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Abstract: We consider the rate of convergence of the expected loss of
empirically optimal vector quantizers. Earlier results show that the mean-
squared expected distortion for any fixed probability distribution supported
on a bounded set and satisfying some regularity conditions decreases at the
rate O(logn/n). We prove that this rate is actually O(1/n). Although these
conditions are hard to check, we show that well-clustered distributions with
continuous densities supported on a bounded set are included in the scope
of this result.
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1. Introduction

Empirical vector quantizer design is a way to answer the problem of identifying
groupings of similar points that are relatively away from one another, or, in
other words, to partition the data into dissimilar groups of similar items. For a
comprehensive introduction to this topic, the reader is referred to the monograph
of Graf and Luschgy [13]. To isolate meaningful groups from a cloud of data is
a topic of interest in many fields, from social science to biology. In fact this
issue originates in the theory of signal processing in the late 40’s, known as the
quantization issue, or lossy data compression (a good introduction to this field
can be found in the book of Gersho and Gray [11]).

To be more precise, let P denote a probability distribution over the Euclidean
space Rd. A k-point quantizer Q, also called k-level quantizer in the case where
d = 1, is a map from R

d to R
d, whose image set is made of exactly k points,

that is
∣

∣Q(Rd)
∣

∣ = k. By considering the preimages of these points, such a map
partitions the whole space into k groups, and assigns each group a representative.

For any P -integrable function f : R
d −→ R, we will denote by Pf the

integral of f with respect to P . To measure how well a quantizer Q performs in
representing the source distribution P , we introduce the distortion

R(Q) := P‖x−Q(x)‖2,

when P‖x‖2 < ∞. This choice of distortion function is convenient, since it takes
advantage of the underlying Euclidean structure. Note however that several
authors such as Graf and Luschgy in [13] or Fischer in [10] deal with more
general distortion functions.
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For a k-point quantizer Q with images Q(Rd) = {c1, . . . , ck}, we will call code
points of Q the points c1, . . . , ck, and codebook of Q an arbitrary vector c of
(Rd)k, the components of which are the code points, e.g. c := (c1, . . . , ck). With-
out loss of generality we restrict our attention to nearest neighbor quantizers,
namely quantizers satisfying the condition ‖x − Q(x)‖ = minc∈Q(Rd) ‖x− c‖.
Intuitively, a nearest neighbor quantizer sends any vector x to the nearest code
point ci to x. Note that a nearest neighbor quantizer is determined by its code-
book c with ties arbitrarily broken. Since we only deal with continuous distri-
butions, how ties are broken will not matter.

Throughout this paper, quantizers will be represented by their codebook.
This choice will allow us to handle vectors rather than maps, in order to take
advantage of the underlying Euclidean structure. From this point of view, the
distortion function takes the form

R(c) := P‖x−Q(x)‖2 = P min
j=1,...,k

‖x− cj‖2,

when P‖x‖2 < ∞.
Let X1, . . . , Xn be a independent and identically distributed sample with

distribution P . The goal here is to find a codebook ĉn, drawn from the data
X1, . . . , Xn, whose distortion is as close as possible to the optimal distortion
R∗ := infc∈(Rd)k R(c). To solve the problem, most approaches to date attempt
to implement the principle of empirical error minimization in the vector quan-
tization context. According to this principle, good code points can be found by
searching for ones that minimize the empirical distortion over the training data,
defined by

R̂n(c) :=
1

n

n
∑

i=1

(Xi −Q(Xi))
2 =

1

n

n
∑

i=1

min
j=1,...,k

‖Xi − cj‖2.

The existence of such empirically optimal codebooks has been formally estab-
lished by Graf and Luschgy [13, Theorem 4.12], following the approach of Pollard
in the proof of [24, Lemma 8]. Denote by ĉn one of these empirically optimal
codebooks. If the training data represents the source well, ĉn will hopefully also
perform near optimally on the real source. Roughly, this means that we expect
R(ĉn) ≈ R∗. The problem of quantifying how good empirically designed code-
books are, compared to the truly optimal ones, has been extensively studied,
see for instance Linder [16].

To reach the latter goal, a standard route is to exploit the Wasserstein
distance between the empirical distribution and the source distribution, to
derive upper bounds on the average distortion of empirically optimal code-
books. Following this approach, Pollard [21] proved that, if P‖x‖2 < ∞, then
R(ĉn) − R∗ −→ 0 almost surely, as n → ∞. Using techniques borrowed from
statistical learning theory, Linder, Lugosi and Zeger [17], and Biau, Devroye and
Lugosi [5] showed that if the support of P is bounded, then E (R(ĉn)−R∗) =
O(1/

√
n), where the expectation is taken over the training sample X1, . . . , Xn.

Bartlett, Linder and Lugosi established in [4] that this rate is minimax over dis-
tributions supported on a finite set of points. More recently, Antos [1] improved
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the numerical constants mentioned in this minimax result, and also proved that
the minimax rate over distributions over bounded sets with continuous densities
is still 1/

√
n.

However, faster rates individual convergence rates can be achieved, under
certain conditions. For example, it was shown by Chou [9], following a result of
Pollard [23], that if the source distribution satisfies some regularity conditions,
then R(ĉn)−R∗ = OP (1/n), where we recall that a sequence of random variables
Yn = OP (1/n) if, for all positive real number M , P(n|Yn| ≥ M) → 0 as n → ∞.
Nevertheless, this consistency result does not provide any information on how
many training samples are needed to ensure that the average distortion of em-
pirically optimal codebooks is close to the optimum. Antos, Györfi and György
established in [2] that E(R(ĉn) − R∗) = O (logn/n), under other conditions,
paying a logn factor to derive a non-asymptotic bound. It is worth pointing out
that the conditions cannot be checked in practice, and consequently remain of
theoretical nature. Moreover, the rate of O (1/n) for the average distortion can
be achieved when the source distribution is supported on a finite set of points
(see Antos, Györfi and György [2]). Consequently, an open question is to know
whether this optimal rate can be attained for more general distributions, and
under what set of conditions.

In the present paper, we improve previous results of Antos, Györfi and György
[2], by getting rid of the logn factor, adding some minor regularity conditions on
P . To this aim we use statistical learning arguments, and prove that the average
distortion of empirically optimal codebooks decreases at the rate O(1/n), under
certain conditions. To get this result we use techniques such as the localization
principle borrowed from Blanchard, Bousquet and Massart [6] or Koltchinskii
[15]. The condition we offer can be easily interpreted as a margin-type condition,
similar to the ones of Massart and Nedelec in [19], showing a clear connection
between statistical learning theory and vector quantization.

Furthermore, we offer equivalences between different sets of regularity condi-
tions which guarantee that the distortion of the empirically optimal codebook
decreases at a fast rate. More precisely, we prove that conditions Pollard required
in [23], conditions Antos, Györfi and György required in [2], and conditions we
required, are equivalent, in the case where P has a continuous density. It is worth
pointing out that all conditions mentioned above are of theoretical nature, and
remain hard to understand. We also give in this paper a more reader-friendly
sufficient condition.

The paper is organized as follows. In Section 2 we introduce notation and
definitions of interest. In Section 3 we offer our main results. These results are
discussed in Section 4, and illustrated on examples such as Gaussian mixtures
or quasi-finite distributions. Finally, proofs are gathered in Section 5.

2. The quantization problem

Throughout the paper, X1, . . . , Xn is a sequence of independent Rd-valued ran-
dom variables with distribution P . To frame the quantization problem as a
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statistical learning one, we first have to consider quantization as a contrast
minimization issue. To this aim we introduce the following notation. Consider a
nearest neighbor quantizer with codebook c = (c1, . . . , cn). The contrast func-
tion γ is defined as

γ :

{
(

R
d
)k × R

d −→ R

(c, x) 7−→ min
j=1,...,k

‖x− cj‖2 .

Within this framework, the risk R(c) takes the form R(Q) = R(c) = Pγ(c, .),
where Pf(.) means integration of the function f with respect to P . Denote by Pn

the empirical distribution that is induced on R
d by the n-sample X1, . . . , Xn,

namely, for any measurable subset A ⊆ R
d, Pn(A) = |{i|Xi ∈ A}|. Once Pn

introduced, the empirical risk R̂n(c) can be expressed as Pnγ(c, .). Remark that
an optimal c∗ minimizes Pγ(c, .), whereas ĉn ∈ argminc∈(Rd)k Pnγ(c, .). It is
worth pointing out that, if P‖x‖2 < ∞, then the existence of both ĉn and c∗

are guaranteed by Graf and Luschgy [13, Theorem 4.12].
Let M denote the set of optimal codebooks, and let c∗ ∈ M be an optimal

codebook, with code points c∗i . The Voronoi cell V ∗
i , also called quantization

cell, is defined as the subset of Rd made of the points which are closer to c∗i
than any other c∗j , i.e.

V ∗
i :=

{

x ∈ R
d| ∀j 6= i ‖x− c∗i ‖ ≤ ‖x− c∗j‖

}

.

It may be noted that many authors prefer to define the Voronoi cell V ∗
i as the

open set
{

x ∈ R
d| ∀j 6= i ‖x− c∗i ‖ < ‖x− c∗j‖

}

.

