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Abstract: We propose a nonparametric Bayesian method for estimating
regression functions that arise as cumulative distribution functions (cdfs)
of a stochastically ordered family of distribution supported on [0,1]. The
motivating example is estimation of Huff curves which are depth duration
curves for heavy storm rainfall. The Bayesian methodology is compared
with the linear programming based estimation method that is currently
used by the National Oceanic and Atmospheric Administration (NOAA)
for producing the Huff curves. The methodology is illustrated with the
rainfall data from the rain gauge stations in California, US. Some limited
simulation results are provided to illustrate the finite sample performance
of the proposed estimator. We also establish consistency of the proposed
method.
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1. Introduction

We propose a Bayesian nonparametric methodology to fit a family of mono-
tone regression functions on [0,1]. The regression functions start from zero and
reach one and do not intersect in between. Our motivating example comes from
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hydrology where families of design-storm hyetographs are estimated simultane-
ously and the hyetographs form the family of non intersecting monotone regres-
sion functions. The most pertinent example is that of Huff curves [10] which are
dimensionless curves measuring the depth-duration relationship of storms.

We propose Bayesian estimators of Huff curves that account for smoothness,
monotonicity and also ensure that the fitted curves do not intersect at any point
other than the end-points of the interval. While a motivating example is that
of Huff curves, our methodology is applicable to a broader setup. Compared to
smoothness and monotonicity, non-intersecting property is relatively harder to
incorporate in a nonparametric estimation problem. Of course one could identify
a flexible parametric class of distributions, stochastically ordered according to a
partially ordered chain of parameter values and then estimate the best value of
the chain from the data. However, in the parametric case, to bring in added flex-
ibility one should consider multi-parameter distributions and finding a partially
ordered chain of parameter values that fit the data well and make the corre-
sponding family stochastically ordered can be an intractable problem. There
have been considerable interest in estimating stochastically ordered distribution
functions mostly in the context of density estimation. In the frequentist setup
many methods, mainly based on empirical cdfs, have been proposed for estima-
tion of a family of cdfs under stochastic order constraints; see [18, 8] and the
references therein. Inclusion of stochastic order constraints can be achieved in
a nonparametric Bayesian setup by specifying priors on classes of stochastically
ordered cdfs. Most efforts have concentrated on the direct use of Dirichlet pro-
cess for specifying priors on distribution functions; see [1, 9, 5] and [8]. In [15],
two classes of priors were specified based on Pólya tree representation and Bern-
stein approximation of cdfs.

We propose a nonparametric Bayesian approach for estimation of Huff curves,
viewing them as a family of smooth regression functions with monotonicity and
order constraints. The methodology is used to estimate the temporal distribution
of heavy storm precipitation in 14 regions in California. The model that we use
is similar to the implicit model currently used in NOAA Huff curve estimation
procedure. We use a Bernstein-Dirichlet prior in a regression function estimation
context. Thus, the curve fitting exercise is fundamentally different from that of
estimating distribution function where such priors have been used. We evaluate
the performance of the nonparametric Bayesian procedure and compare with
the existing linear programming approach. We also establish consistency of the
Bayesian estimator.

2. Huff curves

Precipitation frequency atlases are of vital importance for hydrological engi-
neering and management for different geographical regions. Agencies such as
National Oceanic and Atmospheric Administration (NOAA) routinely publish
such precipitation maps for different areas of the United States. The precipita-
tion figures in such atlases are in turn used as input in hydrological designs by
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the U.S. Army Corps of Engineers. One of the major components of hydrological
design is watershed model. Key inputs to watershed models include temporal
profiles of design storms which provide probabilistic/mechanistic description of
typical storm intensity patterns for the geographical region.

There are several methods for generating design storms including the differ-
ent types recommended by the National Resources Conservation Service (1986).
Some other recommendations include [17, 4, 23, 21]. One of the main probabilis-
tic approaches that is used by NOAA for generating temporal storm profiles is
due to Huff, described in [10] and later developed and extended in [11]–[14]. Our
statistical estimation problem is motivated by the problem of estimation of Huff
curves.

Huff curves are graphical representations of empirical distribution of storm
characteristics that can be used to depict the natural variability of storm pre-
cipitation patterns of a given region. The curves can be used as design-storm
hyetographs which in turn are used by hydrologists for assessing drainage pat-
terns of watershed regions [22]. The curves provide probabilistic relationship be-
tween dimensionless storm depth and dimensionless storm duration, computed
from individual depth-duration relationship in terms of probability isopleths in
increments of 10%. The main idea is that the precipitation depth during the en-
tire duration of a storm is non uniform, and this non-uniformity can be used to
classify storms and provide better estimates of run-offs based on these temporal
characteristics of the storms. The depth-duration relationship is estimated in-
dependently for different durations and different iso-probabilities at equal prob-
ability increments. The underlying true curves are perceived to be coming from
a family of curves, each of which are non-intersecting smooth monotonic curves
ranging from 0 to 100. The data comprise the observed values of the curves at
specific durations, ranging from 0 to 100% of the storm duration. By rescaling
the axes to [0,1], the underlying true curves can then be thought of as cdfs on
[0,1] arising out of a stochastically ordered family of distributions. The current
software at NOAA that produces smoothed monotonic Huff curve estimates
uses the linear programming based approach described by Bonta and Rao [3].
Previous NOAA publications have used moving average based smoothing of the
observed depth-duration quantiles.

2.1. Huff curves for California region

Our motivating example is based on the precipitation values obtained from the
California rain-gauge system. We will use the precipitation data from California
to describe the construction of Huff curves, relate the precipitation analyses ter-
minologies to the quantities in the mathematical model used in the methodology
and also illustrate the performance of the proposed method.

California is a vast state with varied climatic conditions. The coastal regions
see more rainfall than the semi arid regions in the east of the state. Typical
behavior of storm systems developing across the state can vary substantially
over different subregions within the state. This fact is borne out in the dras-



Huff curve estimation 2797

tically different Huff curve shapes across the fourteen climatic regions in Cal-
ifornia. The regions are categorized by NOAA atlas 14 and can be found in
NOAA Atlas 14, vol 6: California, p. 225 (www.nws.noaa.gov/oh/hdsc/PF_
documents/Atlas14_Volume6.pdf). The Huff curves published by NOAA are
typically based on rainfall series with duration types 6 hours, 12 hours, 24 hours
and 96 hours available from the precipitation frequency estimate at hdsc.nws.
noaa.gov. For example, the 6 hour duration series gives the aggregate rainfall in
consecutive 6 hour periods for the entire recording period. The time series used
were prepared by standard NOAA protocol. For every precipitation observing
station in the project area that recorded precipitation at least once an hour, the
three largest precipitation accumulations were selected for each month. Since
the Huff curves are related to storm events, a minimum threshold was applied
to make sure only heavier precipitation cases were being captured. The precip-
itation with an average recurrence interval (ARI) of 2 years at each observing
station for each duration was used as the minimum threshold at that station.
In statistical terms that means that only observations bigger than the median
precipitation at that station were selected. A minimum threshold of 25-year
ARI (corresponding to the 96th quantile) was also tested. It was found to pro-
duce results similar to using a 2-year ARI minimum threshold. The 25-year ARI
threshold was not used because it reduced the sample size making the estimates
potentially unstable. Each storm event length was then standardized to the type
of duration used. For example, for the 6 hours series, the storm lengths were
converted to a six hour event and fractional storm durations were calculated as
a percentage of the total storm time.

