
Electronic Journal of Statistics
Vol. 7 (2013) 3124–3169
ISSN: 1935-7524
DOI: 10.1214/14-EJS875

Asymptotic properties of Lasso+mLS

and Lasso+Ridge in sparse

high-dimensional linear regression

Hanzhong Liu

School of Mathematical Sciences
Peking University, Beijing 100871, P.R. China

e-mail: lhz2009@pku.edu.cn

and

Bin Yu

Department of Statistics
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720, USA
e-mail: binyu@stat.berkeley.edu

Abstract: We study the asymptotic properties of Lasso+mLS and Lasso+
Ridge under the sparse high-dimensional linear regression model: Lasso se-
lecting predictors and then modified Least Squares (mLS) or Ridge esti-
mating their coefficients. First, we propose a valid inference procedure for
parameter estimation based on parametric residual bootstrap after Lasso+
mLS and Lasso+Ridge. Second, we derive the asymptotic unbiasedness of
Lasso+mLS and Lasso+Ridge. More specifically, we show that their biases
decay at an exponential rate and they can achieve the oracle convergence
rate of s/n (where s is the number of nonzero regression coefficients and
n is the sample size) for mean squared error (MSE). Third, we show that
Lasso+mLS and Lasso+Ridge are asymptotically normal. They have an
oracle property in the sense that they can select the true predictors with
probability converging to 1 and the estimates of nonzero parameters have
the same asymptotic normal distribution that they would have if the zero
parameters were known in advance. In fact, our analysis is not limited to
adopting Lasso in the selection stage, but is applicable to any other model
selection criteria with exponentially decay rates of the probability of select-
ing wrong models.

MSC 2010 subject classifications: Primary 62F12, 62F40; secondary
62J07.
Keywords and phrases: Lasso, irrepresentable condition, Lasso+mLS
and Lasso+Ridge, sparsity, asymptotic unbiasedness, asymptotic normal-
ity, residual bootstrap.

Received June 2013.

3124

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/14-EJS875
mailto:lhz2009@pku.edu.cn
mailto:binyu@stat.berkeley.edu


Lasso+mLS and Lasso+Ridge in SHLR 3125

1. Introduction

Consider the sparse linear regression model

Y = Xβ∗ + ǫ, (1)

where ǫ = (ǫ1, . . . , ǫn)
T is a vector of independent and identically distributed

(i.i.d.) random variables with mean 0 and variance σ2. Y = (y1, . . . , yn)
T ∈ R

n is
the response vector, and X ∈ R

n×p is the design matrix which is deterministic.
β∗ ∈ R

p is the vector of model coefficients with at most s (s < n) non-zero
components. We consider the high-dimensional setting which allows p and s to
grow with n (p can be comparable to or larger than n). Note that, in here and
what follows, Y , X , and β∗ are all indexed by the sample size n, but we omit
the index whenever this does not cause confusion.

In sparse linear regression models, an active line of research focuses on the
recovery of sparse vector β∗ by a popular l1 regularization method called Lasso
[47]. The Lasso has been studied under at least three common criteria: (i) model
selection criteria, meaning the correct recovery of the support set S = {j ∈
{1, 2, . . . , p} : β∗

j 6= 0} of the model coefficients β∗; (ii) lq estimation errors

||β̂−β∗||qq, especially l2 and l1, where β̂ is the estimate of β∗; and (iii) prediction

error ||Xβ̂ −Xβ||22.
The Lasso estimator is defined by

β̂(λn) = argmin
β

{

||Y −Xβ||22 + λn||β||1
}

, (2)

where λn ≥ 0 is the tuning parameter which controls the amount of regular-
ization applied to the estimate. Setting λn = 0 reverses the Lasso problem to
Ordinary Least Squares (OLS) which minimizes the unregularized empirical loss.

Replacing ℓ1 penalty by ℓ2 penalty in (2) gives the Ridge estimator [28]:

β̂Ridge(λn) = argmin
β

{

||Y −Xβ||22 + λn||β||22
}

, (3)

The Lasso estimator has two nice properties, namely, (i) it generates sparse
models by means of ℓ1 regularization and (ii) it is also computationally feasible
(see [43, 19, 24]). The asymptotic behavior of Lasso-type estimators has been
studied by [32] for fixed p and β∗ as n → ∞. In particular, they have shown
that under some regularity conditions on the design, λn = o(n) is sufficient for

consistency in the sense that β̂(λn) →p β∗, and λn should grow more slowly
(i.e. λn = O(

√
n)) for asymptotic normality of the Lasso estimator. On the

model selection consistency front, [36] proposed the neighborhood stability con-
dition which is equivalent to the Irrepresentable condition [25, 48, 54, 51] to
prove the Lasso consistency for Gaussian graphical model selection. [54] showed
that the Irrepresentable condition is almost necessary (for fixed p) and sufficient
for the Lasso to select the true model both in the classical fixed p setting and
in the high-dimensional setting. [52] considered a weaker sparsity assumption,
meaning that the regression coefficients outside an ideal model are small but not
necessarily zero (the sum of their absolute values is of the order O(sλn/n)), and
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imposed the sparse Riesz condition to prove the rate-consistent in terms of the
sparsity, bias and the norm of missing large coefficients. [51] further established
precise conditions on the scalings of (n, p, s) that are necessary and sufficient
for sparsity pattern recovery using the Lasso. In addition, thresholded Lasso
and Dantzig estimators were introduced in [31] and the authors proved their
model selection consistency under less restrictive conditions on the decay rates
of the nonzero regression coefficients. Other related work includes [17, 55, 10, 1].
All the aforementioned papers imposed suitable mutual incoherence conditions
on the design. On the l2 estimation error front, the Lasso has been shown un-
der a weaker restricted eigenvalue condition to achieve l2 convergence rate of
(s log p)/n [49, 9, 39, 41, 42], which is the minimax optimal rate [45]. Other

work focuses on the convergence rates of ||Xβ̂(λn)−Xβ∗||22 and ||β̂(λn)−β∗||1,
see [27, 50, 11] for example.

However, even if p is fixed and the Irrepresentable Condition is satisfied, there
does not exist a tuning parameter λn which can lead to both variable selection
consistency and asymptotic normality [21, 55]. More importantly, for the case of
p ≫ n, statistical inference for the Lasso estimator with theoretical guarantees
is still an insufficiently explored area.

The bootstrap is very useful for inference. For fixed p, [40] developed a per-
turbation resampling-based method to approximate the distribution of a gen-
eral class of penalized regression estimates. [13] proposed a modified residual
bootstrapping Lasso method that is consistent in estimating the limiting dis-
tribution of the Lasso estimator. [53] developed a low-dimensional projection
(LDP) approach to constructing confidence intervals. Though LDP works for
(s log p)/

√
n → 0, it has nothing to do with the idea of resampling and boot-

strap. Does the bootstrap provide a valid approximation in the case of p ≫ n? In
this paper, we will give an affirmative answer to this question based on residual
bootstrap after two post-Lasso estimators: Lasso+mLS and Lasso+Ridge. Our
method provides consistent estimate of the limiting distribution of Lasso+mLS
(or Lasso+Ridge) even if p grows at an exponential rate in n.

Post-Lasso estimator is a special case of two stage estimators: (1) selection
stage: one selects predictors using the Lasso; and (2) estimation stage: modified
Least Square (mLS) or Ridge, is applied to estimate the coefficients of the
selected predictors. Our estimator is referred to as Lasso+mLS or Lasso+Ridge.
Lasso+mLS is very close to Lasso+OLS [3], which uses Ordinary Least Squares
(OLS) in the second stage. Several authors have previously considered two stage
estimators to improve the performance of the Lasso, such as the Lars-OLS hybrid
[19], adaptive Lasso [55], relaxed Lasso [37], and marginal bridge estimator [29],
to name just a few.

Our contributions are summarized as follows:

1. We propose a valid inference procedure for parameter estimation based on
parametric residual bootstrap after two post-Lasso estimators: Lasso+mLS
and Lasso+Ridge. More specifically, we show that the Mallows distance
between the distributions of the bootstrap estimator and the Lasso+mLS
(or Lasso+Ridge) estimator converges to 0 in probability.
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2. Under the Irrepresentable condition and other regularity conditions, we
derive the asymptotic unbiasedness of Lasso+mLS and Lasso+Ridge. We
show that their biases decay at an exponential rate and that they can
achieve the oracle convergence rate of s/n for mean squared error E||β̃ −
β∗||22 where β̃ is either Lasso+mLS or Lasso+Ridge.

3. We prove the asymptotic normality of Lasso+mLS and Lasso+Ridge. As
we show in Theorem 3 and Corollary 2, these two post-Lasso estimators
display an oracle property that the Lasso does not have: they can select
the true predictors with probability converging to 1 and the estimates of
nonzero parameters have the same asymptotic normal distribution that
they would have if the zero parameters were known in advance.

4. Our analysis is not limited to adopting the Lasso in the selection stage, but
is applicable to any other model selection criteria with exponentially decay
rates of the probability of selecting wrong models, for example, stability
selection [38], SCAD [21, 34] and Dantzig selector [12, 9, 26].

Our key assumptions for the validity of residual bootstrap after Lasso+mLS
or Lasso+Ridge are the Irrepresentable condition and that s goes to infinity
slower than

√
n. The Irrepresentable condition can be weakened by the sparse

eigenvalue condition if we adopt stability selection [38] to enhance the selection
performance of the Lasso. Without considering model selection, [8] showed that
residual bootstrap OLS fails if p2/n does not tend to 0. Therefore, the con-
dition s2/n → 0 cannot be weakened. Our conditions on the scalings (n, p, s)
are not the sharpest but have been previously used in the literature [54] and
make our convergence rate more explicit. In addition, we require a gap of size
n

c3
2 (c3 ∈ (0, 1] is a constant) between the decay rate of β∗ and n− 1

2 which
prevents the estimation from being dominated by the noise terms. [22] proposed
a similar constraint min1≤i≤s |β∗

i | ≥ M
nκ , 0 ≤ κ < 1

2 to show model selec-
tion consistency of the Sure Independent Screening. This assumption is weaker
than min1≤i≤s |β∗

i | ≥ M , which was assumed by [29] in connection with the
asymptotic properties of the Bridge estimator. However, as mentioned by [33],
inference results based on post-model selection methods can be misleading when
this kind of “beta min” condition fails. Therefore, the proposed inference proce-
dure should be used in practice only when there is believed to be a gap between
the decay rate of the nonzero elements of β∗ and the n−1/2. Finally, we need
some regularity conditions (conditions (a)–(c) in Section 2) which are standard
in sparse high-dimensional linear regression literature [54, 29, 30].

After we had obtained our bootstrap results in Theorem 4 and Corollary 3,
our attention was brought to an independent result in [14] where a variant of the
Irrepresentable condition was used to prove the second-order correctness of the
residual bootstrap applied to a suitable studentized version of the adaptive Lasso
estimator. However, the main results of [14] are valid only for linear combinations
of the adaptive Lasso estimator while our results hold for the joint distribution
of Lasso+mLS (or Lasso+Ridge). The distance between distributions used in
[14] and the proof there are also different from ours. Specifically, [14] adopted
the total variation distance and used the Edgeworth expansion in the proof
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while we study the Mallows distance and our proof is direct. In addition, [14]
allows p to grow only at polynomial rates in n while we allow p to grow at an
exponential rate in n.

In our paper, before stating the bootstrap result, we first derive the asymp-
totic unbiasedness and asymptotic normality of Lasso+mLS and Lasso+Ridge.
It is well known that (s log p)/n is the minimax optimal rate for the Lasso
under the restricted eigenvalue condition. Since we assume the stronger Irrep-
resentable condition and some conditions on scaling (n, p, s), we are able to
attain a better rate of s/n for MSE which indicates that one can avoid the
feature selection penalty of log p by combining the Lasso and Least Squares or
Ridge. We should mention that previous work [3] has obtained l2 convergence
rate (||β̃Lasso+OLS − β∗||22 = Op(s/n)) of Lasso+OLS estimator under weaker
conditions. However, their results hold in probability and it is not clear whether
Lasso+OLS can achieve the oracle convergence rate ofO(s/n) in L2-expectation,
i.e., whether E||β̃−β∗||22 = O(s/n) holds, which we need to prove the validity of
residual bootstrap. On the asymptotic normality front, the authors in [4, 5] also
adopted the OLS after model selection and derived the asymptotic normality
for inference on the effect of a treatment variable on a scalar outcome in the
presence of very many controls. However, they studied a partial linear model
which is different from ours and the l1 regularization was imposed on the effect
of the control variables without on the effect of the treatment variable.

