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1. Introduction

We consider the following nonlinear stochastic differential equation (SDE) driven
by an α-stable Lévy motion (0 < α < 2):

dXt = b(Xt−)dt+ σ(Xt−)dZt, X0 = η, (1.1)

where b : R → R is an unknown measurable function, σ : R → R+ is an unknown
positive function (which is considered as a nuisance parameter), and {Zt, t ≥ 0}
is a standard α-stable Lévy motion defined on a probability space (Ω,F , P )
equipped with a right continuous and increasing family of σ-algebras {Ft, t ≥ 0},
and η is a random variable independent of {Zt}. In this case, Z1 has a α-stable
distribution Sα(1, β, 0), where β ∈ [−1, 1] is the skewness parameter of the
distribution. When β = 0, the underlying stable distribution is symmetric. For
more detailed discussion on stable distributions, we refer to Samorodnitsky and
Taqqu [46], Janicki and Weron [25], and Sato [47]. We assume that the stochastic
process {Xt} is observed at discrete time points {ti = i∆, i = 0, 1, . . . , n}, where
∆ is the time frequency for observation and n is the sample size. The purpose
of this paper is to study the nonparametric estimation of the unknown drift
function b based on the sampling data {Xti}ni=0. The nonparametric estimation
of the dispersion function σ is much harder, which will be addressed separately.

The SDEs driven by Lévy noises have attracted a lot of attention recently,
especially in view of applications to finance (see Schoutens [49], Kyprianou,
Schoutens and Wilmott [31]), network traffic (see Mikosch et al. [37]), physics
(see, e.g. Schertzer et al. [48]), and climate dynamics (see Ditlevsen [10, 11]).
The existence and uniqueness of solutions to (1.1) under Lipschitz conditions are
standard results in stochastic calculus (see e.g., Applebaum [1]). For simplicity,
we assume that the solutionXt is stationary and geometrically strong mixing (in
this case, the initial distribution is taken from the invariant measure). Recently,
Masuda [35] provided sets of ergodic conditions for a multidimensional diffusion
process with jumps for any initial distribution to be exponential β-mixing. These
conditions build up the bridge between mixing sequences and diffusion processes
with jumps.

When the drift function in (1.1) is known to be linear, i.e. b(x) = −θx with
unknown parameter θ, the estimation of θ based on discrete or continuous ob-
servations of Xt was studied in the parametric framework by Hu and Long
[21, 22]. If the dispersion coefficient is small and the driving noise is a Lévy pro-
cess, the least squares estimation of θ was also discussed by Long [32] and Ma
[34]. Masuda [36] proposed a self-weighted least absolute deviation estimator for
discretely observed ergodic Ornstein-Uhlenbeck processes driven by symmetric
Lévy processes. But in reality, the drift function is seldom known. Hence in this
paper, we focus on estimation of the drift function b(·) in model (1.1) using
nonparametric smoothing approach. Nonparametric smooth approach provides
a versatile method of exploring the relationship between variables with no prior
specified models. The classical Nadaraya-Watson (N-W) estimator of the regres-
sion function was proposed independently by Nadaraya [38] and Waston [52].
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The major statistical properties (e.g. consistency and rate of convergence) of
nonparametric methods for the N-W estimators under independent and identi-
cal distribution observations are developed between 1980 and 1990 (see Hardle
[19]). These properties have been extended to dependent situations in the 1990s
(see Bosq [6]), typically for (α, β and φ)-mixing. These results have been further
generalized to stationary processes with so-called uniform predictive dependent
structure, which can be regarded as a natural alternative to strong mixing con-
ditions, by Wu [53] and [54].

Many authors have investigated nonparametric estimation for the drift func-
tion b in the setting of diffusions driven by Brownian motions. Pham [40] and
Prakasa Rao [41] gave a non-parametric estimator for b by mimicking the con-
struction of the well-known Nadaraya-Watson estimator and the asymptotic
behavior of the N-W estimator was established. Arfi [2] discussed the uniformly
strong consistency of the N-W estimator for the drift function b under ergodic
conditions. Recently, Bandi and Phillips [3] extended the N-W estimators to
non-stationary recurrent processes.

Other related methods of estimating the drift function have also been pro-
posed. Banon [4] constructed a drift estimator purely based on the kernel es-
timator and a relation between the drift and the density function along with
its derivative, which was further extended by van Zanten [51], Dalalyan and
Kutoyants [8, 9], Dalalyan [7] (see also the monograph by Kutoyants [30] and
references therein). Locally linear (or polynomial) estimators have been pro-
posed by Fan [12] and further discussed in Fan and Gijbels [14], Spokoiny [50]
and Fan and Zhang [15]. For a complete review of non-parametric methods for
diffusion processes with applications in financial econometrics, see the excellent
survey paper by Fan [13]. Hoffmann [20] and Gobet, Hoffmann and Reiss [17]
applied wavelet approach.

In the stable setting, Hall, Peng and Yao [18] and Peng and Yao [39] discussed
the non-parametric regression estimation for time series with heavy tails. In this
paper, we shall consider the regression type of estimation for stochastic processes
driven by Lévy motions, which is a natural extension of the discrete time series
with heavy tails. We shall discuss the Nadaraya-Waston estimator of the drift
function b in this paper. The basic idea of N-W estimator is to minimize an
object function given below with certain weights:

n−1
∑

i=0

Wn,i(x)(Yi − a∆)2

over the parameter space of a and any given x ∈ R, where Yi := Xti+1 −Xti ,
∆ = ti+1 − ti, i = 0, 1, . . . , n− 1. The weight function is given by

Wn,i(x) =
Kh(Xti − x)

∑n−1
i=0 Kh(Xti − x)

, i = 0, 1, . . . , n− 1

where Kh(·) = K(·/h)/h, K is a kernel density function with mean zero and
finite variance, and h is the bandwidth for the kernel. Then, the N-W estimator
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is given by the following expression

b̂n(x) =

∑n−1
i=0 YiKh(Xti − x)

∆
∑n−1

i=0 Kh(Xi − x)
. (1.2)

It turns out that N-W estimator is a simple class of a large family called “local
polynomial estimator” (see Fan and Gijbels [14]). Hence N-W estimator is also
called local constant estimator. As pointed out in Gobet, Hoffmann and Reiss
[17], the N-W estimator of the drift or diffusion coefficient in the classical diffu-
sion cases is not consistent for low frequency data (i.e. ∆ is fixed). So, we shall
focus on the consistency and asymptotic distribution of the N-W estimator of
the drift function for high frequency data (i.e. ∆ → 0) in this paper.