For our mathematical model we rescale the total storm duration to be one
and denote the fractional storm times by x. Typically the x’s will be equi-
spaced points on the unit interval, [0,1], representing different fractional times
at which the storm depths are evaluated. Each storm accumulations was also
converted to a total accumulation of 100% which for our mathematical model
we rescale to a total of one. The storm depth at a storm duration x ∈ [0, 1] is the
proportion of the total precipitation reached by the storm by time x. Let D(x)
denote the storm depth at duration x. The depths are random quantities and the
Huff curves are estimates of the deciles (10%–90%) of the distribution of D at
different fractions x. Thus, a value on the 9th decile curve at a duration fraction
x would mean that at least 90% of storms reach a depth equal to that value
by the fractional time x of the total storm duration. More information about
the data can be found in NOAA atlas 14, [16]. The data are converted into the
observed deciles of total number of storm events for different duration fractions.
Let yk(xi,k) denote the observed value of the kth decile, k = 1, . . . , 9, observed
at a duration xi,k where i = 1, . . . , nk, and nk typically depends on the type of
duration of the series (e.g. 6 hours, 12 hours). For the Huff curve examples, the
observed fractional durations xi,k are same for each k, but we use the double
suffix to allow for a more general observation design. The expected values of
y(x) are the unknown quantiles F (q, x) of D(x) that are to be estimated. That
is, P (D(x) ≤ F (q, x)) = q. The curves are estimated for q ∈ {0.1, 0.2, . . . , 0.9}
and they are indexed as Fk(x), k = 1, . . . , 9.. The natural restrictions on the

www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume6.pdf
www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume6.pdf
hdsc.nws.noaa.gov
hdsc.nws.noaa.gov
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unknown Fk(x) are that Fk(0) = 0, Fk(1) = 1, and Fk(x) > Fl(x
′) is either

1 ≤ k < l ≤ 9, or 0 < x′ < x < 1.

The current methodology for estimating Huff curves that is used by NOAA
is based on a linear programming algorithm described in [3]. The linear pro-
gramming approach provides least squares polynomial fit to the observed points
y(xi,k) with the constraints that the fit at the observed points maintain the re-
quired restrictions. Because there are no restrictions on the curves that are put
on points in between the observed values, the fit obtained from linear program-
ming can potentially violate both types of restriction. Indeed, [3] commented
on this feature, particularly for the behavior of the fit for very low or very high
depths. The violation would require ad hoc adjustments to the fit when the
values are used as input in design storms for hydrologic calculations.

The observed points generally maintain the restriction that the points along
each isopleths are monotonic and at each time point the observations along the
isopleths are ordered according to the decile values of their isopleths. Thus,
a simple linear interpolator would maintain the natural restriction of mono-
tonicity and non-intersecting property of this family of isopleths. However, the
underlying isoproability curves, (Fk(x)), are generally perceived to be smooth
and hence some degree of smoothing is required for estimation of the Huff curves.
As an example of how the fit violates the restrictions, we look at the the Huff
curves obtained using the linear programming algorithm to the set of first quar-
tile storms (based on 24 hour duration series) for California precipitation regions
10 in Figure 1, top panel. The fit are obtained using polynomials of degree 12.
The zoomed in versions of the lower-left corner of the plot clearly shows that
the curves intersect. The upper corner violations are for extremely high storm
depths and hence unlikely to cause any practical problems from the use of the
Huff curves in hydrologic calculations. However, the violation in the lower cor-
ner are in around 2% storm depth and may pose problems if used unadjusted.
Moreover, for other project areas where rain gauge system is more sparse the
problem of intersecting curves may appear in moderate duration as well.

The primary goal of the present article is to provide a non-intersecting,
smooth, monotonic fit to the empirical storm depth values. While there are
many frequentist methods for estimating curves under monotonicity restriction,
there are no existing frequentist procedure for estimating the family of curves
under the restrictions mentioned above. Sieve maximum likelihood methods are
possible to formulate for this particular problem, but we find it easier to fol-
low a Bayesian scheme where restrictions can be naturally imposed via prior
specification.

3. Bayesian estimation

In the formulation that is currently being used for estimation of the Huff curves,
a family of regression models is assumed using the probability isopleths as the
mean functions. Since the underlying depths and durations are normalized to
0–100% (and hence can be renormalized to 0–1 scale), the mean functions can
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Fig 1. Estimated Huff curves for California region 10 for 24 hour duration. The top plot
shows the estimated Huff curves based on first quartile storms. The bottom row plot shows
zoomed in versions of the lower corner of the top plot. The magnified plot shows that the
estimated curves corresponding to different rain depth quantiles intersect.
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be thought of as a family of nine stochastically ordered cdfs. The design points
in this formulation are all equi-spaced dimensionless storm durations that are
same for each curve. While the observations used in the Huff curve calculations
are monotonic and non-intersecting, for the modeling purposes we entertain the
general scenario where the observations themselves (prior to any smoothing or
isotonization) may not satisfy the monotonicity or the ordering restrictions and
the design points may differ for the different curves.

3.1. Model

Consider K monotone curves namely F1, F2, . . ., FK from [0, 1] to [0, 1] with
Fi(0) = 0 and Fi(1) = 1 for each i. Suppose the curves satisfy the ordering
F1 < F2 < · · · < FK , i.e, Fi(x) < Fj(x) for all x ∈ (0, 1) whenever i < j. We
build our methodology using regression setup but allow the set of design points
to be different for different curves. The values that are observed need not satisfy
the monotonicity property and the ordering of the underlying curves. Our goal
is to propose monotone, smooth and consistent estimates for the curves that
maintain ordering.

Suppose, for the kth curve we have nk observations at the design points xi,k’s.
The data generating model is

yik ≡ yk(xi,k) = Fk(xi,k) + ǫi,k, (3.1)

where the error ǫi,k’s are assumed to be independent of each other with E(ǫi,k) =
0. This regression model is implicitly assumed in the linear programming formu-
lation of the Huff curve estimation problem. Under distributional assumption
of the error, the model provides a pseudo likelihood for the underlying family
of curves and can be conveniently used to formulate likelihood based estimation
schemes. The estimand is the family of curves F = (F1, . . . , FK). The error vari-
ances are nuisance parameters. Though we develop the methodology assuming
independence of ǫi,k’s it can be shown (Remark 2) that the proposed estimator
remain consistent even under weak correlation between the observations.

