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Abstract: Many clinical trials are monitored through interim analysis.
Group sequential tests are popular statistical tools for interim analysis.
Sample size determination for interim analysis under group sequential set-
ting is studied in comparing to the design without interim analysis. The
effects on sample size determination were examined for both classic and
fractional Brownian motion of the monitoring statistic. Selective results
were obtained for two commonly used error spending functions with vari-
ous conditions. The results showed that the drift parameter was generally
smaller when H > 0.5 under fractional Brownian motion and would lead to
smaller sample sizes. The R code for carrying out the computation is also
provided.
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1. Introduction

Interim analysis plays a critical role in designing and monitoring clinical trials.
A vast amount of literature based on Brownian motion is available for various
aspects of interim statistical analysis of clinical trials (Pocock 1977 [26], O’Brien
and Fleming 1979 [25], Lan and DeMets 1983 [20], Lachin 2005 [16]). Sample
size determination is pivotal in planning a successful clinical trial. For ethical
and economic considerations, interim analysis has been utilized for monitoring
almost all large scale clinical trials (Friede and Kieser 2006 [7], Temple 2006
[27], DeMets and Lan 1994 [6]). One of the widely used techniques in moni-
toring clinical trials is based on group sequential setting that interim analysis
would be conducted at a number of discrete calendar or information time points
during the trial course (Jennison and Turnbull 1997 [12], Jennison and Turnbull
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2000 [13]). Several popular boundaries derived through classic Brownian motion
were proposed and used (Lan and DeMets 1983 [20]). Under Brownian motion,
the classic O’Brien and Fleming as well as Pocock group sequential boundaries
under the fixed information assumption were extended to more flexible monitor-
ing schemes by Lan and DeMets (1983 [20]) using α-spending (error spending)
functions:

α1(t) = 2(1− Φ(z1−α/2/
√
t)) (1)

and

α2(t) = α log(1 + (e − 1)t) (2)

respectively, where Φ is the cumulative distribution function of the standard
normal random variable, α is the type I error rate and Z1−α/2 is the 100(1 −
α/2)th percentile of the standard normal random variable, α1(t) and α2(t) are
the α-spending functions at interim time t for one-sided test. Mathematically,
the (symmetric) two-sided boundaries can be similarly studied. Hence, in this
article, we focused our illustration for one-sided test in determining the drift
parameter defined in Section 3 for sample size calculation. The approaches of
using α-spending functions in monitoring clinical trials have been very popular
since its inception by Lan and DeMets (1983 [20]). The merits of α-spending
functions were reviewed in DeMets and Lan (1994 [21]).

In determining the sample size for group sequential analysis and comparing
to the design without interim analysis of level α and power 1-β for one sided test,
Kim and DeMets (1992 [15]) demonstrated that the sample size determination
having K interim analyses should be modified according to a drift parameter ξ.
After reviewing Brownian motion and fractional Brownian motion in Section 2,
we define the drift parameter ξ for measuring the treatment effect and report
the results of the drift parameter ξ under classic Brownian motion and fractional
Brownian motion in Section 3. Our results are linked to a proposed large scale
clinical trial submitted to the National Institutes of Health. Existing results in
the literature on sample size determination for group sequential interim analysis
were all based on Brownian motion assumption of the monitoring statistic. In
this article, we extend the sample size determination results to fractional Brow-
nian motion that contains the classic Brownian motion as a special case. Some
concluding remarks are given in Section 4.

2. Brownian motion and fractional Brownian motion

Brownian motion and fractional Brownian motion have been used in many fields
such as in economics and dynamic systems (Hu, Okendal and Sulem 2003 [11],
Jumarie 2006 [14]). Theoretical and empirical results based on Brownian motion
have provided many useful tools in monitoring clinical trials (Lan and Wittes
1988 [21], Davis and Hardy 1990 [4], 1994 [5]). One of the fundamental assump-
tions in applying the Brownian motion to the test statistic is that the increment
of the monitoring statistic would be independent. However, this assumption may
not be true in some cases since the test statistic is usually an aggregate indicator
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of many underlying processes. In this article, we investigate the effects of frac-
tional Brownian motion on the sample size determination for group sequential
tests on designing clinical trials.