The paper is organized as follows. In Section 2, we state our main results on
the asymptotic properties of the N-W estimator b̂n(x). In Section 3, we conduct
a simulation study to confirm the finite sample property. Finally, all the proofs
are given in Section 4. We conjecture that the results of this paper can be
extended to local polynomial estimator of order p. Throughout the paper, we
shall use notation “→P ” to denote “convergence in probability” and notation
“⇒” to denote “convergence in distribution”.

2. Asymptotic properties of the Nadaraya-Watson estimator

In this section, we consider asymptotic behavior of the Nadaraya-Watson esti-
mator of the drift coefficient in our stable setting.

For convenience, we provide the definitions of α-stable distributions and α-
stable Lévy motions.

Definition 2.1. A random variable ξ is said to follow a stable distribution,
denoted by ξ ∼ Sα(σ, β, µ), if it has the characteristic function of the following
form:

ϕξ(u) = E exp{iuξ} =

{

exp
{

−σα|u|α
(

1− iβsgn(u) tan απ
2

)

+ iµu
}

, if α 6= 1,

exp
{

−σ|u|
(

1 + iβ 2
π sgn(u) log |u|

)

+ iµu
}

, if α = 1 ,

where α ∈ (0, 2], σ ∈ (0,∞), β ∈ [−1, 1], and µ ∈ (−∞,∞) are the index of
stability, the scale, skewness, and location parameters, respectively.

If ξ ∼ Sα(σ, β, µ) and α ∈ (0, 2), then E|ξ|p < ∞ when p ∈ (0, α) and
E|ξ|p = ∞ when p ∈ [α,∞). When µ = 0, we say ξ is strictly α-stable. If in
addition β = 0, we call ξ symmetric α-stable. Note that ξ is strictly 1-stable
(α = 1) if and only if β = 0 (symmetric case). We refer to [25, 46] and [47] for
more details on stable distributions.

Definition 2.2. An Ft-adapted stochastic process {Zt}t≥0 is called a standard
α-stable Lévy motion if

(i) Z0 = 0, a.s.
(ii) Zt − Zs ∼ Sα((t− s)1/α, β, 0), t > s ≥ 0;
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(iii) For any finite time points 0 ≤ s0 < s1 < · · · < sm < ∞, the random
variables Zs0 , Zs1 − Zs0 , . . . , Zsm − Zsm−1 are independent.

Note that α-stable Lévy motion has the scaling (or self-similarity) property

Zat
d
= a1/αZt with a > 0. In terms of Theorem 30 in Chapter I of Protter [43],

we know that every α-stable Lévy process has a càdlàg (right continuous with
left limits) modification. We will henceforth assume that we are using the càdlàg
version of any given α-stable Lévy process. When 0 < α < 1, Zt is a pure jump
process with locally finite variation; when 1 < α < 2, it is a purely discontinuous
martingale; when α = 1, it is a semi-martingale. For more path properties of
α-stable Lévy processes, we refer to Sato [47].

Since the strong mixing property of the solution Xt to SDE (1.1) is essential in
our framework, we give its definition here. The strong mixing coefficient of X
is defined by

αX(t) = sup
s∈R+

sup |P (A ∩B)− P (A)P (B)|,

where the second supremum is taken over measurable sets A and B in the σ-
algebras generated by {Xu, u ≤ s} and {Xu, u ≥ s + t}, respectively. We say
that {Xt, t ≥ 0} is strongly mixing if αX(t) → 0 as t → ∞.

We will make use of the following assumptions:
(A.1). The drift function b(·) and dispersion function σ(·) satisfy a global Lip-
schitz condition, i.e., there exists a positive constant L > 0 such that

|b(x1)− b(x2)|+ |σ(x1)− σ(x2)| ≤ L|x1 − x2|, x1, x2 ∈ R.

(A.2). The dispersion function σ(·) satisfies the following bounded condition:
there exist positive constants σ0 and σ1 such that 0 < σ0 ≤ σ(x) ≤ σ1 for each
x ∈ R.
(A.3). The solution Xt admits a unique invariant distribution µ and is geomet-
rically strong mixing (GSM), i.e. there exists c0 > 0 and ρ ∈ (0, 1) such that
αX(t) ≤ c0ρ

t, t ≥ 0. Consequently, Xt is ergodic. We also assume that Xt is
stationary.
(A.4). The density function f(x) of the stationary distribution µ is continuous.
(A.5). The kernel function K(·) is a symmetric and nonnegative probability
density function satisfying

sup
u
(1 ∨ |u|)K(u) < M0 < ∞,

∫ ∞

−∞
u2K(u)du < ∞,

∫ ∞

−∞
K2(u)du < ∞.

(A.6). As n → ∞, h → 0, ∆ → 0, n∆ → ∞ and n∆h
(log(n∆))2 → ∞.

The Lipschitz condition (A.1) is a typical condition which ensures that SDE
(1.1) admits a unique non-explosive càdlàg adpated solution. For some sufficient
conditions which guarantee (A.3), we refer to Theorem 2.2 and Lemma 2.4 in
Masuda [35].

We first state some results about the consistency and inconsistency of the N-
W estimator separately in terms of the range of α, i.e. α ∈ (1, 2) and α ∈ (0, 1].
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Theorem 2.3. Assume that (A.1)-(A.6) hold. If f(x) > 0 and α ∈ (1, 2), then

b̂n(x) →P b(x) as n → ∞.

Theorem 2.4. Assume that (A.1)-(A.6) hold. Let f(x) > 0 and α ∈ (0, 1].

If there exists some r ∈ ( α
1+α , α) such that nh∆

r
α(1−r) → 0, then b̂n(x) is not

consistent.

To study the asymptotic distribution and rate of convergence of the N-W
estimator for the drift function, we impose some new conditions as follows:
(A.7). The drift function b(·) is twice continuously differentiable with bounded
first and second order derivatives.
(A.8). The density function f(x) of the stationary distribution µ is continuously
differentiable (f

′

(x) is continuous).