To incorporate the monotonicity and order restriction, we approximate the
curves by Bernstein polynomials and impose restrictions on the coefficients. Let

BK
m,↑ =

{

bkm =

m
∑

i=1

pi,m(x)Gk,m(
i

m
), k = 1, . . . ,K

}

, (3.2)

where Gk,m’s are cdfs on [0, 1] with support on i
m ’s with 1 ≤ i ≤ m and with

the restriction 0 < G1,m(x) < G2,m(x) < · · · < GK,m(x) < 1 for x ∈ (0, 1) and
pi,m(x) =

(

m
i

)

xi(1− x)(m−i). Monotonicity and the ordering of the components
of BK

m,↑ follow from the ordering of the Gk,m’s. Let F ∗ = (F ∗
1 , . . . , F

∗
K) be the

true value of the functional parameter F . We want to estimate F
∗ by F

∗
m ∈

BK
m,↑. As Bernstein approximation converges uniformly, for any F

∗ there will

be sequences in BK
m,↑ that converge uniformly to F

∗. In this sense elements of

BK
m,↑ can be used as approximate target parameters.
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Following the implicit assumption in LP estimation [3], we use the working
model ǫi,k ∼ N(0, σ2

i,k) with the understanding that 0 ≤ yi,k ≤ 1. At point

x, for the k th curve the variance function is denoted by σ2
x,k = σ2

k(x). Let

∆K = {G(k,m)(
i
m )}1≤i≤m,1≤k≤K . Let Y k be the nk dimensional vector of the

observed data points for the k th curve and Y = {yikk}ik=1,...,nk;k=1,...,K . The
likelihood under this model is given by

L(∆K) ∝
∏

k

1
√

det(Σk)
exp−

1
2 (Y k−Mk)

′Σ−1
k

(Y k−Mk), (3.3)

where Mki =
∑m

l=1 pl,m(xi,k)G(k,m)(
l
m ). Here Σk is the covariance matrix for

the errors on the k th curve. We have Σk,i,i = σ2
i,k = σ2

k(xi,k) and Σk,i,j = 0,
for i 6= j. Let N = (n1, . . . , nK).

The normality in the working model for the ǫi,k’s gives a natural least square
interpretation for the fit. As discussed in Remark 3 in the appendix, the proposed
Bayesian estimator continues to be a reasonable estimator even under mild
model misspecification.

3.2. Prior specification

Let, δk,i,m = Gk,m( i
m ) − Gk,m( i−1

m ). For each Gk,m’s, we assume a Dirichlet
distribution on the increments δk,i,m’s with the induced ordering mentioned
earlier. Thus, the joint density of G = (G1,m, G2,m, . . . , Gk,m) is given by,

ΠG,m(∆K) ∝

K
∏

k=1

m
∏

i=1

(

Gk,m

(

i

m

)

−Gk,m

(

i− 1

m

))
1
m

−1

1(Gk,m( i
m

)<Gl,m( i
m

),k<l),

(3.4)
where Gk,m(0) = 0 and Gk,m(1) = 1.

We make a few observations about the limiting nature of the sequence of
priors as specified above. If K = 1, then as m → ∞ this prior converges weakly
to the Dirichlet process Π, that is DP(1,λ[0, 1]), where λ is the Lebesgue measure
on [0, 1]. Let P1, P2, . . . , Pk be K random independent cdfs from that DP. Let
Rm be the set of K tuples where the cdfs are stochastically ordered at i

m ’s
and let ΠK be the K fold distribution induced by K independent DP. Provided
that lim ΠK(Rm) exists and greater than zero, we can have a well defined weak
limit of PΠG,m

, the probability measure corresponding to ΠG,m. Since it is not
the focus of the present exercise, we do not investigate the existence and the
positivity of the limit any further.

3.3. Posterior computation

We can write the posterior density as follows

ΠN(∆K |Y) ∝
∏

k

1
√

det(Σk)
exp−

1
2 (Y k

−Mk)
′Σ−1

k
(Y

k
−Mk) ×ΠG,m. (3.5)
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Gibbs sampling and Metropolis-Hastings(MH) algorithm can be used for the
posterior sampling of Gk,m( i

m )’s. We can generate posterior sample of Gk,m( i
m )

given the others. Posterior mean can be used as an estimate of the Gk,m( i
m )’s.

The variance functions σ2
x,k’s are chosen and the choice is discussed later. The

steps can be written as follows

1. Start with initial values with, Gl,m( i
m ) < Gj,m( i

m ), for l < j, i.e the initial
ordered curves.

2. Given k′ th curves (k′ 6= k) and {Gk,m( j
m ), j 6= i}, we sample from the

posterior distribution of Gk,m( i
m ) by MH.

3. We continue until posterior chains of Gk,m( i
m )’s converge.

Let F1,F2, . . . ,FL be L samples from the posterior distribution of the K

curve tuples. Then F̂ = L−1
∑L

l=1 F
l is the proposed estimator of the k curves.

More details about the posterior sampling step are given in the appendix.

3.4. Posterior consistency

A desirable property for a Bayesian methodology is posterior consistency. Since
the seminal work by Schwartz [19] there has been many important development
in the theory of posterior consistency. Specifically researchers have developed
techniques to show consistency under very general conditions on the statistical
experiments; see [6, 2, 7] and the references therein.

In our case, we use the compactness of the range and the domain of the
regression functions and show consistency using direct calculations based on
Schwartz’s approach. To prove consistency we need to make the following as-
sumptions about the design points xi,k and the error distributions. Let Qx,k be
the error distribution function at point x for the kth curve. Suppose, under the
setup of (3.1) the following assumptions hold.

• A1: For a random design (RD) let Hk, be the distribution of the observa-
tion points for the kth curve. Let λ denote the Lebesgue measure on [0,1].
Assume that for each k, Hk is absolutely continuous with λ, i.e., Hk ≪ λ.
For a fixed design(FD), let Hk,n be the empirical distribution of the ob-
servation points for kth curve. Assume that for each k, Hk,n converges to
Hk in distribution, and Hk ≪ λ.

• A2: For any compact subset Sc of (0,1) and for x1, x2 ∈ Sc, given δ > 0,
there exists ǫ > 0 s.t |Q−1

x1,k
(Qx2,k(z)) − z| ≤ δ for all k and z, whenever

|x1 − x2| ≤ ǫ.
• A3: For each k, let σx,k be strictly positive continuous functions of x ∈

(0, 1), and let
∫ 1

0
1

σ2
x,k

dx < ∞.

In A1 the design points are assumed to become dense over the unit interval
at a uniform rate. In A2 we assume smoothness of Qx,k by assuming that Qx1,k

and Qx2,k are close if x1 and x2 are close. Since the variance functions are used
as direct input, we make the assumption A3 regarding the choice of variance
function.
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Next, we define the appropriate topology under which consistency will be
investigated. Given a particular variance function σx,k, the space of the mth
degree Bernstein polynomials can be given the inner product defined by, IF,G =

〈F,G〉 =
∑K

k=1

∫ Fk(x)Gk(x)
σ2
x,k

hk(x)dx, for F,G in BK
m,↑. Here F = (F1, . . . , FK),

G = (G1, . . . , GK) and h = (h1, . . . , hK) are the sampling densities for the
design points associated with the K curves. The inner product induces a met-
ric defined by d2σ,h,K(F,G) = 〈F−G,F−G〉. From assumptions A1 and A3,
the topology with respect to the metric dσ,h,K is same as the topology cor-
responding to the metric defined by the inner product I∗

F,G = 〈F,G〉∗ =
∑K

k=1

∫

Fk(x)Gk(x)dx. For notational convenience we will suppress the depen-
dence of the metric on the variance function σ and the sampling densities h.
For consistency we further need to assume some growth relationship between
the degree of Bernstein approximation and the number of observations for each
curve. First of all we need the degree of the Bernstein approximations to go to
infinity. We can choose m large enough such that the class of proposed curves
intersects the ǫ neighborhood of the true curve tuples (under metric dK) and
then increase the number of observations (depending on m) such that the poste-
rior probability of that ǫ neighborhood approaches one. It is interesting to note
that increasing number of observations and m at some appropriate rate (see A5)
can ensure convergence. The issue is discussed in details in the appendix. For
simplicity we make a slightly stronger assumption and assume that the sample
size for each curve going to infinity at the same rate across the K curves. Such
an assumption maybe helpful to establish rate of convergence of the posterior of
the K curve tuple. Let N = max1≤k≤K nk. We make the following assumptions.