Under the null hypothesis of no treatment effect, we assume the test statistic
form a fractional Brownian motion BH(t) over calendar or information time in
[0,1], where 0 denotes the time at the beginning of the trial and 1 denotes the
time at the end. More specifically, BH(t) is a Gaussian process with stationary
increments and has the following properties (Beran 1994 [2]):

E(BH(t)) = 0 (3)

and

Cov(BH(t), BH(s)) =
1

2
σ2

(

|t|2H + |s|2H − |t− s|2H
)

. (4)

We let BH(0) = 0 and σ2 = 1 in our study since we usually perform in-
terim statistical analysis on standardized test statistic. When the variance σ2

is unknown, one may use an estimate from the literature or from the partial
realizations of the test statistic to estimate σ2. Once the σ2 is given, the effect
of H is the same as in the case when σ2 is assumed to be 1. The parameter H
in the fractional Brownian motion is defined in (0,1) and it is called the Hurst
coefficient (Davies and Harte 1987 [3]). For H > 0.5, the fractional Brownian
motion poses long memory. The distribution of the future path of a long memory
process would depend on the current and the past status. However, for a process
of short memory, the distribution of the future path would be independent of
the its past if the current status is given. That is, process of short memory has
Markov property whereas the long memory process does not have Markov prop-
erty. For H < 0.5, fractional Brownian motion has short memory (Mandelbrot
and Van Ness 1968 [23]). Recent developments for H < 0.5 can be found in
Bardina and Jolis (2006 [1]), Leon and Nualart (2006 [22]). Both the classic and
the fractional Brownian motion were Gaussian. When H = 1/2, BH(t) becomes
the classic Brownian motion, which has the property of independent increments
and it is of short memory. The assumption of classic Brownian motion in clini-
cal trial monitoring is strong. It is very likely that the monitoring statistic is an
aggregated process of many different processes. Therefore, its future path would
depend on its past and current values. It was shown that, even if the underlying
processes were of short memory, the aggregated process could be of long mem-
ory (Beran 1994 [2], Granger 1980 [9]). Hence fractional Brownian motion is a
natural model for the test statistic.

Applications of fractional Brownian motion in clinical trials in terms of con-
ditional power were studies in Lai, Davis and Hardy (2000 [17]) and Lai (2004
[18]). The group sequential boundaries of Lan and DeMets (1983 [20]) as well
as O’Brien and Fleming (1979 [25]), Pocock (1977 [26]) were examined under
fractional Brownian motion (Lai 2010 [19]). Many other characteristics such as
asymmetric group sequential design, repeated confidence intervals and recruit-
ment monitoring of clinical trials have been studied under fractional Brownian
motion (Zhang 2012 [28], Zhang 2011 [29], Zhang and Lai 2010 [30], Zhang and
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Lai 2011 [31]). In next section, we computed the factor for sample size determi-
nation for group sequential setting under fractional Brownian motion

3. Sample size determination

Interim analysis of clinical trials would require multiple evaluations during the
course of the trials. As it is illustrated in the Introduction section, when the
monitoring statistic B(tk) follows Brownian motion, we have

B(t) ∼ N(tξ, t) (5)

and

Cov(B(t), B(s)) =
1

2
(t+ s− |t− s|), (6)

where ξ is the drift parameter. Under classic Brownian motion, the drift param-
eter ξ = z1−α + z1−β without interim analyses. The sample size determination
factor due to group sequential monitoring is (Kim and DeMets 1992 [15]):

(ξ/(z1−α + z1−β))
2 (7)

for a one sided level α test with a power of 1-β. For classic Brownian motion, the
drift parameter ξ can be estimated through following numerical computation:

P (B(t1) ≤ b1, B(t2) ≤ b2, . . . , B(ti−1) ≤ bi−1, B(ti) > bi|H0) = α(ti)− α(ti−1)
(8)

and
P (B(t1) ≤ b1, B(t2) ≤ b2, . . . , B(tK) ≤ bK |Ha) = β, (9)

where i = 1, 2, . . . ,K and bi’s are the upper boundaries at interim time ti,
H0 denotes the null hypothesis without treatment effect and Ha denotes the
alternative hypothesis that the treatment group is better than the control group.
The above computation for Brownian motion can be extended to the fractional
Brownian motion BH(t) with variance-covariance of elements of expression (4)
instead of expression (6).

