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1. Introduction

In statistical estimation, regularization or penalization has flourished during
the last twenty years or so as an effective approach for controlling model com-
plexity and avoiding overfitting, see for example Bickel and Li (2006) for a
general survey. To estimate an unknown p-dimensional vector of parameters
β = (β1, . . . , βp)

T , the regularized estimator is defined as

argmin
β

{
Ln(β) +

p∑

i=1

pλn(|βj |)
}
,

where Ln is a loss function that measures the goodness-of-fit of the model,
and pλn(·) is a penalty function that depends on a positive tuning parameter
λn. Despite the large amount of work on regularized estimation, most existing
studies were restricted to linear regression and likelihood based models. Recent
statistical literature has witnessed increasingly growing interest on regularized
semiparametric models, due to their balance between flexibility and parsimony.
However, current results usually focus on a specific type of semiparametric re-
gression model. For example, Bunea (2004), Xie and Huang (2009) and Liang
and Li (2009) studied the partially linear regression model; Wang and Xia (2009)
investigated shrinkage estimation of the varying coefficient model; Li and Liang
(2008) proposed the nonconcave penalized quasilikelihood method for variable
selection in semiparametric varying-coefficient models; Liang et al. (2010) con-
sidered partially linear single-index models; Kai, Li and Zou (2011) investigated
the varying-coefficient partially linear models; Wang et al. (2011) studied es-
timation and variable selection for generalized additive partial linear models.
Although the aforementioned work convincingly demonstrate the merits of reg-
ularization in a semiparametric setting, a general theory is still lacking. Fur-
thermore, most of the existing theory assumes a smooth loss function which
excludes many interesting applications, such as those arising from quantile re-
gression, survival analysis and missing data analysis.
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Instead of penalizing the loss function, Fu (2003) proposed to directly pe-
nalize the estimating function for generalized linear models. Later, Johnson,
Lin and Zeng (2008) derived impressive results on the asymptotic theory for a
broad class of penalized estimating functions when the regression model is linear
but the error distribution is unspecified. It is noteworthy that their approach
allows the estimating function to be discrete. In addition, Chen, Linton and
Keilegom (2003) introduced a non-smooth estimating function for the semi-
parametric models, but they only focused on non-penalized estimation. Since
the non-parametric component in their estimating function has been profiled,
we refer to it as the profiled semiparametric estimating equation for the pur-
pose of simplicity. Both of the above two innovative approaches motivate us
to propose a general class of penalized profiled estimating functions that sub-
stantially expands the scope of applicability of the regularization approach for
semiparametric models.

In this paper, we provide a unified approach for obtaining penalized semipara-
metric estimation that is applicable for many commonly used likelihood based
models as well as non-likelihood based semiparametric models. This broad class
of models has three appealing features:

• First, the models incorporate nonparametric components for nonlinearity
without imposing any assumptions on the conditional distribution of the
response variable for the given covariates.

• Second, the profiled estimating function allows the preliminary estimators
of the nonparametric functions to depend on the unknown parametric
component. Furthermore, the estimator for the nonparametric component
is only assumed to satisfy mild conditions. Thus, the widely used nonpara-
metric estimation methods, such as kernel smoothing or spline approxi-
mation, can be applied.

• Third, the profiled semiparametric estimation function can be non-smooth
in both the parametric and/or nonparametric components, which is partic-
ularly useful for models arising from quantile regression, survival analysis,
and missing data analysis, among others.

Based on the profiled semiparametric estimating function with an appropriate
nonconvex penalty function, we demonstrate that the penalized estimator of the
parametric component possesses the oracle property under suitable conditions.
That is, the zero coefficients in the parametric component are estimated to be
exactly zero with probability approaching one and the nonzero coefficients have
the same asymptotic normal distribution as if it is known a priori. It is notewor-
thy that asymptotic results are established under a set of mild conditions and
without assuming a parametric likelihood function. In addition, the proposed
estimator can be computed via an efficient algorithm.

The rest of the paper is organized as follows. Section 2 introduces the method-
ology of the penalized profiled semiparametric estimating function and then il-
lustrates its applicability via four analytical examples. Section 3 presents a set
of sufficient conditions and provides asymptotic theories of the penalized esti-
mator. Monte Carlo studies and an empirical example are reported in Section 4
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to demonstrate the finite sample performance and the usefulness of proposed
method, respectively. Section 5 concludes the article with a brief discussion. All
detailed proofs are relegated to the Appendix.

2. Penalized profiled semiparametric estimating function

2.1. Estimating function

Let m(z,β, h) be a p-dimensional vector that is a function of a p-dimensional
parameter vector β and an infinite dimensional parameter h. The nonpara-
metric component h can depend on both β and z, and thus is written as
h(z,β) when clarity is needed. We assume that β ∈ B, a compact subset of
R

p; and that h ∈ H which is a vector space of functions endowed with the
sup-norm metric ||h||∞ = supβ sup

z
|h(z,β)|. We further assume that the data

{Zi = (X̃T
i , Yi)

T , i = 1, . . . , n} are randomly generated from a distribution
which satisfies

E[m(Zi,β0, h0(Zi,β0))|X̃i] = 0, (1)

for some β0 ∈ B and h0 ∈ H, where X̃i is a generic notation for the covariate
vector and Yi is a response variable. In this paper, we consider semiparametric
models satisfying the above moment condition, and denote the true values of
the finite and infinite dimensional parameters as β0 and h0(·,β0), respectively.

In many real applications, the researchers are interested in estimating the
parametric component β0 and treat the nonparametric component h0 as a nui-
sance function. To this end, for a given β, we consider the “profiled” estimator
ĥ(·,β) (abbreviated as ĥ), which serves as a nonparametric estimator for h(·,β)
in the semiparametric setting. To estimate β0, we subsequently define the p-
dimensional profiled semiparametric estimating function

Mn(β, ĥ) = n−1
n∑

i=1

m(Zi,β, ĥ). (2)

Let M(β, h) = E[m(Zi,β, h(Zi,β))] be the population version of the estimating
function. In this paper, we assume that M(β, h) is smooth in β, while its sample

versionMn(β, ĥ) may be non-smooth in β. Based on the above estimating func-
tion, Chen, Linton and Keilegom (2003) considered the problem of estimating
β0 by emphasizing that m is a non-smooth function in β and/or h. Although

Mn(β, ĥ) only contains a profile estimator, ĥ, it may implicitly depend on the
additional estimators induced by the model setting. For the sake of explicitness,
we sometimes include those augmented components in the estimating functions
(e.g., see Examples 2 and 3 in the next subsection).

In this paper, we study a related but different problem of variable selection
and estimation for the parametric component. We assume that some of the com-
ponents in β0 = (β01 . . . , β0p)

T are zero, corresponding to redundant covariates.
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To estimate β0 and identify its nonzero components, we propose the following
penalized profiled (PP) semiparametric estimating function:

Un(β, ĥ) = Mn(β, ĥ) + qλn(|β|)sgn(β), (3)

where the notation qλn(|β|)sgn(β) denotes the component-wise product of
qλn(|β|) = (qλn(|β1|), . . . ,qλn(|βp|))T with sgn(β) = (sgn(β1), . . . , sgn(βp))

T

and sgn(t) = I(t > 0) − I(t < 0). The function qλn(·) is the gradient of some
penalty function. Based on the penalty function setting in Section 3, qλn(|βj |)
is zero for large values of |βj |, whereas it is relatively large for small values of

|βj |. Accordingly, Mnj(β, ĥ) (the jth component of Mn(β, ĥ)) is not penalized

when |βj | is large. In contrast, if |βj | is close (but not equal) to zero, Mnj(β, ĥ)
is heavily penalized, which forces the estimator of β0j to shrink to zero. Once an
estimated coefficient shrinks towards zero, its associated covariate is excluded
from the final selected model.

It is known that the convex L1 penalty or Lasso Tibshirani (1996) is com-
putationally attractive and demonstrates excellent predictive ability. However,
it requires stringent assumptions to yield consistent variable selection (Green-
shtein and Ritov, 2004; Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006,
among others). A useful alternative to the L1 penalty function is the noncovex
penalty function SCAD (Fan and Li, 2001) or MCP (Zhang, 2010), which al-
leviates the bias of Lasso and achieves model selection consistency under more
relaxed conditions on the design matrix. Hence, we focus on nonconvex penalty
functions that satisfy the general conditions given in Section 3.1.