• A4: For each k and N, we have wk,N = nk

N > k0 > 0 and N → ∞.

• A5: Let m → ∞ and N
m → ∞.

Let F ∗ be the true value of theK curve tuple and Uǫ be an open neighborhood
around F

∗ under dK . Heuristically the probability that Gk,m’s are stochastically
ordered at any knot point is (K!)−1 and thus, we would expect PΠG,m

(BK
m,↑ ∩

U ǫk0
2

) > O((K!)−m). If this result holds then A5 gives a sufficient condition on

the rate of N and m for the conclusion of Theorem 1 to hold. The details of this
result are given in the appendix.

The following consistency theorem can now be stated.

Theorem 1. Consider model (3.1). If assumptions A1–A5 hold, then as m,N →
∞, the posterior probability PN(Uǫ ∩BK

m,↑|Y) → 1 almost surely.

Remark 1. For fixed nk and m, if σx,k = σvx,k and σ approaches zero, then

the Bayes estimator will approach the weighted least square solution in BK
m,↑,

weighted by v−1
xi,k

’s. For large values of m and min1≤k≤K nk, the weighted least

squares solution, will be close to Fperpm , the closest point of F∗ in BK
m,↑ in the

metric dK .
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Table 1

Square root of IMSE’s for the Bayesian and the LP methods

Polynomial degree
6 12 15

Bayes Estimator
σx,k N=20 N=30 N=60 N=20 N=30 N=60 N=20 N=30 N=60
0.10 0.028 0.026 0.023 0.034 0.027 0.019 0.037 0.030 0.021
0.05 0.025 0.023 0.021 0.026 0.021 0.016 0.029 0.023 0.018
0.02 0.024 0.022 0.020 0.024 0.020 0.016 0.026 0.022 0.016

Linear Programming Estimator
0.052 0.036 0.022 0.062 0.046 0.021 0.095 0.051 0.020

4. Numerical example

Before presenting the Bayesian estimates of Huff curves for the California region,
we report the findings of a limited simulation study done to evaluate the finite
sample performance of the proposed estimator and to contrast the performance
with that of the traditional linear programming based estimator. An example
with five stochastically ordered cdfs is considered. We vary the Bernstein degree
and also the choice of the variance function. The mean functions are given by

F1(x) = B(x; 7, 1),

F2(x) = B(x; 5, 1),

F3(x) = 0.5B(x; 5, 1) + 0.5B(x; 1, 5),

F4(x) = B(x; 1, 5),

F5(x) = B(x; 1, 7),

where B(x, a, b) denotes the value of the cdf of the Beta(a, b) distribution at x.
The observations are generated as yx,k ∼ Beta(cF (x), c(1 − F (x)) with c = 30.
However, for implementation of the Bayesian scheme we use the approximate
normal likelihood described in the methodology section. Generating the ob-
served data points for N = 20, 30, 60 equispaced grid points for each of these
curves, we use the Bayesian methodology to estimate the ordered curve tuple,
varying the degree and the variance function. The variance function is chosen to
be constant σx,k = σ for all x and k. The value of the constant is chosen from
{0.02, 0.05, 0.1}. The Bernstein degree is varied over the set m = 6, 12 and 15.
We compare the square root of the integrated mean squared error (IMSE) for
different methods based on 100 Monte Carlo replications. For each Monte Carlo
sample, the we draw 3000 MCMC posterior samples and use the final 1000
samples to compute the Bayes estimators. In all simulations the chain length
seemed to provide adequate convergence. For each sample we also compute the
traditional LP estimator for polynomial degree equal to m = 6, 12 and 15 and
compute the IMSE for the LP estimator as well. The square root IMSE’s for
both estimators are presented in Table 1.

The IMSE’s generally decrease with sample size, which is consistent with the
theoretical results. For small number of observed data points, cases with higher
degree have bigger IMSE, as the fit will be more prone to model errors. However,
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Fig 2. One typical fit for the simulation example. The data points are given by ⋄, ×, +, △
and ◦ for F1, F2, F3, F4 and F5 respectively. Fitted and the true curves are plotted by solid
and dashed lines, respectively. Here N = 30,m = 12 and σx,k = .05.

as the number of observations increases, the IMSE decreases as expected. With
small σx,k we have smaller IMSE (see Remark 1). An example of a Bayesian fit
is given in Figure 2. The IMSE for the Bayesian estimator is generally smaller,
particularly when the degree is high compared to sample size. This is because
the LP estimator is overfitting the data at the observed points.

5. Temporal analysis for California heavy storm precipitation

The current linear programming based estimation method for the Huff curves is
essentially a least squares procedure, which maintains the two basic constraints,
monotonicity and non-intersecting property, across the curves at the grid points
used in the optimization procedure. The estimation accuracy is not only a func-
tion of the polynomial degree but also depends on the shape of the curves. While
higher degree polynomials provide better fit (provided the algorithm converges),
they generally also tend allow for greater number of violations of the constraints.
While the polynomials maintain the constraints at the optimized grid, the curves
can be non-monotonic or may intersect each other in between the grid points.
We used a standard grid of 96 equally spaced points in the range 0 to 100 to
evaluate the estimated curves and check for violations of constraints in between
the grid points. To check for violations of monotonicity, we looked at pairwise
differences of consecutive grid points along each curve and tabulated the num-
ber of violations as a percentage of total number of comparisons. Similarly, we
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Table 2

Percentage violation of constraints

degree = 6 degree = 12
duration (hours) duration (hours)

monotonicity constraint
region quartile 6 12 24 96 6 12 24 96

q1 1 2 1 1 2 3 2 1
q2 0 0 0 1 1 1 1 1

10 q3 0 1 0 1 0 1 0 1
q4 0 0 0 0 1 0 1 0
all 0 0 0 0 0 1 1 1
q1 3 4 1 1 3 5 3 0
q2 0 0 0 1 3 1 1 2

14 q3 0 1 1 1 0 1 1 0
q4 0 0 1 0 0 1 1 0
all 1 1 1 1 2 3 2 1

stochastic ordering constraint
q1 2 1 1 0 1 1 1 0
q2 1 1 1 0 1 1 0 0

10 q3 1 1 1 0 1 1 0 0
q4 1 1 0 0 1 1 0 0
all 0 0 0 0 0 0 0 0
q1 2 1 0 0 2 2 0 0
q2 0 1 1 1 1 1 1 1

14 q3 1 1 1 0 1 0 0 0
q4 1 1 0 0 1 1 1 0
all 1 1 1 1 0 1 1 0

also checked for violation of non-intersecting property by checking pairwise dif-
ferences over consecutive curves along each grid point and tabulated the total
number of violations as a percentage of the total number pairs compared.