Notation. For any vector a = (a1, . . . , am)T , we denote ||a||22 =
∑m

i=1 a
2
i ,

||a||1 =
∑m

i=1 |ai|, and ‖a‖∞ = maxi=1,...,m |ai|. For a vector β ∈ Rp and a set
S ⊂ {1, . . . , p}, denote Sc the complementary set of S and let βS = {βj : j ∈ S}.
Given an n by pmatrixX , write xT

i ∈ Rp, i = 1, . . . , n andXj ∈ Rn, j = 1, . . . , p
the i-th row and the j-th column of X respectively, where xT

i is the transpose of
xi. For a given m×m matrix A, let Λmin(A) and Λmax(A) denote the smallest
and largest eigenvalues of A respectively. Write tr(A) the trace of A which is
the sum of the diagonal entries of A.

The rest of the paper is organized as follows: in Section 2, we define modi-
fied Least Squares and Ridge after model selection and study their asymptotic
properties. In Section 3, we apply these general properties to the special cases
of Lasso+mLS and Lasso+Ridge and then derive their asymptotic unbiased-
ness, asymptotic normality and the approximation property of residual boot-
strap. Similar asymptotic properties of modified Least Squares and Ridge after
stability selection are obtained in Section 4. Simulation examples are given in
Section 5. We conclude in Section 6. The proofs can be found in the Appendix.

2. Asymptotic properties of modified least squares and ridge after
model selection

In this section, we begin with a precise definition of the modified Least Squares
or Ridge after model selection, and then study their asymptotic properties,
including asymptotic unbiasedness, asymptotic normality and the validity of
residual bootstrap.
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2.1. Definitions and assumptions

Modified Least Squares (or Ridge) after model selection refers to a special type
of two stage estimators. In the first stage, one uses certain model selection
methods to select predictors. For example, let β̂ be the Lasso estimator defined
in (2), one gets a set of selected predictors Ŝ = {j ∈ {1, 2, . . . , p} : β̂j 6= 0}.
Again, β̂ and Ŝ are dependent on λn, but we omit the dependence whenever
this does not cause confusion.

In the second stage, a low-dimensional estimation method is applied to the
selected predictors in Ŝ. For example, one can adopt OLS and then form the
OLS after model selection (denoted by Select+OLS):

β̃Select+OLS = argmin
β: βj=0, j∈Ŝc

||Y −Xβ||22. (4)

The solution of (4) is β̃Select+OLS,Ŝ = (XT
Ŝ
XŜ)

−1XT
Ŝ
Y if XT

Ŝ
XŜ is invertible.

When XT
Ŝ
XŜ is not invertible, the solution of (4) is not unique. In this case one

can use the generalized inverse. However, the generalized inverse is not stable
when the smallest nonzero eigenvalue of XT

Ŝ
XŜ approximately equals 0, which

may result in poor performance. We propose a modified Least Squares method
in the second stage and form our Select+mLS estimator. Let d = |Ŝ| and write
1√
n
XŜ in its singular value decomposition (SVD) form

1√
n
XŜ = UDV T (5)

where U is an n × n orthogonal matrix, D is an n × d diagonal matrix with
singular values λ1 ≥ λ2 ≥ · · · ≥ λd on the diagonal, and V T (the transpose
of V ) is a d× d orthogonal matrix. By simple algebraic operations, OLS based
on (XŜ , Y ) has the following form:

β̃OLS =
1√
n
V D−1UTY (6)

where D−1 is a d× n diagonal matrix with diagonal entries λ−1
1 , λ−1

2 , . . . , λ−1
d .

If one or more of the singular values are 0, one can utilize generalized inverse
which just takes λ−1

k = 0 for all zero-valued λk.
We propose a hard thresholding on the singular values, that is, shrinking

those singular values smaller than τn (τn > 0) to zero. Then define a modified
Least Square estimator β̃mLS(τn) in the same form of (6) except that we take
λ−1
k = 0 for all λk < τn. This estimator is similar to principal components

regression [35]. Note that if 0 ≤ τ2n ≤ Λmin(
1
nX

T
Ŝ
XŜ), β̃mLS(τn) is the same as

β̃OLS, that is,

β̃mLS(τn) = β̃OLS = (XT
Ŝ
XŜ)

−1XT
Ŝ
Y, if 0 ≤ τ2n ≤ Λmin

(

1

n
XT

Ŝ
XŜ

)

.
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Our final modified Least Squares after model selection (Select+mLS) is de-
fined by:

β̃Select+mLS,Ŝ(τn) = β̃mLS(τn) , β̃Select+mLS,Ŝc(τn) = 0. (7)

One can also use Ridge in the second stage and form the Ridge after model
selection (Select+Ridge):

β̃Select+Ridge(µn) = argmin
β: βj=0, j∈Ŝc

||Y −Xβ||22 + µn||β||22 (8)

where µn ≥ 0 is a smoothing parameter. (8) is equivalent to

β̃Select+Ridge,Ŝ(µn) = (XT
Ŝ
XŜ + µnI)

−1XT
Ŝ
Y, β̃Select+Ridge,Ŝc (µn) = 0. (9)

When the Lasso is used in the selection stage, we refer to our final estimators
as Lasso+mLS and Lasso+Ridge respectively. τn and µn are tuning parameters.
In our theorems and simulation, τn ∝ 1

n and µn ∝ 1
n can get good estimation

and prediction performance. For the sake of notational simplicity, we omit the
dependence of estimators on λn and τn or µn whenever this does not cause
confusion.

To state our main theorems, we need the following assumptions. Without loss
of generality, assume β∗ = (β∗

1 , . . . , β
∗
s , β

∗
s+1, . . . , β

∗
p) with β∗

j 6= 0 for j = 1, . . . , s
and β∗

j = 0 for j = s+ 1, . . . , p. Let S = {1, . . . , s} and β∗
S = (β∗

1 , . . . , β
∗
s ). Now

write XS and XSc as the first s and the last p − s columns of X respectively
and let C = 1

nX
TX which can be expressed in a block-wise form as follows:

C =

(

C11 C12

C21 C22

)

(10)

where C11 = 1
nX

T
S XS , C12 = 1

nX
T
SXSc , C21 = 1

nX
T
ScXS and C22 = 1

nX
T
ScXSc .

Assumption (a). ǫi are i.i.d. gaussian random variables with mean 0 and
variance σ2.

Assumption (b). Suppose that the predictors are standardized, i.e.

1

n

n
∑

i=1

xij = 0 and
1

n

n
∑

i=1

x2
ij = 1, j = 1, . . . , p. (11)

Assumption (c). There exists an constant Λmin > 0 such that

Λmin(C11) ≥ Λmin. (12)

Assumption (d). The model is high-dimensional and sparse, i.e. there exists
0 ≤ c1 < 1 and 0 < c2 < 1− c1 such that

s = sn = O(nc1), p = pn = O(en
c2

). (13)

Assumption (e).1 τn ∝ 1
n and µn ∝ 1

n .

1In fact, Theorem 3 (asymptotic normality) and Theorem 4 (bootstrap) are valid for any
µn → 0 with rate neither faster than e−nc2/4 nor slower than 1

n
.
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The gaussian assumption (a) is fairly standard in the literature. Assump-
tion (c) ensures the smallest eigenvalue of C11 is bounded away from 0 so that
its inverse behaves well. (a)–(c) are typical assumptions in sparse linear regres-
sion literature, see for example [54, 29, 30]. Assumption (d) means that the
number of relevant predictors s is allowed to diverge but much slower than n,
and that the number of predictors p can grow faster than n (up to exponen-
tially fast), which is standard in almost all high-dimensional inference literature.
Though this assumption is stronger than the typical one s log p

n → 0, it has been
used previously [54].

In the following subsections, we will show that both Select+mLS and Select+
Ridge have good asymptotic properties if the probability of selecting wrong
models P (Ŝ 6= S) decays fast, say o(e−nκ

) (where κ > 0 is a constant).

2.2. Bias and MSE of Select+mLS and Select+Ridge

In a high-dimensional setting, bias is not the only consideration of estimates
because of the bias and variance trade-off. Regularization has been a popular
technique for model fitting which results in a biased estimator but decreases the
mean squared error (MSE) dramatically. However, if two estimators have the
same MSE, we prefer the unbiased one. The following Theorems 1 and 2 provide
general bounds for the bias and MSE of the Select+mLS and Select+Ridge.

Theorem 1. Suppose that Gaussian assumption (a) is satisfied and τ2n ≤
Λmin(C11), then the bias and the MSE of β̃Select+mLS(τn) satisfy

||Eβ̃Select+mLS(τn)− β∗||22

≤ 2P (Ŝ 6= S)

{

σ2

n
tr(C−1

11 ) + ||β∗||22 +
1

τ2n

1

n
||Xβ∗||22 +

1

τ2n
σ2

}

, (14)

E||β̃Select+mLS(τn)− β∗||22

≤ σ2

n
tr(C−1

11 ) + 8

√

P (Ŝ 6= S)

{

||β∗||22 +
1

τ2n

1

n
||Xβ∗||22 +

1

τ2n
σ2

}

. (15)

Remark 2.1. Let βOLS
S = (XT

S XS)
−1XT

S Y = β∗
S + (XT

S XS)
−1XT

S ǫ be the

oracle OLS estimator. It is easy to see that E||βOLS
S − β∗||22 = σ2

n tr(C−1
11 ). The

first term on the right hand side of (15) corresponds to the oracle convergence
rate. The second term is related to model selection accuracy. In the case of the
Lasso, P (Ŝ 6= S) can decay at an exponential rate. Hence the MSE is completely

determined by the first term σ2

n tr(C−1
11 ), which can not be improved.

Remark 2.2. From theorem 1, one can easily get an upper bound for prediction
mean squared error E{ 1

n ||Xβ̃ −Xβ∗||22} since

1

n
||Xβ̃ −Xβ∗||22 ≤ Λmax

(

1

n
XTX

)

||β̃ − β∗||22.

Similarly, for β̃Select+Ridge(µn), we have:
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Theorem 2. Suppose that Gaussian assumption (a) is satisfied, then the bias
and the MSE of β̃Select+Ridge(µn) satisfy

||Eβ̃Select+Ridge(µn)− β∗||22

≤ 2µ2
n

n2Λ2
min

||β∗||22 + 2P (Ŝ 6= S)
n

µn

{

1

n
||Xβ∗||22 + σ2

}

, (16)

E||β̃Select+Ridge(µn)− β∗||22

≤ σ2

n
tr

{

(

C11 +
µn

n
I
)−2

C11

}

+
µ2
n

n2Λ2
min

||β∗||22

+ 2

√

P (Ŝ 6= S)

{

||β∗||22 +
n

µn

{

1

n
||Xβ∗||22 + σ2

}}

. (17)

Theorems 1 and 2 indicate that as long as the probability of selecting wrong
models P (Ŝ 6= S) decays fast, say at an exponential rate, Select+mLS and
Select+Ridge are asymptotically unbiased and their MSEs decay at the oracle
rate. We have known that under the Irrepresentable condition and other regu-
larity conditions, the probability of the Lasso selecting wrong models satisfies
P (Ŝ 6= S) = o(e−nc2

) [54]. Then applying the above theorems to Lasso+mLS
and Lasso+Ridge as special cases, we can easily derive their convergence rates
of bias and MSE, see Section 3 for more details.

2.3. Asymptotic normality of Select+mLS and Select+Ridge

In this section, we show asymptotic normality of Select+mLS and Select+Ridge.
Let Ψ̂ and Ψ be the distribution functions of

√
n(β̃S − β∗

S) and N(0, σ2C−1
11 )

respectively, where β̃ can be any one of the two post model selection estimators:
Select+mLS and Select+Ridge. Let Ŝ be the selected predictor set,

Theorem 3. Suppose that assumptions (a)–(e) are satisfied and that the model
selection procedure is consistent, i.e., P (Ŝ 6= S) = o(1), then Select+mLS and
Select+Ridge are asymptotically normal2, that is,

sup
t∈Rs

|Ψ̂(t)−Ψ(t)| → 0, as n → ∞. (18)

This theorem states that model selection consistency in the first stage im-
plies the asymptotic normality of the second stage estimators: Select+mLS and
Select+Ridge. The proof of this theorem can be found in Appendix C.

2.4. Residual bootstrap after Select+mLS and Select+Ridge

To make reliable scientific discoveries, we need to establish valid inference pro-
cedures including constructing confidence regions and testing for the parameter

2For Select+Ridge, we need assumption (g) proposed in the next subsection to hold. Due
to the restricted space, we don’t state it separately.
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estimation. Although we have derived the asymptotic normality of Select+mLS
and Select+Ridge, it is difficult to use in practice because the noise variance σ2

is not known and hard to estimate in a high-dimensional setting. The bootstrap
is a popular alternative in this case. A summary of bootstrap methods in linear
and generalized linear penalized regression models for fixed p can be found in
[46]. We will consider the p ≫ n case by proposing a new inference procedure:
residual bootstrap after two stage estimators. Our method allows p to grow at
an exponential rate in n.