Note that (A.7) is stronger than the Lipschitz condition on b(·) in (A.1), and
(A.8) is stronger than (A.4). We consider the rate of convergence of the N-W
estimator when 1 < α < 2.

Let

Λ(x) =
f(x)1−

1
α

σ(x)
(

∫∞
−∞ Kα(u)du

)1/α

and

Γb(x) =

[

b
′

(x)
f

′

(x)

f(x)
+

1

2
b
′′

(x)

]

∫ ∞

−∞
u2K(u)du.

Theorem 2.5. (a) Let α ∈ (1, 2) and assume that (A.1)-(A.3) and (A.5)-(A.8)
are satisfied. We also assume that f(x) > 0.

(i) If (n∆h)1−
1
α h2 = o(1) and (n∆h)1−

1
α∆1/α = o(1) then

(n∆h)1−
1
αΛ(x)(b̂n(x) − b(x)) ⇒ Sα(1, β, 0). (2.1)

(ii) If the condition (n∆h)1−
1
αh2 = o(1) in (i) is replaced by (n∆h)1−

1
αh2 =

O(1), then

(n∆h)1−
1
αΛ(x)(b̂n(x) − b(x)− h2Γb(x)) ⇒ Sα(1, β, 0). (2.2)

(b) For α = 1, if nh∆
q

1−q = o(1) for some 1
2 < q < 1, then

1

σ(x)
(b̂n(x) − b(x)) ⇒ Sα(1, β, 0). (2.3)

Remark 2.6. (1) Since the set of conditions (A.1)-(A.3) and (A.5)-(A.8) in
Theorem 2.5 is stronger than the set of conditions (A.1)-(A.6), Theorem 2.3
and Theorem 2.4 are still valid under (A.1)-(A.3) and (A.5)-(A.8).

(2) It is easy to see that b̂n(x) is not consistent when α = 1, which is compatible
with Theorem 2.4.
(3) Theorem 2.5 (a)-(ii) specifies that the bias of the N-W estimator b̂n(x) is in

the order of (n∆h)1−
1
αh2. If (n∆h)1−

1
αh2 = o(1), then the estimator b̂n(x) has

asymptotically zero bias as stated in Theorem 2.5 (a)-(i).
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Remark 2.7. We would like to give some comments on the estimation of α
which is involved in the rate of convergence of the N-W estimator b̂n(x) of the
drift function b(x) in Theorem 2.5. Note that we are dealing with non-parametric
models with unknown functions b(x) and σ(x), which makes the estimation of α
much harder. In order to estimate α, we need also consider the non-parametric
estimation of the dispersion function σ(x), which is our ongoing research project
and will be addressed in a separate article. After getting estimation for both the
drift function b(x) and dispersion function σ(x), we can use the Euler scheme
to approximate the SDE (1.1):

∆Xtk ≈ b(Xtk)∆ + σ(Xtk)∆Ztk ,

where ∆Xtk = Xtk+1
− Xtk and ∆Ztk = Ztk+1

− Ztk , k = 0, 1, . . . , n − 1. By

replacing b(Xtk) and σ(Xtk) with b̂(Xtk) and σ̂(Xtk) respectively, we can regard
∆Xtk

−b̂(Xtk
)∆

σ̂(Xtk
) as an estimate of ∆Ztk for k = 0, 1, . . . , n − 1, which follows

the stable distribution Sα(∆
1/α, β, 0). Motivated by the parameter estmation

for stable distributions discussed in Press [42], we can define the approximate
sample characteristic function by

ϕ̂n(u) =
1

n

n−1
∑

k=0

exp{iu[∆Xtk − b̂(Xtk)∆](σ̂(Xtk))
−1},

which shall be asymptotically equal to the characteristic function ϕZ∆(u) of
Z∆ ∼ Sα(∆

1/α, β, 0). Note that |ϕZ∆(u)| = exp{−∆|u|α}. It follows that

α =
log(− log |ϕZ∆(u)|)− log∆

log |u| , |u| 6= 1.

Then, by replacing ϕZ∆(u) with ϕ̂n(u), we can get a point estimator of α as

α̂ =
log(− log |ϕ̂n(u)|)− log∆

log |u| , |u| 6= 1.

Of course, this estimator depends on the choice of the value of u. The consistency
and asymptotic behavior of α̂ will be addressed in our ongoing research project.
One can also use the regression method to estimate α as well as other parameters
as discussed in Koutrouvelis [28] and [29].

Example 2.8. Here we provide one example of the SDE (1.1) which satisfies
all the required conditions in our main results. We consider the following SDE

dXt =



c− dX3
t−

√

1 +X4
t−



 dt+ ρ(1 + sin2 Xt−)dZt, X0 = η, (2.4)

where c ∈ R, d > 0 and ρ > 0 are constants. Namely, the drift function b(x)
and dispersion function σ(x) are given by

b(x) = c− dx3

√
1 + x4

, σ(x) = ρ(1 + sin2 x).
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It is clear that b(x) and σ(x) satisfy the Lipschitz condition (A.1), and σ(x)
satisfies (A.2). It is easy to verify that b(x) is twice continuously differentiable
with bounded first and second derivatives, namely b(x) satisfies (A.7). In order
to ensure that the SDE (2.4) satisfies (A.3), we shall employ Theorem 2.2 and
Lemma 2.4 of Masuda [35] and verify that Assumption 2 and Assumption 3∗

in Masuda [35] are fulfilled. Assumption 2(a) is satisfied since the coefficient
functions b(x) and σ(x) are smooth (see the discussion in Section 4.2 of Masuda
[35]). Basic calculation shows that there exists a constant 0 < c1 < d such that
xb(x) ≤ −c1|x|2 for every |x| large enough, which implies that Assumption 3∗ is
satisfied. Hence we conclude that (A.3) is satisfied when η = µ. For the regularity
conditions (A.4) and (A.8) of the density function of the stationary distribution
µ, we can use results from Schertzer et al [48]. According to Proposition 1 of
[48], we know that the transition density function p(t, x) of the solution Xt to
SDE (2.4) satisfies a fractional Fokker-Planck equation. In terms of Section IX
of [48], when the coefficient functions b(x) and σ(x) are C2 and Lipschitz, there
exists a unique classical solution to the corresponding fractional Fokker-Planck
equation and consequently the density function of the stationary distribution µ
should be continuously differentiable. Thus, (A.4) and (A.8) are satisfied in our
example. Finally, for condition (A.5), we can choose the normal kernel function

K(u) = 1√
2π

exp
(

−u2

2

)

, u ∈ R. Therefore the SDE (2.4) satisfies all the required

conditions.