When Un(β, ĥ) is a non-smooth function, an exact solution to Un(β, ĥ) = 0

may not exist. Hence, we estimate β0 by any β̂ that satisfies ||Un(β̂, ĥ)|| =
Op(n

−1/2), where || · || denotes the L2 or Euclidean norm. For the sake of sim-
plicity, we name it an approximate estimator. In Section 3, we demonstrate
that the oracle estimator is an approximate solution of the penalized profil-
ing estimating equations; and any root-n consistent approximate estimator of
the penalized profiling estimating equations possesses the oracle property with
probability tending to one.

2.2. Analytical examples

The proposed PP semiparametric estimating function can be applied to a wide
range of statistical models. To illustrate its broadness, we consider the four
motivating examples given below, some of which will be further discussed later to
demonstrate the theory and applications. Since the penalty function in (3) does
not depend on the model structure, we only present the profiled semiparametric
estimating function.

Example 1 (Partially linear quantile regression). We consider a random sample
(Xi,Wi, Yi), i = 1, . . . , n, from the partially linear quantile regression model

Yi = XT
i β0 + h0(Wi) + ǫi,
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where β0 and the function h0(·) are unknown, and the random error ǫi satisfies
P (ǫi ≤ 0|Xi,Wi) = τ . Thus, XT

i β0 + h0(Wi) is the τth conditional quantile
of Yi. Define ρτ (u) = τu − uI(u < 0) to be the quantile loss function. For a
given β, let h(w,β) = argminf E

[
ρτ (Yi −XT

i β − f(Wi)|Wi = w)
]
, where f is

any function such that f : W → R1; that is, h(w,β) is the conditional quantile
of Yi −XT

i β given Wi = w. Then h0(w) = h(w,β0). Accordingly, the profiled
semiparametric estimating function is

Mn(β, ĥ) = n−1
n∑

i=1

Xi

[
I(Yi ≤ XT

i β + ĥ(Wi,β))− τ
]
, (4)

where ĥ(w,β) is a nonparametric estimator of h(w,β). In Section 4, ĥ(w,β) is
obtained by the local linear smoothing of quantile regression. Specifically, for a
given β, we have that

(â1, â2) = argmin
n∑

i=1

ρτ
(
Yi −XT

i β − a1 − a2(Wi − w)
)
Kt(Wi − w), (5)

where Kt(·) = t−1K(·/t), K(·) is a kernel function, and t > 0 is the bandwidth.

Accordingly, the local linear estimator is ĥ(w,β) = â1.

Example 2 (Single-index mean regression). We observe a random sample
(Xi, Yi), i = 1, . . . , n, from the model

Yi = h0(X
T
i β0) + ǫi, (6)

where β0 and the function h0(·) are unknown, and the random error ǫi satisfies
E(ǫi|Xi) = 0. For a given β, let h(XTβ) = E(Y |XTβ), where (X, Y ) has the
same distribution as (Xi, Yi). Then h0(X

Tβ0) = h(XTβ0). There are various
approaches to estimate h, for example, the leave-one-out Nadaraya-Watson ker-

nel estimator
∑

j 6=i Kt((Xj−Xi)
Tβ)Yj

∑
j 6=i Kt((Xj−Xi)Tβ)

, where Kt(·) is defined as in Example 1.

Furthermore, adopting Ichimura (1993)’s suggestion, the profiled semiparamet-
ric estimating function is

Mn(β, ĥ, ŝ) = n−1
n∑

i=1

ŝ(Xi,β)
[
Yi − ĥ(XT

i β)
]
,

where ŝ(Xi,β) is a nonparametric estimator of the gradient s(Xi,β) =
∂h(XT

i β)

∂β
,

for example, the derivative of the Nadaraya-Watson kernel estimator.

Example 3 (Partially linear mean regression with missing covariates). Con-
sider the partially linear regression model Yi = XT

i β0 + h0(Wi) + ǫi, where β0

and h0(·) are unknown, and E(ǫi|Xi,Wi) = 0. For a given β, let h(w,β) =
E(Yi −XT

i β|Wi = w), then h0(w) = h(w,β0). Liang et al. (2004) studied this
model when the data on Xi may not be completely observed. Let δi be the
observing data indicator: δi = 1 if Xi is observed and δi = 0 otherwise. Assume
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that Xi is missing at random in the sense that P (δi = 1|Xi,Wi, Yi) = P (δi =
1|Wi, Yi), and denote the probability of Xi being observed by π(Yi,Wi) =
P (δi = 1|Wi, Yi). In addition, let m1(w) = E(X|W = w), m2(w) = E(Y |W =
w), m3(y, w) = E(X|Y = y,W = w), and m4(y, w) = E(XXT |Y = y,W = w).
Then h(w,β) = m2(w) −m1(w)

Tβ. Moreover, let m̂j be a nonparametric esti-

mator of mj for j = 1, . . . , 4. As a result, ĥ(w,β) = m̂2(w)− m̂1(w)
Tβ. Finally,

let π̂ be an estimator of π based on a parametric (e.g., logistic regression) model
or a nonparametric regression approach. Adapting Liang et al. (2004)’s method,
we obtain the following estimating function

Mn(β, ĥ, Â) = n−1
n∑

i=1

Φ(β, ĥ, Â, Yi,Xi,Wi, δi), (7)

where Â = (m̂1, m̂2, m̂3, m̂4, π̂) and

Φ(β, ĥ, Â, Yi,Xi,Wi, δi) = {Xi − m̂1(Wi)}
{
Y −XT

i β − ĥ(Wi,β)
} δi
π̂i

−
[
{Yi − m̂2(Wi)}{m̂3(Yi,Wi)− m̂1(Wi)} − {m̂4(Yi,Wi)− m̂3(Yi,Wi)m̂

T
1 (Wi)

− m̂1(Wi)m̂
T
3 (Yi,Wi) + m̂1(Wi)m̂

T
1 (Wi)}β

]δi − π̂i

π̂i
.

In Section 4.1, the Horvitz–Thompson (HT) weighted local linear kernel esti-
mators (Wang et al., 1998; Liang et al., 2004) are used for estimating mj(w)
(j = 1, . . . , 4), which collectively yield the estimate of h(w, β).

Example 4 (Locally weighted censored quantile regression). Censored quantile
regression has been recognized as a useful alternative to the classical propor-
tional hazards model for analyzing survival data. It accommodates heterogeneity
in the data and relaxes the proportional hazards assumption. The survival time
(or a transformation of it) Ti is subject to random right censoring and may not
be completely observed. However, we observe the i.i.d. triples (Xi, Yi, δ

∗
i ), where

Yi = min(Ti, Ci), δ
∗
i = I(Ti ≤ Ci) is the indicator for censoring and Ci is the

censoring variable. we further assume that

Ti = XT
i β0 + ǫi,

where P (ǫi ≤ 0|Xi) = τ , 0 < τ < 1. Therefore, XT
i β0 is the τth conditional

quantile of the survival time. Following Wang and Wang (2009) approach, we
obtain the profiled semiparametric estimating function

Mn(β, ĥ) = n−1
n∑

i=1

Xi

[
τ − w∗

i (ĥ)I(Yi −XT
i β < 0)

]
,

where ĥ(·|Xi) is the local Kaplan-Meier estimator of h0(·|Xi), which is the
conditional distribution function of Ti given Xi, and the weight function is

w∗
i (h0) =

{
1, δ∗i = 1 or h0(Ci|Xi) > τ,
τ−h0(Ci|Xi)
1−h0(Ci|Xi)

, δ∗i = 0 and h0(Ci|Xi) < τ,
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i = 1, . . . , n. Wang and Wang (2009) showed that the estimator obtained by
solving the above estimating function is consistent for β0, and it is also asymp-
totically normal under weaker conditions than those in the literature.

3. Theoretical properties and estimation algorithm

3.1. Asymptotic properties

In this paper, we assume that Un(β, ĥ) can be a non-smooth function due to

either Mn(β, ĥ) or qλn(|β|). For example, the popular SCAD penalty function
(Fan and Li, 2001) has

qλn(θ) = λn

{
I(θ ≤ λn) +

(aλn − θ)+
(a− 1)λn

I(θ > λn)

}
(8)

for θ ≥ 0 and some a > 2, where the notation b̃+ stands for the positive part
of b̃, i.e., b̃+ = b̃I(b̃ > 0). Hence, the qλn(θ) function is not differentiable at

θ = λn and θ = aλn. It is not surprising that an exact solution to Un(β, ĥ) = 0
may not exist. Hence, we consider an approximate estimator for β0 that satisfies

||Un(β̂, ĥ)|| = Op(n
−1/2), where || · || denotes the L2 or Euclidean norm, see also

the non-penalized approximate estimator in Chen, Linton and Keilegom (2003).
Alternatively, we may consider the estimator as an approximate zero-crossing
of Un(β, ĥ); see Johnson, Lin and Zeng (2008).

