m 0.8373 0.4760 0.3613

asymptotic mean integrated squared error by fitting some polynomial regression
models. We simply adapt their method to the censored data context. From
Theorem 2, the optimal bandwidth when local linear fitting is applied is given
by b∗jn

−1/5, where

b∗j =

(
∫

cj(xj)dxj

4
∫

dj(xj)2pj(xj)dxj

)
1

5

,

cj(xj) =
E(Z2

j σ
2
G(X,Z)|Xj = xj)

E(Z2
j |Xj = xj)2

µ0(K
2), and (11)

dj(xj) =
1

2
α′′
j (xj)µ2(K). (12)
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Table 3

Ratio of the mean integrated squared error based on ĥopt over the mean integrated squared

error based on ĥa for the local linear SBF estimator for n = 200, 400, where ĥopt is the

optimal bandwidth, and ĥa is the data driven bandwidth. Here, γ is the standard deviation
of the error, and PC is the percentage of censoring

n γ PC(%) Ratio n γ PC(%) Ratio

200 1 0 0.986 400 1 0 1.050
10 1.153 10 1.127
30 1.216 30 1.234
50 1.191 50 1.190

1.5 0 1.089 1.5 0 1.123
10 1.200 10 1.192
30 1.184 30 1.195
50 1.114 50 1.145

We estimate
∫

α′′
j (xj)

2pj(xj)dxj by 1
n

∑n
i=1 α̂

′′
j (Xi,j)

2 where α̂′′
j (xj) =

∑s
k=2 k(k − 1)cj,kx

k−2
j , with cj,k being the minimizers of

n
∑

i=1

ρ



Y Ĝ
i −

d
∑

j=1

Zi,j

[

s
∑

k=0

cj,kX
k
i,j

]



 , (13)

and where ρ is a given loss function and s is the degree of the polynomial used
to approximate m(Xi,Zi). Note that, to deal with censoring, the estimated
synthetic response is used instead of the response itself. Other unknown quan-
tities can be estimated in a similar manner. A natural choice for ρ would be the
squared loss function ρ(u) = u2. However, with this loss function, selected band-
widths produced unsatisfactory results. Note that, in formulae (11) and (12),
only E(Z2

j σ
2
G(X,Z)|Xj = xj) is affected by censoring, which means that, theo-

retically, other quantities are invariant regardless of the occurrence of censoring.

Nevertheless, some large values of Y Ĝ
i inflated by the unbiased transformation

may cause a significant increase of the estimates of
∫

α′′
j (xj)

2pj(xj)dxj as the
percentage of censoring increases. To address this problem, we use the following
Huber loss function instead of the squared loss function for the estimation of
∫

α′′
j (xj)

2pj(xj)dxj :

ρk(u) =

{

u2/2 if |u| < k
k(|u| − k/2) if |u| ≥ k

.

This function is typically used in robust estimation. By employing this loss

function, we expect that large values of Y Ĝ
i can be prevented from having too

much effect on estimating
∫

α′′
j (xj)

2pj(xj)dxj .
Tables 3 and 4 show the performance of the above bandwidth selection pro-

cedure. We generate 500 random samples from the same model as in Section 5.
The Gaussian kernel is used for the multivariate local linear kernel estimator,
since the Epanechnikov kernel gives very poor estimates due to its compact sup-
port. To estimate the unknown quantities, we use a cubic polynomial for αj(xj)
and a linear polynomial for the other functions. The tuning parameter k is set



VC models with censored data 243

Table 4

MISE of the local linear SBF estimator and the MK estimator with data driven bandwidth
selectors for n = 200. Here, γ is the standard deviation of the error, PC is the percentage of

censoring, IV is the integrated variance, and IB2 is the integrated squared bias

SBF MK
γ PC(%) MISE IV IB2 MISE IV IB2

1 0 0.064 0.050 0.014 0.204 0.108 0.096
10 0.219 0.181 0.038 0.585 0.435 0.149
30 0.610 0.455 0.154 2.339 2.117 0.221
50 1.221 0.796 0.425 5.625 5.193 0.432

1.5 0 0.138 0.087 0.052 0.294 0.129 0.165
10 0.330 0.237 0.093 0.719 0.524 0.196
30 0.793 0.565 0.228 3.259 2.954 0.305
50 1.417 0.861 0.556 6.092 5.518 0.574

to 1.345σ̂ where σ̂ = MAD/0.6745, and MAD is the mean absolute deviation of
the residuals.