In the context of a regression model, residual bootstrap is a standard method
to bootstrap when the design matrixX is deterministic [18, 23, 32]. Let β̃ denote
Select+mLS or Select+Ridge, the residual vector is given by:

ǫ̂ = (ǫ̂1, . . . , ǫ̂n)
T = Y −Xβ̃. (19)

Consider the centered residuals at the mean {ǫ̂i − µ̂, i = 1, . . . , n}, where
µ̂ = 1

n

∑n
i=1 ǫ̂i. For residual bootstrap, one obtains ǫ∗ = (ǫ∗1, . . . , ǫ

∗
n)

T by re-
sampling with replacement from the centered residuals {ǫ̂i − µ̂, i = 1, . . . , n},
and formulates Y ∗ as follows

Y ∗ = Xβ̃ + ǫ∗. (20)

Then one can define the selected predictor set Ŝ∗ and Select+mLS or Se-
lect+Ridge β̃∗ based on the bootstrap sample (X,Y ∗). For the bootstrap to be
valid, one needs to verify that the conditional distribution of T ∗

n =
√
n(β̃∗ − β̃)

given ǫ, which can be computed directly from the data, approximates the dis-
tribution of Tn =

√
n(β̃ − β∗). The difference between two distributions can be

characterized by Mallows metric.

Definition 1. The Mallows metric d, relative to the Euclidean norm || · ||, of
two distributions F and F̃ is the infimum of (E||Z − W ||22)

1
2 over all pairs of

random vectors Z and W , where Z has distribution F and W has distribution
F̃ . That is,

d(F, F̃ ) = inf
Z∼F,W∼F̃

(E||Z −W ||22)
1
2 . (21)

By Lemma 8.1 in [7], the infimum can be attained. To proceed, denote Gn and
G∗

n the distribution of Tn and the conditional distribution of T ∗
n respectively. Let

P ∗ denote the conditional probability given the error variables {ǫi, i = 1, . . . , n}.
To show the validity of residual bootstrap after Select+mLS or Select+Ridge,
we need more conditions:

Assumption (dd). Suppose that s2/n → 0, as n → ∞.

Assumption (f). Suppose that both the probability of selecting wrong models
based on the original data (X,Y ) and that based on the resample (X,Y ∗) decay
at an exponential rate, i.e. P (Ŝ 6= S) = o(e−nc2

) and P ∗(Ŝ∗ 6= Ŝ) = op(e
−nc2

).

Assumption (g). Suppose that

1

n
||Xβ∗||22 = O(n). (22)
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Assumption (h). Suppose that max1≤i≤n

∑s
j=1 x

2
ij = o(n

1
2 ).

Assumption (dd) is stronger than assumption (d) because it requires that
s grows slower than

√
n. Without considering model selection, [8] showed that

residual bootstrap OLS fails if p2/n does not tend to 0. Therefore, the as-
sumption (dd) cannot be weakened. As we shown in the next section, assump-
tion (f) is satisfied if the Irrepresentable condition and some regularity con-
ditions hold. Assumption (g) is a technical assumption which makes the con-
vergence rates in Theorems 1 and 2 more clear. If we suppose Λmax(C11) =
Λmax(

1
nX

T
SXS) ≤ Λmax < ∞ where Λmax is a constant, assumption (g) is

equivalent to ||β∗||22 = O(n) because

Λmin||β∗||22 ≤ 1

n
||Xβ∗||22 =

1

n
||XSβ

∗
S ||22 ≤ Λmax

(

1

n
XT

SXS

)

||β∗||22 ≤ Λmax||β∗||22.

Since β∗ has only s ≪ n nonzero components, this assumption is not very
restrictive. Obviously, it is satisfied when the maximum of β∗

j is upper bounded
by a constant. Assumption (h) is not very restrictive either because the number

of terms in the sum is s ≪ n
1
2 and it clearly holds when all the predictors

corresponding to the nonzero coefficients are bounded by a constant M , i.e.
|xij | ≤ M, i = 1, . . . , n, j = 1, . . . , s. [29] also assumed this condition to show
the asymptotic normality of Bridge estimator.

Let “→p” denote convergence in probability,

Theorem 4. Suppose that assumptions (a)–(h) and (dd) are satisfied, then
d(Gn, G

∗
n) converges in probability to zero, i.e.,

d(Gn, G
∗
n) →p 0. (23)

Theorem 4 states that residual bootstrap after Select+mLS or Select+Ridge
gives a valid approximation to the distribution of Tn if the probabilities of
selecting wrong models P (Ŝ 6= S) and P ∗(Ŝ∗ 6= Ŝ) decay at an exponential rate
and the number of true predictors s grows slower than

√
n. The proof of this

theorem can be found in Appendix C.
In the next section, we will apply the above Theorems 1, 2, 3 and 4 to two

special cases: Lasso+mLS and Lasso+Ridge.

3. Asymptotic properties of Lasso+mLS and Lasso+Ridge

As we shown in Section 2, Select+mLS and Select+Ridge have attractive asymp-
totic properties (see Theorem 1, 2, 3 and 4) if the probability of selecting wrong
models decays exponentially fast. Applying these theorems to Lasso+mLS and
Lasso+Ridge, we can easily attain their convergence rates of bias and MSE,
asymptotic normality and the validity of residual bootstrap. To proceed, we
will first give a brief overview of the assumptions used to get model selection
consistency of the Lasso investigated by [54]. Let sign(·) map positive entries
to 1, negative entries to −1 and zero to zero.
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Definition 2 (Irrepresentable condition [25, 48, 36, 54, 51]). There exists
a positive constant vector η, such that

|C21C
−1
11 sign(β∗

S)| ≤ 1− η (24)

where 1 is a p−s by 1 vector with entries 1 and the inequality holds element-wise.

Assumption (i). There exist constant c1 + c2 < c3 ≤ 1 and M > 0 so that

n
1−c3

2 min
1≤i≤s

|β∗
i | ≥ M. (25)

Assumption (j). Suppose that the tuning parameter λn in the definition of the

Lasso satisfies λn ∝ n
1+c4

2 with c2 < c4 < c3 − c1.

The Irrepresentable Condition is a key assumption on the design that can
be weakened by e.g. using stability selection instead of the Lasso. [38] showed
that stability selection can achieve the same convergence rate of the probability
of selecting wrong models as the Lasso does but under a less restrictive sparse
eigenvalue condition. We will give a brief overview of stability selection combined
with randomized Lasso in sparse linear regression in the Appendix B and discuss
the asymptotic properties of two stage estimators based on stability selection in
the next section. Assumption (i) requires a gap of size n

c3
2 between the decay

rate of β∗ and n− 1
2 thus preventing the estimation from being dominated by

the noise terms. It is weaker than min1≤i≤s |β∗
i | ≥ M , which was assumed by

[29] who studied the asymptotic properties of the Bridge estimator. [22] also
proposed a similar constraint min1≤i≤s |β∗

i | ≥ M
nκ , 0 ≤ κ < 1

2 to show model
selection consistency of the Sure Independent Screening.

Now, we are ready to state our main results. Let β̃ and β̃∗ denote the
Lasso+mLS (or Lasso+Ridge) based on the original data (X,Y ) and that based
on the resample (X,Y ∗) respectively, then we can define Ψ̂, Ψ, Tn, T

∗
n , Gn and

G∗
n as Section 2 does.
Firstly, combining Theorem 1 and the model selection property of the Lasso

(see Lemma 2 in Appendix A), we can attain the following corollary:

Corollary 1. Suppose that assumptions (a)–(d), (g), (i), (j) and the Irrepre-
sentable condition (24) are satisfied, if τn ∝ 1

n and µn ∝ e−nc2/4, then the bias

and the MSE of Lasso+mLS and Lasso+Ridge estimators β̃ satisfy

||Eβ̃ − β∗||22 = o(e−nc2/2) → 0, as n → ∞, (26)

E||β̃ − β∗||22 = O

(

σ2

Λmin

s

n

)

. (27)

Proof. We only consider the Lasso+mLS since the proof for Lasso+Ridge is
similar. By Lemma 2 in Appendix A, we have

P (Ŝ 6= S) ≤ P (sign(β̂(λn)) 6= sign(β∗)) ≤ o(e−nc2

).
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From assumption (c) (12), we know that Λmin(C11) ≥ Λmin > 0. And since C11

is an s by s matrix, we have

σ2

n
tr(C−1

11 ) ≤ σ2s

n
Λ−1
min.

Under condition (g) or equation (22), we have

||β∗||22 ≤ Λ−1
min

1

n
||Xβ∗||22 = O(n).

The corollary is obtained directly from Theorem 1.

Corollary 1 indicates that Lasso+mLS and Lasso+Ridge are asymptotically
unbiased. In particular, their biases decay at an exponential rate and their
MSEs achieve the oracle convergence rate of s

n which is much faster than that
of the Lasso. (Under the restricted eigenvalue condition, the Lasso achieves
convergence rate of s log p

n for MSE, see for example [45, 52]).
Secondly, combining Theorem 3 and Lemma 2, we can easily derive the

asymptotic normality of Lasso+mLS and Lasso+Ridge.

Corollary 2. Suppose conditions (a)–(e), (i), (j) and the Irrepresentable Con-
dition (24) are satisfied, then Lasso+mLS and Lasso+Ridge are asymptotically
normal3. That is,

sup
t∈Rs

|Ψ̂(t)−Ψ(t)| → 0, as n → ∞. (28)

Remark 3.1. For fixed p and fixed β∗, [32] showed that for λn = o(
√
n), the

Lasso estimator is also asymptotically normal N(0, σ2C−1) under conditions
1
nX

TX → C and 1
n max1≤i≤n xT

i xi → 0. Then the asymptotic covariance ma-

trix of the rescaled and centered Lasso estimator
√
n(β̂S − β∗

S) is σ
2 multiplied

by
C−1

11 + C−1
11 C12(C22 − C21C

−1
11 C12)C21C

−1
11 (� C−1

11 )

where matrix A � B means A − B is positive definite. Therefore, Lasso+mLS
and Lasso+Ridge have smaller asymptotic covariance matrix (which is σ2C−1

11 )
compared with the Lasso and hence reduce estimation uncertainty. Moreover,
as pointed out by [21], one cannot find a λn such that the Lasso estimator is
model selection consistent and asymptotically normal (

√
n−consistency) simul-

taneously. In this sense, Lasso+mLS and Lasso+Ridge improve the performance
of the Lasso.

Lastly, we verify the validity of residual bootstrap after Lasso+mLS and
Lasso+Ridge. We would like to begin with showing an interesting result that
the Lasso estimator β̂∗ based on the resample (X,Y ∗) also has model selection
consistency.

β̂∗ = argmin
β

{

||Y ∗ −Xβ̃||2 + λn||β||1
}

. (29)

3For Lasso+Ridge, we need assumption (g) to hold. Due to the restricted space, we don’t
state it separately.
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Recall that Ŝ = {j ∈, {1, 2, . . . , p} : β̃j 6= 0} and Ŝ∗ = {j ∈{1, 2, . . . , p} : β̂∗
j 6= 0}

are the sets of selected predictors by β̃ and β̂∗ respectively.

Lemma 1. Suppose conditions (a)–(e), (g)–(j), (dd) and the Irrepresentable
Condition (24) are satisfied, then the following holds,

P ∗(Ŝ∗ 6= Ŝ) = op(e
−nc2

).

Now, applying Theorem 4, Lemma 1 and Lemma 2, we can state our main
result:

Corollary 3. Suppose that conditions (a)–(e), (g)–(j), (dd) and the Irrepre-
sentable Condition (24) are satisfied, then residual bootstrap after Lasso+mLS
or Lasso+Ridge is consistent in the sense that

d(Gn, G
∗
n) →p 0. (30)

Remark 3.2. In practice, if the Irrepresentable Condition does not hold, one
needs to try other model selection methods, e.g., Bolasso [2] or stability selection.
As stated before, as long as the probabilities of selecting wrong models P (Ŝ 6= S)
and P ∗(Ŝ∗ 6= Ŝ) decay at an exponential rate o(e−nc2

), residual bootstrap after
two stage estimator gives valid approximation.

Corollary 3 indicates that residual bootstrap after Lasso+mLS or Lasso+Ridge
gives a valid approximation to the distribution of Tn and then can be used to
construct confidence intervals and test for parameter estimation. The proof is
straightforward and we omit it.