Without loss of generality, we assume that β0 = (βT
10,β

T
20)

T , where β10

consists of the nonzero components and β20 = 0 contains the zero components.
Let A = {1 ≤ j ≤ p : β0j 6= 0} be the index set of the nonzero components and
denote the dimension of β10 by s, where 1 ≤ s ≤ p. Our goal is to simultaneously
estimate β0 and identify its nonzero components.

Under the moment condition (1), the population version of the estimating
function M(β, h) satisfies M(β0, h0) = M(β0, h0(Zi,β0)) = 0. To character-
ize the influence of the parametric component and nonparametric component
on estimation, we adopt the approach of Chen, Linton and Keilegom (2003)
and define the ordinary derivative and the path-wise functional derivative of
M(β, h). Specifically, the ordinary derivative of M(β, h) with respect to β is
the p× p matrix Γ1(β, h), which satisfies

Γ1(β, h)(β − β) = lim
τ→0

[
M(β + τ(β − β), h(·,β + τ(β − β)))−M(β, h(·,β))

]

τ
,

for all β ∈ B. In addition, the path-wise derivative of M(β, h) at h ∈ H in the
direction [h− h] is the p× 1 vector Γ2(β, h), which satisfies

Γ2(β, h)[h− h] = lim
τ→0

[
M(β, h(·,β) + τ(h(·,β)− h(·,β)))−M(β, h(·,β))

]

τ
,

where {h+ τ(h − h) : τ ∈ [0, 1]} ⊂ H.
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To facilitate the presentation of the large-sample theory for the penalized
profiling semiparametric estimating equations, we consider the following three
sets of conditions.

(I) Conditions on the PP estimating equation
Let Bn = {β : ||β − β0|| ≤ δn} and Hn = {h : ||h − h0||∞ ≤ δn}, where
the sequence δn = o(1).

(C1) The ordinary derivative Γ1(β, h0) exists for β in a small neighbor-
hood of β0 and is continuous at β = β0.

(C2) For β ∈ B, Γ2(β, h0)[h−h0] exists in all directions [h− h0] ∈ H. Fur-
thermore, for all (β, h) ∈ Bn×Hn, ||M(β, h)−M(β, h0)−Γ2(β, h0)[h−
h0]|| ≤ c||h − h0||2∞ for a constant c > 0 and ||Γ2(β, h0)[h − h0] −
Γ2(β0, h0)[h− h0]|| ≤ o(1)||β − β0||.

(C3) P (ĥ ∈ H) → 1 and ||ĥ− h0||∞ = op(n
−1/4).

(C4) supβ∈Bn,h∈Hn
||Mn(β, h)−M(β, h)−Mn(β0, h0)|| = op(n

−1/2).

(C5)
√
n
[
Mn(β0, h0)+Γ2(β0, h0)[ĥ−h0]

]
→ N(0,V) in distribution for

a p× p positive definite matrix V.

(II) Conditions on the penalty function and the tuning parameter

(P1) The penalty function qλn(·) is nonnegative and non-increasing on
the interval (0,+∞). There exist positive constants b1 < b2 such that
qλn(θ) is differentiable on (0, b1λn) and (b2λn,∞). For any |β| >
b1λn, limn→∞ n1/2qλn(|β|) = 0 and limn→∞ q′λn

(|β|) = 0. In ad-
dition, we assume that limn→∞

√
n inf |β|≤dn−1/2 qλn(|β|) = ∞ and

limn→∞ sup|β|≤dn−1/2 q′λn
(|β|) = 0, ∀ d > 0.

(P2) limn→∞ λn = 0 and limn→∞
√
nλn = ∞.

(III) Conditions on the true parameters and the unpenalized estimating equa-
tion

(T1) β0 ∈ B satisfies M(β0, h0(·,β0)) = 0.

(T2) For all ξ > 0, there exists ǫ(ξ) > 0 such that

inf
||β1−β10||>ξ

||M1(β1, h0)|| ≥ ǫ(ξ),

where M1(β1, h0) denotes the subvector that consists of the first s
components of M(β, h0) evaluated at β = (βT

1 ,0
T )T .

(T3) Let Γ11 denote the s × s submatrix in the upper-left corner of
Γ1(β, h0), which is assumed to be positive definite.

(T4) min1≤j≤s |β0j |/λn → ∞ as n → ∞.

Remark 1. Conditions (C1)–(C5) and (T1)–(T3) are similar to those in Chen,
Linton and Keilegom (2003) to ensure good performance of the profiled estimat-
ing equations, and they are general enough to allow the estimating equations
to be non-smooth. In addition, Condition (T4) imposes a constraint on the
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magnitude of the smallest signal, which is common for the theory of penalized
estimators. It is noteworthy that Condition (P1) is satisfied by popular noncon-
vex penalty functions, such as SCAD and MCP. Condition (P2) is a standard
requirement on the rate of the tuning parameter in achieving the oracle property
(Fan and Li, 2001).

Theorem 1. Assume Conditions (C1)–(C5), (P1)–(P2) and (T1)–(T4) hold.

1. Let β̂1 be the estimator obtained by solving the unpenalized profiled esti-
mating equations when the true model is known in advance. Then, with

probability approaching one, the oracle estimator β̂ = (β̂
T

1 ,0
T )T is an

approximate solution of the penalized profiling estimating equation in the
sense that ||Un(β̂, ĥ)|| = Op(n

−1/2).

2. For any root-n consistent approximate solution β̂ = (β̂
T

1 , β̂
T

2 )
T , we have

that P (β̂2 = 0) → 1. Furthermore, if ||Un(β̂, ĥ)|| = op(n
−1/2), then β̂1

has the oracle asymptotic distribution

√
n(Γ11 +Σ11)

[
β̂1 − β10 + (Γ11 +Σ11)

−1bn

]
→ N(0,V11)

as n → ∞, where Γ11 is defined in Condition (T3), V11 denotes the
s× s submatrix in the upper-left corner of V, Σ11 = diag(q′λn

(|β01|), . . . ,
q′λn

(|β0s|)), and

bn = (qλn(|β01|)sgn(β01), . . . , qλn(|β0s|)sgn(β0s))
T .

Remark 2. The property described in this theorem is often referred to as
the oracle property of parameter estimators in the variable selection context.
In addition, for a nonconvex penalty function such as SCAD, we have that
Σ11 = bn = 0 as λn → 0. Hence, when

√
nλn → ∞, we have

√
n
[
β̂1 − β10

]
→

N(0,Γ−1
11 V11Γ

−1
11 ). This is the asymptotic normal distribution that would be

obtained if the true model is known a priori.

Theorem 1 establishes the asymptotic property of the approximate estimator
for a possibly non-smooth estimating function. If the unpenalized estimating
function is continuous in the true parameter space, then an exact solution can
be found. This leads us to investigate the property of its resulting estimator given
below. Before presenting the result, let us define Un1(β, ĥ) and Mn1(β, ĥ) be

the subvectors that contain the first s components of Un(β, ĥ) and Mn(β, ĥ),
respectively.

Theorem 2. Assume Conditions (C1)–(C5), (P1)–(P2) and (T1)–(T4) are

satisfied. If Mn1((β
T
1 ,0

T )T , ĥ) is continuous in β1, then with probability ap-

proaching one, there exists β̂1 that is root-n consistent for β10 and satisfies

Un1((β̂
T

1 ,0
T )T , ĥ) = 0.

Furthermore, β̂1 has the same asymptotic normal distribution as stated in The-
orem 1(2).
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To apply the above two theorems, the main efforts lie in checking Conditions
(C2)–(C5). Condition (C2) usually can be verified based on the smoothness
of the population version of the objective function M(β, h). Condition (C3)
is often satisfied for frequently used nonparametric estimators. Condition (C4)
holds if we can show that the function class {m(Z,β, h) : β ∈ B, h ∈ H}
is a Donsker class (e.g. van der Vaart and Wellner, 1996). In addition, the
three sufficient conditions for (C4) are provided in Theorem 3 of Chen, Linton
and Keilegom (2003). Condition (C5) can usually be established by applying a

uniform Bahadur representation of ĥ−h0, which is available for commonly used
nonparametric smoothers. We have checked four analytical examples, which
satisfy all conditions. It is noteworthy that Chen, Linton and Keilegom (2003)
examined Conditions (C4) and (C5) for a partially linear median regression
model that is a special case of Example 1. For the sake of illustration, we briefly
demonstrate the examination of Conditions (C4) and (C5) for Example 2 in
Appendix B.