3. A simulation study

In this section, we conduct a simulation study to confirm the finite sample prop-
erties of the asymptotic results developed in Section 2. Let T be the length of
observation time interval, n be the sample size, and ∆ = T/n be the observation
time frequency. For simplicity, let the dispersion function σ(·) be constant. The
stable index α considered is 1.5 and the skewness parameter β is zero (symmet-
ric case). We simulate and approximate Xt by using the Euler scheme (see e.g.,
Jacod [23], Jacod et al. [24]):

Xti+1 = Xti + b(Xti)∆ + σ ·∆Zti , (3.1)

where ti = i∆ and ∆Zti = Zti+1 − Zti , i = 0, 1, . . . , n− 1. We consider various
length of observation time interval T and sample size n. The length of obser-
vation interval of the process considered is 10, 50, 100, while the sample size n
considered is 1000, 5000, 10000, respectively. The drift function considered in the
simulation is one of the following:

(i). b1(x) = −cx+ d
√
1 + x2

(ii). b2(x) = −cx+ d sin(2πx),

for various c and d. Two different values of c and d are tested. Two possible
values of σ considered are 0.05 and 0.1. We consider six cases of parameter
settings:
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Fig 1. The ten sample paths of the process Xt.

• Case 1: c = 1, d = 0, σ = 0.05 and b(x) = b1(x);
• Case 2: c = 1, d = 0.5, σ = 0.05 and b(x) = b1(x);
• Case 3: c = 3, d = 0.5, σ = 0.05 and b(x) = b2(x).
• Case 4: c = 1, d = 0, σ = 0.1 and b(x) = b1(x);
• Case 5: c = 1, d = 0.5, σ = 0.1 and b(x) = b1(x);
• Case 6: c = 3, d = 0.5, σ = 0.1 and b(x) = b2(x).

The purpose of the six cases are two folds. For cases 1-3, we are testing the
sensitivity of the N-W drift function estimator away from linearity. By changing
the value of σ from 0.05 to 0.1 in cases 1, 2 and 3, we obtain cases 4, 5 and 6,
respectively. The purpose of these changes is to test the sensitivity of the N-W
estimators with respect to different sizes of the scale parameter σ in the Lévy
driven error term.

We adapt the direct method from Janicki and Weron [25] (1994, pp. 48) to
generate the α-stable process. That is: we first generate a random sample Vti

uniformly distributed on (−π/2, π/2) and an exponential random sample Wti

with mean 1. Then we compute the symmetric α-stable random sample

Sti =
sin(αVti )

{cos(Vti)}1/α
×
{

cos(Vti − αVti)

Wti

}

(α−1)
α

.

Last, we generate the Lévy sample path by putting ∆Zti = ∆1/αSti . The initial
value of the process Xt is set to be one.

Figure 1 shows the ten simulated sample paths of the process Xt. Notice that
the jump error term could affect the process a lot at some typical time points.
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Fig 2. The estimated density function of the process Xt.

Figure 2 shows the kernel density estimate of a realization of Xt overlay with
the histogram.

In computing the N-W estimate, the normal kernel is used and the bandwidth
is selected according to the sample size n. In the simulation, we use h = n−1/5.
Figure 3 represents the estimated b̂(·) from a random sample with n = 1000
and h = n−1/5 and other information given in the figure. It shows that the N-W
estimator performs reasonably well.

The estimator b̂(x) is assessed via the square-Root of Average Square Errors
(RASE)

RASE =

[

1

n

n
∑

k=0

{

b̂(xk)− b(xk)
}2
]1/2

,

where {xk}n1 are chosen uniformly to cover the range of sample path of Xt.
Table 1 below reports the results on RASE of the N-W estimator of the drift
function b(·) based on 1000 replicates. In each cell, the first, second and third
numbers represent the sample mean, sample standard deviation and sample
median of RASE for three sample sizes n = 1000, n = 5000 and n = 10000,
respectively.

Notice that as the time interval expands longer, the estimation is better as
expected for whatever sample size even though the time frequency becomes
larger. This means that T tending to ∞ is more important than ∆ tending to
0 in the asymptotic behavior of the N-W estimator. The estimates are not so
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Fig 3. The N-W estimate of b(.) for σ = 0.05, c = 3, d = 0.5 and b(x) = −cx+ d sin(2πx) for

T = 100, n = 1000.

Table 1

Simulation results on RASE for three lengths of time interval and three sample sizes for six

parameter settings

RASE mean sd median mean sd median mean sd median
T n=1000 n=5000 n=10000

Case=1
10 0.0781 0.1234 0.0409 0.0901 0.1141 0.0558 0.1013 0.1170 0.0646
50 0.0460 0.0556 0.0306 0.0570 0.0720 0.0368 0.0656 0.0820 0.0425

100 0.0352 0.0516 0.0250 0.0434 0.0458 0.0302 0.0487 0.0686 0.0339
Case=2

10 0.0407 0.0682 0.0283 0.0464 0.1417 0.0264 0.0423 0.0627 0.0267
50 0.0304 0.0537 0.0215 0.0388 0.1754 0.0184 0.0346 0.0763 0.0191

100 0.0287 0.0415 0.0197 0.0318 0.0859 0.0183 0.0424 0.1316 0.0195
Case=3

10 0.1637 0.5541 0.1341 0.1055 0.2617 0.0684 0.0983 0.2344 0.0614
50 0.1083 0.0840 0.0995 0.0926 0.3041 0.0535 0.0875 0.2103 0.0492

100 0.0940 0.1016 0.0782 0.0672 0.1029 0.0464 0.0684 0.1655 0.0397
Case=4

10 0.1279 0.5408 0.0631 0.1254 0.3521 0.0611 0.1457 0.4305 0.0662
50 0.0865 0.2032 0.0472 0.0895 0.1659 0.0493 0.1140 0.3014 0.0509

100 0.0691 0.1190 0.0401 0.0912 0.1770 0.0536 0.1103 0.3473 0.0546
Case=5

10 0.0789 0.2310 0.0441 0.0837 0.1919 0.0474 0.0853 0.1629 0.0495
50 0.0630 0.1299 0.0371 0.0782 0.1652 0.0395 0.0927 0.2317 0.0411

100 0.0576 0.0920 0.0366 0.0803 0.2088 0.0428 0.0864 0.2096 0.0437
Case=6

10 0.1686 0.3104 0.1202 0.1514 0.3264 0.0929 0.2029 1.2164 0.0896
50 0.1113 0.1590 0.0771 0.1262 0.2626 0.0710 0.1615 0.5427 0.0744

100 0.0869 0.1216 0.0601 0.1128 0.2156 0.0659 0.1181 0.2026 0.0663
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sensitive to the linearity assumption on the drift function. As the σ increases,
the summary statistics of RASE confirm the results in Theorem 2.5. Namely,
the increase of σ slows down the convergence of the N-W estimator.