4. Asymptotic properties of modified least squares and ridge after
stability selection

If the Irrepresentable Condition is violated, the Lasso cannot correctly select the
true model. In this case, one needs to apply other model selection criteria instead
of the Lasso. Stability selection is one popular method among many others.
[38] showed that it can achieve the same convergence rate of the probability of
selecting wrong models but under a less restrictive sparse eigenvalue condition.
More details are given in the Appendix B.

Let β̃ and β̃∗ denote the modified Least Squares (or Ridge) after stability
selection (SS+mLS or SS+Ridge) based on the original data (X,Y ) and that
based on the resample (X,Y ∗) respectively, then we can define Ψ̂, Ψ, Tn, T

∗
n , Gn

and G∗
n as Section 2 does. Applying the asymptotic properties of Select+mLS

and Select+Ridge in Section 2, we can derive without any proofs the following
corollaries parallel to Corollary 1, 2, 3.

Corollary 4. Assume the conditions in Lemma 3 in the Appendix B and con-
ditions (b), (c) and (g) in the previous sections are satisfied, if τn ∝ 1

n and

µn ∝ e−nc2/4, then the bias and the MSE of the SS+mLS and SS+Ridge β̃
satisfy

||Eβ̃ − β∗||22 = o(e−nc2/2) → 0, n → ∞, (31)
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E||β̃ − β∗||22 = O

(

σ2

Λmin

s

n

)

. (32)

Corollary 5. Assume the conditions in Lemma 3 in the Appendix B and con-
ditions (b)–(e), (g), (h) and (dd) in the previous sections are satisfied, then the
SS+mLS and SS+Ridge β̃ are asymptotically normal4, that is,

sup
t∈Rs

|Ψ̂(t)−Ψ(t)| → 0, as n → ∞. (33)

Corollary 6. Assume the conditions in Lemma 3 in the Appendix B and con-
ditions (b), (c), (e), (g), (h) and (dd) in the previous sections are satisfied, then
residual bootstrap after SS+mLS or SS+Ridge is consistent in the sense that

d(Gn, G
∗
n) →p 0. (34)

5. Simulation

In this section we carry out simulation studies to evaluate the finite sample
performance of Lasso+mLS and Lasso+Ridge. We have also constructed sim-
ulations for SS+mLS and SS+Ridge (modified Least Squares or Ridge after
stability selection). Though in theory stability selection achieves the same con-
vergence rate of the probability of selecting wrong models under weaker condi-
tions compared with the Lasso, their finite sample performance is similar to the
Lasso unless the signal to noise ratio is very high. In our simulation, Lasso+mLS
and Lasso+Ridge work well and perform similarly with SS+mLS and SS+Ridge
regardless of whether the Irrepresentable condition holds or not. Therefore we
only present here the results for Lasso+mLS and Lasso+Ridge.

In the following simulations, we also compared the performance of the Lasso+
mLS (with τn = 1/n) with that of the Lasso+OLS and found that their finite
sample results are almost the same. This is true because the smallest singular
value of the matrix XŜ containing the predictors selected by Lasso is bounded
well from 0 in all examples which makes the hard thresholding step not necessary.
We will omit the results of Lasso+OLS for the sake of brevity.

5.1. Comparison of Bias2, MSE and PMSE

This subsection compares the bias2 (||Eβ̃ − β∗||22), MSE and prediction mean
squared error (PMSE) of the Lasso+mLS and Lasso+Ridge with those of the
Lasso. We use R package “glmnet” to compute the Lasso solution. As part of
the simulation, we fix τn = 1/n and µn = 1/n, so the only tuning parameter for
all the three methods is λn which can be chosen by a 5-fold cross-validation.

Our simulated data are drawn from the following model

y = xTβ∗ + ǫ, ǫ ∼ N(0, σ2).

4For SS+Ridge, we need assumption (g) to hold. Due to the restricted space, we don’t
state it separately.
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Table 1

Example settings

Example n p s Σij , i 6= j β∗

1 200 500 10 0 case (1)
2 400 500 10 0 case (1)

3 200 500 10 0.5|i−j| case (1)

4 400 500 10 0.5|i−j| case (1)
5 200 500 10 0 case (2)
6 400 500 10 0 case (2)

7 200 500 10 0.5|i−j| case (2)

8 400 500 10 0.5|i−j| case (2)

We set p = 500, s = 10 and σ = 1. The predictor vector x is generated from a
multivariate normal distribution N(0,Σ). The value of x is generated once and
then kept fixed. We consider two different Toeplitz covariance matrices Σ which
control the correlation among the predictors: (1) Σ = I and (2) Σij = ρ|i−j|

where ρ = 0.5. For the true parameter β∗, the first s = 10 elements are nonzero
with two different patterns of sign:

case (1) : β∗
1−10 = {1.5, 1.5, 1.5, 1.5, 1.5, 0.75, 0.75, 0.75, 0.75, 0.75},

case (2) : β∗
1−10 = {1.5, 1.5,−1.5,−1.5, 1.5, 0.75,−0.75, 0.75,−0.75,−0.75}.

The remaining p − s = 490 elements of β∗ are zero. Table 1 summaries eight
different example settings.

After X was generated, we examined the Irrepresentable condition and found
that it holds in examples 1–6 and is violated in examples 7–8. In order to evaluate
the prediction performance, we generate an independent testing data set of size
500 and compute the PMSE. Summary statistics are calculated based on 100
replications (keeping X fixed) and showed in Table 2 and Figure 1.

We see that Lasso+mLS and Lasso+Ridge perform almost the same. They
not only dramatically decrease the bias2 of the Lasso by more than 90% but
also can reduce the variance (in fact, their variances are 20%–55% smaller than
that of the Lasso in all examples except in example 7 where their variances are
45% larger), therefore they improve the MSE and PMSE by 40%–80% and 5%–
25% respectively. These benefits occur regardless of whether the Irrepresentable
condition holds or not, which indicates that Lasso+mLS and Lasso+Ridge dom-
inate the performance of the Lasso in terms of estimation.

5.2. Finite sample distribution

This section evaluates the finite sample distribution of the scaled and centered
Lasso+mLS estimator Tn =

√
n(β̂ − β∗). Lasso+Ridge behaves similarly, so we

omit it.
We show in Figure 2 the histograms and Normal Q-Q Plots of the scaled and

centered Lasso and Lasso+mLS estimators based on 1000 replications. We only
present the results for individual coefficients Tn,j in example 1 with j = 1, 6, 11
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Table 2

Comparison of Lasso, Lasso+mLS and Lasso+Ridge in terms of

bias2, MSE and PMSE

Example Lasso Lasso+mLS Lasso+Ridge
1 bias2 0.266 0.003 0.005

MSE 0.42(0.11) 0.08(0.05) 0.07(0.04)
PMSE 1.45(0.15) 1.08(0.08) 1.08(0.08)

2 bias2 0.081 0.001 0.001
MSE 0.13(0.04) 0.03(0.03) 0.03(0.01)
PMSE 1.14(0.08) 1.04(0.07) 1.04(0.07)

3 bias2 0.062 0.001 0.001
MSE 0.18(0.06) 0.09(0.05) 0.09(0.05)
PMSE 1.24(0.11) 1.07(0.08) 1.07(0.07)

4 bias2 0.02 0.001 0.001
MSE 0.08(0.03) 0.04(0.02) 0.04(0.02)
PMSE 1.09(0.07) 1.04(0.07) 1.04(0.07)

5 bias2 0.212 0.001 0.002
MSE 0.35(0.09) 0.06(0.04) 0.06(0.03)
PMSE 1.36(0.14) 1.08(0.08) 1.08(0.07)

6 bias2 0.097 0.0002 0.0001
MSE 0.15(0.04) 0.03(0.02) 0.03(0.01)
PMSE 1.16(0.08) 1.03(0.06) 1.03(0.06)

7 bias2 0.494 0.053 0.079
MSE 0.72(0.19) 0.39(0.31) 0.44(0.38)
PMSE 1.48(0.16) 1.3(0.18) 1.32(0.2)

8 bias2 0.343 0.004 0.007
MSE 0.45(0.11) 0.07(0.04) 0.08(0.08)
PMSE 1.26(0.09) 1.05(0.08) 1.05(0.08)

∗ The numbers in parentheses are the corresponding standard

deviations.

corresponding to the largest, the medium sized and the zero-valued coefficients
respectively. Other coefficients in example 1 and the coefficients in examples 2–8
behave similarly (except example 7 where the Irrepresentable condition does not
hold). We can see that the finite sample distribution of the Lasso+mLS highly
coincides with the asymptotically normal distribution which verifies the claims
in Theorem 3 and Corollary 2. Although the finite sample distributions of the
Lasso estimator for the largest and the medium sized coefficients also seem to
somewhat resemble normality, the centers shift away from 0.

We should mention that Lasso+mLS suffers the same issue proposed in [44]
which studied the distribution of the adaptive Lasso estimator, that is, the finite
sample distribution can be highly non-normal when there is not a gap between
the decay rate of the nonzero β∗ and the order n−1/2.

5.3. Confidence intervals and coverage probabilities

In this subsection, we study the finite sample performance of residual boot-
strap Lasso+mLS and Lasso+Ridge using the examples from Table 1. Since
Lasso+mLS and Lasso+Ridge behave similarly, we only show the results of
Lasso+mLS for the sake of brevity.
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Fig 1. Comparisons of bias2, MSE and PMSE. Three methods are considered: Lasso
(black circle), Lasso+mLS (red triangle) and Lasso+Ridge (green “+”). Lasso+mLS and
Lasso+Ridge behave similarly, both dominate the performance of the Lasso.

For each data set (X,Y ), we generated 500 bootstrap samples (X,Y ∗) by
residual bootstrap and then computed the Lasso and Lasso+mLS based on
each bootstrap sample (X,Y ∗), both are denoted by β̂∗

(b), b = 1, . . . , 500. Let

t̂α/2 and t̂1−α/2 be the α/2 and 1− α/2 quantiles of the empirical distribution

of β̂∗. Two approaches are considered to construct 1−α confidence intervals for
each individual parameter β∗

j , j = 1, . . . , p: (1) percentile confidence intervals

defined by [t̂α/2, t̂1−α/2]; and (2) basic confidence intervals defined by [2β̂ −
t̂1−α/2, 2β̂− t̂α/2] where β̂ is the Lasso estimator for residual bootstrap Lasso or
Lasso+mLS for residual bootstrap Lasso+mLS, see [20, 15]. This procedure is
repeated 100 times and then an estimate of the coverage probability is obtained.

We found that basic confidence intervals based on residual bootstrap Lasso
provide more accurate coverage probabilities while having the same length as
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Fig 2. Histograms and Normal Q-Q Plots of the scaled and centered Lasso and Lasso+mLS
estimators in example 1 for Tn,j =

√
n(β̂j − β∗

j ), j = 1, 6, 11.

percentile confidence intervals (the basic 90% confidence intervals can achieve
coverage probabilities larger than 80% while the percentile confidence intervals
are too biased that their coverage probabilities can be lower than 20% for the
nonzero-valued parameters, see Figure 3). The distribution of residual bootstrap
Lasso is far away from being centered at the true value (Figure 4) which makes



Lasso+mLS and Lasso+Ridge in SHLR 3143

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

parameters (1-10 are nonzero)

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

Example 1  

basic

percentile

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

parameters (1-10 are nonzero)

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

Example 2  

basic

percentile

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

parameters (1-10 are nonzero)

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

Example 3  

basic

percentile

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

parameters (1-10 are nonzero)

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

Example 4  

basic

percentile

Fig 3. Comparison of two confidence intervals construction approaches: basic (black cir-
cle) and percentile (red triangle). Coverage probabilities of 90% confidence intervals for each
β∗
j , j = 1, . . . , s, s + 1, . . . , s + 20 based on residual bootstrap Lasso are shown in this figure.

We only show the results for examples 1–4 since the results for examples 5–8 are similar.
For a better view, the coverage probabilities for only 20 zero-valued parameters are present
and those for the remaining p− s− 20 zero-valued parameters are similar to the 20 presented
and therefore are omitted. Basic confidence intervals provide much more accurate coverage
probabilities than percentile confidence intervals.

the percentile confidence intervals fail. Similar phenomenon happens for paired
bootstrap Lasso method. Therefore, we suggest using the basic confidence in-
tervals in practice with high-dimensional data. In what follows, our confidence
intervals are all basic.