Table 3 shows how the automatic bandwidth selector works. We compute the
ratio of the MISE obtained with bandwidths ĥopt and ĥa respectively, that is,

MISE(ĥopt)/MISE(ĥa). Here, ĥopt is the optimal bandwidth described in Sec-

tion 5 and ĥa is the data-driven bandwidth proposed in this section. It follows
from Table 3 that our bandwidth selector works reasonably well, since the values
of the ratios are not so far from 1. The selection procedure is influenced by cen-
soring, however, the noise level (γ) has no or only very limited effect. The ratios
with censoring have relatively large values compared to the noncensored case.
An interesting finding is that the ratios do not have an increasing trend in PC.
It means that our selection procedure works well, and does not break down even
with high PC. In Table 3, there is a ratio smaller than 1. Indeed, this can hap-
pen in finite sample studies, since our automatic bandwidth selector gives data-
adaptive bandwidths for each sample whereas the optimal bandwidth is selected
as the best one among a set of bandwidths that are the same for all samples.

We also compare our SBF estimator based on the above automatic bandwidth
selector to the multivariate local linear kernel (MK) estimator based on the np

package in R. The np package offers a bandwidth selector based on the cross-
validation principle. In Table 4, we see that our SBF estimator outperforms
the MK estimator. In particular, the integrated variance of the MK estimator
increases very rapidly compared to the integrated bias as PC becomes high.

7. Real data example

In this section, we analyze a dataset that comes from the University of Mas-
sachusetts AIDS Research Unit (UMARU) IMPACT Study. This is a 5-year
collaborative research project about drug abuse. A detailed description of the
study can be found in [10]. There were two different treatment programs done
on two different sites (A and B). In this example, we focus on the study done
on site A. Here, our objective is to study how subject’s characteristics and the
length of treatment affect time to return to drug use, without making strong and
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restrictive assumptions about the underlying regression model. There are 398
observations, excluding two extreme points and subjects having missing values
for some covariates. The covariates that we consider are: AGE (age in years),
BECK (Beck depression score), IVHX (drug use history; 0=Never, 1=Present),
NDT (number of prior drug treatments) and LOT (length of treatment in days).
We consider a logarithmic transformation for the variable NDT to get rid of a
sparse region. The observed time is TTRD (time to return to drug use in days),
which is right-censored with a percentage of censoring of about 20%. In our
model, the response variable is Y = log(TTRD/365.25). From the data, we cal-

culate the synthetic response Y Ĝ, see (2), using τ0 which corresponds to the
98% empirical quantile. We also tried other values of τ0 and the results were
quite similar.

Since LOT is of great importance for the study and since IVHX is binary, we
consider the following family of varying coefficient models:

Y G = α1(LOT) + IVHXα2(X2) + Z3α3(X3) + ǫ.

Depending on the choice of the covariates X2, X3 and Z3, there are 6 possible
models of the above form. To select one of them, we divide the sample into two
parts: The first part is used to estimate the models and the second part is used
to assess the performances of the fitted models. For the latter, a test sample
of size 80 was randomly drawn from the whole sample in order to estimate the
estimated prediction errors (EPR):

EPR =
80
∑

i=1

[Y Ĝ
i − α̂1(LOT) + IVHX α̂2(X2) + Z3α̂3(X3)]

2.

The final model that gives the smallest EPR is

Y G = α1(LOT) + IVHXα2(BECK) + NDTα3(AGE) + ǫ. (14)

Here, the bandwidths obtained by our automatic selection procedure, see Sec-
tion 6, are (ĥ1, ĥ2, ĥ3) = (0.148, 0.341, 0.603).