As both T and n get larger, the summary statistics of RASE are getting better
seen through the diagonal numerals in Table 1. The bias is getting smaller, the
standard deviation is getting smaller most of the time. So, in general, when Th
becomes larger, the N-W estimator becomes better with smaller RASE.

One notices that for a fixed length of observation interval T , as the sample size
gets larger, the N-W estimator does not behave better, which is consistent with
the asymptotic theory of the N-W estimators for stochastic processes driven
by Lévy motions. This confirms that the drift function can not be identified
in a fixed time interval in the framework of N-W estimator, no matter how
frequently the observations are sampled. This phenomenon is also consistent
with the sample paths shown in Figure 1. That is, the more often observed
diffusion process, it is more affected by the Lévy driven error term which may
produce many huge jumps.

4. Proofs

In this section, we provide proofs for all the results stated in Section 2. The
N-W estimator is closely related to the kernel estimator f̂n(x) of the density
function f(x) of the stationary distribution, which is defined by

f̂n(x) =
1

n

n−1
∑

i=0

Kh(Xti − x). (4.1)

Denote

ĝn(x) =
1

n∆

n−1
∑

i=0

YiKh(Xti − x). (4.2)

Then, the N-W estimator given in (1.2) can be represented as

b̂n(x) = ĝn(x)/f̂n(x). (4.3)

4.1. Preliminary Lemmas

Before proving our main theorems in Section 2, we prepare some preliminary
lemmas. The following result (consistency of the kernel estimator) is an analogue
to Lemma 2.1 in Bosq [6].

Lemma 4.1. Under the conditions (A.1)-(A.6), we have

f̂n(x) →P f(x) as n → ∞. (4.4)

Proof. Note that

f̂n(x) − f(x) = f̂n(x)− E[f̂n(x)] + E[f̂n(x)] − f(x).
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By the stationarity of the process Xt, we have

E[f̂n(x)] = E[Kh(X0 − x)] =

∫ ∞

−∞
Kh(y − x)f(y)dy

=

∫ ∞

−∞
K(u)f(x+ uh)du

which converges to f(x) for each x as n → ∞ by Lebesgue dominated con-

vergence theorem. Thus, it suffices to prove that f̂n(x) − E[f̂n(x)] →P 0. We
have

f̂n(x)− E[f̂n(x)] =
1

n

n−1
∑

i=0

Kh(Xti − x)− 1

n

n−1
∑

i=0

E[Kh(Xti − x)]

=
1

n

n−1
∑

i=0

[Kh(Xti − x) − EKh(Xti − x)].

Let ηn,i(x) = Kh(Xti−1 − x) − EKh(Xti−1 − x), i = 1, 2, . . . , n. Note that
sup1≤i≤n |ηn,i(x)| ≤ C0h

−1 a.s. for some positive constant C0 < ∞. Apply-
ing Theorem 1.3 of Bosq [6], we have for each integer q ∈ [1, n2 ] and each ε > 0

P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

ηn,i(x)

∣

∣

∣

∣

∣

> ε

)

≤ 4 exp

(

− ε2q

8v2(q)

)

+22

(

1 +
4C0h

−1

ε

)1/2

qαX ([p]∆) , (4.5)

where

v2(q) =
2

p2
s(q) +

C0h
−1ε

2

with p = n
2q and

s(q) = max
0≤j≤2q−1

E[([jp] + 1− jp)ηn,[jp]+1(x) + ηn,[jp]+2(x)

+ · · ·+ ηn,[(j+1)p](x) + ((j + 1)p− [(j + 1)p])ηn,[(j+1)p]+1(x)]
2.

Here we set ηn,n+1(x) = 0 for the well-definedness of s(q). By using Cauchy-
Schwarz inequality and stationarity of ηn,i(x), it is easy to find that s(q) =

O(p2h−1). By choosing q = [
√
n∆/

√
h] and p = n

2q = O(
√
nh/

√
∆), we obtain

ε2q

8v2(q)
= ε2 ·O(qh) = O(ε2

√
n∆h). (4.6)

We claim that

22

(

1 +
4C0h

−1

ε

)1/2

qαX ([p]∆) ≤ C(ε) exp(−O(
√
n∆h)). (4.7)



1400 H. Long and L. Qian

By using the GSM property of Xt, we find that there exists some a > 0 such
that

22

(

1 +
4C0h

−1

ε

)1/2

qαX ([p]∆) = O

(√
n∆

h
exp(−a

√
n∆h)

)

.

Hence it suffices to show that

√
n∆

h
exp(−a

√
n∆h) ≤ exp(−a′

√
n∆h) (4.8)

for some a′ > 0. Some basic calculation yields that (4.8) is equivalent to

a− a′ ≥ 3

2
· log(n∆)√

n∆h
− log(n∆h)√

n∆h
.

The existence of such a a′ (e.g. a′ = a
2 ) is justified since the right hand side of

the above inequality tends to zero under (A.6). Finally, combining (4.5), (4.6)
and (4.7), we have

P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

ηn,i(x)

∣

∣

∣

∣

∣

> ε

)

≤ C(ε) exp{−O(ε2
√
n∆h)}. (4.9)

Therefore, the desired convergence result (4.4) follows from given conditions.