Figure 5 shows the coverage probabilities of 90% confidence intervals based
on residual bootstrap Lasso+mLS and residual bootstrap Lasso. In this fig-
ure, only 20 zero-valued parameters are presented for the sake of brevity. The
coverage probabilities for the remaining p − s − 20 zero-valued parameters are
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Fig 4. Histograms of the distribution of residual bootstrap Lasso with the true value plotted as
a red vertical line. This figure only show the results for the first 20 parameters in example 1.
Other parameters and other examples behave similarly. The large bias of the residual bootstrap
Lasso makes percentile confidence intervals fail.

similar to the 20 presented and therefore are omitted. In addition, we average
the coverage probabilities and interval lengths over nonzero-valued parameters
part and zero-valued parameters part respectively (see Tables 3 and 4). From
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Fig 5. Coverage probabilities of 90% confidence intervals for each β∗
j , j = 1, . . . , s, s+1, . . . , s+

20 based on two methods: residual bootstrap Lasso+mLS (RBLmLS, red triangle) and residual
bootstrap Lasso (RBL, black circle). For a better view, only 20 zero-valued parameters are
present. The results for the remaining p− s− 20 zero-valued parameters are similar to the 20
presented and therefore are omitted. Residual bootstrap Lasso+mLS provides more accurate
coverage probabilities (7% in average closer to the preassigned level (90%) for nonzero β∗

j and

5% closer to 1 for zero β∗
j ).

Figure 5 and Tables 3 and 4, we can see that residual bootstrap Lasso+mLS
gives accurate coverage probabilities (approximately 88% for nonzero β∗

j and 1
for zero β∗

j ) when the Irrepresentable condition holds (see examples 1–6), which

verifies Corollary 3. Note that, for zero-valued parameters, residual bootstrap
Lasso+mLS produces confidence intervals with coverage probabilities close to 1
and very short lengths (approximately 0, see Figure 6 and Table 4), reflecting the
oracle properties in Corollary 2. By contrast, residual bootstrap Lasso cannot
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Table 3

Mean coverage probability of residual bootstrap Lasso (RBL), residual bootstrap
Lasso+mLS (RBLmLS) and paired bootstrap Lasso (PBL)

Example 1 2 3 4 5 6 7 8
nonzero β∗

j RBL 0.725 0.855 0.835 0.865 0.792 0.875 0.717 0.821

RBLmLS 0.880 0.882 0.880 0.884 0.901 0.917 0.835 0.903
PBL 0.772 0.634 0.833 0.816 0.801 0.609 0.866 0.512

zero β∗
j RBL 0.937 0.947 0.965 0.968 0.940 0.947 0.931 0.926

RBLmLS 0.999 1.000 1.000 1.000 1.000 1.000 0.991 0.997
PBL 0.990 0.996 0.997 0.999 0.991 0.997 0.987 0.992

Table 4

Mean interval length of residual bootstrap Lasso (RBL), residual bootstrap Lasso+mLS
(RBLmLS) and paired bootstrap Lasso (PBL)

Example 1 2 3 4 5 6 7 8
nonzero β∗

j RBL 0.209 0.158 0.278 0.202 0.222 0.165 0.266 0.203

RBLmLS 0.248 0.178 0.322 0.241 0.254 0.204 0.350 0.290
PBL 0.288 0.170 0.307 0.207 0.293 0.176 0.412 0.238

zero β∗
j RBL 0.011 0.004 0.002 0.001 0.009 0.004 0.017 0.014

RBLmLS 0.001 0.000 0.000 0.000 0.000 0.000 0.009 0.002
PBL 0.024 0.016 0.012 0.010 0.022 0.016 0.031 0.025

provide accurate coverage probabilities unless n is large enough (the coverage
probability for nonzero β∗

j is around 75% for n = 200 and is around 85% for
n = 400). Even when the Irrepresentable condition doesn’t hold (see examples
7–8), residual bootstrap Lasso+mLS can also provide reasonable coverage prob-
abilities (83.5%, 90.3% for nonzero β∗

j , and 99.1%, 99.7% for zero β∗
j ) while resid-

ual bootstrap Lasso does not (71.7%, 82.1% for nonzero β∗
j and 93.1%, 92.6% for

zero β∗
j ). Compared with residual bootstrap Lasso, the coverage probability of

residual bootstrap Lasso+mLS is about 7% in average closer to the preassigned
level (90%) for nonzero β∗

j and 5% closer to 1 for zero β∗
j . Even though residual

bootstrap Lasso has shorter (17% in average) interval lengths for the nonzero
β∗
j , it loses accuracy in coverage. Overall, residual bootstrap Lasso+mLS is bet-

ter than residual bootstrap Lasso. Moreover, when n increases, the performance
of both methods become better.

In practice, many people prefer to perform paired bootstrap Lasso (resam-
pling from the pairs (xi, yi), i = 1, . . . , n instead of from the residual) even
when it makes sense to think of the design matrix as fixed. Therefore, we give
some comparisons of residual bootstrap Lasso+mLS and paired bootstrap Lasso.
Figure 7 shows the coverage probabilities v.s. average interval lengths based on
residual bootstrap Lasso+mLS and paired bootstrap Lasso for different exam-
ples. Again, we average the coverage probabilities and interval lengths over
nonzero-valued parameters part and zero-valued parameters part respectively
and show them in Table 3 and Table 4. We can see that residual bootstrap
Lasso+mLS provides more accurate coverage probabilities (0.5% closer to 1 for
zero β∗

j and 14% in average closer to the preassigned level for nonzero β∗
j ) with

more than 90% shorter (for zero β∗
j ) or at least comparable (for nonzero β∗

j )
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Fig 6. Lengths of 90% confidence intervals for each β∗
j , j = 1, . . . , s, s+1, . . . , s+20 based on

two methods: residual bootstrap Lasso+mLS (RBLmLS, red triangle) and residual bootstrap
Lasso (RBL, black circle). For a better view, only 20 zero-valued parameters are present. The
interval lengths for the remaining p − s − 20 zero-valued parameters are similar to the 20
presented and therefore are omitted.

interval lengths compared with paired bootstrap Lasso. Based on our simula-
tions, we conclude that residual bootstrap Lasso+mLS and residual bootstrap
Lasso+Ridge are better choices for constructing confidence intervals.

6. Conclusion

We have derived for the first time the asymptotic properties of Lasso+mLS and
Lasso+Ridge in sparse high-dimensional linear regression models where p ≫ n.
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Fig 7. Coverage probabilities v.s. average interval lengths for 90% confidence intervals based
on two methods: paired bootstrap Lasso (PBL, black circle) and residual bootstrap Lasso+mLS
(RBLmLS, red triangle). The latter is better since it provides more accurate coverage proba-
bilities (0.5% closer to 1 for zero β∗

j and 14% in average closer to the preassigned level (90%)

for nonzero β∗
j ) but with 90% shorter (for zero β∗

j ) or at least comparable (for nonzero β∗
j )

interval lengths.

Under the Irrepresentable condition and other common conditions on scaling
(n, s, p), we showed that both Lasso+mLS and Lasso+Ridge are asymptotically
unbiased and they achieve oracle convergence rate of s

n for MSE which improves
the performance of the Lasso. In addition, Lasso+mLS and Lasso+Ridge esti-
mators have an oracle property in the sense that they can select the true predic-
tors with probability converging to 1 and the estimates of nonzero parameters
have the same asymptotic normal distribution that they would have if the zero
parameters were known in advance.

We then proposed residual bootstrap after Lasso+mLS and Lasso+Ridge
methods and showed that they give valid approximations to the distributions
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of Lasso+mLS and Lasso+Ridge, respectively, provided that the probability of
the Lasso selecting wrong models decays at an exponential rate and the number
of true predictors s goes to infinity slower than

√
n. In fact, our analysis is

not limited to adopting Lasso in the selection stage, but is applicable to any
other model selection criteria with exponentially decay rates of the probability
of selecting wrong models, for example, stability selection, SCAD and Dantzig
selector.

Lastly, we presented simulation results assessing the finite sample perfor-
mance of Lasso+mLS and Lasso+Ridge and observe that they not only dra-
matically decrease the bias2 of the Lasso by more than 90% but also reduce the
MSE and PMSE by 40% − 80% and 5% − 25% respectively. Further, we con-
structed 90% confidence interval based on our residual bootstrap Lasso+mLS
(or Lasso+Ridge) and examined the coverage accuracy. We found that our
method resulted in coverage probability approximately 88% for nonzero β∗

j and
1 for zero β∗

j , which is much more accurate (approximately 7% closer to the
desired level) than bootstrap Lasso method.
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Appendix A: Model selection consistency of the Lasso

Lemma 2 (Zhao and Yu (2006)). Under conditions (a)–(d), (i), (j) and the
Irrepresentable Condition (24), the Lasso has strong sign consistency. That is,

P (sign(β̂(λn)) = sign(β∗)) ≥ 1− o(e−nc2

) → 1 as n → ∞.

Remark A.1. In fact, looking carefully through the proof of Lemma 2 in [54],
the Gaussian assumption (a) can be relaxed by a subgaussian assumption. That
is, assume that there exists constants C, c > 0 so

P (|ǫi| ≥ t) ≤ Ce−ct2 , ∀t ≥ 0.

This result tells us that using the Lasso we can allow p to grow faster than n
(up to exponentially fast) while the probability of correct model selection still
converges to 1 fast.
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Appendix B: Stability selection

Here we will give a brief introduction of stability selection combined with ran-
domized Lasso in sparse linear regression.

The randomized Lasso is a generalization of the Lasso, which penalizes the
absolute value |βk| of every component with a penalty randomly chosen in the
range [λ, λ/α] for α ∈ (0, 1]. Let Wk be i.i.d. random variables in [α, 1] for

k = 1, . . . , p. The randomized Lasso estimator β̂λ,W is defined by

β̂λ,W = argmin
β

{

||Y −Xβ||2 + λ

p
∑

k=1

|βk|
Wk

}

(35)

where λ ∈ R+ is the regularization parameter. [38] proposed an appropriate
distribution of the weightsWk: Wk = α with probability pw ∈ (0, 1) and Wk = 1
otherwise.

For any given regularization parameter λ ∈ Λ ⊆ R+, denote the selected
predictor set based on the samples I ⊂ {1, . . . , n} as Ŝλ,W (I) = {k : β̂λ,W

k 6= 0}.
Definition 3 (Meinshausen and Buhlmann (2010)). Let I be a random sub-
sample of {1, . . . , n} of size ⌊n/2⌋, drawn with replacement. For every set K ⊆
{1, . . . , p}, the probability of being in the selected set Ŝλ,W (I) is

Π̂λ
K = P ∗{K ⊆ Ŝλ,W (I)} (36)

where the probability P ∗ is with respect to both the random subsampling and
the randomness of the weights Wk.

With stability selection, we subsample the data many times and then choose
the predictors with a high selection probability.

Definition 4 (Meinshausen and Buhlmann (2010)). For a cut-off πthr with
0 < πthr < 1 and a set of regularization parameters Λ, the set of stable variables
is defined as

Ŝstable = {k : max
λ∈Λ

Π̂λ
k ≥ πthr}. (37)

For stability selection with randomized Lasso, one can obtain selection con-
sistency by just assuming sparse eigenvalues, a condition that is much weaker
than that of the Irrepresentability. Sparse eigenvalues condition essentially re-
quires that the minimum and maximum eigenvalues, for a selection of order s
predictors, are bounded away from 0 and ∞ respectively.

Definition 5 (Meinshausen and Buhlmann (2010)). For any K ⊆ {1, . . . , p},
let XK be the restriction of X to columns in K. The minimal sparse eigenvalue
φmin is defined for k ≤ p as

φmin(k) = inf
a∈R⌈k⌉,K⊆{1,...,p}:|K|≤⌈k⌉

{ ||XKa||
||a||

}

(38)

and analogously for the maximal sparse eigenvalue φmax.
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Sparse eigenvalues assumption. There are some C > 1 and some κ ≥ 9
such that

φmax(Cs2)

φ
3/2
min(Cs2)

<
√
C/κ.

Under this assumption, we can state the selection consistency result obtained
directly from Theorem 2 in [38].

Lemma 3 (Meinshausen and Buhlmann (2010)). For the randomized Lasso, let
α be given by α2 = νφmin(m)/m, for any ν ∈ ((7/κ)2, 1/

√
2), and m = Cs2. Let

c2 < c < 1 and λmin = 2σ{
√
2Cs + 1}n(c−1)/2. Assume that p = O(en

c2
) > 10

and s ≥ 7 and that the gaussian assumption (a) and the sparse eigenvalues
assumption are satisfied. For any λ ≥ λmin, if min1≤i≤s |β∗

i | ≥ (Cs)3/2(0.3λ),
then there is some δ ∈ (0, 1) such that, for all πthr ≥ 1 − δ, stability selection
with randomized Lasso satisfies

P (Ŝstable
λ = S) ≥ 1− o(e−nc2

)

where Ŝstable
λ = {k : Πλ

k ≥ πthr}.