In solving for the drift parameter ξ, we need to simultaneously to find ξ that
satisfies both expressions (8) and (9) for the given number of interim analyses
K, the type I error rate α, the type II error rate β and the Hurst coefficient
H . One important step in searching for the parameter is to evaluate the prob-
ability of multivariate normal distribution. We used the R function mvtnorm.
The R function was based on the algorithm developed by Genz (1992 [8]). The
algorithm performed a sequence of three transformations that converted the
original integral of multivariate normal cumulative distribution into an integral
over a unit hypercube. It started with a Cholesky decomposition, followed by
inverse Gaussian transform that produced a simpler integrand with more com-
plicated integration region. Then a change variable transformation led it to an
integrand with constant limit that can be numerically calculated with standard
algorithm. The results derived from our computation were compared to those in
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Table 1

Drift Parameter of BH (t)/
√

t under Fractional Brownian Motion and One-sided Test with

α1, H = 0.1, 0.3, 0.5, 0.7, 0.9, K = 1, 2, 3, 4, 5 and Power = 0.80 and Power = 0.9

Power = 0.8 Power = 0.9
H K α = 0.005 α = 0.01 α = 0.025 α = 0.05 α = 0.005 α = 0.01 α = 0.025 α = 0.05
0.1

1 3.4174 3.1680 2.8016 2.4865 3.8574 3.6079 3.2415 2.9264
2 3.3872 3.1268 2.7416 2.4094 3.8289 3.5693 3.1856 2.8554
3 3.4176 3.1659 2.7916 2.4622 3.8579 3.6068 3.2344 2.9079
4 3.4251 3.1774 2.8107 2.4885 3.8637 3.6164 3.2515 2.9320
5 3.4259 3.1810 2.8192 2.5022 3.8626 3.6183 3.2584 2.9442

0.3
1 3.4174 3.1680 2.8016 2.4865 3.8574 3.6079 3.2415 2.9264
2 3.4077 3.1537 2.7789 2.4562 3.8481 3.5944 3.2204 2.8988
3 3.4286 3.1823 2.8193 2.5036 3.8692 3.6231 3.2614 2.9472
4 3.4394 3.1958 2.8388 2.5299 3.8801 3.6371 3.2813 2.9743
5 3.4468 3.2044 2.8499 2.5449 3.8877 3.6460 3.2929 2.9898

0.5
1 3.4174 3.1680 2.8016 2.4865 3.8574 3.6079 3.2415 2.9264
2 3.4186 3.1792 2.8068 2.4962 3.8586 3.6103 3.2471 2.9369
3 3.4256 3.1793 2.8195 2.5115 3.8658 3.6200 3.2606 2.9537
4 3.4327 3.1875 2.8289 2.5221 3.8735 3.6287 3.2710 2.9653
5 3.4387 3.1940 2.8360 2.5295 3.8798 3.6356 3.2787 2.9736

0.7
1 3.4174 3.1680 2.8016 2.4865 3.8574 3.6079 3.2415 2.9264
2 3.4220 3.1769 2.8226 2.5250 3.8619 3.6168 3.2625 2.9650
3 3.4204 3.1723 2.8101 2.5024 3.8604 3.6126 3.2506 2.9433
4 3.4231 3.1755 2.8128 2.5022 3.8634 3.6160 3.2537 2.9437
5 3.4254 3.1782 2.8157 2.5050 3.8659 3.6189 3.2570 2.9469

0.9
1 3.4174 3.1680 2.8016 2.4865 3.8574 3.6079 3.2415 2.9264
2 3.4224 3.1781 2.8276 2.5388 3.8623 3.6180 3.2675 2.9788
3 3.4176 3.1684 2.8036 2.4937 3.8575 3.6083 3.2436 2.9337
4 3.4176 3.1683 2.8025 2.4885 3.8576 3.6083 3.2422 2.9284
5 3.4178 3.1685 2.8025 2.4883 3.8577 3.6085 3.2425 2.9281

Kim and DeMets (1992 [15]) under classic Brownian motion. For computing the
results under fractional Brownian motion, we only need to provide the general
variance-covariance structure of expression (4) instead of expression (6) to the R
function. The main R code of deriving the results is presented in the appendix.