Figure 1 depicts the estimated coefficient functions. As can be seen, the re-
turned time to drug use increases as LOT increases. The increase is sharper
at a lower level of LOT than for a higher level. The number of days of treat-
ment would be of great benefit. The second picture shows that the coefficient
of IVHX is negative for all values of BECK. Therefore, if some patient has a
drug use history, he/she tends to return to drug use earlier. It also tells us that
time to return to drug use decreases with Beck depression score. Lastly, the
third estimated coefficient function seems to be nearly linear, which indicates
that AGE and NDT have a linear interaction effect. Interestingly, this function
passes through 0 around AGE=46. This means that for young patients (less
than 46 years old), NDT has a negative effect on the time to return to drug use,
i.e. they tend to return to drug use earlier if they experienced many drug treat-
ments. An opposite trend is observed for older patients. This seems reasonable,
since large values of NDT (Number of prior drug treatments) for young people
means that they are strongly addicted to drugs.
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Fig 1. Plots of the estimated coefficient functions α̂1(LOT), α̂2(BECK) and α̂3(AGE), re-
spectively, for the model (14).
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8. Discussion

In this paper, we propose a smooth backfitting (SBF) estimator for the coef-
ficient functions in a varying coefficient model having different covariates as
smoothing variables when there is random right censoring in the response. We
focus on the case where the censoring does not depend on the covariates, which
is the case, for example, when the censoring occurs at the end of the study.
However, if there is some belief that censoring is affected by the characteristics
of the subjects, then considering the dependency between the censoring variable
and the covariates in the estimation procedure could be appealing. In this case,
the synthetic response is given by

Y Ĝ =
δφ(T )

1− ĜU(T−)
,

where GU denotes the conditional distribution of C given U = (X⊤,Z⊤)⊤,
that is, GU(·) = P (C ≤ ·|U). Note that U rather than its value u is used here,
since the SBF method is minimizing a global criterion induced by integration.
This approach also preserves the conditional mean of Y given the covariates if we
replace assumptions (A1) and (A2) by the conditional independence assumption
between Y and C given U. Similar ideas have been used in the literature. See
[25] for an example. In the dependent censoring case, the Beran estimator [1]
can be used as an estimator of GU. Nevertheless, this may cause the well-known
“curse of dimensionality” problem, because in our model the dimension of the
covariates is large in general. Recall that the motivation for employing the SBF
method is to avoid “curse of dimensionality” in fitting coefficient functions. In
this case, it is possible to restrict attention to a proper subset of covariates
as variables to estimate GU. Another alternative is to consider parametric or
semiparametric models to avoid high dimensional smoothing.

Appendix

This section contains the proofs of the asymptotic results of Section 3. We
start with the next lemma, which gives a uniform convergence result for kernel
weighted averages.

Lemma A.1. Let (Xi, Yi) i = 1, . . . , n be independent and identically dis-
tributed random variables with joint density f(x, y) and let K be a bounded, Lip-
schitz continuous and symmetric density function supported on a compact inter-
val. Suppose that E|Y1|s < ∞ for some s > 1 and supx∈X

∫

|y|sf(x, y)dy < ∞,
where X is the support of X1. Then, the following result holds with Kh(u, v)
defined in (4), assuming that h → 0 and nγh → ∞ for some γ < 1 − s−1 as
n → ∞:

sup
x∈X

∣

∣

∣

∣

∣

1

n

n
∑

i=1

{Kh(x,Xi)Yi − E(Kh(x,Xi)Yi)}
∣

∣

∣

∣

∣

= op(1).
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Proof. This follows from a slight modification of Proposition 4 in [20], if we sub-
stitute the kernel function (1/h)K((u−v)/h) therein by the boundary corrected
kernel Kh(u, v).