Appendix C: Technical details

Proof of Theorem 1. Denote β̃ the Select+mLS. Conditioned on {Ŝ = S}, for
τ2n ≤ Λmin(C11), we have

β̃S = (XT
S XS)

−1XT
S Y = β∗

S + (XT
S XS)

−1XT
S ǫ.

Combine with triangle inequality,

||Eβ̃ − β∗||2 ≤ ||Eβ̃IŜ=S − β∗||2 + ||Eβ̃IŜ 6=S ||2
= ||E{(XT

S XS)
−1XT

S Y IŜ=S} − β∗||2 + ||Eβ̃IŜ 6=S ||2
≤ ||E{(XT

S XS)
−1XT

S Y − β∗
S}||2 + ||E{(XT

S XS)
−1XT

S Y IŜ 6=S}||2
+ ||Eβ̃IŜ 6=S ||2

= ||E{(XT
S XS)

−1XT
S Y IŜ 6=S}||2 + ||Eβ̃IŜ 6=S ||2

where IA is the indicater function. The last equality holds since

E{(XT
S XS)

−1XT
S Y } = β∗

S + (XT
S XS)

−1XT
S Eǫ = β∗

S .

By Cauchy-Schwarz inequality,

||E{(XT
S XS)

−1XT
S Y IŜ 6=S}||22 ≤ E||{(XT

S XS)
−1XT

S Y }||22P (Ŝ 6= S),

||Eβ̃IŜ 6=S ||22 ≤ E||β̃||22P (Ŝ 6= S).

So we need to control E||{(XT
SXS)

−1XT
S Y }||22 and E||β̃||22 respectively.

E||{(XT
S XS)

−1XT
S Y }||22 = E||β∗

S + (XT
S XS)

−1XT
S ǫ||22
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= ||β∗
S ||22 + E||(XT

S XS)
−1XT

S ǫ||22
= ||β∗||22 + σ2tr(XT

S XS)
−1

= ||β∗||22 +
σ2

n
tr(C−1

11 ).

By definition (7), we have

||β̃||22 =

∣

∣

∣

∣

∣

∣

∣

∣

1√
n
V D̃UTY

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=
1

n
Y TUD̃T D̃UTY ≤ 1

n
τ−2
n ||Y ||22, (39)

where D̃ is a d × n diagonal matrix with diagonal entries λ−1
1 , λ−1

2 , . . . , λ−1
d

(Note that we take λ−1
k = 0 for all λk < τn). The last equality holds since the

largest singular value of D̃ is no more than τ−1
n and U is an orthogonal matrix.

Moreover,

E||Y ||22 = E||Xβ∗ + ǫ||22 = ||Xβ∗||22 + nσ2. (40)

Combining the above results, we obtain (14).
Next, we prove the second part of Theorem 1.

E||β̃ − β∗||22 = E||β̃ − β∗||22IŜ=S + E||β̃ − β∗||22IŜ 6=S

= E||{(XT
S XS)

−1XT
S ǫ}||22IŜ=S + E||β̃ − β∗||22IŜ 6=S

≤ E||{(XT
S XS)

−1XT
S ǫ}||22 + 2(E||β̃||22IŜ 6=S + E||β∗||22IŜ 6=S)

≤ σ2

n
tr(C−1

11 ) + 2

√

P (Ŝ 6= S)(

√

E||β̃||42 + ||β∗||22). (41)

The last inequality holds for Cauchy-Schwarz inequality. Since Y = Xβ∗ + ǫ,
we have

||Y ||42 = (||Y ||22)2 ≤ 4(||Xβ∗||22 + ||ǫ||22)2 ≤ 8(||Xβ∗||42 + ||ǫ||42).
Because ǫi ∼ N(0, σ2), i.i.d., we get E(ǫi)

4 = 3σ4 and

E||ǫ||42 = E

(

n
∑

i=1

ǫ2i

)2

=

n
∑

i=1

Eǫ4i + 2
∑

i<j

Eǫ2i ǫ
2
j = (n2 + 2n)σ4, (42)

hence when n ≥ 2

E||Y ||42 ≤ 8(||Xβ∗||42 + E||ǫ||42) ≤ 16(||Xβ∗||42 + n2σ4).

Connect (39), then

E||β̃||42 ≤ 1

n2
τ−4
n E||Y ||42 ≤ 16τ−4

n

(

1

n2
||Xβ∗||42 + σ4

)

. (43)

Taking (43) back to (41) gives the result.

Proof of Theorem 2. Denote β̃ the Select+Ridge, we have

β̃Ŝ = (XT
Ŝ
XŜ + µnI)

−1XT
Ŝ
Y. (44)
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Applying SVD decomposition of 1√
n
XŜ in (5), it is easy to obtain

β̃Ŝ = V D1D
TUTY (45)

where D1 is a diagonal matrix with diagonal entries
√
n

nλ2
1
+µn

, . . . ,
√
n

nλ2
d
+µn

. Since

V is an orthogonal matrix,

||β̃Ŝ ||22 = Y TUDDT
1 V

TV D1D
TUTY = Y TUD2U

TY

where

D2 = diag

{

nλ2
1

(nλ2
1 + µn)2

, . . . ,
nλ2

d

(nλ2
d + µn)2

}

.

Therefore,

||β̃Ŝ ||22 ≤ Λmax(D2)Y
TUUTY = Λmax(D2)||Y ||22 ≤ 1

4µn
||Y ||22,

the last inequality is due to
nλ2

i

(nλ2
i
+µn)2

≤ 1
4µn

, i = 1, . . . , d. Then,

E||β̃Ŝ ||22 ≤ 1

4µn
E||Y ||22 =

1

4µn
(||Xβ∗||22 + nσ2),

E||β̃Ŝ ||42 ≤ 1

16µ2
n

E||Y ||42 =
1

16µ2
n

16(||Xβ∗||42 + n2σ4).

Combine Cauchy-Schwarz inequality, we have

||Eβ̃ŜIŜ 6=S ||22 ≤ P (Ŝ 6= S)
n

4µn

(

1

n
||Xβ∗||22 + σ2

)

,

||Eβ̃SIŜ 6=S ||22 ≤ P (Ŝ 6= S)
n

4µn

(

1

n
||Xβ∗||22 + σ2

)

.

Moreover,

β̃S − β∗
S = V D1D

TUTY − β∗
S = (V D1D

TUTXS − I)β∗
S + V D1D

TUT ǫ

= (
√
nV D1D

TUTUDV T − I)β∗
S + V D1D

TUT ǫ

= V D3V
Tβ∗

S + V D1D
TUT ǫ

where

D3 = diag

{ −µn

(nλ2
1 + µn)

, . . . ,
−µn

(nλ2
s + µn)

}

,

and using ( µn

nλ2
i
+µn

)2 ≤ µ2
n

n2Λ2
min

, i = 1, . . . , s, we have

||Eβ̃S − β∗
S ||22 = ||V D3V

Tβ∗
S ||22 ≤ µ2

n

n2Λ2
min

||β∗||22.
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Therefore,

||Eβ̃ − β∗||2 ≤ ||Eβ̃IŜ=S − β∗||2 + ||Eβ̃IŜ 6=S ||2
≤ ||Eβ̃S − β∗

S ||2 + ||Eβ̃SIŜ 6=S ||2 + ||Eβ̃ŜIŜ 6=S ||2

≤ µn

nΛmin
||β∗||2 + 2

√

P (Ŝ 6= S)
n

4µn

(

1

n
||Xβ∗||22 + σ2

)

,

which proves the first part of Theorem 2. For the second part, we have

E||β̃S − β∗
S ||22 = ||V D3V

Tβ∗
S ||22 + E||V D1D

TUT ǫ||22

≤ µ2
n

n2Λ2
min

||β∗||22 + σ2tr(V D1D
TUTUDD1V

T )

=
µ2
n

n2Λ2
min

||β∗||22 + σ2
s
∑

i=1

nλ2
i

(nλ2
i + µn)2

.

Algebraic operation yields

σ2
s
∑

i=1

nλ2
i

(nλ2
i + µn)2

=
σ2

n
tr

{(

C11 +
µn

n
I

)−2

C11

}

,

then,

E||β̃S − β∗
S ||22 ≤ σ2

n
tr

{(

C11 +
µn

n
I

)−2

C11

}

+
µ2
n

n2Λ2
min

||β∗||22.

On the other hand,

E||β̃ − β∗||22IŜ 6=S ≤ 2

√

P (Ŝ 6= S)(

√

E||β̃||42 + ||β∗||22)

≤ 2

√

P (Ŝ 6= S)

{

||β∗||22 +
n

µn

[

1

n
||Xβ∗||22 + σ2

]}

.

Applying the same trick as (41), we obtain the result.

Proof of Theorem 3. We prove the results for Select+mLS and Select+Ridge
respectively.

(1) Select+mLS: as stated in the proof of Theorem 1, conditioned on {Ŝ = S},
when n is large enough, τ2n ∝ 1

n2 ≤ Λmin ≤ Λmin(C11), then Select+mLS β̃
satisfies:

β̃S = (XT
S XS)

−1XT
S Y = β∗

S + (XT
S XS)

−1XT
S ǫ.

Because ǫi ∼ N(0, σ2), i.i.d., then
√
n(XT

S XS)
−1XT

S ǫ ∼ N(0, σ2n(XT
S XS)

−1),
which is N(0, σ2C−1

11 ) since C11 = 1
nX

T
S XS . Therefore,

Ψ̂(t) = P (
√
n(β̃S − β∗

S) ≤ t)

= P (
√
n(β̃S − β∗

S) ≤ t, Ŝ = S) + P (
√
n(β̃S − β∗

S) ≤ t, Ŝ 6= S)
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= P (
√
n(XT

S XS)
−1XT

S ǫ ≤ t, Ŝ = S) + P (
√
n(β̃S − β∗

S) ≤ t, Ŝ 6= S)

= Ψ(t)− P (
√
n(XT

S XS)
−1XT

S ǫ ≤ t, Ŝ 6= S)

+ P (
√
n(β̃S − β∗

S) ≤ t, Ŝ 6= S).

Then

sup
t∈Rs

|Ψ̂(t)−Ψ(t)|

≤ sup
t∈Rs

{P (
√
n(XT

S XS)
−1XT

S ǫ ≤ t, Ŝ 6= S) + P (
√
n(β̃S − β∗

S) ≤ t, Ŝ 6= S)}

≤ 2P ( Ŝ 6= S) → 0, as n → ∞.

(2) Select+Ridge: again, conditioned on {Ŝ = S}, the Select+Ridge and
Select+mLS are respectively

β̃Select+Ridge,S = V D1D
TUTY,

β̃Select+mLS,S = (XT
S XS)

−1XT
S Y =

1√
n
V (DTD)−1DTUTY.

By simple calculation, the difference between these two estimators is

||
√
n(β̃Select+Ridge,S − β̃Select+mLS,S)||22

= n ·
∣

∣

∣

∣

∣

∣

∣

∣

V diag

{ −√
nµn

nλ2
1(nλ

2
1 + µn)

, . . . ,
−√

nµn

nλ2
s(nλ

2
s + µn)

}

DTUTY

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤ max
1≤i≤s

{

nµ2
n

nλ2
i (nλ

2
i + µn)2

}

||Y ||22

≤ µ2
n

n2Λ3
min

||Y ||22 = Op(µ
2
n) (46)

where the last equality comes from assumption (g) and E||Y ||22 = ||Xβ∗||22 +
nσ2 = O(n2). Therefore, Select+Ridge has the same asymptotic distribution as
Select+mLS, which completes the proof.

In the following, we will prove the validity of residual bootstrap after Se-
lect+mLS. The proof for residual bootstrap after Select+Ridge is omitted since
the techniques are almost the same.