Next we establish a central limit theorem (CLT) for stable stochastic inte-
grals, which has some independent interest. The CLT will be crucial in estab-
lishing the consistency (or inconsistency) and asymptotic distribution of the

N-W estimator. Let φ(t) be a predictable process satisfying
∫ T

0 |φ(t)|αdt < ∞
almost surely for T < ∞. Then the stochastic integral

∫ t

0 φ(s)dZs is well-defined
(see e.g., Rosinski and Woyczynski [45], Kallenberg [27]). We assume that either
φ(t) is nonnegative or Z is symmetric. Then, we have the following version of
Lenglart’s inequality in the stable setting.

Lemma 4.2. For any given ε > 0 and δ > 0, there is some constant c > 0 such
that

P

(

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

φ(s)dZs

∣

∣

∣

∣

> ε

)

≤ cδ

εα
+ P

(

∫ T

0

|φ(t)|αdt > δ

)

. (4.10)

Proof. Let St =
∫ t

0 |φ(s)|αds. By Theorem 4.1 and Theorem 4.2 of Kallenberg
[27] (see also Theorem 3.1 in Rosinski and Woyczynski [45] for the symmetric
case), there exists a strictly α-stable process Z

′

with the same finite-dimensional

distributions as Z such that
∫ t

0
φ(s)dZs = Z

′

(St) almost surely. By the classical
maximal inequality (see e.g., Proposition 10.2 of Fristedt [16]), we find that for
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some c > 0

P

(

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

φ(s)dZs

∣

∣

∣

∣

> ε

)

≤ P

(

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

φ(s)dZs

∣

∣

∣

∣

> ε, ST ≤ δ

)

+ P (ST > δ)

≤ P

(

sup
0≤t≤T

|Z ′

(St)| > ε, ST ≤ δ

)

+ P (ST > δ)

≤ P

(

sup
0≤s≤δ

|Z ′

(s)| > ε

)

+ P (ST > δ)

≤ cδ

εα
+ P

(

∫ T

0

|φ(t)|αdt > δ

)

.

This completes the proof.

The following result is a version of the CLT for stable stochastic integrals.

Lemma 4.3. Suppose that there is a deterministic and nonnegative function Φ
such that

Φα(T )

∫ T

0

|φ(t)|αdt →P 1 as T → ∞.

Then, we have

Φ(T )

∫ T

0

φ(t)dZt ⇒ Sα(1, β, 0). (4.11)

Proof. Let Rt = Φα(T )
∫ t

0
|φ(s)|αds. For a fixed T , we redefine the function

φ on the interval (T, T + 1] as φ(t) = Φ−1(T ) and define the stopping time
τT = inf{t ≥ 0 : Rt > 1}. Then, τT ∈ [0, T +1] almost surely. Note that there is
a strictly α-stable process Z

′

with the same finite-dimensional distributions as
Z such that Φ(T )

∫ t

0 φ(t)dZt = Z
′

Rt
. It is easy to see that

Φ(T )

∫ τT

0

φ(t)dZt = Z
′

1 ∼ Sα(1, β, 0).

By using Lemma 4.2 and following exactly the same arguments as in the proof of
Theorem 1.19 in Kutoyants [30], we can show that the characteristic function of

Φ(T )
∫ T

0
φ(t)dZt converges to the characteristic function of Φ(T )

∫ τT
0

φ(t)dZt as
T → ∞. Therefore, by the continuity theorem (see Theorem 26.3 of Billingsley
[5]), it immediately follows that (4.11) holds.

We say that a continuous function F : [0,∞) → [0,∞) grows more slowly
than uα (α > 0) if there exist positive constants c, λ0 and α0 < α such that
F (λu) ≤ cλα0F (u) for all u > 0 and all λ ≥ λ0. The following lemma (Lemma
2.4 of Long [33]) provides moment inequalities for stable stochastic integrals,
which will be a crucial tool in the proofs of our main results.
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Lemma 4.4. Let φ(t) be a predictable process satisfying
∫ T

0 |φ(t)|αdt < ∞
almost surely for T < ∞. We assume that either φ is nonnegative or Z is sym-
metric. If F (u) grows more slowly than uα, then there exist positive constants
c1 and c2 depending only on α, α0, β, c and λ0 such that for each T > 0

c1E

[

F

((∫ T

0

|φ(t)|αdt
)1/α)]

≤ E

[

F

(

sup
t≤T

∣

∣

∣

∣

∫ t

0

φ(s)dZs

∣

∣

∣

∣

)]

≤ c2E

[

F

((∫ T

0

|φ(t)|αdt
)1/α)]

. (4.12)

4.2. Proof of Theorem 2.3

By (4.3) and Lemma 4.1, it suffices to prove that

ĝn(x) →P f(x)b(x) as n → ∞. (4.13)

We first note that

Yi =

∫ ti+1

ti

b(Xs−)ds+

∫ ti+1

ti

σ(Xs−)dZs

= b(Xti)∆ +

∫ ti+1

ti

(b(Xs−)− b(Xti))ds+

∫ ti+1

ti

σ(Xs−)dZs.

Then, by (4.2), it follows that

ĝn(x) =
1

n

n−1
∑

i=0

b(Xti)Kh(Xti − x)

+
1

n∆

n−1
∑

i=0

Kh(Xti − x)

∫ ti+1

ti

(b(Xs−)− b(Xti))ds

+
1

n∆

n−1
∑

i=0

Kh(Xti − x)

∫ ti+1

ti

σ(Xs−)dZs

=: gn,1(x) + gn,2(x) + gn,3(x). (4.14)

We have the following claims:
(i) gn,1(x) →P f(x)b(x) as n → ∞;
(ii) gn,2(x) →P 0 as n → ∞;
(iii) gn,3(x) →P 0 as n → ∞.
These three claims guarantee that (4.13) holds.