However, this choice of convention will not matter, since every boundary of an
optimal Voronoi cell has zero P -measure, that is

P
({

x ∈ R
d|‖x− c∗i ‖ = ‖x− c∗j‖

})

= 0

for i 6= j (see [13, Theorem 4.2]).
It is well known that any optimal codebook satisfies the centroid condition

(see, e.g., [11, Section 6.2]), which states that each optimal code point is chosen
to minimize the distortion over its associated cell, or, in other words

P
(

‖x− c∗i ‖21x∈V ∗
i

)

= inf
c∈Rd

P
(

‖x− c‖21x∈V ∗
i

)

,

where, for any measurable subset A ⊂ R
d, 1A denotes the indicator function of

the set A. An immediate consequence of the centroid condition is that every ci∗
satisfies

c∗i =
P
(

x1V ∗
i

)

p∗i
,

where p∗i := P (V ∗
i ) is nonzero, according to [13, Theorem 4.1]. In the case

where P has a density, it is proved in [23, Lemma A] that c 7−→ Pγ(c, .) is
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differentiable. In this case, it is easy to show that the centroid condition takes
the form

∇Pγ(c∗, .) = 0,

where∇f denotes the differential of f for any differentiable map f :
(

R
d
)k −→ R

(see, for instance, [11, Section 6.2]).

Let c ∈
(

R
d
)k

be a k × d vector, and let c∗ ∈ M be an optimal codebook.
We introduce the loss, or distortion redundancy, to compare the performance of
c and c∗, namely

ℓ(c, c∗) := R(c)−R(c∗) = P (γ(c, .)− γ(c∗, .)) .

Throughout the paper we will use the following assumptions on the source
distribution P . For c ∈ R

d and any positive real number M > 0, let B(c,M)
denote the closed ball of radius M and center c in R

d. To be precise

B(c,M) =
{

x ∈ R
d| ‖x− c‖ ≤ M

}

.

Assumption 1 (Peak Power Constraint). The distribution P is such that
P (B(0, 1)) = 1,

For convenience we only consider distributions whose support is included in
B(0, 1). However, it is important to note that our results hold for distributions
whose support is included in B(0,M), for an arbitrary M . In fact, a distribu-
tion supported on B(0,M) can easily be turned into a distribution supported
on B(0, 1), via an homothetic transformation. Therefore, we will only state re-
sults for distributions for which the support is included in B(0, 1). Note that
Assumption 1 is stronger than the requirement P‖x‖2 < ∞, as it imposes that
P is supported on a bounded subset of Rd. However, it is likely that our results
can be extended to the case where just the weaker assumption P‖x‖2 < ∞ is
required, using techniques such as in [20] or [8].

Pollard introduced in [23] the following regularity requirement, which was
initially used to derive an asymptotic rate of convergence for the loss ℓ(ĉn, c

∗).

Assumption 2 (Pollard’s regularity condition). The distribution P satis-
fies the following two conditions:

1. P has a continuous density f with respect to the Lebesgue measure on R
d,

2. The Hessian matrix of c 7−→ Pγ(c, .) is positive definite for all optimal
codebooks c∗.

It may be noted that Condition 1 of Assumption 2 does not guarantee the
existence of a second derivative for the function c 7−→ Pγ(c, .). Nevertheless,
if Assumption 1 and Condition 1 of Assumption 2 are satisfied, then it can be
proved that c 7−→ Pγ(c, .) is twice differentiable (see, e.g., [23, Lemma C]).

Let Vi be the Voronoi cell associated with ci, for i = 1, . . . , k. The Hessian
matrix is composed of the following d× d blocks:

H(c)i,j =

{

2P (Vi)− 2
∑

ℓ 6=i r
−1
iℓ σ

[

f(x)(x − ci)(x− ci)
t1∂(Vi∩Vℓ)

]

for i = j

2rij
−1σ

[

f(x)(x− ci)(x− cj)
t1∂(Vi∩Vj)

]

for i 6= j
,

(1)
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where rij = ‖ci − cj‖, ∂(Vi ∩ Vj) denotes the possibly empty common face of
Vi and Vj , and σ means integration with respect to the (d − 1)-dimensional
Lebesgue measure. For a proof of that statement, we refer to Pollard [23].

Assumption 2 is hard to check in general. However, there are some cases where
it can be proved that H(c∗) is positive definite for every optimal codebook c∗.
For example, Antos, Györfi and György proved in [2, Corollary 2] that, if d = 1
and P has a strictly log-concave density, then P satisfies Assumption 2. As will
be shown in Corollary 3.1, this is also the case when the density is small enough
at the boundaries of optimal Voronoi cells.

When Assumption 1 and Assumption 2 are satisfied, Chou [9] proved that
ℓ(ĉn, c

∗) = OP(1/n). This result relies on the previous result of Pollard [23], who
established the asymptotic normality of

√
n(ĉn − c∗). To get this asymptotic

result, Pollard used conditions under which the distortion and the Euclidean
distance are connected, and used chaining arguments to bound from above a
term which looks like a Rademacher complexity, constrained on an area around
an optimal codebook. Note that Koltchinskii [15] used a similar method to apply
the localization principle.

The following Assumption 3 is the assumption we require to obtain our main
result. It demands direct connections between the Euclidean distance, the loss
ℓ(c, c∗) and the variance VarP (γ(c, .)− γ(c∗, .)), taken with respect to P .

Assumption 3. The distribution P satisfies the following two technical condi-
tions:

∃A1 > 0 ∀c ∈ B(0, 1) ℓ(c, c∗(c)) ≥ A1‖c− c∗(c)‖2,(H1)

where c∗(c) ∈ argmin
c∗∈M

‖c− c∗‖, and

∃A2 > 0 ∀c ∈ B(0, 1) ∀c∗ ∈ M VarP (γ(c, .)− γ(c∗, .)) ≤ A2‖c− c∗‖2.
(H2)

Notice that, contrary to Assumption 2, Assumption 3 does not require P to
have a continuous density.

When considering several optimal codebooks c∗ to be compared to a general
c, it is natural to choose one among the closest to c, hence the choice of c∗(c).
Furthermore, since for all c∗ in M, ℓ(c, c∗(c)) = ℓ(c, c∗), we will write ℓ(c, c∗)
without specifying which c∗ ∈ M is at stake.

It is worth pointing out that Antos, Györfi and György [2, Corollary 1] proved
that, if Assumption 1 is satisfied, then Assumption 2 implies Assumption 3.
In the same paper, these authors only require that P satisfies the following
Assumption 4.

Assumption 4 (Condition of Antos, Györfi and György). There exists
A > 0 such that

∀c ∈ B(0, 1) VarP (γ(c, .)− γ(c∗(c), .)) ≤ Aℓ(c, c∗).
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Assumption 4 is at first sight weaker than Assumption 3, since it only requires
a comparison between ℓ(c, c∗) and VarP (γ(c, .)−γ(c∗(c), .)), without comparing
them to the intermediate ‖c− c∗(c)‖2.

Antos, Györfi and György proved in [2, Theorem 2] that if P satisfies As-
sumption 1 and Assumption 4, then Eℓ(ĉn, c

∗) = O (log(n)/n). As explained
before the statement of Assumption 4, it has been proved by Antos, Györfi
and György in [2, Corollary 1] that, provided that Assumption 1 is satisfied,
Assumption 2 implies Assumption 4. Consequently, if P denotes a distribution
satisfying Assumption 1 and Assumption 2, the result of Chou [9] states that
ℓ(ĉn, c

∗) converges in probability to 0 at the rate 1/n, whereas the result of
Antos, Györfi and György [2] indicates that ℓ(ĉn, c

∗) converges to 0 at the rate
log(n)/n in expectation. Therefore, a question of interest is to know whether
these two rates are truly different, or whether the log(n) factor is artificial.

To be more precise, Antos, Györfi and György used in [2] a concentration
inequality based on the fact that the variance and the expectation of the distor-
tion are connected to get their result. Interestingly, this point of view has been
developed by Blanchard, Bousquet and Massart [6] to get bounds on the classi-
fication risk of the SVM, using the localization principle. That is the approach
that will be followed in the present paper.

3. Main results

The conditions we require to obtain our main result differ from the conditions
Pollard required in [23], and from those Antos, Györfi and György proposed in
[2, Theorem 2]. Consequently it is natural to make connections between these
different sets of conditions clear. This is the aim of the following proposition.

Proposition 3.1. Let P be a distribution on B(0, 1). Then the following sets
of conditions on P are equivalent:

{

Assumption 1
Assumption 2

⇔















P has a continuous density
M is finite

Assumption 1
Assumption 3

,

and

{

Assumption 1
Assumption 2

⇔















P has a continuous density
M is finite

Assumption 1
Assumption 4

.