Firstly, we re-characterize the conditional distribution of bootstrap error
terms ǫ∗i , i = 1, . . . , n as follows:

Lemma 4. Suppose that assumptions (a)–(e), (h) and (dd) are satisfied and
that P (Ŝ 6= S) → 0, then with probability converging to 1, ǫ∗i , i = 1, . . . , n are
conditionally i.i.d. subgaussian random variables. That is, there exists constant
C∗, c∗ > 0 such that

P ∗(|ǫ∗i | ≥ t) ≤ C∗e−c∗t2 , ∀t ≥ 0 (47)

holds in probability.
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Proof. Note that P ∗(|ǫ∗i | ≥ t) = 1
n

∑n
i=1 I|ǫ̂i−µ̂|≥t, hence (47) is equivalent to

sup
t≥0

{

1

n

n
∑

i=1

ec
∗t2

I|ǫ̂i−µ̂|≥t

}

≤ C∗. (48)

We know that

ǫ̂i − µ̂ = yi − xT
i β̃ − (y − xT β̃)

= xT
i β

∗ + ǫi − xT
i β̃ − (xTβ∗ + ǫ− xT β̃)

= xT
i (β

∗ − β̃) + ǫi − ǫ

where xT
i is the i-th row ofX , y = 1

n

∑n
i=1 yi,ǫ =

1
n

∑n
i=1 ǫi and x = 1

n

∑n
i=1 xi =

0. It is easy to see that supt≥0{ 1
n

∑n
i=1 e

c∗t2
I|ǫ̂i−µ̂|≥t} can be bounded by

1

n

n
∑

i=1

{

sup
t≥0

{ec∗t2I|xT
i
(β∗−β̃)|≥t/3}+ sup

t≥0
{ec∗t2I|ǫ|≥t/3}+ sup

t≥0
{ec∗t2I|ǫi|≥t/3}

}

.

(49)

For the first term in (49), let xi,S = (xi1, . . . , xis)
T ,

P (max
1≤i≤n

|xT
i (β

∗ − β̃)| ≥ 1/3)

= P (max
1≤i≤n

|xT
i (β

∗ − β̃)| ≥ 1/3, Ŝ = S)

+ P (max
1≤i≤n

|xT
i (β

∗ − β̃)| ≥ 1/3, Ŝ 6= S)

≤ P (max
1≤i≤n

|xT
i,S(X

T
S XS)

−1XT
S ǫ| ≥ 1/3) + P (Ŝ 6= S). (50)

By Markov inequality,

P (max
1≤i≤n

|xT
i,S(X

T
S XS)

−1XT
S ǫ| ≥ 1/3) ≤ 9E max

1≤i≤n
|xT

i,S(X
T
S XS)

−1XT
S ǫ|2.

Note that

max
1≤i≤n

|xT
i,S(X

T
SXS)

−1XT
S ǫ|2 ≤ max

1≤i≤n
||xi,S ||2 · ||(XT

S XS)
−1XT

S ǫ||2,

therefore

P (max
1≤i≤n

|xT
i,S(X

T
S XS)

−1XT
S ǫ| ≥ 1/3) ≤ 9 max

1≤i≤n
||xi,S ||2 · E||(XT

S XS)
−1XT

S ǫ||2.

Because ǫ ∼ N(0, σ2I), hence (XT
SXS)

−1XT
S ǫ ∼ N(0, σ2(XT

S XS)
−1). Then,

E||(XT
S XS)

−1XT
S ǫ||2 = σ2tr(XT

S XS)
−1 = σ2 1

n
tr(C−1

11 ) ≤ σ2

Λmin

s

n
,

hence

P (max
1≤i≤n

|xT
i,S(X

T
SXS)

−1XT
S ǫ| ≥ 1/3) ≤ 9

σ2

Λmin

s

n
max
1≤i≤n

||xi,S ||2 → 0
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where “→ 0” comes from the assumptions s2/n → 0 and max1≤i≤n ||xi,S ||2 =

max1≤i≤n

∑s
j=1 x

2
ij = o(n

1
2 ). Connect with P (Ŝ 6= S) → 0, we have

P (max
1≤i≤n

|xT
i (β

∗ − β̃)| ≥ 1/3) → 0,

hence

P

(

1

n

n
∑

i=1

sup
t≥1

{ec∗t2I|xT
i
(β∗−β̃)|≥t/3} ≤ ec

∗

)

≥ P (max
1≤i≤n

|xT
i (β

∗− β̃)| < 1/3) → 1.

The inequality holds since it is easy to show that
{

1

n

n
∑

i=1

sup
t≥1

{ec∗t2I|xT
i
(β∗−β̃)|≥t/3} ≤ ec

∗

}

⊇ {max
1≤i≤n

|xT
i (β

∗ − β̃)| < 1/3}.

It is clear that

1

n

n
∑

i=1

sup
0≤t≤1

{ec∗t2I|xT
i
(β∗−β̃)|≥t/3} ≤ ec

∗

,

therefore, with probability going to 1, we have

1

n

n
∑

i=1

sup
t≥0

{ec∗t2I|xT
i
(β∗−β̃)|≥t/3}

= max

(

1

n

n
∑

i=1

sup
0≤t≤1

{ec∗t2I|xT
i
(β∗−β̃)|≥t/3},

1

n

n
∑

i=1

sup
t≥1

{ec∗t2I|xT
i
(β∗−β̃)|≥t/3}

)

≤ ec
∗

.
(51)

For the second term in (49), by strong law of large numbers, we have ǫ →
0, a.s., then

P (|ǫ| ≥ 1/3) → 0.

It is easy to show that

{sup
t≥1

{ec∗t2I|ǫ|≥t/3} ⊇ {|ǫ| < 1/3}.

Hence
P (sup

t≥1
{ec∗t2I|ǫ|≥t/3} ≤ ec

∗

) ≥ P (|ǫ| < 1/3) → 1. (52)

Using the same trick as (51), we have

1

n

n
∑

i=1

sup
t≥0

{ec∗t2I|ǫ|≥t/3} = max( sup
0≤t≤1

{ec∗t2I|ǫ|≥t/3}, sup
t≥1

{ec∗t2I|ǫ|≥t/3}) ≤ ec
∗

(53)
holds in probability.
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For the third term in (49), we will show that if c∗ = 1
36σ2

E sup
t≥0

{ec∗t2I|ǫ1|≥t/3} =

∞
∫

0

P (sup
t≥0

{ec∗t2I|ǫ1|≥t/3} > u)du < ∞. (54)

The above integral can be divided into two parts [0, e9σ
2c∗ ] and [e9σ

2c∗ ,∞]. And

the first part is bounded using P (supt≥0{ec
∗t2

I|ǫ1|≥t/3} > u) ≤ 1 that

e9σ
2c∗

∫

0

P (sup
t≥0

{ec∗t2I|ǫ1|≥t/3} > u)du ≤ e9σ
2c∗ . (55)

For the second part, we have

P (sup
t≥0

{ec∗t2I|ǫ1|≥t/3} > u)

= P

(

sup
t≥0

{ec∗t2I|ǫ1|≥t/3} > u, |ǫ1| <
√

log u

c∗
/3

)

+ P

(

sup
t≥0

{ec∗t2I|ǫ1|≥t/3} > u, |ǫ1| ≥
√

log u

c∗
/3

)

≤ P

(

sup
t≥0

{ec∗t2I|ǫ1|≥t/3} > u, |ǫ1| <
√

log u

c∗
/3

)

+ P

(

|ǫ1| ≥
√

log u

c∗
/3

)

.

On {|ǫ1| <
√

log u
c∗ /3}, we have

ec
∗t2

I|ǫ1|≥t/3

{

≤ u if t ≤
√

log u
c∗

0 otherwise
(56)

Hence on {|ǫ1| <
√

log u
c∗ /3},

sup
t≥0

{ec∗t2I|ǫ1|≥t/3} ≤ u,

then

P

(

sup
t≥0

{ec∗t2I|ǫ1|≥t/3} > u, |ǫ1| <
√

log u

c∗
/3

)

= 0.

Therefore,

P (sup
t≥0

{ec∗t2I|ǫ1|≥t/3} > u) ≤ P

(

|ǫ1| ≥
√

log u

c∗
/3

)

≤ 2e−
1

2σ2
log u

9c∗ =
2

u2
(57)
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where the second inequality comes from the Gaussian tail bound,

P (|ǫ1| ≥ t) ≤ 2e−
t2

2σ2 ∀t ≥ σ.

Therefore

∞
∫

e9σ2c∗

P (sup
t≥0

{ec∗t2I|ǫ1|≥t/3} > u)du ≤
∞
∫

e9σ2c∗

2

u2
du < ∞. (58)

Combine (55) and (58), we obtain (54).
Again, by strong law of large numbers,

1

n

n
∑

i=1

sup
t≥0

{ec∗t2I|ǫi|≥t/3} → E sup
t≥0

{ec∗t2I|ǫi|≥t/3} a.s.,

hence,

1

n

n
∑

i=1

sup
t≥0

{ec∗t2I|ǫi|≥t/3} ≤ 2E sup
t≥0

{ec∗t2I|ǫi|≥t/3} holds in probability.

If we chose C∗ = (2ec
∗

+ 2E supt≥0{ec
∗t2

I|ǫi|≥t/3}) and c∗ = 1
36σ2 , then (47)

holds in probability, which verifies the claim.

Secondly, we need the following Lemma 5, which provides upper bounds of
mean squared error (MSE) of Select+mLS β̃∗ based on the resample (X,Y ∗).
Let σ2

∗ = C∗/c∗.

Lemma 5. Under assumptions (a)–(h) and (dd), the following hold

E∗||β̃∗ − β̃||22IŜ∗=S = Op

(

σ2
∗
n
tr(C−1

11 )

)

,

E∗||β̃∗ − β̃||22IŜ∗ 6=S = op(e
−nc2/4)

where E∗ denotes the conditional expectation given the error variables {ǫi, i =
1, . . . , n}.
Proof. By Lemma 4, we have shown that with probability going to 1, ǫ∗i are
i.i.d. subgaussian variables, i.e.,

P ∗(|ǫ∗i | ≥ t) ≤ C∗e−c∗t2 , ∀t ≥ 0.

Simple calculation yields E∗(ǫ∗1)
2 ≤ σ2

∗ and E∗(ǫ∗1)
4 ≤ σ4

∗. Conditioned on
{Ŝ = S}, we have

||β̃∗− β̃||22IŜ∗=S = ||(XT
S XS)

−1XT
S Y

∗− β̃||22IŜ∗=S = ||(XT
S XS)

−1XT
S ǫ

∗||22IŜ∗=S .

Take expectation, then

E∗||β̃∗ − β̃||22IŜ∗=S ≤ E∗||(XT
S XS)

−1XT
S ǫ

∗||22 ≤ σ2
∗
n
tr(C−1

11 ).
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Since P (Ŝ = S) → 1, we obtain

E∗||β̃∗ − β̃||22IŜ∗=S = Op

(

σ2
∗
n
tr(C−1

11 )

)

.

For the second part, we also conditioned on {Ŝ = S}. Using the same procedure
as proving Theorem 1, we can get

E∗||β̃∗ − β̃||22IŜ∗ 6=S ≤ 8

√

P ∗(Ŝ∗ 6= Ŝ)

{

||β̃||22 +
1

τ2n

1

n
||Xβ̃||22 +

1

τ2n
σ2
∗

}

. (59)

By Theorem 1,

E||β̃ − β∗||22 ≤ σ2

n
tr(C−1

11 ) + 8

√

P (Ŝ 6= S)

{

||β∗||22 +
1

τ2n

1

n
||Xβ∗||22 +

1

τ2n
σ2

}

.

(60)
As shown in Corollary 1, we have

E||β̃ − β∗||22 = O

(

σ2

Λmin

s

n

)

,

then ||β̃ − β∗||22 →p 0 and therefore ||β̃||22 = ||β∗||22 + op(1). Moreover,

1

n
||Xβ̃ −Xβ∗||22 =

1

n
||XS(X

T
S XS)

−1XT
S ǫ||22 →p 0 (61)

where “→p 0” comes from

E
1

n
||XS(X

T
S XS)

−1XT
S ǫ||22 =

s

n
σ2 → 0,

therefore 1
n ||Xβ̃||22 = 1

n ||Xβ∗||22 + op(1). Taking these results back to (59) and
combining assumption (f), we have

E∗||β̃∗ − β̃||22IŜ∗ 6=Ŝ ≤ 8op(e
−nc2/2)

{

||β∗||22 +
1

τ2n

1

n
||Xβ∗||22 +

1

τ2n
σ2
∗ + op(1)

}

= op(e
−nc2/4)

where the last equality holds since we suppose that τn ∝ 1
n and that

1

n
||Xβ∗||22 = O(n).

Finally, we can prove Theorem 4 now.

Proof of Theorem 4. Using the same notations as [7], let F be the true distri-
bution of εi; let Fn be the empirical distribution of ǫ1, . . . , ǫn; let F̃n be the
empirical distribution of the residuals ǫ̂1, . . . , ǫ̂n; and let F̂n be F̃n centered at
its mean µ̂. We first show that the Mallows metric of Gn and G∗

n can be bounded
by

√
s · d(F, F̂n).
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Lemma 6. Suppose that conditions (a)–(h) and (dd) are satisfied, then

d2(Gn, G
∗
n) ≤ 4tr

{(

1

n
XT

S XS

)−1}

d2(F, F̂n) + op(1) ≤
4s

Λmin
d2(F, F̂n) + op(1).