For error spending function α1, we tabulated the values of the drift parameter
ξ with a power of 0.8 and 0.9 in Table 1.

From Table 1, in comparing to the design with one fixed test at the end of
one-sided level 0.025 and power 0.80, the sample size determination factor for a
trial with 4 interim analyses (5 total tests) would be (2.8360/2.8016)2 = 1.0247,
indicating about 2.5% increase of the sample size if the test statistic follows
classic Brownian motion. However, if it follows fractional Brownian motion with
H = 0.7, the sample size determination factor becomes (2.8157/2.8016)2 =
1.0050, indicating about 0.5% increasing of the sample size. In general, under
the classic Brownian motion, the sample size determination factor increases
as the number of interim analyses, but this monotone relation does not hold
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Table 2

Drift Parameter of BH (t)/
√

t under Fractional Brownian Motion and One-sided Test with

α2, H = 0.1, 0.3, 0.5, 0.7, 0.9, K = 1, 2, 3, 4, 5 and Power = 0.80 and Power = 0.9

Power = 0.8 Power = 0.9
H K α = 0.005 α = 0.01 α = 0.025 α = 0.05 α = 0.005 α = 0.01 α = 0.025 α = 0.05
0.1

1 3.4174 3.1680 2.8016 2.4865 3.8574 3.6079 3.2415 2.9264
2 3.4944 3.2365 2.8563 2.5280 3.9522 3.6961 3.3187 2.9929
3 3.5603 3.2959 2.9031 2.5610 4.0204 3.7589 3.3709 3.0328
4 3.5773 3.3114 2.9145 2.5666 4.0365 3.7740 3.3828 3.0401
5 3.5776 3.3112 2.9128 2.5617 4.0356 3.7730 3.3808 3.0360

0.3
1 3.4174 3.1680 2.8016 2.4865 3.8574 3.6079 3.2415 2.9264
2 3.5468 3.2896 2.9095 2.5804 3.9980 3.7424 3.3647 3.0376
3 3.6317 3.3690 2.9785 2.6377 4.0858 3.8255 3.4387 3.1013
4 3.6778 3.4130 3.0175 2.6705 4.1330 3.8710 3.4801 3.1375
5 3.7064 3.4404 3.0421 2.6916 4.1622 3.8992 3.5060 3.1605

0.5
1 3.4174 3.1680 2.8016 2.4865 3.8574 3.6079 3.2415 2.9264
2 3.6022 3.3469 2.9683 2.6390 4.0476 3.7936 3.4167 3.0891
3 3.6699 3.4130 3.0310 2.6972 4.1177 3.8623 3.4825 3.1511
4 3.7057 3.4480 3.0642 2.7286 4.1547 3.8988 3.5176 3.1843
5 3.7282 3.4700 3.0851 2.7481 4.1780 3.9216 3.5395 3.2053

0.7
1 3.4174 3.1680 2.8016 2.4865 3.8574 3.6079 3.2415 2.9264
2 3.6595 3.4085 3.0344 2.7066 4.1011 3.8506 3.4774 3.1506
3 3.6718 3.4251 3.0596 2.7409 4.1156 3.8693 3.5046 3.1866
4 3.6710 3.4230 3.0578 2.7416 4.1166 3.8691 3.5046 3.1891
5 3.6705 3.4203 3.0529 2.7360 4.1171 3.8679 3.5009 3.1847

0.9
1 3.4174 3.1680 2.8016 2.4865 3.8574 3.6079 3.2415 2.9264
2 3.7121 3.4711 3.1096 2.7890 4.1520 3.9111 3.5497 3.2292
3 3.6345 3.3981 3.0532 2.7569 4.0756 3.8392 3.4942 3.1978
4 3.5942 3.3533 3.0031 2.7055 4.0364 3.7955 3.4451 3.1474
5 3.5721 3.3281 2.9727 2.6707 4.0148 3.7708 3.4153 3.1131

for fractional Brownian motion. Similar observations are true for the sample
determination factor with power of 0.9.