Roughly, Proposition 3.1 states that, provided that P has a density which
is continuous and whose support is bounded, all the conditions which ensure
fast rates of convergence for the average distortion of the empirically optimal
quantizer are equivalent. The following theorem offers a new bound on the loss
ℓ(ĉn, c

∗), when P satisfies any of the three sets of conditions proposed in Propo-
sition 3.1.
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Theorem 3.1. Suppose that P has a density f and M is a finite set. Assume
that Assumption 1 and Assumption 3 are satisfied. Then, denoting by ĉn an
empirical risk minimizer, we have

Eℓ(ĉn, c
∗) ≤ C0

n
,

where C0 is a positive constant depending on P , k and d.

This result shows that a convergence rate of 1/n can be achieved in expec-
tation, at the price of a few more conditions on the source distribution than
those Antos, Györfi and György [2, Theorem 2] required. To be more precise,
their result only requires that Assumption 1 and Assumption 4 are satisfied.
According to Proposition 3.1, provided that P has a continuous density and M
is finite, the set of conditions required by Antos, Györfi and György in [2] turns
out to be equivalent to the set of conditions Pollard requires in [23] or to the
the set of conditions mentioned in Theorem 3.1.

As illustrated by the proof in Section 5.3, the constant C0 mentioned in The-
orem 3.1 strongly depends on constants A1 and A2 introduced in Assumption
3. Consequently, to understand how C0 depends on k, d or P , the exact depen-
dency of A1 and A2 on P , k and d has to be known. Unfortunately, the existence
of such an A1 often derives from compactness arguments. Thus we are not able
in this paper to explain how C0 depends on the other parameters k, d and P .

The technical result, from which derives Theorem 3.1, is presented in Section
5.3, Theorem 5.1. It is based on a version of Talagrand’s inequality due to Bous-
quet [7] and its application to localization, following the approach of Massart
and Nedelec [19]. It is important to note that drawing connections between the
Euclidean distance ‖c − c∗(c)‖ and the loss ℓ(c, c∗(c)) is essential in the proof
of Theorem 3.1, as it allows us to use chaining arguments as in [23].

The conditions required in Theorem 3.1 remain hard to check, and cannot
be easily interpreted. In fact, Assumption 3 and Assumption 4 demands that
the distribution P is such that a technical inequality is satisfied for every c in
B(0,M), which cannot be checked in practice. Assumption 2 involves second
derivatives of the distortion. Consequently, checking Assumption 2, even theo-
retically, remains a hard issue. Theorem 3.2 below offers a more interpretable
condition regarding the L∞-norm of the density f on the boundaries of optimal
Voronoi cells, for the distribution P to satisfy Assumption 2. We recall that M
denotes the set of all possible optimal codebooks c∗.

Theorem 3.2. Suppose that Assumption 1 is satisfied, M is finite, and P has
a continuous density f . For an optimal codebook c∗, denote by V ∗

i the optimal
Voronoi cell associated with the code point c∗i . Let N

∗ =
⋃

c∗∈M,i6=j ∂(V
∗
i ∩ V ∗

j )
denote the union of all possible boundaries of optimal Voronoi cells with respect
to all possible optimal codebooks c∗, and denote by Γ the Gamma function. At
last, let f|N∗ denote the restriction of the function f to the subset N∗, and
define B = inf

c∗∈M,i6=j
‖c∗i − c∗j‖.
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Suppose that

‖f|N∗ ‖∞ <
Γ( d

2 )B
2d+3πd/2 inf

c∗∈M,i=1,...,k
P (V ∗

i ).

Then P satisfies Assumption 2.

The proof is given in Section 5.6. Remark that, for general distributions
supported on B(0,M), we can state a similar theorem, involving Md+1 in the
right-hand side of the inequality in Theorem 3.2. Combining Theorem 3.2, The-
orem 3.1, and the connections between different sets of conditions leads to the
following corollary.

Corollary 3.1. Suppose that Assumption 1 is satisfied and P has a continuous
density. Then there exists an explicit constant κ > 0, depending only on k and
d, such that, if ‖f|N∗ ‖∞ < κ, then

E(ℓ(ĉn, c
∗)) = O

(

1

n

)

.

This corollary emphasizes the idea that, if P is well concentrated around
its optimal code points, then some localization conditions can be satisfied and
therefore it is a favorable case. The intuition behind this result is given by the
extremal case where optimal Voronoi cells boundaries are empty with respect
to P . This case is described in detail in Section 4. Moreover, the notion of a
well-clustered distribution looks like margin-type conditions for the classification
case, as described by Massart and Nedelec [19]. This confirms the intuition of
an easy-to-quantize distribution, when the poles are well-separated.

Since the location of c∗ are not easy to find for general distributions, the
conditions required in Corollary 3.1 are not that simple to satisfy. However, the
condition we offer in Theorem 3.2 is valid even if d ≥ 2, and is not as technical
as Assumption 2 or Assumption 4. Moreover, as will be described in Section 4.2,
this condition is relevant in the case where P is a mixture distribution, and can
be turned into a condition on parameters of the mixture which can be easily
inferred from the training sample.

4. Examples and discussion

4.1. A toy example

In this subsection we intend to understand which conditions on the density f
can guarantee that the Hessian matrices H are positive definite. Some light is
shed on the problem by the extremal case in which the density is zero at every
boundary of optimal Voronoi cells. Indeed, in this case, equation 1 guarantees
that the matrices H are diagonal matrices with positive elements, thus positive
definite.

The following proposition offers an intuitive example of such an extremal
case.
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Proposition 4.1. Let z1, . . . , zk be vectors in R
d. Let ρ be a positive number and

R = infi6=j ‖zi − zj‖ be the smallest possible distance between these vectors.
Define the triangular function t on R

d as follows: t(x1, . . . , xd) = (1 − r)1r≤1,

where r =
√

x2
1 + . . .+ x2

d is the Euclidean norm of x. Then we define the
distribution Pρ and its density fρ as follows

fρ(x) =
1

kNρ

k
∑

i=1

t

(

x− zi
ρ

)

,

where Nρ is such that P (B(zi, ρ)) = 1/k, for k = 1, . . . , k.

Suppose that ρ < R/2. If
(

R
2 − 3ρ

)2 ≥ 2ρ2d(d+1)
(d+2)(d+3) , then the optimal k-codebook

is (z1, . . . , zk).

The proof of Proposition 4.1, which is given in Section 5, is inspired from a
proof of Bartlett, Linder and Lugosi [4, Step 3]. It is interesting to note that
Proposition 4.1 can be extended to the situation where we assume that the
underlying distribution is supported on k small enough subsets. In this context,
if each subset has a not too small P -measure, and if the subsets are far enough
from each other, it can be proved in the same way that an optimal codebook
has a code point in every small subset.

Let us now consider the distribution described in Proposition 4.1, with rel-
evant values for ρ and R. We immediately see that, if R/2 > ρ, then every
boundary of the Voronoi cells for the optimal codebook lies in a null-measured
area. Thus, for this distribution,

H(c∗) =







1
kId · · · 0
...

. . .
...

0 · · · 1
k Id






,

which is clearly positive definite.
This short example illustrates the idea behind Theorem 3.2. Namely, if the

density of the distribution is not too big at the boundaries of Voronoi cells as-
sociated with every optimal codebook, then the Hessian matrix H will roughly
behave as a positive diagonal matrix. In this situation, Pollard’s condition (As-
sumption 2) will hopefully be satisfied.

This most favorable case is in fact derived from the special case where the
distribution is supported on k points. Here we spread the atoms into small balls
to give a density to the distribution and match regularity conditions. Antos,
Györfi and György [2] proved that if the distribution has only a finite number
of atoms, then the expected distortion ℓ(ĉn, c

∗) is at most C/n, where C is
a constant. Proposition 4.1 guarantees that the convergence rate of ℓ(ĉn, c

∗)
remains 1/n when the distribution P we offer in this proposition is close enough
to a distribution supported on k points.

Proposition 4.1 also illustrates the main difficulty in applying Theorem 3.2:
to locate the optimal codebooks c∗. Although some results about geometrical
properties of optimal codebooks have been obtained by Tarpey in [25] in the
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special case where P is a strongly symmetric distribution, or by Junglen [14]
when k grows to infinity, there are few results about the exact location of optimal
codebooks in general.

However, when the probability distribution P has k natural clusters, as in
Proposition 4.1, it is possible to give an approximative location of the optimal
codebooks of P . The following Section offers another example of such a well-
clustered distribution.

4.2. Quasi-Gaussian mixture example

The aim of this subsection is to apply our results to the Gaussian mixtures
in dimension d = 2. The Gaussian mixture model is a typical and well-defined
clustering example. However we will not deal with the clustering issue but rather
with its theoretical background.

In general, a Gaussian mixture distribution P̃ is defined by its density

f̃(x) =

k̃
∑

i=1

pi

2π
√

|Σi|
e−

1
2
(x−mi)

tΣ−1

i (x−mi),

where k̃ denotes the number of component of the mixture, and the pi’s denote
the weights of the mixture, thus satisfy

∑k
i=1 pi = 1. Moreover, the mi’s denote

the means of the mixture, so that mi ∈ R
2, and the Σi’s are the 2× 2 variance

matrices of the components.

We restrict ourselves to the case where the number of components k̃ is known,
and match the size k of the codebooks. To ease the calculation, we make the
additional assumption that every component has the same diagonal variance
matrix Σi = σ2I2. Note that a similar result to Proposition 4.2 can be derived for
distributions with different variance matrices Σi, at the cost of more computing.