Proof. By assumption (f), there exists a set An be such that P (An) → 1 and
for every ω ∈ An,

P ∗(Ŝ∗ 6= Ŝ) = o(e−nc2

).

Fix ω ∈ An

⋂

{Ŝ = S}. By definition of Mallows metric, we have

d2(Gn, G
∗
n) = inf

ǫ∼F,ǫ∗∼F̂n

E||Tn − T ∗
n ||22

= inf
ǫ∼F,ǫ∗∼F̂n

E||
√
n(β̃ − β∗)−

√
n(β̃∗(ω)− β̃(ω))||22.

By Lemma 8.1 in [7], the infimum in Mallows metric can be obtained. Then
we can choose pairs {ǫi ∼ F, ǫ∗i ∼ F̂n, i = 1, . . . , n} which are independent

and E(ǫi − ǫ∗i )
2 = d2(F, F̂n). Now, Let A = {Ŝ = S} and A∗ = {Ŝ∗ = S},

straightforward computation and triangle inequality yield

E||
√
n(β̃ − β∗)−

√
n(β̃∗(ω)− β̃(ω))||22

= E||
√
n(β̃ − β∗)IA +

√
n(β̃ − β∗)IAc −

√
n(β̃∗(ω)− β̃(ω))IA∗

−
√
n(β∗(ω)− β̃(ω))I(A∗)c ||22

≤ 2E||
√
n(β̃ − β∗)IA −

√
n(β̃∗(ω)− β̃(ω))IA∗ ||22 + 4E||

√
n(β̃ − β∗)IAc ||22

+ 4E∗||
√
n(β̃∗(ω)− β̃(ω))I(A∗)c ||22

= 2E||
√
n(XT

S XS)
−1XT

S ǫIA −
√
n(XT

S XS)
−1XT

S ǫ
∗
IA∗ ||22

+ 4E||
√
n(β̃ − β∗)IAc ||22 + 4E∗||

√
n(β̃∗(ω)− β̃(ω))I(A∗)c ||22

where E∗ is the conditional expectation over ǫ∗ given ω.
From the proof of Theorem 1, we have

E||
√
n(β̃ − β∗)IAc ||22 ≤ 8n

√

P (Ŝ 6= S)

{

||β∗||22 +
1

τ2n

1

n
||Xβ∗||22 +

1

τ2n
σ2

}

→ 0.

By Lemma 5, we have

E∗||
√
nβ∗(ω)− β̃(ω))I(A∗)c ||22 = op(1),

therefore

E||
√
n(β̃ − β∗)−

√
n(β̃∗(ω)− β̃(ω))||22

≤ 2E||
√
n(XT

S XS)
−1XT

S ǫIA −
√
n(XT

S XS)
−1XT

S ǫ
∗
IA∗ ||22 + op(1)

≤ 4E||
√
n(XT

S XS)
−1XT

S ǫ−
√
n(XT

S XS)
−1XT

S ǫ
∗||22

+ 4E||
√
n(XT

S XS)
−1XT

S ǫIAc −
√
n(XT

S XS)
−1XT

S ǫ
∗
I(A∗)c ||22 + op(1)

≤ 4E||
√
n(XT

S XS)
−1XT

S ǫ−
√
n(XT

S XS)
−1XT

S ǫ
∗||22
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+ 8E||
√
n(XT

S XS)
−1XT

S ǫIAc ||22 + 8E∗||
√
n(XT

S XS)
−1XT

S ǫ
∗
I(A∗)c ||22

+ op(1). (62)

Next, we will bound the first three parts in the last inequality respectively. By
straightforward computation, we have

E||
√
n(XT

S XS)
−1XT

S ǫ−
√
n(XT

S XS)
−1XT

S ǫ
∗||22

= Etr
{

(ǫ− ǫ∗)T (
√
n(XT

S XS)
−1XT

S )
T (

√
n(XT

S XS)
−1XT

S )(ǫ− ǫ∗)
}

= tr
{

(nXS(X
T
S XS)

−2XT
S E(ǫ− ǫ∗)(ǫ − ǫ∗)T )

}

= d2(F, F̂n)tr
{

nXS(X
T
S XS)

−2XT
S

}

= d2(F, F̂n)tr

{(

1

n
XT

S XS

)−1}

. (63)

The penultimate equality is because E(ǫ − ǫ∗)(ǫ − ǫ∗)T = d2(F, F̂n)I. Then we
only need to show that

E||
√
n(XT

S XS)
−1XT

S ǫIAc ||22 = o(1), (64)

E∗||
√
n(XT

S XS)
−1XT

S ǫ
∗
I(A∗)c ||22 = op(1). (65)

It is easy to see that

||
√
n(XT

SXS)
−1XT

S ǫ||22 = nǫTXS(X
T
S XS)

−2XT
S ǫ

≤ Λmax(nXS(X
T
S XS)

−2XT
S )||ǫ||22

≤ Λmax

((

1

n
XT

S XS

)−1)

||ǫ||22

≤ Λ−1
min||ǫ||22.

By Cauchy-Schwarz inequality,

E||
√
n(XT

S XS)
−1XT

S ǫIAc ||22
≤

√

E||
√
n(XT

S XS)−1XT
S ǫ||42EIAc

≤
√

Λ−2
minE||ǫ||42P (Ac)

In the proof of Theorem 1, we have shown that E||ǫ||42 = O(n2) (see (42)) and
connect with P (Ac) = P (Ŝ 6= S) = o(e−nc2

), we obtain (64). The proof of (65)
is the same as (64), so we omit it.

Combine (63), (64), (65) and (62), we have

E||
√
n(β̃−β∗)−

√
n(β̃∗(ω)− β̃(ω))||22 ≤ 4d2(F, F̂n)tr

{(

1

n
XT

S XS

)−1}

+ op(1).

Therefore, we can obtain Lemma 6 by

d2(Gn, G
∗
n) = inf

ǫ∼F,ǫ∗∼F̂n

E||
√
n(β̃ − β∗)−

√
n(β̃∗(ω)− β̃(ω))||22
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≤ E||
√
n(β̃ − β∗)−

√
n(β̃∗(ω)− β̃(ω))||22

≤ 4d2(F, F̂n)tr

{(

1

n
XT

S XS

)−1}

+ op(1)

≤ 4s

Λmin
d2(F, F̂n) + op(1)

where the last inequality holds because ( 1nX
T
S XS)

−1 is a s by s matrix and

Λmax((
1
nX

T
S XS)

−1) ≤ Λ−1
min.

In order to prove Theorem 4, we only have to show that

s

Λmin
d2(F, F̂n) = op(1).

Lemma 7. Suppose that assumptions (a)–(c), (e) and (dd) are satisfied and
that P (Ŝ 6= S) → 0, then

sd2(F̃n, Fn) = op(1).

Proof. By definition,

d2(F̃n, Fn) ≤
1

n

n
∑

i=1

(ǫ̂i − ǫi)
2 =

1

n
||ǫ̂− ǫ||22.

Since ǫ̂ = Y −Xβ̃ and ǫ = Y −Xβ∗, we have

ǫ̂− ǫ = X(β∗ − β̃).

Conditioned on {Ŝ = S},
s

n
||ǫ̂− ǫ||22 =

s

n
||XS(X

T
SXS)

−1XT
S ǫ||22 →p 0

because

E
s

n
||XS(X

T
S XS)

−1XT
S ǫ||22 =

s

n
tr
{

XS(X
T
S XS)

−1XT
S

}

σ2 =
s2

n
σ2 → 0.

Therefore,
sd2(F̃n, Fn) = op(1).

Lemma 8. Suppose that assumptions (a)–(c), (e) and (dd) are satisfied and
that P (Ŝ 6= S) → 0, then

sd2(F̂n, Fn) = op(1).

Proof. Application of Lemma 8.8 in [7], shows that for random variables U and
V with finite second moment,

d2(U, V ) = d2(U − EU, V − EV ) + ||EU − EV ||22.
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Therefore, if let Fn be the empirical distribution of ǫ1, . . . , ǫn centered at its
mean ǫ = 1

n

∑n
i=1 ǫi, we have

d2(F̂n, Fn) = d2(F̂n, Fn) +

(

1

n

n
∑

i=1

ǫi

)2

,

d2(F̃n, Fn) = d2(F̂n, Fn) +

(

1

n

n
∑

i=1

ǫi −
1

n

n
∑

i=1

ǫ̂i

)2

.

Connecting the above two equalities,

d2(F̂n, Fn) = d2(F̃n, Fn) +

(

1

n

n
∑

i=1

ǫi

)2

−
(

1

n

n
∑

i=1

{ǫ̂i − ǫi}
)2

≤ d2(F̃n, Fn) +

(

1

n

n
∑

i=1

ǫi

)2

.

Now use the fact sE( 1
n

∑n
i=1 ǫi)

2 = sσ2

n → 0 and the previous Lemma 7, we
obtain Lemma 8.

Since d is a metric,

1

2
d2(F, F̂n) ≤ d2(F, Fn) + d2(Fn, F̂n). (66)

We still need to bound d2(F, Fn). Denote φ and Φ the density and distribu-
tion functions of standard normal distribution N(0, 1) respectively. To control
d2(F, Fn), we use the following result obtained by [16]: let →ω denote weak
convergence,

Lemma 9 (del Barrio et al. (2000)). Let ǫi, i = 1, . . . , n be a sequence of i.i.d.
normal random variables with mean 0 and variance σ2. Then

n

(

d2(F, Fn)

σ2
− an

)

→ω −3

2
+

∞
∑

j=3

Z2
j − 1

j

where {Zj, j = 3, . . . ,∞} are a sequence of independent N(0, 1) random vari-
ables and

an =
1

n

∫ n
n+1

1
n+1

t(1− t)

[φ(Φ−1(t))]2
dt.

In fact we have (see [6])

∫ 1− 1
n

1
n

t(1 − t)

[φ(Φ−1(t))]2
dt = log logn+ log 2 + γ + o(1)

where γ = limk→∞(
∑n

i=1 j
−1 − log k) is Euler’s constant. Then, we have

d2(F, Fn) = Op

(

1

n

)

+ σ2 log logn

n
= op

(

1

s

)

,
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which together with Lemma 6, Lemma 8 and inequality (66) complete the proof.

Proof of Lemma 1. Let F̂n be the empirical distribution of the centered residu-
als ǫ̂1 − µ̂, . . . , ǫ̂n − µ̂. For the stared data (X,Y ∗), we have

Y ∗ = Xβ̃ + ǫ∗, ǫ∗i ∼ F̂n i.i.d.

We only need to verify: the stared version (replacing β∗ and ǫ by β̃ and ǫ∗

respectively) of conditions (a)–(d), (i), (j) and the Irrepresentable Condition
(24) hold in probability. Given {Ŝ = S}, these conditions have the following
forms:

(Irrepresentable Condition∗): there exists a positive constant vector η, such
that

|C21C
−1
11 sign(β̃S)| ≤ 1− η. (67)

(a∗)5: ǫ∗i are i.i.d. subgaussian random variables. That is, there exists constant
C∗, c∗ > 0 such that

P ∗(|ǫ∗i | ≥ t) ≤ C∗e−c∗t2 , ∀t ≥ 0.

(b∗): Suppose that the predictors are standardized, i.e.

n
∑

i=1

xij = 0 and
1

n

n
∑

i=1

x2
ij = 1, j = 1, . . . , p. (68)

(c∗): there exists an constant Λmin > 0 such that

Λmin(C11) ≥ Λmin. (69)

(d∗): let s∗ = |Ŝ|, there exists 0 ≤ c1 < 1 and 0 < c2 < 1− c1

s∗ = s∗n = O(nc1), p = pn = O(en
c2

). (70)

(i∗): there exists constant c1 + c2 < c3 ≤ 1 and M > 0 so that

n
1−c3

2 min
1≤i≤s

|β̃i| ≥ M. (71)

(j∗): λn ∝ n
1+c4

2 with c2 < c4 < c3 − c1.

Clearly, conditions (b∗), (c∗) and (j∗) hold because they are not relative to β̃
and ǫ∗. By Lemma 4, condition (a*) holds. (d∗) is satisfied since s∗ = |Ŝ| = s.
By Corollary 2 (asymptotic normality), β̃ is

√
n-consistent, then condition (i∗)

holds in probability. The sign-consistency of β̃ (Lemma 2) ensures condition
(Irrepresentable Condition∗).

5By Remark 2.1, subgaussian assumption of ǫ∗i ensures model selection consistency of Lasso
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