Proof of Claim (i). Note that

gn,1(x) = b(x)
1

n

n−1
∑

i=0

Kh(Xti − x) +
1

n

n−1
∑

i=0

(b(Xti)− b(x))Kh(Xti − x)

=: Bn,1(x) +Bn,2(x). (4.15)
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By Lemma 4.1, it is clear that Bn,1(x) →P b(x)f(x) when n → ∞. For Bn,2(x),
by the Lipschitz property of b(·) and stationarity of Xt, we have

|Bn,2(x)| ≤ 1

n

n−1
∑

i=0

L|Xti − x|Kh(Xti − x)

≤ L
1

n

n−1
∑

i=0

(|Xti − x|Kh(Xti − x) − E[|Xti − x|Kh(Xti − x)])

+L · E[|X0 − x|Kh(X0 − x)]. (4.16)

Note that |Xti − x|Kh(Xti − x)−E[|Xti − x|Kh(Xti − x)] is uniformly bounded
for each i under condition (A.5). By slightly modifying the proof of Lemma 4.1,
we can show that

L
1

n

n−1
∑

i=0

(|Xti − x|Kh(Xti − x) − E[|Xti − x|Kh(Xti − x)]) →P 0 (4.17)

when n → ∞. By using the continuity of f(x) and Lebesgue dominated conver-
gence theorem, we find

lim
h→0

E[|X0 − x|Kh(X0 − x)]

h
= lim

h→0

1

h

∫ ∞

−∞
|y − x|Kh(y − x)f(y)dy

= lim
h→0

∫ ∞

−∞
|u|K(u)f(x+ uh)du

= f(x)

∫ ∞

−∞
|u|K(u)du. (4.18)

Combining (4.16), (4.17) and (4.18), it follows that Bn,2(x) →P 0 when n → ∞.
Hence the claim (i) holds.

Proof of Claim (ii). By using the Lipschitz condition of b(·), we have

|gn,2(x)| ≤ 1

n∆

n−1
∑

i=0

Kh(Xti − x)

∫ ti+1

ti

|b(Xs−)− b(Xti)|ds

≤ L

n∆

n−1
∑

i=0

Kh(Xti − x)

∫ ti+1

ti

|Xs− −Xti |ds

≤ L

n

n−1
∑

i=0

Kh(Xti − x) sup
ti≤t≤ti+1

|Xt −Xti |. (4.19)

Let us consider the estimate of supti≤t≤ti+1
|Xt−Xti |. Note that for ti ≤ t ≤ ti+1

Xt −Xti =

∫ t

ti

b(Xs−)ds+

∫ t

ti

σ(Xs−)dZs.
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By using Lipschitz condition on b(·) again, we find

|Xt −Xti | ≤
∫ t

ti

|b(Xs−)|ds+
∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

≤
∫ t

ti

(|b(Xs−)− b(Xti)|+ |b(Xti)|)ds+
∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

≤ |b(Xti)|∆+ sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

+ L

∫ t

ti

|Xs −Xti |ds.

By Gronwall’s inequality, we have

|Xt −Xti | ≤
(

|b(Xti)|∆+ sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

)

eL(t−ti).

It follows that

sup
ti≤t≤ti+1

|Xt −Xti | ≤ eL∆

(

|b(Xti)|∆+ sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

)

. (4.20)

By (4.19) and (4.20), we find

|gn,2(x)| ≤ L

n

n−1
∑

i=0

Kh(Xti − x)eL∆

(

|b(Xti)|∆+ sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

)

≤ L∆eL∆ · 1
n

n−1
∑

i=0

Kh(Xti − x)|b(Xti)|

+LeL∆ · 1
n

n−1
∑

i=0

Kh(Xti − x) sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

=: Bn,3(x) +Bn,4(x). (4.21)

By the claim (i) with b being replaced by |b|, we know that

1

n

n−1
∑

i=0

Kh(Xti − x)|b(Xti)| →P |b(x)|f(x)

when n → ∞. This implies that Bn,3(x) →P 0 when n → ∞. By Markov
inequality and Lemma 4.4, we have

P

(

1

n

n−1
∑

i=0

Kh(Xti − x) sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

> ε

)

≤ 1

nε

n−1
∑

i=0

E

[

sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

Kh(Xti − x)σ(Xs−)dZs

∣

∣

∣

∣

]
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≤ C1

nε

n−1
∑

i=0

E

[

(∫ ti+1

ti

Kα
h (Xti − x)σα(Xs−)ds

)1/α
]

≤ C1

nε

n−1
∑

i=0

E[Kh(Xti − x)σ1∆
1/α]

≤ O(∆1/α). (4.22)

Hence, Bn,4(x) →P 0 as n → ∞. This completes the proof of claim (ii).

Proof of Claim (iii). We define

φn(t, x) =

n−1
∑

i=0

1

h1/α
K

(

Xti − x

h

)

σ(Xt−)1(ti,ti+1](t), (4.23)

so that φn(t, x) is a predictable process. Then, we have

gn,3(x) =
1

n∆h
α−1
α

∫ tn

0

φn(t, x)dZt.

By using Markov inequality, Lemma 4.4, boundedness of σ(Xt−), and station-
arity of Xt, we find for some constant C2 > 0

P (|gn,3(x)| > ε)

≤ 1

n∆h
α−1
α ε

E

∣

∣

∣

∣

∫ tn

0

φn(t, x)dZt

∣

∣

∣

∣

≤ C2

n∆h
α−1
α ε

E

[

(∫ tn

0

|φn(t, x)|αdt
)1/α

]

≤ C2

n∆h
α−1
α ε

(

E

[

n−1
∑

i=0

∫ ti+1

ti

1

h
Kα

(

Xti − x

h

)

σα(Xt−)dt

])1/α

≤ C2

n∆h
α−1
α ε

(

n∆σα
1 E

[

1

h
Kα

(

X0 − x

h

)])1/α

≤ C2σ1

n∆h
α−1
α ε

(n∆)
1
αO(1)

= O((n∆h)
1−α
α ), (4.24)

which goes to zero under condition (A.6). This shows that claim (iii) holds.

4.3. Proof of Theorem 2.4

The claims (i) in the proof of Theorem 2.3 is still true when 0 < α ≤ 1. For
claim (ii), we need to make some minor modifications on its proof. It is clear
that we still have Bn,3(x) →P 0 under (A.1)-(A.6). For Bn,4(x), by Markov
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inequality, Lemma 4.4, condition (A.2), and stationarity of Xt, we have for
α

1+α < r < α ≤ 1

P

(

1

n

n−1
∑

i=0

Kh(Xti − x) sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

> ε

)

≤ 1

nrεr

n−1
∑

i=0

E

[

sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

Kh(Xti − x)σ(Xs−)dZs

∣

∣

∣

∣

r
]

≤ C1

nrεr

n−1
∑

i=0

E

[

(∫ ti+1

ti

Kα
h (Xti − x)σα(Xs−)ds

)r/α
]

≤ C1

nrεr

n−1
∑

i=0

E[Kr
h(Xti − x)σr

1∆
r/α]

≤ O((nh∆
r

α(1−r) )1−r). (4.25)

which tends to zero when nh∆
r

α(1−r) → 0. So, under this extra condition, claim
(ii) holds when 0 < α ≤ 1. However, we shall prove that claim (iii) is not
true, i.e., gn,3(x) is no longer converging to zero in probability as n → ∞ and

consequently b̂n(x) is not consistent. Recall that

φn(t, x) =

n−1
∑

i=0

1

h1/α
K

(

Xti − x

h

)

σ(Xt−)1(ti,ti+1](t).