Since the distribution support of a Gaussian random variable is not bounded,
we define the “quasi-Gaussian” mixture model as follows, truncating each Gaus-
sian component. Let the density f of the distribution P be defined by

f(x) =

k
∑

i=1

pi
2πσ2Ni

e−
‖x−mi‖

2

2σ2 1B(0,1),

where Ni denotes a normalization constant for each Gaussian variable.

To ensure this model to be close to the Gaussian mixture model, we assume
that there exists a constant ε ∈ [0, 1] such that, for i = 1, . . . , k, Ni ≥ 1− ε.

Denote by B̃ = infi6=j‖mi −mj‖ the smallest possible distance between two
different means of the mixture. To avoid boundary issues we suppose that, for
all i = 1, . . . , k, B(mi, B̃/3) ⊂ B(0, 1).

For such a model, Proposition 4.2 below offers a sufficient condition for P to
be well-clustered.
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Proposition 4.2. Denote by pmin = mini=1,...,k pi and pmax = maxi=1,...,k pi.
Suppose that

pmin

pmax
≥ max

(

288kσ2

(1 − ε)B̃2(1− e−B̃2/288σ2 )
,

24k

(1− ε)σ2B̃(eB̃/72σ2 − 1)

)

.

Then P satisfies Assumption 2.

The inequality we propose as a condition in Proposition 4.2 can be decom-
posed as follows. If

pmin

pmax
≥ 288kσ2

(1 − ε)B̃2(1− e−B̃2/288σ2 )
,

then the optimal codebook c∗ is close to the vector of means of the mixture
m = (m1, . . . ,mk). Knowing that, we can locate the boundaries of Voronoi cells
associated with c∗, and apply Theorem 3.2. This leads to the second term of
the maximum in Proposition 4.2.

This condition can be interpreted as a condition on the polarization of the
mixture. A favorable case for vector quantization seems to be when the poles of
the mixtures are well-separated, which is equivalent to σ is small compared to
B̃, when considering Gaussian mixtures. Proposition 4.2 just explained how σ
has to be small compared to B̃, in order to satisfy Assumption 2, and therefore
apply Corollary 3.1, for the loss ℓ(ĉn, c

∗) to reach an improved convergence rate
of 1/n.

Notice that Proposition 4.2 can be considered as an extension of Proposition
4.1. In these two propositions a key point is to locate c∗, which is possible when
the distribution P is well-clustered. The definition of a well-clustered distribu-
tion takes two similar forms when looking at Proposition 4.1 or Proposition 4.2.
In Proposition 4.1 the good case is when every pole of the distribution is far
enough from the other, separated by an empty area with respect to P , which
ensures that the Hessian matrices H(c∗) are positive definite (in this case they
are diagonal matrices). When slightly perturbing the framework of Proposition
4.1, it is quite natural to think that the Hessian matrices H(c∗) should remain
positive definite. Proposition 4.2 is an illustration of this idea: the empty sepa-
ration area between poles is replaced with an area where the density f is small
compared to its value around the poles. The condition on σ and B̃ we offer in
Proposition 4.2 gives a theoretical definition of a well-clustered distribution for
quasi-Gaussian mixtures.

It is important to note that our result is valid when k is known and match
exactly the number of components of the mixture. When the number of code
points k is different from the number of components k̃ of the mixture, we have
no general idea of where the optimal code points can be located.

Moreover, suppose that there is only one optimal codebook c∗, up to re index-
ation, and that we are able to locate this optimal codebook c∗. As explained in
the proof of Proposition 4.2, the quantity at stake is in fact B = infi6=j ‖c∗i −c∗j‖.
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In the case where k̃ 6= k, there is no simple relation between B̃ and B. Con-
sequently, a condition like in Proposition 4.2 could not involve the natural pa-
rameter of the mixture B̃.

It is also worth pointing out that there exist cases where the set of optimal
codebooks is not finite. For example, suppose that P is a truncated rotationally
symmetric Gaussian distribution, and k = 2. Since every rotation of an optimal
codebook leads to an other optimal codebook, there exists an infinite set of
optimal codebooks. This ensures that at least one Hessian matrix H(c∗) cannot
be positive definite, in fact none is positive definite.

The two assumptions Ni ≥ 1 − ε and B(mi, B̃/3) ⊂ B(0, 1) can easily be
satisfied when P is constructed via an homothetic transformation. To see this,
take a generic Gaussian mixture on R

2, denote by m̄i, i = 1, . . . , k, its means and
by σ̄2 its variance. For a given ε > 0, chooseM > 0 such that, for all i = 1, . . . , k,
∫

B(0,M) e
−‖x−mi‖2/2σ2

dx ≥ 2πσ2(1 − ε) and B(mi, B̃/3) ⊂ B(0,M). Denote by

P0 the “quasi-Gaussian mixture” we obtain on B(0,M) for such an M . Then,
applying an homothetic transformation with coefficient 1/M to P0 provides
a quasi-Gaussian mixture on B(0, 1), with means mi = m̄i/M, i = 1, . . . , k
and variance σ2 = σ̄2/M2. This distribution satisfies both Ni ≥ 1 − ε and
B(mi, B̃/3) ⊂ B(0, 1).

5. Proofs

5.1. Proof of Proposition 3.1

Half of the equivalences of Proposition 3.1 derives from the following interesting
lemma.

Lemma 5.1. Suppose that Assumption 1 is satisfied, M is finite, and P has
a continuous density. Then there exist two constants C− > 0 and C+ > 0 such
that

∀c ∈ B(0, 1)k C−‖c− c∗(c)‖2 ≤ VarP (γ(c, .)− γ(c∗(c), .)) ≤ C+‖c− c∗(c)‖2.

Lemma 5.1 ensures that, if P is smooth enough, VarP (γ(c, .) − γ(c∗(c), .)
is equivalent to the squared Euclidean distance between c and c∗(c), which
provides a direct connection between Assumption 3 and Assumption 4. Notice
that we require the density of P to be smooth in order to apply a theorem of
Baddeley [3, Theorem 1]. Improving the conditions of this theorem could be a
way to soften the smoothness requirements on P .

It is important to note that Assumption 1 too is crucial to make the result of
Proposition 3.1 valid, since it allows us to turn local differentiation arguments
into global properties. The other half of the equivalences of Proposition 3.1
follows from the following result, due to Antos, Györfy and György in the proof
of [2, Corollary1].
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Lemma 5.2. Suppose that P satisfies Assumption 1, then, there exists a con-
stant A2 > 0 such that for a fixed c∗ ∈ M

sup
c/∈M

VarP (γ(c, .)− γ(c∗, .))

‖c− c∗‖2 ≤ A2.

Moreover, if P satisfies Assumption 1 and Assumption 2, and if P has a con-
tinuous density, then there exists a constant A1 > 0 such that

inf
c/∈M

ℓ(c, c∗(c))

‖c− c∗(c)‖2 ≥ A1.

Equipped with these two lemmas, we are now in position to prove Proposition
3.1. Antos, Györfi and György [2] pointed out that, if P satisfies Assumption
2 and Assumption 1, then M is finite. If not, due to a compactness argument
it can be proved that M has an accumulation point, which ensures that the
Hessian matrix H at this accumulation point cannot be positive definite.

Now suppose that P has a continuous density. Then, according to Pollard
[23, Lemma C], Pγ(c, .) is differentiable twice at every point c. Furthermore,
if M is finite and if ℓ(c, c∗(c)) ≥ A1‖c − c∗(c)‖2, then the Hessian matrices
H(c∗) have to be positive definite for every c∗ in M. This leads to the following
equivalence:

{

Assumption 1
Assumption 2

⇔















f has a continuous density
M is finite

Assumption 1
Assumption 3

.

The other equivalence relies on Lemma 5.1. Since Assumption 3 obviously
implies Assumption 4, the direct implication is proved. Now suppose that P has
a continuous density, M is finite, and satisfies Assumption 1 and Assumption
4. Since Assumption 1 is satisfied and M is finite, the first part of Lemma 5.2
provides us with a global A2 > 0 such that

VarP (γ(c, .)− γ(c∗(c), .)) ≤ A2‖c− c∗‖2.

Combining Lemma 5.1 with Assumption 4 ensures the existence of A1 > 0 such
that

ℓ(c, c∗(c)) ≥ A1‖c− c∗(c)‖2.

Then, we can deduce that















f has a continuous density
M is finite

Assumption 1
Assumption 3

⇔















f has a continuous density
M is finite

Assumption 1
Assumption 4

.
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5.2. Proof of Lemma 5.1

Lemma 5.1 relies on the following technical lemma, which provides some differ-
entiation arguments in order to connect VarP (γ(c, .) − γ(c∗, .)) to the squared
Euclidean distance ‖c− c∗‖2.

Lemma 5.3. Let c∗ ∈ M be fixed. Let f be the real-valued function defined by

f :

{

(Rd)k −→ R

c 7−→ VarP (γ(c, .) − γ(c∗, .))
.