We used curves for all quartile storms and at all durations for regions 1, 10
and 14 to illustrate the potential pitfalls of the linear programming method.
A jth quartile storm, (j = 1, . . . , 4), is one that has the maximum depth during
the jth quartile of the duration. The particular choices of the regions reflect
the wide variability in precipitation type over the state. Region 1 is a coastal
region near Oregon border and receives about 120 inches of rainfall every year.
Region 10 is inland and has moderate amount of rainfall while region 14 is in the
semi-arid region near the south-east border with Arizona. While there were no
violations in region 1, the estimated curves in region 10 and 14 showed several
violations. To evaluate the effect of the degree of the polynomial fit, we checked
for polynomial degree equal to 6 (as used in NOAA Atlas Vol. 14) and for degree
equal to 12. Table 2 provides the percentage violations for both type of violations
for regions 10 and 14 for polynomial degree equal to 6 and 12. One can see that
the percentage violations can be substantial. The percentage of violations is
generally higher for the higher degree fit. The highest value reported is 5%, for
a 12 degree fit to first quartile 12 hour storms in region 14. Apart from the
fact that there are several instances of violations, it is also interesting to see
that the pattern of violation changes spatially. The coastal region storms tend
to be more uniform while those in the semi-arid regions have grater variability.
These facts adversely affect the estimation accuracy in different ways across the
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Table 3

Integrated L2 error of linear programming method with polynomial degree equal to 6 (LP6)
and 12 (LP12) and the Bayesian method (Bayes). Dur denotes the duration type of the

rainfall time series and Q denote the quartile type of the storms. Each entry is multiplied
by 100

Region
1 10 14

Dur Q LP6 LP12 Bayes LP6 LP12 Bayes LP6 LP12 Bayes
q1 0.40 0.22 0.58 1.01 0.77 1.24 1.71 0.93 2.06
q2 0.43 0.22 0.62 0.91 0.55 1.19 1.49 0.72 1.49

6h q3 0.39 0.21 0.57 0.60 0.44 0.97 0.55 0.37 0.84
q4 0.38 0.21 0.76 0.74 0.36 1.11 0.53 0.33 0.82
all 0.22 0.16 0.53 0.57 0.45 0.81 0.87 0.53 1.33
q1 0.51 0.33 0.63 1.44 0.80 1.27 3.33 1.10 2.09
q2 0.64 0.41 0.78 0.68 0.44 0.67 1.05 0.49 0.80

12h q3 0.42 0.24 0.53 0.96 0.60 0.89 1.36 0.46 0.89
q4 0.60 0.36 0.67 0.91 0.57 0.99 1.10 0.68 0.99
all 0.28 0.21 0.40 0.56 0.41 0.65 1.32 0.54 1.43
q1 0.68 0.55 0.66 1.35 0.75 1.04 3.73 0.99 3.06
q2 0.59 0.42 0.55 1.71 0.65 1.13 2.57 0.69 1.59

24h q3 0.68 0.44 0.60 2.51 0.89 1.92 2.89 0.97 1.99
q4 0.90 0.52 0.74 2.16 0.95 2.06 2.72 1.58 2.56
all 0.48 0.34 0.47 0.71 0.55 0.64 1.08 0.60 0.85
q1 1.14 0.80 0.98 1.37 0.93 1.18 6.27 2.09 4.64
q2 1.48 0.86 1.08 3.97 1.70 2.59 7.52 2.88 5.24

96h q3 1.69 1.03 1.31 4.72 2.00 3.59 4.72 2.10 3.60
q4 1.29 0.99 1.09 2.04 1.06 1.71 3.95 1.80 3.05
all 0.78 0.52 0.62 1.10 0.78 0.87 3.19 0.95 1.61

region, with the linear programming method facing greater challenge when there
is high variability in the storm systems. The trade-off for using higher degree
is of course better fit versus greater potential for violations of constraints. The
reduction in the integrated L2 distance between the observed and the fit,

d(F̂ , F ) =

√

√

√

√(NK)−1

N
∑

i=1

K
∑

k=1

(F̂ (xi,k)− yk(xi,k))2,

obtained from higher degree fit is obvious from the values reported in Table 3.
The table also gives the L2 error for the Bayesian fit using 12 knot points for 12,
24 and 96 hour cases and 6 knots for the 6 hour case. The constant variance func-
tion σx,k = 0.01 was used. The squared error for the Bayesian generally falls in
between the linear programming fit with 6 and 12 degree polynomial. Of course,
the Bayesian fit maintains all the required restrictions. From the Figures 3–5,
the Bayesian fit are very comparable with the linear programming fit in terms
of accuracy while only the Bayesian fit maintain all the required constraints.

6. Selection of the degree of Bernstein basis

There are two unknown quantities that need to be determined during the estima-
tion process. The variance function of the working normal model and the degree
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Fig 3. The estimated huff curves for California region 1. The top two rows are estimated
curves for first quartile storms for 6 hour and 12 hour durations, respectively. The bottom
two rows are estimated curves for all the storms in the region for 6 hour and 12 hour dura-
tions, respectively. The left column shows the estimated curves using the linear programming
algorithm. The second colum shows the curves estimated using the Bayesian algorithm. Cu-
mulative percentage precipitation are given along y-axis.

of Bernstein approximation. The Bayes estimator estimates F
∗ as a quantity

in BK
m,↑ by the posterior mean F(m,N) and the estimation performance depends

on the degree m and the variance function σx,k’s. The effect of the variance
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Fig 4. The estimated huff curves for California region 10. The top two rows are estimated
curves for first quartile storms for 6 hour and 12 hour durations, respectively. The bottom
two rows are estimated curves for all the storms in the region for 6 hour and 12 hour dura-
tions, respectively. The left column shows the estimated curves using the linear programming
algorithm. The second colum shows the curves estimated using the Bayesian algorithm. Cu-
mulative percentage precipitation are given along y-axis.

function is easily understood. When a small constant variance function is used
the estimated fit goes to the least square solution in BK

m,↑. From the simulation,
we see that the performance of the estimator does not depend critically on the
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Fig 5. The estimated huff curves for California region 14. The top two rows are estimated
curves for first quartile storms for 6 hour and 12 hour durations, respectively. The bottom
two rows are estimated curves for all the storms in the region for 6 hour and 12 hour dura-
tions, respectively. The left column shows the estimated curves using the linear programming
algorithm. The second column shows the curves estimated using the Bayesian algorithm. Cu-
mulative percentage precipitation are given along y-axis.

variance function as long as a reasonably small value is chosen. The choice of
the Bernstein degree is more involved. If a good fit in the least square sense is
required then using more knots may decrease the fit error but the prediction per-
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formance at an unobserved data point may not be good. This is similar to what
happens in the traditional LP method when a high polynomial degree is chosen.
In the Bayesian framework it makes sense to use the unknown degree as a pa-
rameter and specify a prior for the degree. However, the computation becomes
prohibitive. One could choose the degree using Bayes factor and then proceed
with the chosen model. Another option is to use a somewhat calibrated Bayes
approach and use cross validation along with the MCMC sampling. Both options
are computationally taxing. We define an approximate prediction error estimate
based on generalized cross validation (GCV) and use it to select the degree.

The main idea is that a least squares fit without any constraints on the Bern-
stein coefficient will be still consistent for any true F ∗ but the least squares fit
need not satisfy the monotonicity and stochastic ordering restrictions. Also the
fitted least square curve tuples Fm,ols = (F1,m,ols, . . . , FK,m,ols) should be close
to the posterior mean curve F(m,N) = (F(1,m,N), . . . , F(K,m,N)) which maintains
the required constraints. We propose the approximate prediction error (APE)

APE2(m) = K−1
K
∑

k=1

nk

nk
∑

i=1

(nk −m)−2(yi,k − Fk,m,ols(xi,k))
2

+K−1
K
∑

k=1

n−1
k

nk
∑

i=1

(F(k,m,N)(xi,k)− Fk,m,ols(xi,k))
2

where m is the Bernstein degree. The first term stands for the GCV estimate
of prediction error in the least square fit and the second term gives the squared
error differences between the least square fit and the posterior mean functions.
The optimum m is chosen as the minimizer of the APE(m). The added com-
putation time for this procedure is much more reasonable compared to the full
Bayesian approach.

