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Abstract: Robust parameter estimation has been discussed as a method
for reducing a bias caused by outliers. An estimating equation using a
weighted score function is often used. A typical estimating equation is non-
normalized, but this paper considers a normalized estimating equation,
which is corrected to ensure that the mean of the weight is one. In robust
parameter estimation, it is important to control the difference between the
target parameter and the limit of the robust estimator, which is referred
to as the latent bias in this paper. The latent bias is usually discussed
in terms of influence function and breakdown point. It is illustrated by
some examples that the latent bias can be close to zero for the normalized
estimating equation even if the proportion of outliers is not small, but
not close to zero for the non-normalized estimating equation. Furthermore,
this behavior of the normalized estimating equation can be proved under
mild conditions. The asymptotic normality of the robust estimator is also
presented and then it is shown that the outliers are naturally ignored with
an appropriate proportion of outliers from the viewpoint of asymptotic
variance. The results can be extended to the regression case. The behaviors
of the latent bias and mean squared error are investigated by numerical
studies.
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1. Introduction

Maximum likelihood estimation is a typical form of parameter estimation. How-
ever, if an outlier is present in observations, then it often causes a severe bias. To
overcome this problem, many methods for robust parameter estimation against
outliers have been proposed (Hampel et al., 1986; Maronna, Martin and Yohai,
2006; Huber and Ronchetti, 2009).

Let the parametric density be denoted by f(x; θ) = fθ(x). Let the log-
likelihood and score functions be denoted by l(x; θ) = log f(x; θ) and s(x; θ) =
(∂/∂θ)l(x; θ), respectively. Then the maximum likelihood estimator is a root of
the estimating equation given by

∑n
i=1 s(xi; θ) = 0, where x1, . . . , xn are the

observations. To weaken the adverse effect of outlier, an estimating equation
using a weighted score function,

∑n
i=1 w(xi; θ)s(xi; θ) = 0, can be considered

for robust parameter estimation (Field and Smith, 1994). The weight w(xi; θ) is
small when xi is an outlier. However, the bias-correction is necessary to ensure
Fisher consistency. The bias-corrected estimating equation is given by

1

n

n
∑

i=1

w(xi; θ)s(xi; θ) = Efθ [w(x; θ)s(x; θ)] .

Recently, the density power weight w(x; θ) = f(x; θ)γ (γ > 0) has been dis-
cussed for robust parameter estimation, because f(xi; θ) is close to zero when xi
is an outlier. Basu et al. (1998) proposed this type of estimating equation and
discussed the corresponding divergence. The divergence with γ = 1 is the same
as the L2-divergence, which is a well-known divergence to generate a strong
robust estimator (Scott, 2001). The divergence limits to the KL-divergence as
γ goes to zero. The tuning parameter γ controls the trade-off between bias
and variance. The divergence was applied to independent component analysis
(Minami and Eguchi, 2002), a mixture of independent component analysis mod-
els (Mollah, Minami and Eguchi, 2006), Gaussian graphical models (Miyamura
and Kano, 2006), model selection (Mattheou, Lee and Karagrigoriou, 2009) and
kernel principal component analysis (Huang, Yeh and Eguchi, 2009). A gen-
eral weight ξ(l(x; θ)), including the density power weight, was also discussed by
Eguchi and Kano (2001) and Murata et al. (2004):

1

n

n
∑

i=1

ξ(l(xi; θ))s(xi; θ) = Efθ [ξ(l(x; θ))s(x; θ)] . (1.1)
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It is easy to construct the corresponding divergence, which belongs to a class of
Bregman divergence.

On the estimating equation with the weight ξ(l(x; θ)), the weight is not always
normalized; that is, the mean of weight is typically not one, more precisely,
(1/n)

∑n
i=1 ξ(l(x; θ)) 6= 1. In this paper, this type of estimating equation is

called a non-normalized estimating equation. Let us consider another estimating
equation by replacing the weights ξ(l(xi; θ)) and ξ(l(x; θ)) by

w(xi; θ) =
ξ(l(xi; θ))

(1/n)
∑n
i=1 ξ(l(xi; θ))

and W (x; θ) =
ξ(l(x; θ))

Efθ [ξ(l(x; θ))]
,

so that (1/n)
∑n
i=1 w(xi; θ) = 1 and Efθ [W (x; θ)] = 1. A normalized estimating

equation is defined as

∑n
i=1 ξ(l(xi; θ))s(xi; θ)
∑n

i=1 ξ(l(xi; θ))
=

Efθ [ξ(l(x; θ))s(x; θ)]

Efθ [ξ(l(x; θ))]
. (1.2)

The normalized estimating equation with the density power weight was pro-
posed by Windham (1995). Jones et al. (2001) constructed the corresponding
divergence, which was further explored by Fujisawa and Eguchi (2008). The
divergence is related to Tsallis entropy (Tsallis, 1988, 2009; Ferrari and Yang,
2010; Ferrari and La Vecchia, 2012; Eguchi and Kato, 2010; Eguchi, Komori and
Kato, 2011). Additionally, two types of divergences were further discussed by
Cichocki and Amari (2010) and Eguchi and Kato (2010) and applied to vector
quantization by Villmann and Haase (2011).