Proof of Lemma 2. Write

‖α̃Ĝ
j (xj)− α̃G

j (xj)‖ ≤ max
1≤i≤n

|Y Ĝ
i − Y G

i | ‖Q̂j(xj)
−1‖2

×
∥

∥

∥

∥

∥

1

n

n
∑

i=1

(1, (Xi,j − xj)/hj)
⊤Khj

(xj , Xi,j)Zi,j

∥

∥

∥

∥

∥

,

where ‖ · ‖2 denotes the spectral norm of a matrix. Note that

|Y Ĝ
i − Y G

i | = δi|φ(Ti)|
(1 −G(Ti−))(1 − Ĝ(Ti−))

|Ĝ(Ti−)−G(Ti−)|.

Therefore,

max
1≤i≤n

|Y Ĝ
i − Y G

i | ≤ sup
t≤τ0

{

|Ĝ(t)−G(t)| |φ(t)|
(1 −G(t))2

(1−G(t))

(1− Ĝ(t))

}

≤ sup
t≤τ0

|Ĝ(t)−G(t)|Op(1),

by assumption (A3) and the fact supt≤τ0
1−G(t)

1−Ĝ(t)
= Op(1); see e.g. Lem-

ma A.1 in [18]. Now, it suffices to show that supxj∈[0,1] ‖Q̂j(xj)
−1‖2 and

supxj∈[0,1] ‖ 1
n

∑n
i=1(1, (Xi,j − xj)/hj)

⊤Khj
(xj , Xi,j)Zi,j‖ are bounded in prob-

ability. From Lemma A.1, Q̂j(xj) converges uniformly in probability to Qj(xj)
where

Qj(xj) =

(

1 0
0 µ2(K)

)

E(Z2
j |Xj = xj)pj(xj),

and where pj is the marginal density of Xj . Then, we have

sup
xj∈[0,1]

‖Q̂j(xj)
−1‖2

=
1

inf
xj∈[0,1]

{

λ̂j0(xj)∧ λ̂j1(xj)
}

≤ 1

inf
xj∈[0,1]

{

λ̂j0(xj) ∧ λ̂j1(xj)−λj0(xj)∧λj1(xj)
}

+ inf
xj∈[0,1]

{

λj0(xj)∧λj1(xj)
}

≤ 1

− sup
xj∈[0,1]

∣

∣λ̂j0(xj) ∧ λ̂j1(xj)−λj0(xj)∧λj1(xj)
∣

∣+ inf
xj∈[0,1]

{

λj0(xj)∧λj1(xj)
} ,

where λ̂jk(xj) and λjk(xj) (k = 0, 1) are the eigenvalues of Q̂j(xj) and Qj(xj),

respectively. It follows that supxj∈[0,1]

{

λ̂j0(xj)∧ λ̂j1(xj)−λj0(xj)∧λj1(xj)
}

=
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op(1) from the continuity of eigenvalues, and that infxj∈[0,1]

{

λj0(xj)∧λj1(xj)
}

≥
B for some constant B > 0, since Qj(xj) is a positive definite matrix by as-

sumptions (B1) and (B3). These imply supxj∈[0,1]‖Q̂j(xj)
−1‖2 = Op(1). Next,

note that
∥

∥

∥

∥

∥

1

n

n
∑

i=1

(1, (Xi,j − xj)/hj)
⊤Khj

(xj , Xi,j)Zi,j

∥

∥

∥

∥

∥

≤
√
2

n

n
∑

i=1

Khj
(xj , Xi,j)|Zi,j |

≡ an(xj).

Then, we have

sup
xj∈[0,1]

|an(xj)| ≤ sup
xj∈[0,1]

|an(xj)− E(an(xj))|+ sup
xj∈[0,1]

|E(an(xj))| . (15)

It follows that supxj∈[0,1] |an(xj)− E(an(xj))| = op(1) from Lemma A.1. For
the second factor on the right hand side of (15), observe that,

E(|Z1,j |Khj
(xj , X1,j))

≤ sup
u∈[0,1]

E(|Z1,j ||X1,j = u) · E
(

Khj
(xj , X1,j)

)

< ∞,

uniformly in xj ∈ [0, 1] by assumptions (B2) and (B4). Therefore, we can con-
clude that supxj∈[0,1] |an(xj)| = Op(1). This completes the proof.