A limited simulation is performed to evaluate the merit of the proposed selec-
tion procedure. The data generating mechanism is same as that of section 4 with
N = 20, 40, 60 and σx,k = 0.02, 0.05 and 0.1 for each x and k. In figure 6, the
prediction error (PE) from cross validation is compared with APE for N = 20,
where PE and APE show similar pattern. The effect of the selection criterion
on the IMSE can be explored as well. We generated 100 Monte Carlo samples.
For each sample we selected the best model by the proposed method and looked
at the IMSE. From Table 4 the APE based method performs well in terms of
IMSE and can be used to select the degree. Given that the observation points
are equi-spaced in unit interval, for small value of N = 20 relatively higher
degree is selected to capture the shape. For larger N , we have more accuracy in
terms of IMSE with some increase in the selected degree.

7. Discussion

The proposed Bayesian fit for the Huff curves for California rain gauge data
matches those provided by NOAA in terms of accuracy maintaining the mono-
tonicity and non-intersecting properties while the LP method may fail to enforce
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Fig 6. The measures PE and APE are given for degree in m = 3, 4, . . . 9, 10 with nk = 20 for
all K. The PE is estimated by leave one out cross validation. Respective values for σx,k =
0.1, 0.05 and 0.02, for each x and k are given in blue, red and black.

Table 4

Square root MSE’s under the knot selection criteria. Here m̄ denotes the average number of
degree selected over all replications

σx,k N=20 N=40 N=60
rmse,m̄ rmse,m̄ rmse,m̄

0.10 .027 6.53 .020 7.02 .016 7.30
0.05 .024 6.47 .016 6.91 .013 7.02
0.02 .022 6.55 .015 6.92 .012 7.05

the constraints. The contrast between the Bayesian methodology and the exist-
ing methodology for producing Huff curves can be more pronounced in regions
with sparse rain gauge system and high variability of the observed data. Imple-
menting the Bayesian method is computationally no more taxing than the linear
programming method for the examples investigated. In fact, for the California
data, we did not face any issue with convergence of chains with the Bayesian
scheme while there were a few cases where the linear programming method did
not converge.

The Bernstein degree for the Bayesian estimation is a tuning parameter and
can be chosen by the proposed hybrid approach. The variance function σx,k

needs to be specified. While no extensive sensitivity analysis was done the results
were robust to the choice of σx,k in the simulation example. As mentioned in
Remark 1, we can use small constant values for all σi,k to get least squares type
fit in BK

m,↑. For the data analysis part, we used σi,k = 0.01. One can assume
some variance structure satisfying A3 as well. From Remark 2, the posterior
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convergence holds for empirical processes, which is compatible with the observed
data where observed data points converge to true mean function uniformly over
any compact subset of the support, as the number of storms increases. The
Bayesian fit can be viewed as a weighted combination of the equispaced knot
values, where the weights are given by the Bernstein coefficients. One interesting
case may arise, when we have functions whose shapes change rapidly in some
subinterval of [0, 1]. To capture such cases, we can use local partition. We can
partition the interval locally, around some knot and use Bernstein coefficients
to split the weight of that knot at equispaced knot points in that interval.

It is possible to generalize this method for modeling a family of monotonic
stochastically ordered curves starting from the same point. Such methods can
be useful for Intensity-Duration-Frequency curves also produced by NOAA.

8. Appendix

In this section, we provide proofs of the stated results and also give details about
posterior computation for the proposed method.

8.1. Proofs

We first state and prove some lemmas that are needed for the proof of Theo-
rem 1. The following notation and constructions are used in the lemmas and
also in the proof of Theorem 1.

Given 0 < η < 1, define a class, Cη, of piecewise linear continuous cdfs on
[0,1] in the following manner: Let l = ⌈ 1

η ⌉. Partition the unit square, [0, 1]2, into

l2 smaller squares based on equi-spaced grids along both axes. Any cdf in Cη be
continuous piecewise linear such that the join points of the linear segments all
belong to the l2 grid. Let Ii = [ i−1

l , i
l ], for i = 1, . . . , l. For any strictly monotone

cdf F on [0,1], define the approximation of F belonging to Cη as Fc(
i
l ) = m

l

where m
l < F ( il ) <

m+1
l , and joined linearly in between the grid points.

Lemma 1. For any cdf F and its approximation Fc in Cη, we have

l
∑

i=1

sup
x∈Ii

|F (x) − Fc(x)| < 3.

Proof. From the definition of the approximation Fc, we have

sup
x∈Ii

|F (x) − Fc(x)| ≤ F

(

i

l

)

−

(

F

(

i− 1

l

)

− η

)

.

Taking sum over i,

l
∑

i=1

sup
x∈Ii

|F (x)− Fc(x)| ≤

l
∑

i=1

[

F

(

i

l

)

− F

(

i− 1

l

)]

+ lη = 1 + lη.

Since lη < 1 + η, we have the result.
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Lemma 2. Let yik denote the observations for the k th curve from 3.1 and let

F ∗
k be the true value. Suppose A1–A3 hold. Then,

n−1
k

nk
∑

i=1

(yik − F ∗(xi,k))(F
∗(xi,k)− Fc(xi,k))

σ2
xi,k

→ 0

a.s. as nk → ∞, uniformly over Cη, where Fc ∈ Cη and ǫi,k’s are independent.

Proof. Let 0 < δ < 1. Choose 0 < a < b < 1 such that H([a, b]) > 1 − δ. Let

wc(x) = (F∗(x)−Fc(x))
σ2
x,k

. Given Cη, we partition [a, b] in B1, B2, . . . , BM+1 such

that B1 = [a, b1], B2 = [b1, b2], . . . , BM+1 = [bM , b], supx1,x2∈Bl,c∈C |wc(x1)

−wc(x2)| <
δ
2 and |Q−1

x1
(Qx2(z))−Q−1

x3
(Qx4(z))| < δ, whenever x1, x2, x3, x4 ∈

Bl, where l is between 2 and M . Let ǫxi
= yik−F ∗(xi,k) and al be the midpoint

of Bl. We denote ǫ∗xi,k
= Q−1

al
(Qxi,k

(ǫxi,k
)). Thus, for 2 ≤ l ≤ M , we have

∣

∣

∣

∣

∣

n−1
k

nk
∑

i=1

(yik − F ∗(xi,k))(F
∗(xi)− Fc(xi,k))

σ2
xi,k

1xi,k∈Bl

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n−1
k

nk
∑

i=1

ǫ∗xi,k
wc(al)1xi,k∈Bl

∣

∣

∣

∣

∣

+ 3δpl,

where pl is the proportion of xi,k in Bl. If ǫxi,k
’s are independent, then ǫ∗xi

are
independent and identically distributed for xi,k in Bl. By the strong law of large
number (SLLN) n−1

k

∑nk

i=1 ǫ
∗
xi,k

wc(bl)1xi,k∈Bl
→ 0 a.s.