Here, we remark the difference between the non-normalized and normalized
estimating equations. It is easy to construct the corresponding divergence for the
non-normalized estimating equation, as described already, but not easy (often
impossible) for the normalized estimating equation except for the density power
weight. For this reason, there would have been no discussion about other weights
except for the density power weight on the normalized estimating equation. The
non-existence of the corresponding divergence for the estimating equation was
discussed in the framework of generalized estimating equation (McCullagh and
Nelder, 1983).

In robust parameter estimation, it is important to control the difference be-
tween the target parameter and the limit of the robust estimator, which is
referred to as the latent bias in this paper. The latent bias is usually discussed
in terms of influence function and breakdown point. A distinguishing feature
of the normalized estimating equation with the density power weight is that
the latent bias becomes arbitrarily small when the occurrence probability of the
outlier becomes arbitrarily small in a certain sense, even if the proportion of
outliers is not small (Fujisawa and Eguchi, 2008). It should be noted that this
favorable property was proved by using a specific property of the corresponding
divergence. In this paper, this result is extended to a normalized estimating
equation with any weight, which enables us to use various weights, including
the logistic weight (Eguchi and Kano, 2001; Murata et al., 2004; Takenouchi
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and Eguchi, 2004). The approach of the proof is different from the divergence-
based one, because we cannot use a convenient property of divergence. It is
further illustrated by some examples that the latent bias can be close to zero
for the normalized estimating equation, but not always for the non-normalized
estimating equation.

This paper is organized as follows. The non-normalized and normalized es-
timating equations are described in Section 2. The corresponding estimators
can be regarded as M-estimators. In Section 3, the latent bias is discussed for
non-normalized and normalized estimating equations and it is shown that the
latent bias can be arbitrarily small for a normalized estimating equation even
if the proportion of outliers is not small. Asymptotic properties of the robust
estimators are presented in Section 4. These results are extended to the regres-
sion case in Section 5. Numerical examples are illustrated in Section 6. Some
discussions are given in Section 7.

2. Estimating equation

The non-normalized estimating equation given by (1.1) can be expressed as

n
∑

i=1

ψU (xi; θ) = 0,

where

ψU (x; θ) = ξ(l(x; θ))s(x; θ) − Efθ [ξ(l(x; θ))s(x; θ)] . (2.1)

The robust estimator θ̂U is defined as a root of this estimating equation, which
is an M-estimator. To weaken an adverse effect of outlier, we assume that the
weight ξ(l(x; θ)) is close to zero for an outlier x, more precisely,

lim
a→−∞

ξ(a) = 0, (2.2)

because f(x; θ) is close to zero for an outlier x and l(x; θ) = log f(x; θ) goes to
minus infinity as f(x; θ) approaches zero. Suppose that the function ξ(a) and
the density function f(x; θ) satisfy some conditions, including differentiability,
integrability, and so on, which are described in the subsequent sections. Various
properties, including asymptotic properties and robustness of the estimator and
test, can be easily obtained by the theory of M-estimator (Maronna, Martin and
Yohai, 2006; Heritier and Ronchetti, 1994).

Some types of weights have been discussed. One is the density power weight,
ξ(l(x; θ)) = exp(γl(x; θ)) = f(x; θ)γ , as described already in Section 1. The
density power weight for an outlier x∗ decreases with increasing γ. The logistic
weight, ξ(l(x; θ)) = exp(l(x; θ))/(exp(l(x; θ)) + η) = f(x; θ)/(f(x; θ) + η), was
considered by Eguchi and Kano (2001) and used in a divergence related to the
boosting (Takenouchi and Eguchi, 2004). The tuning parameter η was referred
to as the value of saturation in multilayer perceptron models in neural networks.
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The logistic weight decreases with increasing η and it is essentially proportional
to f(x; θ) for a sufficiently large η. The threshold type of weight, ξ(l(x; θ)) =
min{f(x; θ), c}, can also be used and a similar type of weight was applied to a
logistic model by Croux and Haesbroeck (2003).