Then f is differentiable twice at the point c = c∗, and its Hessian matrix F is
made of the following d× d blocks

Fi,j =

{

8
∫

V ∗
i
f(x)(x − c∗j )(x− c∗j )

t if i = j

0 if i 6= j
i, j = 1, . . . , k.

Furthermore, the matrix F is positive definite.

Proof of Lemma 5.3. First we write

f(c) = P (γ(c, .)− γ(c∗, .))2 −
(

P (γ(c, .)− γ(c∗, .))2
)

.

Using almost the same argument as in [23, Lemma A], f is differentiable at
every point c in B(0, 1)d, with gradient

∇f(c) = 2P (∆(c, .)(γ(c, .) − γ(c∗, .))) − 2P∆(c, .)P (γ(c, .)− γ(c∗, .))

:= 2g1(c) − 2g2(c)

where ∆(c, x) is the point wise gradient function defined as in [23]

∆(c, x) = −2((x− c1)1V1
, . . . , (x− ck)1Vk

).

First we deal with g1. Writing

g1(c) =

(

−2

∫

Rd

(

‖x− ci‖2 − γ(c∗, x)
)

(x− ci)1Vi(x)

)

i=1,...,k

,

we use [3, Theorem 1] to prove that g1 is differentiable at every c, with deriva-
tives matrix denoted by H1. Through computation like in [23, Lemma C], we
get the following decomposition in d× d blocks for H1:

H1(c)i,i = 4

∫

Vi

f(x)(x− ci)(x − ci)
tdx+ 2

∫

Vj

f(x) (γ(c, x) − γ(c∗, x)) dx

− 2
∑

p6=i

‖ci − cj‖−1

∫

∂(Vi∩Vp)

f(x) (γ(c, x) − γ(c∗, x)) (x− ci)(x− ci)
tdx,
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for diagonal blocks. For other blocks we have, with i 6= j,

H1(c)i,j = 2‖ci − cj‖−1

∫

∂(Vi∩Vj)

f(x) (γ(c, x)− γ(c∗, x)) (x− ci)(x− cj)
tdx.

Using the same argument (see [3, Theorem1]), g2 is differentiable. Recalling that
H denotes the Hessian matrix of c 7−→ Pγ(c, .), elementary calculation shows
that, if H2 denotes the matrix of derivatives of g2,

H2(c) = P (γ(c, .)− γ(c∗, .))H(c) + P∆(c, .)(P∆(c, .))t .

Hence we deduce that f is differentiable twice at point c = c∗, with Hessian
matrix F (c∗) = H1(c

∗)+H2(c
∗). Taking c = c∗ in the above calculations leads

to the result for the expression of F .
It remains to prove that F is positive definite. Let h = (h1, . . . , hk) be a k×d

vector, with h 6= 0. We notice that

htFh =

k
∑

i=1

ht
iFi,ihi = 8

k
∑

i=1

∫

V ∗
i

f(x) 〈h, x− c∗i 〉2 dx.

Suppose that htFh = 0, then, for i = 1, . . . , k, ht
iFi,ihi = 0. Since h 6= 0,

we can assume without loss of generality that h1 6= 0. We denote by h⊥
1 the

hyperplane in R
d orthogonal to h1. Since ht

1F1,1h1 = 0, we deduce that P (V ∗
1 \

(

c∗1 + h⊥
1

)

) = 0. Taking into account that P has a density, we get P (V ∗
1 ) = 0,

which is impossible, according to [13, Theorem 4.1].

Now we turn to the proof of Lemma 5.1. Suppose that P has a continuous
density f , M is finite, and P satisfies Assumption 1. Since P satisfies Assump-
tion 1 and M is finite, the first part of Lemma 5.2 provides C+ > 0 such that

VarP (γ(c, .) − γ(c∗(c), .)) ≤ C+‖c− c∗‖2.
Consequently, we only have to deal with the lower bound. To do this, suppose
that P is such that

inf
c/∈M

VarP (γ(c, .) − γ(c∗(c), .))

‖c− c∗(c)‖2 = 0,

then there exists a sequence (cn)n≥1, such that cn /∈ M and

VarP (γ(cn, .)− γ(c∗(cn), .))

‖cn − c∗(cn)‖2
−→ 0,

as n −→ ∞. Since Assumption 1 is satisfied, we can assume without loss of
generality that there exists c in B(0, 1)d, such that cn −→ c.

We have to prove that c ∈ M. To do this, suppose that c /∈ M, and denote
by c∗ the closest optimal codebook to c. Since c /∈ M, there exists i such that
c∗i 6= cj , for j = 1, . . . , k. Furthermore, since M is a finite set, c∗(cn) = c∗

for n large enough. Since VarP (γ(cn, .) − γ(c∗(cn), .)) −→ 0, we deduce that
VarP (γ(c, .)− γ(c∗, .)) = 0, which in turn leads to γ(c, x) = γ(c∗, x) + a, , for a
constant a > 0, P -almost surely in x. Let x ∈ V ∗

i . We denote by G and Gj the
following sets of points:
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G = {x ∈ V ∗
i | γ(c, x) = γ(c∗, x) + a}

Gj =
{

x ∈ V ∗
i | ‖x− cj‖2 = ‖x− c∗i ‖2 + a

} .

Formally we have G ⊂ ⋃k
j=1 Gj , and P (V ∗

i ) = P (G). However, since Gj is an
affine space with dimension d−1 and P has a density, it follows that P (Gj) = 0
for all j = 1, . . . , k. Hence we deduce that P (G) = 0, so that P (V ∗

i ) = 0, which
is not possible for an optimal codebook c∗ (see [13, Theorem 4.1]). Hence we
deduce that c ∈ M.

Then we can assume that cn −→ c∗, for some fixed c∗ ∈ M, and, since M
is a finite set, without loss of generality, c∗(cn) = c∗ for n ≥ 1. According to
Lemma 5.3, there exists C+ > 0 such that

VarP (γ(cn, .)− γ(c∗, .)) ≥ C+‖cn − c∗‖2 + o(‖cn − c∗‖2),

and so
VarP (γ(cn, .)− c∗(cn))

‖cn − c∗(cn)‖2
≥ C+ + o(1),

which leads to a contradiction.

5.3. Proof of Theorem 3.1

The proof strongly relies on the localization principle and its application by
Blanchard, Bousquet and Massart [6]. We start with the following definition.

Definition 5.1. Let Φ be a real-valued function. Φ is called a sub-α function if
and only if Φ is non-decreasing and the map x 7→ Φ(x)/xα is non-increasing.

The next theorem is an adaptation of the result of Blanchard, Bousquet and
Massart [6, Theorem 6.1]. For the sake of clarity its proof is given in Subsection
5.4.

Theorem 5.1. Let F be a class of bounded measurable functions such that there
exist b > 0 and ω : F −→ R

+ satisfying

(i) ∀f ∈ F ‖f‖∞ ≤ b,
(ii) ∀f ∈ F VarP (f) ≤ ω(f).

Let K be a positive constant, Φ a sub-α function, α ∈ [1/2, 1[. Then there exists
a constant C(α) such that, if D is a constant satisfying D ≤ 6KC(α), and δ∗

is the unique solution of the equation Φ(δ) = δ/D, the following holds. Assume
that

∀δ ≥ δ∗ E

(

sup
ω(f)≤δ

|(P − Pn)f |
)

≤ Φ(δ).

Then, for all x > 0, with probability larger than 1− e−x,

∀f ∈ F Pf − Pnf ≤ K−1

(

ω(f) +

(

6KC(α)

D

)
1

1−α

δ∗ +
(9K2 + 16Kb)x

4n

)

.
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As explained in the proof, an optimal choice for C(α) is

C(α) = inf
x>1

(

1 + xα

(

1

2
+

1

x1−α − 1

))

.

This theorem provides a sharp concentration inequality in the case where it
is possible to control the maximal deviation between P and Pn over a set of
functions whose variance with respect to P is constrained within a ball. The
main point is to find a suitable control function for the variance of the process.
Here the interesting set is

F =
{

γ(c, .)− γ(c∗, .), c ∈ B(0, 1)k, c∗ ∈ M
}

.

Since P satisfies Assumption 3, the relevant control function for the variance of
the process γ(c, .) − γ(c∗, .) is ω(c, c∗) = A2‖c − c∗‖2, where A2 is defined in
Assumption 3.

Thus it remains to bound from above the quantity

E

(

sup
c∗∈M,A2‖c−c∗‖2≤δ

|(Pn − P )(γ(c∗, .)− γ(c, .))|
)

.

This is done in the following proposition.

Proposition 5.1. Suppose that P has a density and satisfies Assumption 1.
Furthermore we assume that M is finite. Then

E

(

sup
c∗∈M,A2‖c−c∗‖2≤δ

|(Pn − P )(γ(c∗, .)− γ(c, .))|
)

≤
√
δ
Ξ√
n
,

where Ξ is a constant depending on k, d, and P .

Since we assume that M is finite, P has a density and Assumption 3 is
satisfied, we can apply Theorem 5.1, with ω(c, c∗) = A2‖c − c∗‖2, b = 8, and
Φ(δ) =

√
δΞ/

√
n. Noticing that the solution of the equation δ = Φ(δ)/D is

Ξ2D2/n, for an arbitrary D > 0, we get the following result.