Proof of Theorem 1. First note that, by using similar arguments as in [13],

‖r̂Ĝ‖M ≤ C

d
∑

j=1

[∫

α̃Ĝ
j0(xj)

2qj(xj)dxj + µ2(K) ·
∫

α̃Ĝ
j1(xj)

2qj(xj)dxj

]
1

2

,

for some constant C > 0 with probability tending to one, where α̃Ĝ
jk(xj), k =

0, 1, is the estimated version of α̃G
jk(xj) with G being replaced by Ĝ. We only

prove that
∫

α̃Ĝ
j0(xj)

2qj(xj)dxj < ∞ with probability tending to one. The proof

for
∫

α̃Ĝ
j1(xj)

2qj(xj)dxj < ∞ can be done similarly. For all j = 1, . . . , d,
∫

α̃Ĝ
j0(xj)

2qj(xj)dxj

≤ 2

(∫

α̃G
j0(xj)

2qj(xj)dxj +

∫

(α̃Ĝ
j0(xj)− α̃G

j0(xj))
2qj(xj)dxj

)

. (16)

The fact that the first term of (16) is bounded with probability tending to one
was established in [13]. For the second term, observe that

sup
xj∈[0,1]

|α̃Ĝ
j0(xj)− α̃G

j0(xj)| ≤ sup
xj∈[0,1]

‖α̃Ĝ
j (xj)− α̃G

j (xj)‖

= Op

(

sup
t≤τ0

|Ĝ(t)−G(t)|
)

= op(1),

by Lemma 2. Therefore ‖r̂Ĝ‖M < ∞ with probability tending to one. This
completes the proof.
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Proof of Lemma 3. Let α̂
Ĝ(x) = (α̂Ĝ

1 (x1)
⊤, . . . , α̂Ĝ

d (xd)
⊤)⊤, α̂

Ĝ
j (xj) =

(α̂Ĝ
j0(xj), α̂

Ĝ
j1(xj))

⊤, α̂
G(x) = (α̂G

1 (x1)
⊤, . . . , α̂G

d (xd)
⊤)⊤ and α̂

G
j (xj) =

(α̂G
j0(xj), α̂

G
j1(xj))

⊤. We will prove that, for all j, α̂
Ĝ
j (xj) − α̂

G
j (xj) =

Op(supt≤τ0 |Ĝ(t) − G(t)|) + op(n
−2/5) for any xj ∈ [0, 1]. For this, we need

to define some functions. First, let

α̃
Ĝ,A
j (xj) = Q̂j(xj)

−1 1

n

n
∑

i=1

(

1
Xi,j−xj

hj

)

Zi,j(Y
Ĝ
i −m(Xi,Zi))Khj

(xj , Xi,j),

α̃
G,A
j (xj) = Q̂j(xj)

−1 1

n

n
∑

i=1

(

1
Xi,j−xj

hj

)

Zi,j(Y
G
i −m(Xi,Zi))Khj

(xj , Xi,j),

and let α̂
Ĝ,A
j (xj) and α̂

G,A
j (xj) be the jth component vectors of α̂Ĝ,A(x) and

α̂
G,A(x) respectively. Here α̂

Ĝ,A and α̂
G,A are the projections of α̃Ĝ,A and

α̃G,A onto H(M̂), respectively, where

α̃Ĝ,A(x) = M̂(x)−1 1

n

n
∑

i=1

v(Xi,Zi;x)(Y
Ĝ
i −m(Xi,Zi))Kh(x,Xi),

α̃G,A(x) = M̂(x)−1 1

n

n
∑

i=1

v(Xi,Zi;x)(Y
G
i −m(Xi,Zi))Kh(x,Xi).