The normalized estimating equation given by (1.2) can be rewritten as

n
∑

i=1

ψN (xi; θ) = 0,

where

ψN (x; θ)= ξ(l(x; θ))s(x; θ)Efθ [ξ(l(x; θ))] − ξ(l(x; θ))Efθ [ξ(l(x; θ))s(x; θ)]. (2.3)

The robust estimator θ̂N is defined as a root of this estimating equation, which
is also an M-estimator.

3. Latent bias

Let f(x) = f(x; θ∗) be the target density. Let δ(x) be the contamination density
related to outliers. Suppose that the observations are drawn from the underlying
density given by

g(x) = (1− ε)f(x) + εδ(x),

where ε is the proportion of outliers. Let θ̂ψ be the estimator defined as a root of
the estimating equation

∑n
i=1 ψ(xi; θ) = 0. We assume the Fisher consistency.

Let θ∗ψ be the limit of θ̂ψ. The bias caused by contamination can be expressed
as θ∗ψ − θ∗, which is hereafter referred to as the latent bias.

The latent bias θ∗ψ − θ∗ can be approximated to εIFψ(x
∗; θ∗) if δ(x) is the

dirac function at x∗ and ε is sufficiently small, where IFψ(x
∗; θ∗) is the influence

function, given by IFψ(x
∗; θ∗) = −{Efθ∗ [(∂ψ/∂θ′(x; θ∗)]}−1ψ(x∗; θ∗) (Huber

and Ronchetti, 2009). It is favorable that the influence function IFψ(x; θ) ap-
proaches zero as |x| goes to infinity, because the latent bias can be approximated
to zero for a large value of |x|. The function ψ(x; θ) is said to be redescending
when the function ψ(x; θ) approaches zero as |x| goes to infinity, which implies
the above favorable property of the influence function from the formula of IFψ.

Consider the simple case where the target density is an exponential distri-
bution with mean one. Figure 1 shows the influence functions for the non-
normalized and normalized estimating equations with density power weight
(γ = 1). The influence function for the normalized estimating equation is re-
descending because it is easily shown that ξ(l(x; θ)) and ξ(l(x; θ))s(x; θ) on the
formula (2.3) approach zero as x goes to infinity. This property is generalized in
what follows. However, the influence function for the non-normalized estimating
equation is not redescending from the formula (2.1), because the bias-correction
term for ψU , Efθ [ξ(l(x; θ))s(x; θ)], is not zero.
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Fig 1. Influence function for the mean parameter of the exponential distribution. The true

mean is one. The tuning parameter γ is one. The solid and dotted lines correspond to the

normalized and non-normalized estimating equations, respectively.

Suppose that

Eδ [ξ(l(x; θ))] ≈ 0, Eδ [ξ(l(x; θ))s(x; θ)] ≈ 0, (3.1)

in the neighborhood of θ = θ∗. These conditions hold for various combinations of
weights and distributions. Here we consider the simple case where δ is the dirac
function at a sufficiently large x∗. We can suppose that f(x∗; θ) ≈ 0 because
x∗ can be regarded as an outlier. The first condition becomes ξ(l(x∗; θ)) ≈ 0.
This immediately follows from the property (2.2). The second condition be-
comes ξ(l(x∗; θ))s(x∗; θ) ≈ 0. This holds for various combinations of weights
and distributions. (Some examples are given in Appendix A). Consequently,
from the formula (2.3), the condition (3.1) implies the redescending property
of ψN . Therefore, we see that the condition (3.1) is more general than the re-
descending property of ψN , because the redescending property is considered
under a restricted situation that θ is the true parameter θ∗ and δ is the dirac
function at x∗. Under the condition (3.1), we obtain a stronger property than
usual, as described later.

Let us consider the limit of the normalized estimating equation, given by

Eg [ξ(l(x; θ))s(x; θ)]

Eg [ξ(l(x; θ))]
=

Efθ [ξ(l(x; θ))s(x; θ)]

Efθ [ξ(l(x; θ))]
. (3.2)
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We see that

Eg [ξ(l(x; θ))s(x; θ)] = (1− ε)Ef [ξ(l(x; θ))s(x; θ)] + εEδ [ξ(l(x; θ))s(x; θ)] ,

Eg [ξ(l(x; θ))] = (1− ε)Ef [ξ(l(x; θ))] + εEδ [ξ(l(x; θ))] .

From the condition (3.1), the normalized estimating equation (3.2) is roughly
expressed as

Efθ∗ [ξ(l(x; θ))s(x; θ)]

Efθ∗ [ξ(l(x; θ))]
≈ Efθ [ξ(l(x; θ))s(x; θ)]

Efθ [ξ(l(x; θ))]
. (3.3)

Note that the proportion of outliers, ε, vanishes. If this approximation is replaced
by equality, then θ∗ is a root. Let the limit of the normalized estimating equation
be denoted by

λg(θ) = Eg [ψN (x; θ)] = 0.