3.2. Parameter estimation

To allow for the PP semiparametric estimating function to be non-smooth, we
apply the idea of the MM (majorization-minimization) algorithm to both the
profiled semiparametric estimating function and the penalty function. We refer
to Hunter and Lange (2004) for a general tutorial on the MM algorithm. Specif-

ically, we first obtain the nonparametric estimate ĥ(Wi,β) for the given β.
Then, we adopt Hunter and Lange (2000)’s MM algorithm to the unpenalized
profiled estimating function and Hunter and Li (2005)’s MM algorithm to the

penalty function, which yields their corresponding MM functions: Mǫ
n(β, ĥ) and

nqλn(|β|) β
ǫ+|β| , respectively, where the explicit form ofMǫ

n(β, ĥ) depends on the

specific model form under study and the constant ǫ stands for a small perturba-
tion, which we take to be 10−6 in our simulation studies, see (12) below for an

example. Accordingly, the penalized estimator β̂ = (β̂1, . . . , β̂p)
T approximately

satisfies:

U ǫ
n(β̂, ĥ) = Mǫ

n(β̂, ĥ) + nqλn(|β̂|)
β̂

ǫ + |β̂|
= 0, (9)

where the product in the last term of (9) denotes the component-wise product.

It is noteworthy that Mǫ
n(β̂, ĥ) = Mn(β̂, ĥ) when Mn is a smooth function.

To obtain β̂, we employ the concept of the Newton-Raphson algorithm to the
function U ǫ

n(β, ĥ), which yields the following iterative algorithm:

β̂
(k+1)

= β̂
(k) −

[
H(β̂

(k)
) + nE(β̂

(k)
)

]−1 [
Mǫ

n(β̂
(k)

, ĥ) + nE(β̂
(k)

)β̂
(k)
]
, (10)

where E(β̂
(k)

) = diag(qλn(|β̂
(k)
1 |)/(ǫ+ |β̂(k)

1 |), . . . , qλn(|β̂
(k)
p |)/(ǫ+ |β̂(k)

p |)), and
H(β̂

(k)
) is the derivative matrix ofMǫ

n(β, ĥ) with respect to β evaluated at β̂
(k)

.
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The above algorithm is iterated until certain stopping criterion is met, for

example, ||β̂(k+1) − β̂
(k)|| ≤ 10−4. In addition, any coefficient sufficiently small

is suppressed to zero, i.e., if |β̂j | ≤ 10−4 upon convergence, then the estimator of

this coefficient is set to be exactly zero. It is noteworthy that ĥ in the iterative

algorithm is updated along with β̂
(k)

. Finally, we select the tuning parameter
λn by minimizing a Bayesian Information Criterion (Schwarz, 1978),

BIC(λn) = log
(
Ln(β̂, ĥ)

)
+ dfλn

log(n)

n
, (11)

where Ln(β̂, ĥ) is the loss function that leads to Mn(β̂, ĥ) and the effective
number of parameters is

dfλn = trace
{
(H(β̂) + nE(β̂))−1H(β̂)

}
.

For the sake of illustration, we revisit Example 1 by briefly presenting the
estimating equation and its relevant quantities. Based on equations (3) and (4),
the penalized estimator of partially linear quantile regression satisfies the fol-
lowing equation,

n−1
n∑

i=1

Xi

[
I(Yi ≤ XT

i β + ĥ(Wi,β))− τ
]
+ qλn(|β|)sgn(β) = 0.

Note that to estimate h(W,β), the minimization of the objective function in
(5) can be solved using existing software packages, for example, the quantile
regression package in R. Furthermore, the non-penalized MM function is

Mǫ
n(β̂, ĥ) = −1

2

n∑

i=1

Xi
Yi −XT

i β̂ − ĥ(Wi, β̂)

ǫ+ |Yi −XT
i β̂ − ĥ(Wi, β̂)|

−
(
τ − 1

2

) n∑

i=1

Xi. (12)

4. Numerical results

In this section, we use the SCAD penalty function defined in (8) with a = 3.7
for both simulations and real data analyses.

4.1. Monte Carlo simulated examples

To evaluate the finite sample performance of the proposed method, we first
consider the partially linear quantile regression model given in Example 1,

Yi = XT
i β0 + h0(Wi) + σǫi, i = 1, . . . , n, (13)

where β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)T and ǫi is the random error. As a result, the
number of nonzero coefficients is 3. Furthermore, the vectors Xi are generated
from a multivariate normal distribution with mean 0 and an AR-1 correlation
matrix with the auto-correlation coefficient 0.5. The covariatesWi are simulated
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from a uniform (0,1) distribution, and they are independent of Xi and ǫi. More-
over, we consider two nonparametric functions: h0(w) = 2 sin(4πw) adapted
from Fan and Huang (2005) and h0(w) = 16w(1 − w) − 2 adapted from Li
and Liang (2008); two values for σ: 1 and 3; two sample sizes: n = 200 and
400; three different quantile levels: τ = 0.25, 0.5, 0.75, and four error distri-
butions of ǫi: (1) the standard normal distribution, (2) the t distribution with
3 degrees of freedom, (3) the mixture normal distribution with heavy tails:
0.9N(0, 1) + 0.1N(0, 102), and (4) the Gamma(2,2) distribution. We standard-
ize ǫi such that it satisfies P (ǫi ≤ 0|Xi,Wi) = τ for a given quantile level τ of
interest. For each of the above settings, a total of 500 realizations are conducted.

To assess the model selection properties, we report the average number of
nonzero coefficients that are correctly estimated to be nonzero (labeled ‘C’), the
average number of zero coefficients that are incorrectly estimated to be nonzero
(labeled ‘I’), and the proportion of the selected model being underfitted (missing
any significant variables, labeled ‘UF’), correctly fitted (being the exact subset
model, labeled ‘CF’) and overfitted (including all significant variables and some
noise variables, labeled ‘OF’). To examine the estimation accuracy, we report

the mean squared error (MSE), 500−1
∑500

m=1 ||β̂(m) − β||2, where β̂(m) is the
estimate from the mth realization. As a benchmark, we also compute the mean
squared error of the oracle estimate (in parentheses), which is the un-penalized
quantile estimate of the true model.

When n = 200 and 400, Tables 1 and 2, respectively, present the results for
the partially linear quantile regression model with the nonparametric function
h0(w) = 2 sin(4πw). We observe the following important findings. (i) As the
sample size gets larger, MSE becomes smaller and approaches that of the oracle
estimate, which is consistent with the theoretical finding. When the signal gets
stronger (i.e., σ decreases from 3 to 1), the measurements of MSE, I, UF and
OF decrease and those of C and CF increase as expected. (ii) In the symmetric
distributions, which are standard normal, t3, and mixture, it is not surprising
that τ = 0.5 yields better performance than τ = 0.25 and τ = 0.75 in terms of
all measurements. In the positively skewed Gamma(2,2) distribution, it is also
sensible that τ = 0.25 outperforms τ = 0.5 and τ = 0.75. It is noteworthy that
the proportion of underfitted models is high for the Gamma(2,2) distribution
with σ = 3 and τ = 0.75. This is because the signal is too weak in this case,
due to a large variance and skewness. Because the simulations with the non-
parametric function h0(w) = 16w(1 − w) − 2 exhibit similar results, we do not
present them here to save space.