For error spending function α2, under classic Brownian motion, the sample
size determination factor would be (3.0851/2.8016)2 = 1.2126, indicating a more
than 21% increasing of sample size for 4 interim analyses with a level of 0.025
and power of 0.80. If it follows fractional Brownian motion with H = 0.7, the
determination factor is (3.0529/2.8016)2 = 1.1874 for the same design with an
almost 19% increase of the sample size comparing to the design without interim
analysis. The impact of group sequential test on sample size under fractional
Brownian motion by α2 is larger than that by α1. The selected results of the
drift parameter ξ for α2 are shown in Table 2.

The reasoning discussed above under classic Brownian motion (H = 0.5)
was applied in designing a large clinical trial and the proposal was submitted
to the National Institutes of Health. The author of the current article is the
statistician for the submitted proposal. In that study, there were two possible
treatments. It was expected that treatment A would have a response rate at
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3.6% and treatment B would have the response rate of 6.3%. Based on nor-
mal approximation (Brownian motion) and a two sided level α = 0.05 (one
sided α = 0.025) and power = 0.9, it was estimated that 2709 patients are
needed for detecting the difference of δ = 2.7%. For 4 interim analyses with
error spending function α1, we had the sample size determination factor of
2.3% (3.2787/3.2415)2. We used 5% as the inflation factor to account for pos-
sible loss due to follow up (2.5%) and the sample size determination factor
due to group sequential test (2.3%) for the sample size and obtained 2844 as
the total sample size. However, for a sensitivity analysis, if spending function
α2 was used, we would have the sample size determination factor being 19.2%
(3.5395/3.2415)2 for H = 0.5 and 16.6% (3.5009/3.2415)2 for H = 0.7. In the
final proposal, we used 3000 as the proposed sample size for the study, which
would be enough for both loss to follow up and group sequential tests under
most settings.

4. Concluding remarks

In this article, we studied the effect of classic Brownian motion and fractional
Brownian motion on the sample size determination for clinical trials with interim
analysis under group sequential monitoring. The classic Brownian motion is a
well accepted stochastic process for clinical trial monitoring. The classic Brow-
nian motion has the property that the probability distribution of the future
values depends only through the current value. However, fractional Brownian
motion as an extension of the classic Brownian motion possesses a long memory
that all values in the past would influence the probability of its future values.
Although many test statistics have been shown to be approximately Brown-
ian motion (Gu and Lai 1991 [10]) under various conditions, in many practical
settings, these conditions may be violated or hard to be justified. Hence the
fractional Brownian motion may provide more useful tools for interim data
analysis.

Fractional Brownian motion was used to reanalyze the data from the Beta-
Blocker Heart Attack Trial (BHAT) (Lai, Davis and Hardy 2000 [17]). The
BHAT trial was terminated prior to the planed stopping date based on the
conditional power under Brownian motion and other considerations. If fractional
Brownian motion were used, the BHAT trial could be terminated a couple of
months earlier.

In clinical trials, the monitoring statistic can be viewed as an aggregated
stochastic process generated from many other processes through space and time.
In fact, it was shown that aggregating processes could have long memory even
the sub-processes have only short memory (Granger 1980 [9]).

For fractional Brownian motion, there is an extra parameter H as compared
to the classic Brownian motion. In this article, we reported the effect of the
Hurst coefficient H on the sample size determination under group sequential
setting. The value of H can be estimated via maximal likelihood method (Lai
2004 [18]) or other techniques (Mielniczuk and Wojdyllo 2007 [24]) using historic
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data as well as the partial observations prior to the interim analysis. In applying
the classic Brownian motion to clinical trial monitoring, we implicitly assumed
that H = 1/2 in fractional Brownian motion. The estimate of H based on
maximal likelihood method was shown to be approximately normally distributed
(Lai 2004 [18]). In actual data analysis, one may perform hypothesis testing
on H = 1/2. Fractional motion Brownian has been applied in many diversified
fields, however, many theoretical and empirical properties of fractional Brownian
motion in designing and monitoring clinical trials are still unknown and worth
pursuing.