Let θ∗N be the root of λg(θ) = 0. The formula (3.3) implies that θ∗N ≈ θ∗,
which shows the possibility that the latent bias can be close to zero even if the
proportion of outliers is not small.

Let us give a clear statement of the above discussion. Before that, we calculate
the differential of λfθ∗ (θ) at θ = θ∗. It follows from straightforward but lengthy
calculations that

∂λfθ∗
∂θ′

(θ∗) =

∫

ξ(l(x; θ∗))s(x; θ∗)f(x; θ∗)dx

∫

ξ(l(x; θ∗))s(x; θ∗)′f(x; θ∗)dx

−
∫

ξ(l(x; θ∗))f(x; θ∗)dx

∫

ξ(l(x; θ∗))s(x; θ∗)s(x; θ∗)′f(x; θ∗)dx. (3.4)

This is non-positive by Cauchy-Schwartz’s inequality and usually negative def-
inite for various weights and density functions. The following theorem can be
shown from this assumption and implicit function theorem. The proof is given
in Appendix B.

Theorem 3.1. Suppose that ∂λfθ∗ /∂θ
′(θ∗) is negative definite. Let Bν(a) be the

ball region with center a and radius ν. Assume that for any sufficiently small
ν > 0, λδ(λ

−1
fθ∗

(τ)) ∈ Bν(1−ε)/ε(0) for τ ∈ Bν(0). Then, there exists a root θ∗N
of λg(θ) = 0 such that θ∗N ∈ Bν(θ

∗) and θ∗N (fθ∗) = θ∗.

In the conclusion of Theorem 3.1, θ∗N ∈ Bν(θ
∗) and θ∗N (fθ∗) = θ∗ say that the

latent bias can be arbitrarily small and Fisher consistency holds, respectively.
Next we compare the assumption of Theorem 3.1 with the condition (3.1). We
see that

λδ(θ) = Eδ[ψN (θ)]

= Eδ [ξ(l(x; θ))s(x; θ)] Efθ [ξ(l(x; θ))] − Eδ [ξ(l(x; θ))] Efθ [ξ(l(x; θ))s(x; θ)] .

The condition (3.1) implies that λδ(θ) ≈ 0 in the neighborhood of θ = θ∗.
Note that λ−1

fθ∗
(Bν(0)) is the neighborhood of θ = θ∗ for a sufficiently small

ν > 0, becasue λfθ∗ (θ
∗) = 0 and ∂λfθ∗ /∂θ

′(θ∗) is negative definite. Hence, we
have λδ(θ) ≈ 0 for θ ∈ λ−1

fθ∗
(Bν(0)). This corresponds to the assumption of

Theorem 3.1.
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4. Asymptotic property

The M-estimator θ̂ψ, which is a root of the estimating equation
∑n

i=1 ψ(x; θ) =
0, has consistency and asymptotic normality under mild conditions (van der
Vaart, 1998). We can use the following theorem to obtain the asymptotic prop-

erties of θ̂U and θ̂N .

Theorem 4.1 (Theorems 5.41 and 5.42 of van der Vaart (1998)). Suppose
that x1, . . . , xn are randomly drawn from the underlying density g. We assume:
(a) The function ψ(x; θ) is twice continuously differentiable with respect to θ for
any x. (b) There exists a root θ∗ψ of Eg[ψ(x; θ)] = 0. (c) Eg[‖ψ(x; θ∗ψ)‖2] < ∞.
(d) Eg[∂ψ/∂θ

′(θ∗ψ)] exists and is nonsingular. (e) The second-order differentials

of ψ(x; θ) with respect to θ are dominated by a fixed integrable function ψ̈(x) in

a neighborhood of θ = θ∗ψ. Then there exists a sequence of roots, {θ̂n}∞n=1, such
that

(i) θ̂n
P−→ θ∗ψ,

(ii)
√
n
(

θ̂n − θ∗ψ

)

d−→ N
(

0, τ2g (θ
∗

ψ)
)

,

where

τ2g (θ) = Jg(θ)
−1Kg(θ){Jg(θ)′}−1, Jg(θ) = Eg [∂ψ/∂θ

′(θ)] ,

Kg(θ) = Eg [ψ(θ)ψ(θ)
′] .

There are many assumptions in the above theorem. The assumptions (a), (c)
and (e) are very easy to verify, but the assumptions (b) and (d) are necessary
to verify. When the estimating equation is non-normalized or normalized with
the density power weight, the assumptions (b) and (d) are easy to verify be-
cause the corresponding divergence exists (Basu et al., 1998; Jones et al., 2001).
Consider the case of the normalized estimating equation under the aforemen-
tioned conditions. The assumption (b) directly follows from Theorem 3.1. The
assumption (d) can be verified by adding an extra condition like (3.1) (Ap-
pendix C). Therefore, all the assumptions hold for both non-normalized and
normalized estimating equations. Furthermore, the asymptotic variance for the
normalized estimating equation can be expressed as follows. The derivation is
given in Appendix D.