To further illustrate the proposed method, we next generate random data
from a partially linear mean regression model with missing covariates given in
Example 3,

Yi = XT
i β0 + h0(Wi) + σǫi, i = 1, . . . , n, (14)

where the ǫi are independently generated from a N(0, 1) distribution and β0

is the same as that in (13). The variables Xi and Wi are also generated from
the same distributions as in the previous example. Moreover, h0(w), n, and σ
are defined as above. Let δi = 1 if Xi is observed; and δi = 0 otherwise. Then,
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Table 1

Simulation results of quantile regression with h(w) = 2 sin(4πw) and n = 200

No. of nonzeros Proportion

σ τ MSE(Oracle) C I UF CF OF

Standard Normal
0.25 0.0562(0.0372) 3.000 0.360 0.000 0.760 0.240

1 0.5 0.0409(0.0321) 3.000 0.216 0.000 0.834 0.166
0.75 0.0555(0.0392) 3.000 0.312 0.000 0.778 0.222

t-distribution with df = 3
0.25 0.0872(0.0588) 3.000 0.286 0.000 0.802 0.198

1 0.5 0.0505(0.0405) 3.000 0.160 0.000 0.868 0.132
0.75 0.0893(0.0580) 3.000 0.290 0.000 0.790 0.210

Mixture 0.9N(0, 1) + 0.1N(0, 102)
0.25 0.0545(0.0461) 3.000 0.114 0.000 0.904 0.096

1 0.5 0.0381(0.0369) 3.000 0.086 0.000 0.926 0.074
0.75 0.0594(0.0523) 3.000 0.110 0.000 0.900 0.100

Gamma(2,2)
0.25 0.1526(0.1105) 3.000 0.224 0.000 0.820 0.180

1 0.5 0.3093(0.2082) 3.000 0.286 0.000 0.768 0.232
0.75 0.8415(0.4255) 2.986 0.580 0.014 0.602 0.384

Standard Normal
0.25 0.5474(0.3150) 2.994 0.382 0.006 0.714 0.280

3 0.5 0.4450(0.2790) 2.992 0.292 0.008 0.758 0.234
0.75 0.5701(0.3387) 2.990 0.416 0.010 0.692 0.298

t-distribution with df = 3
0.25 0.9514(0.5131) 2.928 0.300 0.072 0.712 0.216

3 0.5 0.5739(0.3542) 2.970 0.206 0.030 0.800 0.170
0.75 1.1048(0.5054) 2.910 0.356 0.090 0.656 0.254

Mixture 0.9N(0, 1) + 0.1N(0, 102)
0.25 0.8230(0.4049) 2.896 0.136 0.104 0.798 0.098

3 0.5 0.4645(0.3170) 2.960 0.086 0.040 0.890 0.070
0.75 0.8021(0.4401) 2.896 0.120 0.104 0.804 0.092

Gamma(2,2)
0.25 2.5188(0.9616) 2.618 0.350 0.362 0.486 0.152

3 0.5 4.9104(1.8305) 2.264 0.384 0.626 0.258 0.116
0.75 10.8207(3.7964) 1.816 0.692 0.846 0.064 0.090

consider the case where the covariates Xi are missing at random in the sense
that π(Yi,Wi) = P (δi = 1|Xi, Yi,Wi) = P (δi = 1|Yi,Wi). Subsequently, we
employ logistic regression to generate the missing data indicators:

P (δi = 1|Yi,Wi) =
exp(γ0 + γ1Yi + γ2Wi)

1 + exp(γ0 + γ1Yi + γ2Wi)
.

To assess the sensitivity of parameter estimates against the missing rate, we
study the following four cases: Case 1: (γ0, γ1, γ2) = (1, 1, 2); Case 2: (γ0, γ1, γ2) =
(3, 1, 2); Case 3: (γ0, γ1, γ2) = (6, 1, 2); and Case 4: (γ0, γ1, γ2) = (8, 1, 2). The
average missing rates are approximately 0.35, 0.25, 0.10 and 0.05, respectively.
Based on the simulated data from each of the four cases, we are able to estimate
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Table 2

Simulation results of quantile regression with h(w) = 2 sin(4πw) and n = 400

No. of nonzeros Proportion

σ τ MSE(Oracle) C I UF CF OF

Standard Normal
0.25 0.0247(0.0183) 3.000 0.262 0.000 0.822 0.178

1 0.5 0.0188(0.0150) 3.000 0.186 0.000 0.860 0.140
0.75 0.0245(0.0187) 3.000 0.248 0.000 0.816 0.184

t-distribution with df = 3
0.25 0.0400(0.0277) 3.000 0.232 0.000 0.810 0.190

1 0.5 0.0225(0.0191) 3.000 0.142 0.000 0.878 0.122
0.75 0.0386(0.0249) 3.000 0.272 0.000 0.812 0.188

Mixture 0.9N(0, 1) + 0.1N(0, 102)
0.25 0.0270(0.0252) 3.000 0.082 0.000 0.924 0.076

1 0.5 0.0180(0.0169) 3.000 0.100 0.000 0.912 0.088
0.75 0.0250(0.0229) 3.000 0.066 0.000 0.936 0.064

Gamma(2,2)
0.25 0.0756(0.0558) 3.000 0.216 0.000 0.820 0.180

1 0.5 0.1305(0.0959) 3.000 0.188 0.000 0.854 0.146
0.75 0.3250(0.1985) 3.000 0.338 0.000 0.734 0.266

Standard Normal
0.25 0.2537(0.1611) 3.000 0.302 0.000 0.762 0.238

3 0.5 0.1923(0.1301) 3.000 0.206 0.000 0.826 0.174
0.75 0.2484(0.1609) 2.998 0.282 0.002 0.776 0.222

t-distribution with df = 3
0.25 0.3795(0.2484) 2.996 0.212 0.004 0.820 0.176

3 0.5 0.2233(0.1680) 2.998 0.124 0.002 0.888 0.110
0.75 0.3628(0.2279) 3.000 0.264 0.000 0.794 0.206

Mixture 0.9N(0, 1) + 0.1N(0, 102)
0.25 0.2628(0.2220) 2.998 0.074 0.002 0.936 0.062

3 0.5 0.1685(0.1491) 3.000 0.040 0.000 0.960 0.040
0.75 0.2419(0.1962) 2.998 0.068 0.002 0.932 0.066

Gamma(2,2)
0.25 0.8225(0.4912) 2.928 0.198 0.072 0.764 0.164

3 0.5 1.8962(0.8534) 2.732 0.242 0.264 0.594 0.142
0.75 5.1416(1.8160) 2.332 0.492 0.562 0.292 0.146

(γ0, γ1, γ2) from the above logistic regression model and then get π̂i. Since sim-
ulation settings lead to E((X −E(X))ǫ|Y,W ) = 0, we could follow Liang et al.
(2004)’s comment and use the first part of function Φ defined after equation (7),
together with the estimation process of Section 3.2, to obtain the penalized es-
timates. Finally, the tuning parameter is selected by minimizing BIC(λn) in
equation (11).

When h0(w) = 2 sin(4πw), Table 3 indicates that MSE decreases and ap-
proaches that of the oracle estimate when the sample size becomes large, which
confirms the theoretical result. It is also not surprising that the measurements of
MSE, I, UF, and OF decrease and C and CF increase as σ decreases from 3 to 1.
Since the missing rate decreases from Case 1 to Case 4, it is sensible that Case 4
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Table 3

Simulation results of missing covariates with h(w) = 2 sin(4πw)

No. of nonzeros Proportion

Case MSE(Oracle) C I UF CF OF

n = 200, σ = 1
1 0.0773(0.0593) 3.000 0.206 0.000 0.814 0.186
2 0.0492(0.0408) 3.000 0.130 0.000 0.876 0.124
3 0.0312(0.0266) 3.000 0.068 0.000 0.934 0.066
4 0.0253(0.0218) 3.000 0.060 0.000 0.942 0.058

n = 200, σ = 3
1 1.1672(0.8464) 2.928 0.268 0.070 0.712 0.218
2 0.7538(0.5308) 2.966 0.234 0.034 0.758 0.208
3 0.3862(0.2992) 2.984 0.104 0.016 0.890 0.094
4 0.3074(0.2449) 2.996 0.108 0.004 0.904 0.092

n = 400, σ = 1
1 0.0459(0.0372) 3.000 0.196 0.000 0.824 0.176
2 0.0280(0.0224) 3.000 0.146 0.000 0.866 0.134
3 0.0160(0.0139) 3.000 0.066 0.000 0.938 0.062
4 0.0127(0.0117) 3.000 0.040 0.000 0.960 0.040

n = 400, σ = 3
1 0.7508(0.5802) 2.988 0.278 0.010 0.750 0.240
2 0.4681(0.3525) 2.992 0.248 0.008 0.768 0.224
3 0.2249(0.1870) 2.998 0.114 0.002 0.892 0.106
4 0.1556(0.1310) 3.000 0.086 0.000 0.920 0.080

performs the best while Case 1 performs the worst in terms of all assessing mea-
sures. Moreover, the nonparametric function, h0(w) = 16w(1 − w) − 2, yields
similar findings, which we omit here to save space. In summary, our proposed
estimates perform well for simultaneous estimation and variable selection.