Appendix: The main R Code for computation

# Estimating the drift parameter in sample size determination for

# group sequential test under fractional Brownian motion, one sided.

ki <- c(1,2,3,4,5)

betai <- c(0.2,0.1)

hi <- c(0.1,0.3,0.5,0.7,0.9)

alphai <- c(0.005,0.01,0.025,0.05,0.10)

for (jk in c(1:5)) {
k <- ki[jk]

print("number of tests")

print(k)

alpha1 <- rep(0,k+1)

alpha2 <- alpha1

for (jb in c(2:2)) {
print("type II error")

print(betai[jb])

for (jh in c(1:5)) {
h <- hi[jh]

print("Hurst coefficient")

print(h)

for (ja in c(1:5)) {
alpha <- alphai[ja]

print("alpha")

print(alpha)

covmatrix <- matrix(rep(0,(k+1)*(k+1)),ncol=k+1,byrow=T)

tij <- (seq(0:k)-1)/k

print(tij)

# the covariance matric of B(t)/sqrt(t)

for (i in c(1:(k+1))) {
for (j in c(1:(k+1))) {

covmatrix[i,j] <- (1/2)*(tij[i]ˆ(2*h)+tij[j]ˆ(2*h)

-(abs(tij[i]-tij[j]))ˆ(2*h))/sqrt(tij[i]*tij[j])

}
}
# print(covmatrix)

covbm <- covmatrix

# one sided
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for (i in c(1:k)) {
alpha1[i+1] <- 2-2*pnorm(qnorm(1-alpha/2)/sqrt(i/k))

alpha2[i+1] <- alpha*log(1+(exp(1)-1)*(i/k))

}
# print(alpha1)

# print(alpha2)

# compute the boundaries given the alpha value

a1b <- rep(0,k)

a2b <- a1b

# one sided

a1b[1] <- qnorm(1-alpha1[2])

a2b[1] <- qnorm(1-alpha2[2])

# fx1, one sided

fx1 <- function(x,ub,covm,tprob) {
# kn number of (upper) boundary already known

kn <- length(ub)

lb <- rep(-Inf,kn)

pmv <- pmvnorm(lower=c(lb,x),upper=c(ub,Inf),sigma=covm)[1]

tprob-pmv

}
# compute the boundary, one sided

a1ub <- NULL

a2ub <- a1ub

if (k > 1 ) {
for (i in c(2:k)) {
a1ub <- c(a1ub,a1b[i-1])

a2ub <- c(a2ub,a2b[i-1])

# print(a1ub)

a1b[i] <- uniroot(fx1,interval=c(1,5),lower=1,upper=10,ub=a1ub,

covm=covmatrix[2:(i+1),2:(i+1)],tprob=alpha1[i+1]-alpha1[i])$root

a2b[i] <- uniroot(fx1,interval=c(1,5),lower=1,upper=10,ub=a2ub,

covm=covmatrix[2:(i+1),2:(i+1)],tprob=alpha2[i+1]-alpha2[i])$root

}
}
#print(a1b)

#print(a2b)

# search for the mean, hence the drift parameter theta=mean/sqrt(t)

fxlai <- function(x,ub,covm,tprob) {
# x is the drift parameter

# kn number of (upper) boundary already known

kn <- length(ub)

lb <- rep(-Inf,kn)

lmean <- x*sqrt(seq(1:kn)/kn)

pmv <- pmvnorm(lower=lb,upper=ub,mean=lmean,sigma=covm)[1]

tprob-pmv

}
# compute theta

theta1 <- uniroot(fxlai,interval=c(1,5),lower=1,upper=10,ub=a1b,

covm=covmatrix[2:(k+1),2:(k+1)],tprob=betai[jb])$root

print("theta1")
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print(theta1)

theta2 <- uniroot(fxlai,interval=c(1,5),lower=1,upper=10,ub=a2b,

covm=covmatrix[2:(k+1),2:(k+1)],tprob=betai[jb])$root

print("theta2")

print(theta2)

} # jalpha

} # jhurst

} # jbeta

} # jk
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