Theorem 4.2. Consider a normalized estimating equation. Assume the same
conditions as in Theorem 3.1, and the continuity of Jf (θ), Jδ(θ), Kf (θ) and
Kδ(θ), and that Jδ(θ

∗) ≈ O and Kδ(θ
∗) ≈ O. It then holds that

τ2g (θ
∗

N ) ≈ 1

1− ε
τ2f (θ

∗).

This theorem implies that the outliers are naturally ignored with the appro-
priate proportion of outliers. Suppose that the sample size of outlier is m. The
proportion of outliers is expressed as ε = m/n. The asymptotic variance of the
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robust estimator based on the n −m observations without outliers is given by
τ2f (θ

∗)/(n−m) = τ2f (θ
∗)/n(1−ε) ≈ τ2g (θ

∗

N )/n, which is the asymptotic variance
of the robust estimator based on all the observations.

5. Regression case

The robust parameter estimation for the regression case has been discussed in
Cantoni and Ronchetti (2001), Copt and Heritier (2007) and Croux, Gijbels
and Prosdocimi (2012). The content in the previous sections can be extended
to the regression case in a similar manner. Let x and y be the explanatory
and response variables, respectively. Let f(y|x; θ) be the parametric conditional
density of y given x. Let the log-likelihood and score functions be denoted by
l(y|x; θ) = log f(y|x; θ) and s(y|x; θ) = (∂/∂θ)l(y|x; θ), respectively. The esti-
mating equation for the maximum likelihood estimator is

∑n
i=1 s(yi|xi; θ) = 0.

The downweighted estimating equation is
∑n
i=1 ξ(l(yi|xi; θ))s(yi|xi; θ) = 0 and

then the bias-corrected (non-normalized) estimating equation is given by

n
∑

i=1

ξ(l(yi|xi; θ))s(yi|xi; θ) =
n
∑

i=1

E [ξ(l(y|xi; θ))s(y|xi; θ)|f(y|xi; θ)] .

The normalized estimating equation is expressed as

∑n
i=1 ξ(l(yi|xi; θ))s(yi|xi; θ)

∑n
i=1 ξ(l(yi|xi; θ))

=

∑n
i=1 E [ξ(l(y|xi; θ))s(y|xi; θ)|f(y|xi; θ)]
∑n

i=1 E [ξ(l(y|xi; θ))|f(y|xi; θ)]
.

Let z = (x, y) and zi = (xi, yi). They can also be expressed as

n
∑

i=1

ψU (zi; θ) = 0,

n
∑

i,j=1

ψN (zi, zj ; θ) = 0,

where

ψU (zi) = ξ(l(yi|xi; θ))s(yi|xi; θ)− E [ξ(l(y|xi; θ))s(y|xi; θ)|f(y|xi)] ,
ψN (zi, zj) = ξ(l(yi|xi; θ))s(yi|xi; θ)E [ξ(l(y|xj ; θ))|f(y|xj)]

−ξ(l(yi|xi; θ))E [ξ(l(y|xj ; θ))s(y|xj ; θ)|f(y|xj)] .

It was shown in Section 3 that the latent bias can become arbitrarily small
for a normalized estimating equation under some conditions. The same result
holds for the regression case under some conditions similar to in Section 3. Let
the underlying density of x and y given x be denoted by g(x) and g(y|x) =
(1− ε)f(y|x; θ∗) + εδ(y|x). The necessary conditions for the regression case can
be obtained by replacing f(x; θ∗) and δ(x) by f(y|x; θ∗)g(x) and δ(y|x; θ∗)g(x)
in Section 3.

Note that a non-normalized estimating equation is based on the U-statistic
but a normalized estimating equation is based on the V-statistic by replacing
ψN (zi, zj) by (ψN (zi, zj) + ψN (zj , zi))/2. The asymptotic properties of the U -
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and V-statistics are investigated (Serfling, 1980; Lee, 1990). Hence, we expect
that under additional conditions, the asymptotic distributions of the robust es-
timators derived from the non-normalized and normalized estimating equations
can be obtained by suitable extensions of the proof for the i.i.d. case.

The weight ξ(l(y|x; θ)) can downweight the score function only when y is an
outlier. The robustness against an outlier of x is not incorporated on the above
estimating equations. This is possible by replacing ξ(l(y|x; θ)) by ξ(l(y|x; θ))w(x),
where w(x) is small when x is an outlier. This idea is frequently adopted in ro-
bust parameter estimation.