4.2. A real example

To demonstrate the practical usefulness of the proposed method, we consider the
Female Labor Supply data collected in East Germany that has been analyzed
by Fan, Härdle and Mammen (1998). The data set consists of 607 observations,
and the response variable y is the ‘wage per hour’. There are eight explanatory
variables: x1 is the number of working hours in a week (HRS); x2 is the ‘Treiman
prestige index’ of the woman’s job (PRTG); x3 is the monthly net income of
the woman’s husband (HUS); x4 and x5 are dummy variables for the woman’s
education (EDU): x4 = 1 if the woman received between 13 and 16 years of
education, and x4 = 0 otherwise (EDU1); x5 = 1 if the woman received at least
17 years of education, and x5 = 0 otherwise (EDU2); x6 is a dummy variable
for children (CLD): x6 = 1 if the woman has children less than 16 years old,
and x6 = 0 otherwise; x7 is the unemployment rate in the place where she lives
(UNEM); and w is her age.

Recently, Wang, Li and Tsai (2007) employed the penalized partially linear
mean regression model to fit the data by including a nonparametric component
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Table 4

Estimated coefficients and their standard errors for Female Labor Supply data

Variable τ = 0.25 τ = 0.5 τ = 0.75

HRS(x1) −0.556(0.036) −0.592(0.035) −0.727(0.072)
PRTG(x2) 1.209(0.038) 1.494(0.043) 1.527(0.048)
HUS(x3) 0 0 0
EDU1(x4) 1.281(0.073) 1.016(0.061) 0.949(0.091)
EDU2(x5) 2.307(0.137) 3.040(0.150) 3.434(0.216)
CLD(x6) −0.438(0.052) 0 0.607(0.075)
UNEM(x7) 0 0 0
x2

1
−0.344(0.018) −0.330(0.015) 0

x2

2
0.267(0.027) 0 0.275(0.026)

x2

3
0 0 0

x1x2 0 0 −0.365(0.056)
x1x3 0 0 0
x2x3 0 0 0

w and seven linear main effects together with some of the first-order interaction
effects among x1, x2 and x3. The covariates x1, x2, x3 and x7 were standardized.
To further understand the relationship between the wage and other variables,
we adopt the quantile regression model given in analytic Example 1, which could
provide more comprehensive and insightful findings. To this end, we consider
τ = 0.25, 0.5, and 0.75, which correspond to the responses of lower-paid females,
middle-paid females, and well-paid females, respectively. After preliminary anal-
yses, one observation with Age=60 is deleted because it is an outlier that has
high leverage and low response. Then, we apply the five-fold cross validation
method to choose smoothing bandwidths for ĥ(w), which are tτ=0.25 = 7.63,
tτ=0.5 = 4.13, tτ=0.75 = 4.56. Subsequently, we employ the BIC criterion to
select the tuning parameters λn, which are λn,τ=0.25 = 0.061, λn,τ=0.5 = 0.093,
and λn,τ=0.75 = 0.073. Accordingly, the penalized profile estimates are obtained.
In addition, we adapt equation (4.1) of Hunter and Li (2005) to compute the
standard errors of parameter estimates.

Table 4 reports the penalized regression estimates and their standard errors
that yield the following interesting results. (a) The associated coefficient esti-
mates of x1, x2, x

2
1, x

2
2, and x1x2 indicate that a unit increase in HRS has

a larger negative impact on middle-paid females than on lower-paid females.
In addition, it leads to a stronger negative effect on well-paid females when
PRTG is at a higher level than when PRTG is at a lower level. In contrast,
a unit increase in PRTG has a larger positive impact on middle-paid females
than on lower-paid females. Moreover, it yields a smaller positive effect on well-
paid females when HRS is at a higher level than when HRS is at a lower level.
(b) The associated coefficient estimates of x4 (EDU1) and x5 (EDU2) indicate
that higher education usually yields a larger positive effect on well-paid females
than on middle-paid and lower-paid females. (c) It is not surprising that vari-
able x6 (CLD) is not selected into the median regression, since it has not been
included in the mean regression (see Wang, Li and Tsai, 2007). However, it is
chosen into the quantile regression models with τ = 0.25 and τ = 0.75. The
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Fig 1. The plot of ĥ(Age) versus Age for Female Labor Study data.

associated coefficient estimates indicate that, for well-paid females with young
children, they are better motivated and have the ability to earn more; while,
for lower-paid females with young children, their salaries are negatively affected
possibly due to limited skills and time spent on child care. This result demon-
strates that quantile regressions could provide more comprehensive findings than
mean regression alone. (d) Two variables, x3 (HUS) and x7 (UNEM), are not
selected in any of the quantile regression models. Hence, they do not appear to
affect the hourly wage.

Figure 1 depicts the estimated nonparametric functions ĥ(w) for all three
quantile models. It indicates that the difference between starting wage at age
26 for well-paid versus middle-paid females is much smaller than that between
middle-paid and lower-paid females. In addition, between ages 26 and 33, the
rate of growth in wage of well-paid females increases much faster than that
of middle-paid females. Afterward, these two groups exhibit similar rates of
growth and decrease. Moreover, the rate of growth in wage of lower-paid females
increases faster after age 48. This is because they have more time and experience
to earn higher wages. In sum, the starting wage and the strong rate of growth
in wage at earlier age play a significant role in females’ lifetime earnings.

5. Conclusion and discussions

In this paper, we study a class of penalized profiled semiparametric estimat-
ing functions that are flexible enough to incorporate nonlinearity and non-
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smoothness. Hence, they cover various regression models, such as quantile re-
gression, survival regression, and regression with missing data. Under very gen-
eral conditions, we establish the oracle property of the resulting estimator for
parametric components.

The oracle property implies that the regularized estimator for the subvec-
tor of nonzero coefficients has the asymptotic variance as that of the estimator
based on the unpenalized estimating equation when the true model is known a
priori. Hence, when the moment condition in (1) comes from a semiparametric
efficient score function, it is expected that the corresponding regularized estima-
tor achieves the semiparametric efficiency bound for estimating the subvector
of nonzero coefficients. For instance, consider the mean single-index regression
model in Example 2, and let (xT

1i,x
T
2i) be a partition of Xi corresponding to

(βT
10,β

T
20). A direct calculation reveals that the regularized estimator with the

SCAD penalty for β10 has an asymptotic covariance matrix Γ−1
11 V11Γ

−1
11 , where

Γ11 = −E
[
h′
0(x

T
1iβ10)

2{x1i − E(x1i|xT
1iβ10)}{x1i − E(x1i|xT

1iβ10)}T
]
,

V11 = E
[
h′
0(x

T
1iβ10)

2{x1i − E(x1i|xT
1iβ10)}{x1i − E(x1i|xT

1iβ10)}Tσ2(x1i)
]
,

and σ2(x1i) = E(ǫ2|x1i). When the error is homoscedastic, one then can apply
Carroll et al. (1997) result and show that the proposed regularized estimator
asymptotically achieves the semiparametric efficiency bound for estimating β10.
For the partially linear quantile regression discussed in Example 1, one can use
the semiparametric efficiency score derived in Section 5 of Lee (2003), which
requires estimating the conditional error density function. In general, obtaining
a semiparametric efficient estimator can be computationally cumbersome. For
example, for the missing data problem discussed in Example 3, Liang et al.
(2004) in their Section 4.1 pointed out that one needs to solve a complex integral
equation to obtain the optimal weight for the semiparametric efficient score
function.

To further explore the proposed function, one could link the current work to
ultrahigh dimensional analysis by incorporating the screening methods from Fan
and Lv (2008), Wang (2009), Fan, Feng and Song (2011), and Liang, Wang and
Tsai (2012). It is also of interest to extend the estimation function to nonlinear
time series models (see Fan and Yao, 2003) and financial time series models (see
Tsay, 2005). We believe that these efforts would broaden the usefulness of the
penalized profiled semiparametric estimating function.

Appendix A: Technical proofs

Proof of Theorem 1

(1) Assume that the non-zero and zero components of β0 are known a prior.
Then, we can estimate the vector of nonzero coefficients β10 by solving the

s-dimensional profiled estimation function Mn1(β1, ĥ) = 0, where Mn1(β1, ĥ)

denotes the subvector that consists of the first s components of Mn(β, ĥ) eval-
uated at β = (βT

1 ,0
T )T . Applying the result of Chen, Linton and Keilegom
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(2003), under Conditions (C1)–(C5) and (T1)–(T3), there exists an approxi-

mate solution β̂1 satisfying β̂1 − β10 = Op(n
−1/2). We next consider the oracle

estimator β̂ = (β̂
T

1 ,0
T )T of β0, and show that it is an approximate solution to

the minimization problem of minβ∈B ||Un(β, ĥ)||.
By Conditions (T4) and (P2) and the observation β̂1 − β10 = Op(n

−1/2),

we have that min1≤j≤s |β0j |/λn → ∞ and ||β̂1 − β10|| = op(λn), respectively.
Hence, ∀ν > 0,

P ( min
1≤j≤s

|β0j | − ||β10 − β̂10|| ≥ νλn)

= P (||β10 − β̂10|| ≤ min
1≤j≤s

|β0j | − νλn) → 1.