Lemma 5.4. Suppose that P has a density, satisfies Assumption 1 and Assump-
tion 3, and M is finite. Let D > 0. For all c∗ ∈ M, x > 0 and D ≤ 6KC(1/2),
we have, with probability larger than 1− e−x,

(P − Pn)(γ(c, .) − γ(c∗, .)) ≤ K−1A2‖c− c∗‖2 + 36KC(1/2)2Ξ2

n
+

2K + 32

n
x.

Take c∗ = c∗(c), a nearest optimal codebook to c, and use (H2) to connect
‖c− c∗(c)‖2 to ℓ(c, c∗(c)). Choosing K = 2A1A2, D = 6KC(1/2), we get, with
probability larger than 1− e−x,

1/2(P − Pn)(γ(ĉn, .)− γ(c∗(ĉn), .)) ≤
C1

n
+

C2

n
x,



1734 C. Levrard

for some constants C1 > 0 and C2 > 0. Since Pn(γ(ĉn, .) − γ(c∗(ĉn), .)) ≤ 0,
taking expectation leads to, for all c∗ ∈ M,

Eℓ(ĉn, c
∗) ≤ C0

n
,

for a constant C0 > 0 depending only on k, d, and P .

5.4. Proof of Theorem 5.1

This proof is a modification of the proof of Blanchard, Bousquet and Massart
[6, Theorem 6.1]. For δ ≥ 0, set

Ωδ = sup
f∈F

∣

∣

∣

∣

(P − Pn)
f

ω(f) + δ

∣

∣

∣

∣

.

We start with a modified version of the so-called peeling lemma:

Lemma 5.5. Under the assumptions of Theorem 5.1, there exists a constant
C(α) depending only on α such that, for all δ > 0,

E (Ωδ) ≤ C(α)
Φ(δ)

δ
.

Furthermore, we have C(α) −→
α→1

∞.

Proof of Lemma 5.5. Let x > 1 be a real number. We may write

sup
f∈F

∣

∣

∣

∣

(P − Pn)
f

ω(f) + δ

∣

∣

∣

∣

≤ sup
ω(f)≤δ

∣

∣

∣

∣

(P − Pn)
f

ω(f) + δ

∣

∣

∣

∣

+
∑

k≥0

sup
δxk<ω(f)≤δxk+1

∣

∣

∣

∣

(P − Pn)
f

ω(f) + δ

∣

∣

∣

∣

.

Since supδxk<ω(f)≤δxk+1 |(P − Pn)f | ≥ 0, and ω(f) + δ > 0, taking expectation
on both sides leads to

E(Ωδ) ≤
Φ(δ)

δ
+
∑

k≥0

Φ(δxk+1)

δ(1 + xk)
.

Recalling that Φ is a sub-α function, we may write Φ(δxk+1) ≤ xα(k+1)Φ(δ).
Hence we get

E(Ωδ) ≤
Φ(δ)

δ
+

Φ(δ)

δ

∑

k≥0

xα(k+1)

1 + xk

≤ Φ(δ)

δ

(

1 + xα

(

1

2
+

1

x1−α − 1

))

.

Taking C(α) = inf
x>1

(

1 + xα
(

1
2 + 1

x1−α−1

))

proves the result.
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We are now in a position to prove Theorem 5.1. Using the inequality of
Talagrand for a supremum of bounded variables that Bousquet [7] offered, we
have, with probability larger than 1− e−x,

Ωδ ≤ E(Ωδ) +

√

x

2δn
+ 2

√

xbE(Ωδ)

nδ
+

bx

3δn
.

Using Lemma 5.5 and the inequality 2ab ≤ a2 + b2,

Ωδ ≤
2C(α)Φ(δ)

δ
+

√

x

2δn
+

4

3

bx

δn
.

Let δ∗ be the solution of Φ(δ) = δ
D . If δ ≥ δ∗, then Φ(δ)

δ ≤
(

δ∗

δ

)1−α
1
D . For such

an δ we have

Ωδ ≤ β1δ
−(1−α) + β2δ

−1/2 + β3δ
−1,

with






























β1 =
2C(α)(δ∗)1−α

D

β2 =

√

x

2n

β3 =
4bx

3n

.

We want to find a suitable δ such that δ ≥ δ∗ and Ωδ ≤ 1/K. To this aim,

it suffices to see that if δ ≥ (3Kβ1)
1

1−α + (3Kβ2)
2 + 3Kβ3, and δ ≥ δ∗, then

Ωδ ≤ 1/K using the previous upper bound on Ωδ.

It remains to check that the condition (3Kβ1)
1

1−α + (3Kβ2)
2 + 3Kβ3 ≥ δ∗

holds. To see this just recall that

(3Kβ1)
1

1−α = δ∗ ×
(

6KC(α)

D

)
1

1−α

.

Thus, we deduce that, if D ≤ 6KC(α), the choice δ = (3Kβ1)
1

1−α + (3Kβ2)
2 +

3Kβ3 guarantees Ωδ ≤ K−1 and, consequently, with probability larger than
1− e−x,

Pf − Pnf ≤ |(P − Pn)f |

≤
∣

∣

∣

∣

(P − Pn)
f

ω(f) + δ∗

∣

∣

∣

∣

× (ω(f) + δ∗)

≤ Ωδ∗(ω(f) + δ∗)

≤ 1

K

(

ω(f) +

(

6KC(α)

D

)
1

1−α

δ∗ +
(9K2 + 16Kb)x

4n

)

.
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5.5. Proof of Proposition 5.1

Following the approach of Pollard in [23], we notice that, for any c ∈ (Rd)k and
c∗ ∈ M, P -almost surely in x,

γ(c, x) = γ(c∗, x) + 〈c− c∗,∆(c∗, x)〉 + ‖c− c∗‖R(c∗, c− c∗, x),

where, with use of Pollard’s [23] notation



















∆(c∗, x) = −2((x− c∗1)1V ∗
1
, . . . , (x− c∗k)1V ∗

k
)

R(c∗, c− c∗, x) =
∑

i,j=1,...,k

1V ∗
i
1Vj‖c− c∗‖−1

[

2(ci − cj)
tx+ ‖c∗i ‖2

−2(c∗i )
tci + ‖cj‖2

]

We recall that V ∗
i denotes the Voronoi cell associated with the code point c∗i ,

where c∗i is a coordinate of c∗, and that 1V ∗
i
(x) takes the value 1 if x ∈ V ∗

i , 0
elsewhere.

Splitting the expectation in two parts, we obtain

E

(

sup
c∗∈M,‖c−c∗‖2≤δ

|(Pn − P )(γ(c∗, .)− γ(c, .))|
)

≤ E

(

sup
c∗∈M,‖c−c∗‖2≤δ

|(Pn − P ) 〈−(c− c∗),∆(c∗, .)〉|
)

+
√
δE

(

sup
c∗∈M,‖c−c∗‖2≤δ

|(Pn − P )(−R(c∗, c− c∗, .))|
)

:= A+B.(2)

5.5.1. Term A: Complexity of the model

Term A in inequality (2) is at first sight the dominant term in the expres-
sion Φ(δ). The upper bound we obtain below is rather accurate, due to the
finite-dimensional Euclidean space structure. Indeed, we have to bound a scalar
product when the vectors are contained in a ball, thus it is easy to see that the
largest value of the product matches in fact the largest value of the coordinates
of the gradient term. We recall that M denotes the finite set of optimal code-
books. Let x = (x1, . . . , xk) be a vector in (Rd)k. We denote by xjr the r-th
coordinate of xj , and name it the (j, r)-th coordinate of x. Moreover, denote by
ej,r the vector whose (j, r)-th coordinate is 1, and other coordinates are 0.

Taking into account that every c∗ in M satisfies the centroid condition, that
is P∆(c∗, .) = 0, we may write
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sup
c∗∈M,‖c−c∗‖≤

√
δ

|〈c− c∗, (Pn − P )(−∆(c∗))〉|

= sup
c∗∈M,j=1,...,k,r=1,...,d

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Xi − c∗j )1V ∗
j
(Xi)

∣

∣

∣

∣

∣

r

×
√
δ

= sup
c∗∈M,j=1,...,k,r=1,...,d,ε=±1

〈

ε
√
δej,r, Pn(∆(c∗, .))

〉

.

Therefore we can reduce the set of c’s and c∗’s of interest to a finite set we
denote by HM, which contains |M|2kd elements. Taking into account that, for
every c∗ in M, P∆(c∗, .) = 0, and that, for every fixed c and c∗, the quantity
〈c− c∗, Pn(∆(c∗, .))〉 is a sub-Gaussian random variable with variance 16δ/n,
we get, by a maximal inequality due to Massart, [18, Lemma 2.3]:

E

(

sup
c∗∈M,‖c−c∗‖2≤δ

|(Pn − P ) 〈−(c− c∗),∆(c∗, .)〉|
)

= E

(

sup
(c,c∗)∈HM

|(Pn − P ) 〈−(c− c∗),∆(c∗, .)〉|
)

≤
√

2
16δ

n
log(|HM|)

≤ 4
√

2kd log(2|M|)
√
δ√
n
.