6. Numerical examples

The latent bias and mean squared error were investigated when the target distri-
bution was normal with mean zero and variance one, the contamination distri-
bution was normal with mean five and variance one, and the parametric model
was normal with mean µ and variance σ2. Two types of weights were used; one
was the density power weight and the other was the logistic weight. The propor-
tion of outliers was set to be ε = 0.05, 0.2. The root of the estimating equation
was obtained through an iterative algorithm (Appendix E).

6.1. Latent bias

Figure 2 illustrates the latent bias in the case of the density power weight. For
the mean parameter, two latent biases for the normalized and non-normalized
estimating equations are closer to zero as the tuning parameter γ becomes larger.
They are almost the same when ε = 0.05, but slightly different around γ = 0.4
when ε = 0.2. For the standard deviation parameter, as the tuning parameter γ
becomes larger, the latent bias for the normalized estimating equation is closer
to zero. In contrast, the latent bias for the non-normalized estimating equation
presents a different behavior. It can not be close to zero and is farther from zero
after it has attained the minimum. Additionally, when ε = 0.2, the minimum
value is larger than 0.2, which is very large in comparison to the target parameter
σ = 1. Figure 3 depicts the latent bias in the case of the logistic weight. The
behaviors were similar to those in the case of density power weight, except that
the latent bias for the non-normalized estimating equation can be much closer
to zero.

In Figure 4, the mean of contamination distribution was changed to µout = 10.
The density power weight was investigated. In this scenario, the curves of latent
bias shift left. This is because with increasing x∗, f(x∗; θ∗) decreases and then
the necessary value of the tuning parameter decreases to give the same weight
value for an outlier.

6.2. Mean squared error

The root of the mean squared error (RMSE) was investigated for the density
power weight. The sample size was set to be n = 40. The RMSE was estimated
from 500 replications.
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(c) σ. ε = 0.05.
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(d) σ. ε = 0.2
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Fig 2. Latent bias in the case of the normal distribution and the density power weight. The

circles and triangles correspond to the latent biases for the normalized and non-normalized

estimating equations, respectively.

Figure 5 illustrates the RMSE for the normalized estimating equation. The
trade-off between bias and variance was observed. The minimum of RMSE was
attained at a certain value of tuning parameter. Let γ̂µ and γ̂σ be the optimal
tuning parameters that minimized the RMSE for the parameters µ and σ, re-
spectively. It should be noted that the latent bias was small enough when the
tuning parameter was γ̂µ or γ̂σ, as seen in Figure 2. The optimal tuning param-
eter would correspond to the case where the latent bias is small enough and the
variance of the estimator is as small as possible. In addition, the value γ̂σ was
slightly larger from γ̂µ. This might be because the latent bias for the standard
deviation parameter was larger than that for the mean parameter.

Figure 6 depicts the RMSE for the non-normalized estimating equation. The
minimum of RMSE for the non-normalized estimating equation is larger than
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(b) µ. ε = 0.2
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(d) σ. ε = 0.2
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Fig 3. Latent bias in the case of the normal distribution and the logistic weight. The circles

and triangles correspond to the latent biases for the normalized and non-normalized estimat-

ing equations, respectively.

that for the normalized estimating equation. The RMSE for the non-normalized
estimating equation slowly increased with increasing γ after the minimum was
attained.

7. Discussion

In this paper, a normalized estimating equation using a weighted score function
was presented and compared with a non-normalized estimating equation. It was
shown that the latent bias could be close to zero even if the proportion of outliers
was not small. The latent bias and mean squared error were illustrated by some
examples. In this section, the weight selection is further discussed.



Normalized estimating equation 1599
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(b) µ. ε = 0.2
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(c) σ. ε = 0.05.
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(d) σ. ε = 0.2
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Fig 4. Latent bias in the case of the normal distribution and the density power weight when

the mean of contamination distribution is µout = 10. The circles and triangles correspond to

the latent biases for the normalized and non-normalized estimating equations, respectively.

To obtain the robust estimate, we must set the tuning parameter. Remember
that the tuning parameter controls the trade-off between bias and variance, as
described in Section 6.2. As seen in Section 6.1, when the tuning parameter is
larger than a certain value, the latent bias is close to zero, in other words, the
estimate is close to the true value. Consider the set of tuning parameters that
is larger than a certain value and show a similar estimate. In this set, a smaller
value of tuning parameter would be favorable because the latent bias is close to
zero and the variance is smaller. We can also use robust model selection criterion
to select a good tuning parameter.