Now, note that

α̂
Ĝ
j (xj)− α̂

G
j (xj) = α̂

Ĝ,A
j (xj)− α̂

G,A
j (xj)

= (α̂Ĝ,A
j (xj)− α̃

Ĝ,A
j (xj)) + (α̃Ĝ,A

j (xj)− α̃
G,A
j (xj))

+ (α̃G,A
j (xj)− α̂

G,A
j (xj))

= R1n +R2n +R3n.

We can see that for any xj ∈ [0, 1],R2n = α̃Ĝ
j (xj)−α̃G

j (xj) = Op(supt≤τ0 |Ĝ(t)−
G(t)|) by Lemma 2, and that R3n = op(n

−2/5) by the same arguments as in
[13]. As for R1n, following the lines of the proof of Theorem 2 in [13], it suffices
to show that

sup
x∈[0,1]d

∥

∥

∥

∥

∥

∞
∑

l=1

Û lr̂Ĝ,A(x)

∥

∥

∥

∥

∥

= Op

(

sup
t≤τ0

|Ĝ(t)−G(t)|
)

+ op(n
−2/5),

where r̂Ĝ,A = (I − Û)α̃Ĝ,A. This follows if we can show that

sup
xk∈[0,1]

∥

∥

∥

∥

∫

Q̂k(xk)
−1Q̂jk(xj , xk)α̃

Ĝ,A
j (xj)dxj

∥

∥

∥

∥

= Op

(

sup
t≤τ0

|Ĝ(t)−G(t)|
)

+ op(n
−2/5),
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for all k = 1, . . . , d. By the triangle inequality,

sup
xk∈[0,1]

∥

∥

∥

∥

∫

Q̂k(xk)
−1Q̂jk(xj , xk)α̃

Ĝ,A
j (xj)dxj

∥

∥

∥

∥

≤ sup
xk∈[0,1]

∥

∥

∥

∥

∫

Q̂k(xk)
−1Q̂jk(xj , xk)α̃

G,A
j (xj)dxj

∥

∥

∥

∥

+ sup
xk∈[0,1]

∥

∥

∥

∥

∫

Q̂k(xk)
−1Q̂jk(xj , xk)(α̃

Ĝ,A
j (xj)− α̃

G,A
j (xj))dxj

∥

∥

∥

∥

= R′
1n +R′

2n.

From [13], it follows that R′
1n = op(n

−2/5). As for R′
2n, note that

R′
2n ≤ sup

xj∈[0,1]

∥

∥

∥α̃
Ĝ,A
j (xj)− α̃

G,A
j (xj)

∥

∥

∥

× sup
xk∈[0,1]

∫

(

‖(Q̂k(xk)
−1)1‖+ ‖(Q̂k(xk)

−1)2‖
)

(17)

×
(

‖(Q̂jk(xj , xk))1‖+ ‖(Q̂jk(xj , xk))2‖
)

dxj

where (A)l denotes the lth row of a matrix A. The first factor on the right hand
side of (17) is Op(supt≤τ0 |Ĝ(t) − G(t)|) by Lemma 2. Now, it suffices to show

that the second factor is bounded in probability. For this, note that Q̂jk(xj , xk)
converge uniformly in probability to Qjk(xj , xk) from Lemma A.1, where

Qjk(xj , xk) =

(

1 0
0 0

)

E(ZjZk|Xj = xj , Xk = xk)pjk(xj , xk),

and where pjk is the joint density of Xj and Xk. Since E(ZjZk|Xj = xj ,
Xk = xk)pjk(xj , xk) is bounded on [0, 1]2 by assumptions (B2) and (B3),

‖(Q̂jk(xj , xk))1‖ + ‖(Q̂jk(xj , xk))2‖ = Op(1) uniformly in xj , xk ∈ [0, 1]2. It

follows that ‖(Q̂k(xk)
−1)1‖ + ‖(Q̂k(xk)

−1)2‖ = Op(1) uniformly in xj ∈ [0, 1]

from the fact that ‖(Q̂k(xk)
−1)l‖ ≤ ‖Q̂k(xk)

−1‖2 for l = 1, 2, where ‖·‖2 denotes
the spectral norm, and this is Op(1), as is shown in the proof of Lemma 2.
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