This, together with the fact that min1≤j≤s |β̂j | ≥ min1≤j≤s |β0j |−max1≤j≤s |β0j−
β̂j | ≥ min1≤j≤s |β0j | − ||β10 − β̂10||, leads to P (min1≤j≤s |β̂j | ≥ νλn) → 1 as

n → ∞. By Condition (P1), we then have qλn(|β̂j |) = op(n
−1/2) for j = 1, . . . , s.

Consequently, Un(β̂, ĥ) = Mn(β̂, ĥ) + op(n
−1/2).

Under Conditions (C3) and (C4), the oracle estimator β̂ satisfies

||Mn(β̂, ĥ)−M(β̂, ĥ)−Mn(β0, h0)|| = op(n
−1/2).

Applying the triangle inequality and using M(β0, h0) = 0, we have

||Mn(β̂, ĥ)|| ≤ ||M(β̂, ĥ) +Mn(β0, h0)||+ op(n
−1/2)

= ||M(β̂, ĥ)−M(β̂, h0)− Γ2(β̂, h0)[ĥ− h0]||
+ ||Γ2(β̂, h0)[ĥ− h0]− Γ2(β0, h0)[ĥ− h0]||
+ ||M(β̂, h0)−M(β0, h0)||
+ ||Mn(β0, h0) + Γ2(β0, h0)[ĥ− h0]||+ op(n

−1/2)

= op(n
−1/2) + op(n

−1/2) +Op(n
−1/2) +Op(n

−1/2) + op(n
−1/2)

= Op(n
−1/2),

where the last equality follows from the fact β̂1 − β10 = Op(n
−1/2) and Condi-

tions (C2), (C1) and (C4). Hence, ||Un(β̂, ĥ)|| = Op(n
−1/2).

(2) We first demonstrate that for any root-n consistent approximate estimator

β̂ = (β̂
T

1 , β̂
T

2 )
T , P (β̂2 = 0) → 1 as n → ∞. The proof follows similar ideas

to those used for proving Theorem 1(b) in Johnson, Lin and Zeng (2008). We

first note that β̂j = Op(n
−1/2) for j = s+ 1, . . . , p. Hence, ∀ κ > 0, there exists

d1 > 0 such that, for sufficiently large n,

P (β̂j 6= 0) ≤ κ

2
+ P (β̂j 6= 0, |β̂j| < d1n

−1/2). (15)

By the definition of an approximate estimator and Conditions (C3) and (C4),
we obtain that

Mj(β̂, ĥ) +Mnj(β0, h0) + qλn(|β̂j |)sgn(β̂j) = Op(n
−1/2),
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where Mj and Mnj are the jth component of M and Mn, respectively. This
implies

[Mj(β̂, ĥ)−Mj(β̂, h0)− eTj Γ2(β̂, h0)[ĥ− h0]] + [eTj Γ2(β̂, h0)[ĥ− h0]

− eTj Γ2(β0, h0)[ĥ− h0]] + [Mj(β̂, h0)−Mj(β0, h0)]

+ [Mnj(β0, h0) + eTj Γ2(β0, h0)[ĥ− h0]] + qλn(|β̂j |)sgn(β̂j) = Op(n
−1/2),

where ej is a unit vector with the jth component being one and all the other

components being zero. By the root-n consistency of β̂ and Conditions (C1)–
(C4), it is straightforward to see that the first four terms on the left-hand side

are of order Op(n
−1/2). Thus, qλn(|β̂j |)sgn(β̂j) = Op(n

−1/2). Accordingly, there
exists d2 > 0 such that, for sufficiently large n,

P (β̂j 6= 0, |β̂j | < d1n
−1/2, n1/2qλn(|β̂j |) > d2) < κ/2. (16)

By the root-n consistency and Condition (P1), n1/2qλn(|β̂j |) > d2 for sufficiently
large n. This, together with equations (15) and (16), leads to, for sufficiently
large n,

P (β̂j 6= 0) ≤ ǫ/2 + P (β̂j 6= 0, |β̂j | < d1n
−1/2, n1/2qλn(|β̂j |) > d2) < κ.

It follows that P (β̂j = 0, j = s+ 1, . . . , p) → 0.

We next show the asymptotic normality of β̂1 when the order of ||Un(β̂)|| is
op(n

−1/2). Applying Conditions (C1)–(C4), we have

[M1(β̂, h0)−M1(β0, h0)] + [Mn1(β0, h0) + (Γ2(β0, h0)[ĥ− h0])1]

+ qλn(|β̂1|)sgn(β̂1) = op(n
−1/2),

where (Γ2(β0, h0)[ĥ−h0])1 denotes the subvector that contains the first s com-

ponents of Γ2(β0, h0)[ĥ − h0]. Employing Taylor expansions of M1(β̂, h0) and

qλn(|β̂1|)sgn(β̂1) at β0 yields

(Γ11 + op(1))(β̂1 − β10) + [Mn1(β0, h0) + (Γ2(β0, h0)[ĥ− h0])1]

+ qλn(|β10|)sgn(β10) + q′λn
(|β10|)(β̂1 − β10)(1 + op(1)) = op(n

−1/2),

where Γ11 is the s× s submatrix in the upper-left corner of Γ1. As a result,
√
n(β̂1 − β10)

= −
√
n
[
Γ11 +Σ11

]−1[
Mn1(β0, h0) + (Γ2(β0, h0)[ĥ− h0])1 + bn

]
+ op(1),

where
Σ11 = diag(q′λn

(|β01|), . . . , q′λn
(|β0s|))

and
bn = (qλn(|β01|)sgn(β01), . . . , qλn(|β0s|)sgn(β0s))

T .

By Condition (C5), we then obtain that
√
n(Γ11 +Σ11)

[
(β̂1 − β10) + (Γ11 +Σ11)

−1bn

]
→ N(0,V11),

where V11 is the s× s submatrix in the upper-left corner of V. This completes
the proof.
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Proof of Theorem 2

We first prove the existence of a root-n consistent estimator of β10. By the
result 6.3.4 of Ortega and Rheinboldt (1970), it suffices to show that, ∀ ξ > 0,
there exists a constant ∆ > 0 such that, for sufficiently large n,

P

(
sup

β
1
∈Bn1

(β1 − β10)
TUn1((β

T
1 ,0

T )T , ĥ) > 0

)
≥ 1− ξ, (17)

where Bn1 = {β1 : ||β1 − β10|| = ∆/
√
n}.

For any β1 ∈ Bn1, employing similar techniques as those used in the proof
of Theorem 1 and Conditions (C1)–(C4), we have

(β1 − β10)
TUn1((β

T
1 ,0

T )T , ĥ)

= (β1 − β10)
T
[
Mn1((β

T
1 ,0

T )T , ĥ) + qλn(|β1|)sgn(β1)
]

= (β1 − β10)
T
[
Mn1((β

T
1 ,0

T )T , h0) + Γ11(β1 − β10) + (Γ2(β0, h0)[ĥ− h0])1

+ op(n
−1/2)

]
+ (β1 − β10)

T qλn(|β1|)sgn(β1)

= (β1 − β10)
T
[
Mn1(β0, h0) + (Γ2(β0, h0)[ĥ− h0])1

]

+ (β1 − β10)
TΓ11(β1 − β10)

+ op(n
−1) +

s∑

j=1

(βj − β0j)qλn(|βj |)sgn(βj). (18)

Applying the Cauchy-Schwarz inequality and Condition (C5), we obtain that

∣∣(β1 − β10)
T
[
Mn1(β0, h0) + (Γ2(β0, h0)[ĥ− h0])1

]∣∣

≤ ||β1 − β10|| · ||Mn1(β0, h0) + (Γ2(β0, h0)[ĥ− h0])1|| ≤ d3∆/n, (19)

with large probability, for some positive constant d3 and sufficiently large n. In
addition, Condition (T3) implies that

(β1 − β10)
TΓ11(β1 − β10) ≥ λmin(Γ11)||β1 − β10||2 ≥ d4∆

2/n (20)

for some d4 > 0, where λmin(Γ11) denotes the smallest eigenvalue of Γ11. More-
over, employing the Cauchy-Schwarz inequality and Condition (C5) again, we
have

∣∣∣
s∑

j=1

(βj − β0j)qλn(|βj |)sign(βj)
∣∣∣ ≤ ||β1 − β10||

√
sqλn( min

1≤j≤s
|βnj |)

≤
√
s∆

n

√
nqλn( min

1≤j≤s
|βj |).