There are many candidates for the weight function. We might think what type
of weight function is better. For example, among the weight functions satisfying
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(c) µ. ε = 0.2.
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(d) σ. ε = 0.2.
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Fig 5. RMSE for normalized estimating equation with density power weight.

the assumption in Theorem 3.1, we might consider that a weight function with
a smaller maximal bias is better. Note that this type of condition has not been
assumed so far. This additional condition might imply a new problem about the
optimality of maximal bias. This will be a future issue.

Appendix A: Examples satisfying the condition (3.1)

In this section, we consider the case where δ is the dirac function at x∗ and
illustrate that Eδ[ξ(l(x; θ

∗))s(x; θ∗)] = ξ(l(x∗; θ∗))s(x∗; θ∗) approaches zero as
|x∗| goes to infinity. This is enough to show the condition (3.1).

The density of the exponential distribution is f(x; θ) = exp(−x/θ)/θ. The
log-likelihood function is l(x; θ) = −x/θ − log θ. The score function is s(x; θ) =



Normalized estimating equation 1601

(a) µ. ε = 0.05.

0.2 0.4 0.6 0.8 1.0

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

tuning parameter (gamma)

R
M

S
E
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(c) µ. ε = 0.2.
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Fig 6. RMSE for non-normalized estimating equation with density power weight.

−x/θ2 + 1/θ. In the case of the density power weight, we see that

f(x∗; θ∗)γs(x∗; θ∗) =
1

θ∗γ
exp

(

−γ x
∗

θ∗

)(

− x∗

θ∗2
+

1

θ∗

)

,

which approaches zero as x∗ goes to infinity.
The density of the normal distribution is f(x; θ) = exp{−(x − µ)2/2σ2}/√
2πσ2 for θ = (µ, σ)′. The log-likelihood function is l(x; θ) = −(1/2) log(2π)−

(1/2) logσ2 − (x − µ)2/2σ2. The score function is s(x; θ) = ∂l/∂θ = (∂l/∂µ,
∂l/∂σ)′, where ∂l/∂µ = (x − µ)/σ2 and ∂l/∂σ = −1/σ + (x − µ)2/σ3. In the
case of the density power weight, we see that

f(x∗; θ∗)γs(x∗; θ∗) =
1

(2πσ2)γ/2
exp

{

− γ

2σ2
(x∗ − µ)2

}

s(x∗; θ∗),

which approaches zero as x∗ goes to infinity.
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Similarly to the exponential and normal distributions, in particular, for an
exponential family, it is often easy to prove that f(x∗; θ∗)γs(x∗; θ∗) approaches
zero as |x∗| goes to infinity, because the density f(x∗; θ∗) approaches zero with
exponential order but the score goes to infinity with polynomial order. When
the tail order of the weight ξ(l(x∗; θ∗)) is similar to that of the density power
weight, we can also show that ξ(l(x∗; θ∗))s(x∗; θ∗) approaches zero as |x∗| goes
to infinity. There are many examples of weight, including the logistic weight,
log(1 + f(x; θ)γ), (η + f(x; θ))γ − ηγ , and so on.

Appendix B: Proof of Theorem 3.1

From the implicit function theorem, there exists a sufficiently small η > 0 and a
closed set Rη such that λfθ∗ (θ) is a homeomorphism from Rη to Bη(τ

∗), where
θ∗ ∈ Rη and τ∗ = λfθ∗ (θ

∗) = 0. Prepare the function

h(τ) = τ − 1

1− ε
λg

(

λ−1
fθ∗

(τ)
)

=
ε

1− ε
λδ

(

λ−1
fθ∗

(τ)
)

.

The assumption implies that λδ(λ
−1
fθ∗

(τ)) ∈ Bη(1−ε)/ε(0) for τ ∈ Bη(0), so
that the function h(τ) maps from Bη(0) into Bη(0). By Brouwer’s fixed point
theorem, the function h(τ) has a fixed point τ0 in Bη(0), which implies that
θ∗N = λ−1

fθ∗
(τ0) is a root of λg(θ) = 0 from h(τ0) = τ0 and the formula of

h(τ). For any small ν > 0, we can take η such that Rη ⊂ Bν(θ
∗). We see that

θ∗N = λ−1
fθ∗

(τ0) ∈ λ−1
fθ∗

(Bη(0)) = Rη ⊂ Bν(θ
∗). It is clear that θ∗N (fθ∗) = θ∗ since

λfθ∗ (θ) is a homeomorphism from Rη to Bη(0).

Appendix C: Verification of assumption (d)

It holds that

Eg

[

∂ψ

∂θ′
(θ)

]

= (1− ε)Ef

[

∂ψ

∂θ′
(θ)

]

+ εEδ

[

∂ψ

∂θ′
(θ)

]

.