Therefore, the expected dominant term involves the complexity of the model in
a way which is proportional to the square root of the complexity. In our case,
this complexity is the dimension of the codebook space.

5.5.2. Bound on B

To bound the second term in inequality (2), we follow the approach of Pollard
[23], using complexity arguments such as Dudley’s entropy integral.

Let F be a set of functions defined on X with envelope F . Let S ⊂ X
be a finite set and f a function. We denote ‖f‖l2(S) =

(

1/n
∑

x∈S f2(x)
)1/2

,
where n = |S|, and by NF (ε, S,F) the smallest integer m such that there exist
φ1, . . . , φm, m functions on X satisfying mini=1,...,m‖f − φi‖2l2(S) ≤ ε2‖F‖2l2(S).

Also define H(ε) = sup|S|<∞logNF (ε, S,F), and m(ε) = eH(ε), so that for any
subset S ⊂ X there exists a ε‖F‖l2(S)-chaining of F with at mostm(ε) elements.

Pollard proved in [23, p.921], using a result proposed in [22, Theorem 9], that,
for the class of functions

F =
{

R(., c∗, c− c∗), c∗ ∈ M, c ∈ B(0, 1)k
}

,

there exist C > 0 depending on k and d such that F (x) = C(1 + ‖x‖) is an
envelope for F . Furthermore, for this envelope, we have

H(ε) ≤ log(A) −W log(ε),
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where A is a positive constant, and W depends only on the pseudo-dimension
of F . We will use a classical chaining argument to bound term B. Let c̃ denote
the pair (c, c∗) ∈ (B(0, 1))k × M. For practical, let fc̃ denote the function
R(., c∗, c− c∗). We set ε0 = 1 and εj = 2−jε0.

Let X1, . . . , Xn be fixed, and denote by Sn the random set {X1, . . . , Xn}.
For any fc̃, let fc̃j be a function such that ‖fc̃ − fc̃j‖2l2(Sn)

≤ ε2j‖F‖2l2(Sn)
.

Making use of the result of Pollard [23, p.921] mentioned above, we may write
∣

∣

{

fc̃j |c ∈ B(0, 1)k, c∗ ∈ M
}∣

∣ ≤ m(εj) ≤ Aε−W
j .

Since Assumption 1 holds, F is bounded from above by a constant CF . By

dominated convergence Theorem we have fc̃j
L1,a.s−→
j→∞

fc̃, and thus

(Pn − P )fc̃ = (Pn − P )fc̃0 +

∞
∑

j=1

(Pn − P )(fc̃j − fc̃j−1
).

Therefore

E

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

|(Pn − P )fc̃|
)

≤ E

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

|(Pn − P )fc̃0 |
)

+
∑

j>0

E

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

∣

∣(Pn − P )(fc̃j − fc̃j−1
)
∣

∣

)

.

Here we use a symmetrization inequality to bound from above the last term
with a Rademacher complexity. Symmetrization inequalities were introduced
by Giné and Zinn in [12], however we rather use the approach developed by
Koltchinskii in [15, Section 2.2]. In fact, introducing some Rademacher random
variables σ (σ = ±1 with probability 1/2), we get, for the first term:

E

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

|(Pn − P )fc̃0 |
)

≤ 2EXEσ

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

1

n

n
∑

i=1

σifc̃0(Xi)

)

≤ 2
√
2EX

(

√

sup
c∗,c

‖fc̃0‖2l2(Sn)
log(m(ε0))

)

≤ 2
√
2EX

(√

‖F‖2l2(Sn)
log(m(ε0))

)

≤ 2
√
2EX

(

√

C2
F log(m(ε0))

)

≤ κA√
n
,

where κA depends on k, d and P . In the second line of this inequality, we used
the maximal inequality for random processes depending only on Rademacher
variables given by Massart [18, Lemma 2.3].
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It remains to bound the second term. Using the same approach (symmetriza-
tion and maximal inequality for Rademacher variables) we get, for every j > 0,

E

(

sup
c,c∗

∣

∣(Pn − P )(fc̃j − fc̃j−1
)
∣

∣

)

≤ 2EX

(√

2

n
log(m(εj)m(εj−1)) sup

c,c∗
‖fc̃j − fc̃j−1

‖2l2(Sn)

)

.

However ‖fc̃j − fc̃‖l2(Sn) ≤ εj‖F‖l2(Sn), consequently

‖fc̃j − fc̃j−1
‖2l2(Sn)

≤ 4ε2j−1‖F‖2l2(Sn)

≤ 4C2
F ε

2
j−1.

Comparing a sum with an integral, we obtain

∑

j>0

E

(

sup
c∗∈M,‖c−c∗‖≤

√
δ

∣

∣(Pn − P )(fc̃j − fc̃j−1
)
∣

∣

)

≤ 32√
n

∫ ε1

0

√

log(m(ε))dε,

which, by assumption on m(ε), can be bounded from above by κB√
n
, where κB

depends on k, d and P .

We are now in position to prove Proposition 5.1. From the two above sub-
sections we deduce that

E

(

sup
c∗∈M,‖c−c∗‖2≤A2δ

|(Pn − P )(γ(c∗, .)− γ(c, .))|
)

≤
√
δ
Ξ√
n
.

This concludes the proof.

5.6. Proof of Theorem 3.2

Let x = (x1, . . . , xk) be a k × d vector, V ∗
1 , . . . , V

∗
k the Voronoi cells associated

with an optimal codebook c∗. We state here a sufficient condition for the Hessian
matrix H(c∗) to be positive. Denote rij = ‖c∗i − c∗j‖. It holds

〈Hx,x〉 =
k
∑

i=1



〈Hi,ixi, xi〉+
∑

j 6=i

〈Hi,jxj , xi〉



.

Recalling the expression of Hi,i and Hi,j given in equation 1,

Hi,j =

{

2P (Vi)− 2
∑

ℓ 6=i r
−1
iℓ σ

[

f(x)(x − ci)(x − ci)
t1∂(Vi∩Vℓ)

]

for i = j

2rij
−1σ

[

f(x)(x − ci)(x− cj)
t1∂(Vi∩Vj)

]

for i 6= j
,
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we may write, for i = 1, . . . , k,

〈Hi,ixi, xi〉+
∑

j 6=i

〈Hi,jxj , xi〉 = 2P (V ∗
i )‖xi‖2

− 2xt
i





∑

j 6=i

r−1
i,j

∫

∂(V ∗
i ∩V ∗

j )

f(u)(u− c∗i )(u − c∗i )
tdu



 xi

+ 2xt
i

∑

j 6=i

r−1
i,j

(

∫

∂(V ∗
i ∩V ∗

j )

f(u)(u− c∗i )(u − c∗j )
tdu

)

xj .

The support of P is included in B(0, 1), thus we can replace ∂(V ∗
i ∩ V ∗

j ) with
∂(V ∗

i ∩V ∗
j )∩B(0, 1) in the equations above. However, to lighten notation, we will

omit the indication and implicitly assume that every set we consider is contained
in B(0, 1). Let pi,j =

∫

∂(V ∗
i ∩V ∗

j ) f(u)du be the d − 1-dimensional P -measure of

the boundary between V ∗
i and V ∗

j . Recalling that the underlying norm is the
Euclidean norm, even for matrices, we may write

〈Hi,ixi, xi〉+
∑

i6=j

〈Hi,jxj , xi〉 ≥ 2P (Vi)‖xi‖2

− 2‖xi‖2
∥

∥

∥

∥

∥

∥

∑

j 6=i

r−1
i,j

∫

∂(V ∗
i ∩V ∗

j )

f(u)(u− c∗i )(u − c∗i )
tdu

∥

∥

∥

∥

∥

∥

− 2‖xi‖

∥

∥

∥

∥

∥

∥

∑

j 6=i

r−1
i,j

(

∫

∂(V ∗
i ∩V ∗

j )

f(u)(u− c∗i )(u − c∗j )
tdu

)

xj

∥

∥

∥

∥

∥

∥

,

with
∥

∥

∥

∥

∥

∥

∑

j 6=i

r−1
i,j

(

∫

∂(V ∗
i ∩V ∗

j )

f(u)(u− c∗i )(u− c∗j )
tdu

)

xj

∥

∥

∥

∥

∥

∥

≤
∑

j 6=i

r−1
i,j

∥

∥

∥

∥

∥

(

∫

∂(V ∗
i ∩V ∗

j )

f(u)(u− c∗i )(u − c∗j )
tdu

)

xj

∥

∥

∥

∥

∥

≤
∑

j 6=i

r−1
i,j

(

∫

∂(V ∗
i ∩V ∗

j )

f(u)‖u− c∗i ‖‖u− c∗j‖du
)

‖xj‖

≤
∑

j 6=i

r−1
i,j pi,j4‖xj‖.