By Conditions (P2) and (T4), min1≤j≤s |βj | ≥ min1≤j≤s |β0j | − ∆/
√
n ≥

1
2 min1≤j≤s |β0j | for β1 ∈ Bn1. Then, under Condition (P1), we have
√
nqλn(min1≤j≤s |βj |) → 0. Hence,

∣∣∣
∑s

j=1(βj − β0j)qλn(|βj |)sign(βj)
∣∣∣ =
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o(∆n−1). This, together with equations (18), (19), and (20), leads to the fact

that, for a large ∆, (β − β0)
TUn1((β

T
1 ,0

T )T , ĥ) is asymptotically dominated
by (β1 − β10)

TΓ11(β1 − β10), which is nonnegative. As a result, (17) holds

and with probability approaching one there exists β̂1 that is a root-n consistent

estimator for β10 and satisfies Un1((β̂
T

1 ,0
T )T , ĥ) = 0. Finally, the asymptotic

normality of β̂1 can be obtained via similar techniques as those used in the
proof of Theorem 1(2). This completes the proof.

Appendix B: Examination of Conditions (C4) & (C5) for Example 2

We consider the single index mean regression model defined in (6). Assume that
X ∈ RX, β ∈ B, and that both RX and B are compact subsets of Rp. The
true parameter value β0 is assumed to be in the interior of B. Let T = {t :
t = XTβ, X ∈ RX,β ∈ B}, then T is a compact subset of R. We consider the
following two classes of smooth functions: H = {h(t) : h(t) is twice continuously
differentiable on T} and S = {S(X,β) : S(X,β) has continuous partial
derivatives w.r.t X ∈ RX and β ∈ B}.

To verify (C4), we check three sufficient conditions in Theorem 3 of Chen,
Linton and Keilegom (2003). Based on H and S defined above, their Conditions
(3.2) and (3.3) are satisfied. To check their Condition (3.1), we further assume
that E(Y 2) is bounded. Then,

|mj(Z,β1, h1, s1)−mj(Z,β2, h2, s2)|
=

∣∣∣s1j(X,β1)[Y − h1(X
Tβ1)]− s2j(X,β2)[Y − h2(X

Tβ2)]
∣∣∣

≤ |s1j(X,β1)| ·
∣∣h1(X

Tβ1)− h2(X
Tβ2)

∣∣

+ |s1j(X,β1)− s2j(X,β2)| ·
∣∣Y − h2(X

Tβ2)
∣∣

≤ C1(|Y |+ C2)(||β1 − β2||+ ||h1 − h2||∞ + ||s1 − s2||∞),

where C1 and C2 are positive constants, and s1j and s2j denote the j components
of s1 and s2, respectively. Accordingly, Condition (3.1) is satisfied and (C4)
holds.

In this example, the population version of the estimating equation is

M(β, h, s) = E[s(X,β)(Y − h(XTβ))] = E
[∂h(XTβ)

∂β
{h0(X

Tβ0)− h(XTβ)}
]
.

After algebraic simplification, we obtain the path-wise derivative of M(β, h, s)

in the direction [h− h, s]:

Γ2(β, h, s)[h− h, s− s]

= lim
τ→0

1

τ
E
[

{

s(X,β) + τ (s(X,β)− s(X,β))
}

·

{

h0(X
T
β

0
)− h(XT

β)− τ (h(XT
β)− h(XT

β))
}

− s(X,β)
{

h0(X
T
β

0
)− h(XT

β)
}

]
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= E
[

{

s(X,β)−
∂h(XTβ)

∂β

}{

h0(X
T
β

0
)− h(XT

β)
}

−

∂h(XTβ)

∂β

{

h(XT
β)− h(XT

β)
}

]

.

Using the fact that h(xTβ0) = h0(x
Tβ0) and

∂h(XTβ)

∂β

∣∣
β=β

0

= h′(XTβ0)[X−
E(X|XTβ0)] and then applying Lemma 7.1 of Pagan and Ullah (1999), we
obtain that

Γ2(β0, h0, s0)[h− h0, s− s0]

= −E
[
h′(XTβ0)

{
X− E(X|XTβ0)

}{
h(XTβ)− h(XTβ)

}]
= 0,

where h′(t) = d
dtE(Y |XTβ = t). This, together with the classical multivariate

central limit theorem, leads to

√
n
[
Mn(β0, h0, s0) + Γ2(β0, h0, s0)[ĥ− h0, ŝ− s0]

]

= n−1/2
n∑

i=1

[Yi − h0(X
T
i β0)]h

′
0(X

Tβ0)[X− E(X|XTβ0)] → N(0,V),

where V = E
[
h′
0(X

Tβ0)
2{X − E(X|XTβ0)}{X − E(X|XTβ0)}Tσ2(X)

]
and

σ2(X) = E(ǫ2i |X). Hence, Condition (C5) is satisfied.
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Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and
variable selection with the Lasso. The Annals of Statistics 34 1436–1462.
MR2278363

Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative Solution of Nonlin-
ear Equations in Several Variables. Academic Press, San Diego. MR0273810

Pagan, A. and Ullah, A. (1999). Nonparametric Econometrics. Cambridge
University Press, New York. MR1699703

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of
Statistics 6 461–464. MR0468014

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Jour-
nal of the Royal Statistical Society, Series B (Methodological) 58 267–288.
MR1379242

Tsay, R. S. (2005). Analysis of Financial Time Series, 2nd Edition. Wiley-
Interscience, New York. MR2162112

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and
Empirical Processes: With Applications to Statistics. Springer-Verlag, New
York. MR1385671

Wang, H. (2009). Forward regression for ultra-high dimensional variable
screening. Journal of the American Statistical Association 104 1512–1524.
MR2750576

Wang, H., Li, R. and Tsai, C.-L. (2007). Tuning parameter selectors for
the smoothly clipped absolute deviation method. Biometrika 94 553–568.
MR2410008

Wang, H. J. and Wang, L. (2009). Locally weighted censored quantile re-
gression. Journal of the American Statistical Association 104 1117–1128.
MR2562007

Wang, H. and Xia, Y. (2009). Shrinkage estimation of the varying coeffi-
cient model. Journal of the American Statistical Association 104 747–757.
MR2541592

Wang, C.-Y., Wang, S., Gutierrez, R. G. and Carroll, R. J. (1998).
Local linear regression for generalized linear models with missing data. The
Annals of Statistics 26 1028–1050. MR1635438

Wang, L., Liu, X., Liang, H. and Carroll, R. J. (2011). Estimation and
variable selection for generalized additive partial linear models. The Annals
of Statistics 39 1827–1851. MR2893854

Xie, H. and Huang, J. (2009). SCAD-penalized regression in high-dimensional
partially linear models. The Annals of Statistics 37 673–696. MR2502647

http://www.ams.org/mathscinet-getitem?mr=2954351
http://www.ams.org/mathscinet-getitem?mr=2062822
http://www.ams.org/mathscinet-getitem?mr=2766869
http://www.ams.org/mathscinet-getitem?mr=2278363
http://www.ams.org/mathscinet-getitem?mr=0273810
http://www.ams.org/mathscinet-getitem?mr=1699703
http://www.ams.org/mathscinet-getitem?mr=0468014
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2162112
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=2750576
http://www.ams.org/mathscinet-getitem?mr=2410008
http://www.ams.org/mathscinet-getitem?mr=2562007
http://www.ams.org/mathscinet-getitem?mr=2541592
http://www.ams.org/mathscinet-getitem?mr=1635438
http://www.ams.org/mathscinet-getitem?mr=2893854
http://www.ams.org/mathscinet-getitem?mr=2502647


2682 L. Wang et al.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax con-
cave penalty. The Annals of Statistics 38 894–942. MR2604701

Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. Journal
of Machine Learning Research 7 2541–2563. MR2274449

http://www.ams.org/mathscinet-getitem?mr=2604701
http://www.ams.org/mathscinet-getitem?mr=2274449

	Introduction
	Penalized profiled semiparametric estimating function
	Estimating function
	Analytical examples

	Theoretical properties and estimation algorithm
	Asymptotic properties
	Parameter estimation

	Numerical results
	Monte Carlo simulated examples
	A real example

	Conclusion and discussions
	Technical proofs
	Examination of Conditions (C4) & (C5) for Example 2
	Acknowledgements
	References