For l = 1,M + 1

limn→∞

∣

∣

∣

∣

∣

n−1
k

nk
∑

i=1

(yik − F ∗(xi,k))(F
∗(xi,k)− Fc(xi,k))

σxi,k
2

1xi,k∈Bl

∣

∣

∣

∣

∣

≤ δ

∫ 1

0

1

σ2
x,k

dx.

Because δ is arbitrary, the result follows.

Before proving Theorem 1, we discuss the relative rate of increase of N and m

in the context of providing lower bound of prior probability in a neighborhood
of true parameter.

Lemma 3. Let Gk,m’s for k = 1, . . . ,K, are cdf’s with support i
m ’s where the

increments of each Gk,m follows Dirichlet(α1, . . . , αm) with α1 = α2 = · · · =
αm > 0 and Gk,m’s are independent. Then

P

(

G1,m(x) < G2,m(x) < · · · < GK,m(x) for all x ∈

[

1

m
, 1

))

> (K!)−m.

Proof. We proceed by induction. Easy to see this result for m = 2. Suppose it

is true for m−1. Define, G̃k,m(x) =
Gk,m(x)−Gk,m( 1

m
)

1−Gk,m( 1
m

)
. The increments of G̃k,m’s

follow independent Dirichlet distribution and G̃k,m’s have m−1 support-points.
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The stochastic ordering of G̃k,m’s implies the stochastic ordering of Gk,m’s.
Thus, conditioning Gk,m’s on x = 1

m , from the induction hypothesis

P

(

G1,m(x) < G1,m(x) < · · · < GK,m(x) for all x ∈

[

1

m
, 1

))

≥ (K!)−m+1.(K!)−1 = (K!)−m.

The following result can now be stated.

Lemma 4. Under A1–A4 and (3.4) PΠG,m
(BK

m,↑∩U ǫk0
2

) > p0(K!)−m, for some

constant p0 > 0.

Proof. From the fact that F1, . . . , FK are smooth functions on compact set,
given ǫ > 0, there exist r many points 0 < x1 < · · · < xr < 1 and 1 < im,1 <

· · · < im,r < m such that
im.j

m → xj and Gk,m(
im,j

m ) ∈ Ik,j implies corresponding
K curve tuple lies in Uǫk0/2 for all m > m0. Here Ik,j = (Fk(xj)−ν(ǫ), Fk(xj)+

ν(ǫ)), where ν(ǫ) > 0 depends on ǫ. Let sm,r = {
im,1

m , . . .
im,r

m }. Also,

P

(

Gk,m

(

im,j

m

)

∈ Ik,j , ∀k and G1,m(x) < · · · < GK,m(x) for x ∈ sm,r

)

> p0

for some p0 > 0 as r is finite. Following the construction of Proposition 3, for 1 <

j < r the quantities G̃k,m,j(x) =
Gk,m(x)−Gk,m(

im,j
m

)

Gk,m(
im,j+1

m
)−Gk,m(

im,j
m

)
for

im,j

m < x <
im,j+1

m

has im,j+1− im,j−1 many support points and the increments of G̃k,m,j(x)’s fol-
lows independent Dirichlet distribution. Ordering of the corresponding Dirichlet
distribution imply the ordering of the curves. Let

Rm.r =

{

Gk,m

(

im,j

m

)

∈Ik,j and G1,m(x) < G1,m(x) < · · · < GK,m(x), x∈sm,r

}

.

Thus, conditioning on the values at
im,j

m ’s

PΠG,m
(BK

m,↑ ∩ U ǫk0
2
)

> P

(

G1,m(x) < · · · < GK,m(x)∀x ∈

[

1

m
, 1

)

;Gk,m

(

im,j

m

)

∈ Ik,j , j = 1, . . . , r

)

=

∫

Rm,r

P (G1,m(x) < · · · < GK,m(x)∀x ∈

[

1

m
, 1

)

∣

∣

∣
Gk,m

(

im,j

m

)

∈ Ik,j and

G1,m(x) < G1,m(x) < · · · < GK,m(x)) for x ∈ sm,r)d(.)

> p0(K!)−m.

Here the last integral is with respect to the joint density of Gk,m(
im,j

m )’s for
k = 1, . . . ,K and j = 1, . . . , r.
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8.1.1. Proof of Theorem 1

Proof. Let ∆K = {∆1,∆2, . . . ,∆K}, where ∆k is the parameter vector corre-
sponding to the k th Bernstein cdf and let m be the number of knots. Let F∆k

be the curve corresponding to ∆k. We denote σ2
k(xi,k) = σ2

xi,k
. Thus, we can

write the likelihood

L∆K = L(∆K) = exp

(

K
∑

k=1

nk

2
(−Sek − Sd,∆k + Se,d,∆k) + c0,K

)

where

Sek = n−1
k

nk
∑

i=1

{

(yik − F ∗
k (xi,k))

σxi,k

}2

,

Sd,∆k = n−1
k

nk
∑

i=1

{

(F ∗
k (xi,k)− F∆k(xi,k))

σxi,k

}2

,

Se,d,∆k = 2n−1
k

nk
∑

i=1

(yik − F ∗
k ((xi,k))(F

∗
k ((xi,k)− F∆k((xi,k))

σ2
xi,k

,

and c0,K is a constant.

Let Uǫ = {G : d2K(F∗,G) < ǫ}. For m large enough we can find δ = δ(m) > 0
such that PΠG,m

(BK
m,↑ ∩ U ǫk0

2

) > δ, where PΠG,m
is probability measure associ-

ated with the density ΠG,m. The density ΠG,m is denoted by Π for simplicity.

Let A = (BK
m,↑ ∩U ǫk0

2
), B = (BK

m,↑ ∩Uǫ
c) and S be the set of all elements in

BK
m,↑, then

PN(B) =

∫

B ΠN(∆K |Y)d∆K

∫

S
ΠN(∆K |Y)d∆K

≤

∫

B ΠN(∆K |Y)d∆K

∫

A
ΠN(∆K |Y)d∆K

=

∫

B Π(∆K)L∆Kd∆K

∫

A
Π(∆K)L∆Kd∆K

.

Thus,

PN(B) ≤
sup

∆K∈BL∆K

∫

B
Π(∆K)d∆K

inf∆K∈AL∆K

∫

A Π(∆K)d∆K
. (8.1)

The likelihood can be written as

L(∆K) = exp

(

N

K
∑

k=1

wk,N

2
(−Sek − Sd,∆k + Se,d,∆k) + c0,K

)

.

For each of the k curves we have

Sd,∆k = n−1
k

nk
∑

i=1

{

(F ∗
k (xi,k)− Fc

∆k
(xi,k))

σxi,k

}2

+ C1,
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and

Se,d,∆k = 2n−1
k

nk
∑

i=1

(yik − F ∗
k ((xi,k))(F

∗
k ((xi,k)− Fc

∆k
((xi,k))

σ2
xi,k

+ C2,

where Fc
∆k

is the approximation of F∆k in Cη for some η > 0.

Note that, |C1| ≤ 3n−1
k

∑l
j=1 supxi,k∈Ij |F∆k(x)−Fc

∆k
(x)|

∑

xi,k∈Ij
1

σ2
xi,k

and

C2 = 2
nk

∑nk

i=1
(yik−F∗(xi,k))(F∆k (xi,k)−Fc(xi,k))

σ2
xi,k

.

Using Cauchy-Schwarz inequality we have,

|C2|
2
≤ 4n−1

k

nk
∑

i=1

(yik − F ∗(xi,k))
2

σ2
xi,k

{

n−1
k

l
∑

j=1

supxi,k∈Ij |F∆(x)−Fc(x)|
∑

xi∈Ij

1

σ2
xi,k

}

.