Assume that Ef [∂ψ/∂θ
′(θ∗)] is nonsingular, as seen in Theorem 3.1. It is easy

to see that Ef [∂ψ/∂θ
′(θN )] is nonsingular since θN ≈ θ∗ from Theorem 3.1.

Assume that Eδ [∂ψ/∂θ
′(θ∗)] ≈ O, which implies that Eδ [∂ψ/∂θ

′(θN )] ≈ O
from θN ≈ θ∗. Therefore, it follows that Eg [∂ψ/∂θ

′(θN )] is nonsingular.

Appendix D: Proof of Theorem 4.2

We see that

Jg(θN ) = Eg [∂ψ/∂θ
′(θN )] = (1− ε)Jf (θN ) + εJδ(θN )

≈ (1− ε)Jf (θ
∗) + εJδ(θ

∗) ≈ (1− ε)Jf (θ
∗),

Kg(θN ) = Eg [ψ(θN )ψ(θN )′] = (1 − ε)Kf(θN ) + εKδ(θN )

≈ (1− ε)Kf (θ
∗) + εKδ(θ

∗) ≈ (1− ε)Kf (θ
∗).

The proof is complete.
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Appendix E: Iterative algorithm

Suppose that the parametric density belongs to an exponential family, more
precisely,

f(x; θ) = exp{θ′t(x) − ψ(θ) + b(x)}.

The score function is given by

s(x; θ) = t(x) − η(θ),

where η(θ) = ∂ψ(θ)/∂θ. The limit of the normalized estimating equation (3.2)
becomes

Eg [ξ(l(x; θ))t(x)]

Eg [ξ(l(x; θ))]
=

Efθ [ξ(l(x; θ))t(x)]

Efθ [ξ(l(x; θ))]
. (E.1)

Note that the parameter η vanishes. To obtain the root, we propose the iterative
algorithm given by

Eg
[

ξ(l(x; θ(a)))t(x)
]

Eg
[

ξ(l(x; θ(a)))
] =

Ef
θ
(a+1)

[

ξ(l(x; θ(a+1)))t(x)
]

Ef
θ
(a+1)

[

ξ(l(x; θ(a+1)))
] . (E.2)

Note that this type of algorithm was proposed for the density power weight by
Fujisawa and Eguchi (2008) and the corresponding iterative algorithm monoto-
nously increases the γ-cross entropy at each step.

Here we suppose that the parametric density is normal with mean µ and
variance σ2. The sufficient statistic is t(x) = (x, x2). In the case of the density
power weight, the iterative algorithm was obtained by Fujisawa and Eguchi
(2008), given by

µ(a+1) = Eg

[

x f(x; θ(a))γ
]/

Eg

[

f(x; θ(a))γ
]

,

(σ2)(a+1) =
{

Eg

[

x2 f(x; θ(a))γ
]/

Eg

[

f(x; θ(a))γ
]

− (µ(a+1))2
}

(1 + γ).

The empirical type can be obtained by replacing Eg by the sample mean. A
typical initial value is the median and the median absolute value. Next, we
consider the case of the logistic weight. Let φ(x) be the standard normal density.
Let

Bj(σ) =

∫

φ(y)

φ(y) + ησ
yjφ (y)dy for j = 0, 1, 2.

Note that B1(σ) = 0 because φ(y) is an even function of y. The first component
of the numerator of the right-hand side of (E.1) is

Efθ [ξ(l(x; θ))x] =

∫

φ((x − µ)/σ)/σ

φ((x − µ)/σ)/σ + η
x
1

σ
φ

(

x− µ

σ

)

dx

=

∫

φ(y)

φ(y) + ησ
(µ+ σy)φ (y) dy

= µB0(σ).
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The denominator of the right-hand side of (E.1) is B0(σ). Hence, from (E.2),
the iterative algorithm for the mean parameter µ is given by

µ(a+1) = Eg

[

ξ(l(x; θ(a)))x
]/

Eg

[

ξ(l(x; θ(a)))
]

.

The second component of the numerator of the right-hand side of (E.1) is

Efθ
[

ξ(l(x; θ))x2
]

=

∫

φ((x − µ)/σ)/σ

φ((x − µ)/σ)/σ + η
x2

1

σ
φ

(

x− µ

σ

)

dx

=

∫

φ(y)

φ(y) + ησ
(µ+ σy)2φ (y) dy

= µ2B0(σ) + σ2B2(σ).

Thus, from (E.2), σ(a+1) is a unique root of

(

µ(a+1)
)2

+ σ2B2(σ)
/

B0(σ) = Eg

[

ξ(l(x; θ(a)))x2
]/

Eg

[

ξ(l(x; θ(a)))
]

.

The uniqueness is easily shown since σ2B2(σ)
/

B0(σ) is monotone increasing.
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