Next,

〈Hi,ixi, xi〉+
∑

j 6=i

〈Hi,jxj , xi〉 ≥



2P (V ∗
i )−

8

B

∑

i6=j

pi,j



‖xi‖2−
8

B

∑

j 6=i

pi,j‖xi‖‖xj‖,
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where we recall that B = inf
i6=j,c∗∈M

‖c∗i − c∗j‖. Making use of the inequality

2‖xi‖‖xj‖ ≤ ‖xi‖2 + ‖xj‖2, and summing with respect to i leads to

〈Hx,x〉 ≥
k
∑

i=1



2P (Vi)−
16

B

∑

j 6=i

pi,j



 ‖xi‖2.

The last step is to derive bounds for pi,j from the conditions on f . Denote
λ = ‖f‖∞, we see that

∑

j 6=i

pi,j =

∫

∂V ∗
i

f(u)du.

V ∗
i is a regular convex set included in B(c∗i , 2). Therefore, by a direct application

of Stokes Theorem, the surface of ∂V ∗
i is smaller than the surface of Sd−1(c

∗
i , 2)

(the sphere of radius 2). Consequently

∑

j 6=i

pi,j ≤ λ
2πd/2

Γ(d/2)
2d−1.

It follows that λ < BΓ(d/2)
2d+3πd/2 inf

i=1,...,k
P (V ∗

i ) is enough to ensure that the Hessian

matrix H(c∗) is positive definite.

5.7. Proof of Proposition 4.1

We consider a distribution on R
d, distributed over small balls away from one

another, and whose density inside each ball is a small cone, for continuity rea-
sons. Denote by Vi the Voronoi cell associated with zi in (z1, . . . , zk). Let Q be
a k-quantizer, Q∗ the expected optimal quantizer which maps Vi to zi for all i.
Denote finally, for all i = 1, . . . , k, Ri(Q) =

∫

Vi
‖x−Q(x)‖2dx the contribution

of the i-th Voronoi cell to the risk of Q.
Let S denote the surface of the unit ball in R

d. Taking into account that

Nρ = kSρd

d(d+1) we have

Ri(Q
∗) =

1

kNρ

∫ ρ

0

Srd+1

(

1− r

ρ

)

dr

=
ρ2d(d+ 1)

k(d+ 3)(d+ 2)
.

Let i be an integer between 1 and k. Let min
i = |Q(Bd(zi, ρ)) ∩ Vi| be the

number of images of Vi sent by Q inside Vi, and let mout
i = |Q(Bd(zi, ρ)) ∩ V c

i |
be the number of images of Vi sent outside Vi. The three situations of interest
are the following ones:

→ If min
i = 1 and mout

i = 0, it is clear that Ri(Q) ≥ Ri(Q
∗).
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→ If min
i ≥ 2 and mout

i = 0, then we just can see that Ri(Q) ≥ Ri(Q
∗) −

ρ2d(d+1)
k(d+2)(d+3) = 0.

→ At last, suppose that mout
i ≥ 1. Then there exists x ∈ Bd(zi, ρ) such that

Q(x) /∈ Vi. Since Q is a nearest neighbor quantizer, for such an x we have











‖Q(x)− x‖ ≤ inf
c∈Q(Bd(zi,ρ))

‖x− c‖

‖Q(x)− x‖ ≥ d(zi, V
c
i )− ρ ≥ R

2
− ρ

.

Let c ∈ Q(Bd(zi, ρ)). Then

‖c− zi‖ ≥ ‖c− x‖ − ρ

≥ ‖Q(x)− x‖ − ρ

≥ R

2
− 2ρ.

Then, we deduce that, for every y ∈ Bd(zi, ρ) and codepoint c ∈ Q(Bd(zi, ρ)),
‖y − c‖ ≥ R

2 − 3ρ. Therefore

Ri(Q) ≥
(

R
2 − 3ρ

)2

k

≥ Ri(Q
∗) +

1

k

(

(

R

2
− 3ρ

)2

− ρ2d(d + 1)

(d+ 2)(d+ 3)

)

.

Now suppose that min
i ≥ 2. Then at least two code points of Q lies in Vi.

Therefore, there exists j such that no code point of Q lies in Vj , so thatm
out
j ≥ 1.

We straightforward deduce that the number of cells Vi for which min
i ≥ 2 is

smaller than the number of cells for which mout
j ≥ 1.

Taking into account all contributions of Voronoi cells, we get

R(Q) =
∑

{i;min
i ≥2,mout

i =0}
Ri(Q) +

∑

{i;mout
i ≥1}

Ri(Q) +
∑

{i;min
i =1,mout

i =0}
Ri(Q)

≥ R(Q∗) +
∑

{i;min
i ≥2,mout

i =0}

1

k

(

(

R

2
− 3ρ

)2

− 2ρ2d(d+ 1)

(d+ 2)(d+ 3)

)

,

from which we deduce a sufficient condition to get R(Q) ≥ R(Q∗).

5.8. Proof of Proposition 4.2

We begin with a lemma which ensures that every possible optimal code point
c∗i is close to at least one mean mj of the mixture, in the case where the ratio
pmin/pmax is large enough.
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Lemma 5.6. Let c∗ be an optimal codebook. Suppose that

pmin

pmax
≥ 288kσ2

(1 − ε)B̃2(1− e−B̃2/288σ2 )
.

Then, for every j = 1, . . . , k, there exists i ∈ {1, . . . k} such that ‖mj−c∗i ‖ ≤ B̃
6 .

Proof of Lemma 5.6. Denote by m the codebook (m1, . . . ,mk), and by Mi the
Voronoi cell associated with mi. We bound from above the quantity Pγ(m, .):

Pγ(m, .) =

k
∑

i=1

pi
2πσ2Ni

∫

Mi

‖x−mi‖2e−‖x−mi‖2/2σ2

dx

≤
k
∑

i=1

pi
2πσ2Ni

∫

R2

‖x−mi‖2e−‖x−mi‖2/2σ2

dx

≤ 2kpmaxσ
2

(1− ε)
.

Let c be a codebook such that there exists j satisfying, for all i = 1, . . . , k,
‖mj − ci‖ > B̃/6. We will prove that Pγ(c, .) > Pγ(m, .), which implies that

c /∈ M. In fact we have, for all i = 1, . . . , k and for all x ∈ B(mj, B̃/12),

‖x− ci‖ > B̃/12. Hence, a lower bound for Pγ(c, .) is

Pγ(c, .) ≥
∫

B(mj ,B̃/12)

min
i=1,...,k

‖x− ci‖2f(x)dx

>
B̃2

144

k
∑

i=1

pi
2πσ2Ni

∫

B(mj ,B̃/12)

e−‖x−mi‖2/2σ2

dx

>
B̃2pj

288πσ2Nj

∫

B(mj ,B̃/12)

e−‖x−mj‖2/2σ2

dx

>
pminB̃

2

144

(

1− e−B̃2/288σ2
)

> Pγ(m, .).

Hence we deduce that every optimal codebook has a code point close to every
mean mj of the mixture, of at most B̃/6.

Suppose that the ratio pmin/pmax satisfies the assumption of Proposition 4.2.
In particular pmin/pmax satisfies the assumption of Lemma 5.6. Then we deduce
that, up to a re indexation, for every c∗ ∈ M, ‖c∗i −mi‖ ≤ B̃/6. We conclude
that 2B̃/3 ≤ B ≤ 4B̃/3.

Since, for all i = 1, . . . , k, B(c∗i , B/2) ⊂ V ∗
i , it is easy to see that B(mi, B/4) ⊂

B(c∗i , B/2) ⊂ V ∗
i , which leads to N∗ ⊂

(

k
⋃

i=1

B(mi, B/4)

)c

. Consequently, in

order to apply Theorem 3.2, we just have to prove that

‖f∣
∣

∣

∣

∣

(

k
⋃

i=1

B(mi,B/4)

)c ‖∞ ≤ Γ (1)B

25π
inf

i=1,...,k
P (B(mi, B/4)) .
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First we derive a lower bound for the right-hand side. For every i = 1, . . . , k,

P (B(mi, B/4)) ≥ pi
Ni

1

2πσ2

∫

B(0,B/4)

e−
‖x‖2

2σ2 dx

≥ pi
Ni

1

2πσ2
× 2π

∫ B/4

0

re−
r2

2σ2 dr

≥ pmin

(

1− e−
B2

32σ2

)

.

Then, we deal with the left-hand side. Let x be at distance from every mi of at
least B/4. Then

f(x) ≤
k
∑

i=1

pi
Ni

1

2πσ2
e−

B2

32σ2

≤ kpmax

2πσ2(1− ε)
e−

B2

32σ2 .

The rest of the proof follows from straightforward computation, using the as-
sumption of Proposition 4.2 and the relationship between B and B̃: 2B̃/3 ≤
B ≤ 4B̃/3.

Remark.A careful reader should have noticed that the k factor is suboptimal
in the previous inequality. In fact we are able in this case to bound from above

f(x) with 1
2πσ2(1−ε)e

− B2

32σ2 . However, this bound does not involve pmax, and so

involve a condition not on the ratio of extremal proportions of the mixture,
but rather on the minimal proportion of the mixture, which is less natural.
Moreover, the pmax-free bound is valid only in the equal variance case, namely
when the variance σ2

i of any element of the mixture is the same. In general it
is not the case and a condition as in Proposition 4.2 for that kind of mixture
would naturally involve the ratio pmin/pmax.
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