The cross product terms in Se,d,∆k go to zero a.s. by Lemma 2.

As n−1
k

∑

xi,k∈Ij
1

σ2
xi,k

→
∫

Ij
1

σ2
x,k

hk(x)dx = H(Ij , σx,k), using the result from

Lemma 1 and A3, we can choose η small enough such that supj,kH(Ij , σx,k) ≤

αǫ, for any α > 0. As N → ∞, for some ∆K ∈ B we have
∑

wk,NSd,∆k > ǫk0

and for ∆K ∈ A,
∑

wk,NSd,∆k < ǫk0

2 . From Lemma 4, exp(N ǫk0

2 )PΠG,m
(A) →

∞ if N
m → ∞, for any ǫ > 0. Also, Cη is a finite set. Hence, PN(B) → 0 a.s.

Remark 2. The conclusion of Lemma 2 and a critical part in the proof of

Theorem 1 remain valid under weak correlation between the ǫi,k’s as long as the

strong law used in the proof holds. In case, where yi,k’s are dependent quantities

based on n1,k observations, such that yik = yn1,k,i converges to F ∗(xi,k) a.s.

uniformly on [a, b] as n1,k goes to infinity, then

n−1
k

nk
∑

i=1

(yik − F ∗(xi))(F
∗(xi,k)− Fc(xi,k))

σ2
xi,k

1xi,k∈[a,b] → 0

a.s. as nk and n1,k goes to infinity. This setup is compatible with the Huff curve

example.

Remark 3. The proof of Theorem 1 is for general error distribution in the

setup of model (3.1). The normality assumption was used only for the sampling

purpose.

8.1.2. Proof of Remark 1

Proof. Let dols = infFk∈BK
m,↑

{
∑K

k=1

∑nk

i=1
(yik−Fk(xi,k))

2

v2
xi,k

}. Let

Uols, ǫ2
=

{

∆K such that

K
∑

k=1

nk
∑

i=1

(yik − Fk(xi,k))
2

v2xi,k

< dols +
ǫ

2

}

.
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Then Π(Uols, ǫ2
) > δ′ for some δ′ > 0. As σ2 goes to zero from equation (8.1)

Pn(U
c
ols,ǫ) ≤ δ′

−1
exp

(

−
ǫ

4σ2

)

→ 0.

8.2. Posterior sampling

DefineG0,m( i
m ) = 0 andGK+1,m( i

m ) = 1 for all i in 1, . . . , (m−1),GK+1,m(1) =

G0,m(1) = 1 and GK+1,m(0) = G0,m(0) = 0. Let ak,i = min{Gk,m( i−1
m ), Gk−1,M

( i
m )} and bk,i = max {Gk,m( i+1

m ), Gk+1,m( i
m )} for k = 1, 2, . . . ,K and i =

1, 2, . . . ,m− 1.
Thus,

ΠN

(

Gk,m

(

i

m

)∣

∣

∣

∣

Y,∆K.i,k

)

∝
∏

k

1
√

det(Σk)
exp−

1
2 (Y k−Mk)

′Σ−1
k

(Y k−Mk)

×

(

Gk,m

(

i

m

)

−Gk,m

(

i− 1

m

))
1
m

−1

×

(

Gk,m

(

i+ 1

m

)

−Gk,m

(

i

m

))
1
m

−1

1ak,i<Gk,m( i
m

)<bk,i
.

Note that ∆K denotes the set of parameters and ∆K.i,k denotes the param-
eter set excluding the value at the i th knot point for the kth curve that is
Gk,m( i

m ). The sampling process can be stated as follows.
At 0th step, we start with initial values of Gk,m’s satisfying the restriction.
At each iteration, we update for kth curve for k = K,K − 1, . . . , 1. For each

curve, we update at each knot points for i = 1, . . . ,m− 1 given the rest of the
parameters.

At the Lth iteration, for k = K, . . . , 1 we repeat the following steps.

• Let G
(L−1)
k,m ( i

m ) be the value for the k th curve, at i th knot point in (L−1)

th iteration. The values aLk,i, b
L
k,i are defined as, aLk,i = min {G

(L)
k,m( i−1

m ),

G
(L−1)
k−1,m( i

m )} and bLk,i = max {G
(L−1)
k,m ( i+1

m ), G
(L)
k+1,m( i

m )}. Given the rest

of the parameters we generate a proposed value of Gk,m( i
m), lets say

G∗
k,m( i

m ) by generating a random number x∗ from Beta(b1, b2) and setting

G∗
k,m( i

m ) = aLk,i + x∗(bLk,i − aLk,i). Let x =
G

(L−1)
k,m

( i
m

)−aL
k,i

bL
k,i

−aL
k,i

.

• Let Mk be the vector of fitted values at the design points at this step

using Gk,m( i
m ) = G

(L−1)
k,m ( i

m) and M∗
k
be the vector of the fitted values

when G
(L−1)
k,m ( i

m ) is replaced by the proposed value G∗
k,m( i

m ). Then the
acceptance probability α can be written as

α=min

{

exp−
1
2 (Y k−M

∗
k
)′Σ−1

k
(Y k−M

∗
k
)

exp−
1
2 (Yk

−Mk)′Σ
−1
k

(Y k−Mk)

p(L)(G∗
k,m( i

m ), aLk,i, b
L
k,i)

p(L)(G
(L−1)
k,m ( i

m ), aLk,i, b
L
k,i)

qx,b1,b2
qx∗,b1,b2

, 1

}

,
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Fig 7. An example of posterior curves and the mean curves with N = 40, m = 7 and σx,k =
0.05, in the setup of section 4. Left hand panel represents the posterior curves and the mean
curves for F1, F3, F5 and the right hand panel shows the posterior and mean curves for F2, F4.
Fitted mean curves are given in black and the posterior curves are given in gray.

where

p(L)

(

G
(L−1)
k,m

(

i

m

)

, ak,i, bk,i

)

=

(

G
(L−1)
k,m

(

i

m

)

−G
(L)
k,m

(

i− 1

m

))
1
m

−1

×

(

G
(L−1)
k,m

(

i+ 1

m

)

−G
(L−1)
k,m

(

i

m

))
1
m

−1

1aL
k,i

<Gk,m( i
m

)<bL
k,i
,

p(L)

(

G∗
k,m

(

i

m

)

, ak,i, bk,i

)

=

(

G∗
k,m

(

i

m

)

−G
(L)
k,m

(

i− 1

m

))
1
m

−1

×

(

G
(L−1)
k,m

(

i+ 1

m

)

−G∗
k,m

(

i

m

))
1
m

−1

1aL
k,i

<Gk,m( i
m

)<bL
k,i
,

and qx,b1,b2 is the density value of the Beta distribution with parameter
b1, b2 at point x.

Thus,G
(L)
k,m( i

m ) = G∗
k,m( i

m ) with probability α andG
(L)
k,m( i

m ) = G
(L−1)
k,m ( i

m )
with probability 1− α.

We tried the values, b1 = b2 = b = 1, .8 and .6 in the proposal density
and the result were nearly identical in terms of fitted curves and IMSE values.
An example for posterior fitted curves, along with the posterior mean curves
is given in figure 7 in the context of the five-curve scenario considered in sec-
tion 4.
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