Let

Φtn =

(

tnσ
α(x)f(x)

∫ ∞

−∞
Kα(u)du

)− 1
α

.

Then, we have

gn,3(x) =
1

n∆h1− 1
α

∫ tn

0

φn(t, x)dZt

=
σ(x)f

1
α (x)

(

∫∞
−∞ Kα(u)du

)
1
α

(n∆h)1−
1
α

· Φtn

∫ tn

0

φn(t, x)dZt,

or equivalently

Φtn

∫ tn

0

φn(t, x)dZt =
(n∆h)1−

1
α

σ(x)f(x)
1
α

(

∫∞
−∞ Kα(u)du

)
1
α

gn,3(x). (4.26)

Note that

φα
n(t, x) =

[

n−1
∑

i=0

1

h1/α
K

(

Xti − x

h

)

σ(Xt−)1(ti,ti+1](t)

]α

=

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

σα(Xt−)1(ti,ti+1](t)
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and consequently

Φα
tn ·
∫ tn

0

φα
n(t, x)dt

= Φα
tn ·
∫ tn

0

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

σα(Xt−)1(ti,ti+1](t)dt

= Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)∫ ti+1

ti

σα(Xt−)dt

= Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

σα(Xti)∆

+Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)∫ ti+1

ti

(σα(Xt−)− σα(Xti))dt

=: I + J. (4.27)

Similar to Lemma 4.1, it is easy to prove that

1

n

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

σα(Xti) →P σα(x)f(x)

∫ ∞

−∞
Kα(u)du. (4.28)

Therefore, we have

I =
1

σα(x)f(x)
∫∞
−∞ Kα(u)du

· 1
n

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

σα(Xti) →P 1. (4.29)

Next we deal with the second term J . By Lipschitz condition (A.1) on σ(·),
(4.20) and basic inequality ||u + v|q − |v|q| ≤ |u|q for u, v ∈ R and q ∈ (0, 1], we
have

|J | = Φα
tn

∣

∣

∣

∣

∣

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)∫ ti+1

ti

(σα(Xt−)− σα(Xti))dt

∣

∣

∣

∣

∣

≤ Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)∫ ti+1

ti

|σα(Xt−)− σα(Xti)| dt

≤ Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)∫ ti+1

ti

|σ(Xt−)− σ(Xti)|α dt

≤ Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

Lα∆ sup
ti≤t≤ti+1

|Xt −Xti |α

≤ LαeαL∆∆α

σα(x)f(x)
∫∞
−∞ Kα(u)du

· 1
n

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

|b(Xti)|α
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+
LαeαL∆

σα(x)f(x)
∫∞
−∞ Kα(u)du

· 1
n

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

× sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

α

= J1 + J2. (4.30)

It is clear that J1 →P 0 under given conditions since (similar to Lemma 4.1)

1

n

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

|b(Xti)|α →P |b(x)|αf(x)
∫ ∞

−∞
Kα(u)du. (4.31)

To prove that J2 →P 0, it is sufficient to show that

1

n

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

α

→P 0.

By using Markov inequality, Lemma 4.4, and condition (A.2), we have for q < 1

P

(

1

n

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

α

> ε

)

≤ 1

(nhε)q
E

∣

∣

∣

∣

∣

n−1
∑

i=0

Kα

(

Xti − x

h

)

sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

α
∣

∣

∣

∣

∣

q

≤ 1

(nhε)q

n−1
∑

i=0

E

[(

sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

K

(

Xti − x

h

)

σ(Xs−)dZs

∣

∣

∣

∣

)qα]

≤ C

(nhε)q

n−1
∑

i=0

E

[

(∫ ti+1

ti

Kα

(

Xti − x

h

)

σα(Xs−)ds

)q
]

≤ C

(nhε)q

n−1
∑

i=0

E

[

Kqα

(

Xti − x

h

)

σqα
1 ∆q

]

=
nCσqα

1 ∆q

(nhε)q

∫ ∞

−∞
Kqα

(

y − x

h

)

f(y)dy

= O((nh∆
q

1−q )1−q), (4.32)

which goes to zero if we choose r
α+(1−α)r ≤ q < 1 so that q

1−q ≥ r
α(1−r) . Thus,

combining (4.27), (4.29)-(4.32), we find that

Φα
tn ·
∫ tn

0

φα
n(t, x)dt →P 1. (4.33)

Hence, by Lemma 4.3, we have

Φtn

∫ tn

0

φn(t, x)dZt ⇒ Sα(1, β, 0). (4.34)
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If gn,3(x) →P 0 as n → ∞, then the right hand side of (4.26) converges to

zero in probability as n → ∞ since (n∆h)1−
1
α → 0 when 0 < α < 1 and

(n∆h)1−
1
α = 1 when α = 1 under condition (A.6). This contradicts (4.34).

Therefore, we conclude that gn,3(x) does not converge to zero in probability.
This completes the proof.

4.4. Proof of Theorem 2.5

Proof of Theorem 2.5 (a)-(i). Note that

(n∆h)1−
1
αΛ(x)(b̂n(x)− b(x)) =

(n∆h)1−
1
αΛ(x)[ĝn(x)− b(x)f̂n(x)]

f̂n(x)

:=
Vn(x)

f̂n(x)
. (4.35)

Since f̂n(x) → f(x) in probability as n → ∞, it is enough to study the asymp-
totic behavior of Vn(x). By (4.14), we find

Vn(x) = (n∆h)1−
1
αΛ(x)[gn,1(x)− b(x)f̂n(x)]

+(n∆h)1−
1
αΛ(x)gn,2(x)

+(n∆h)1−
1
αΛ(x)gn,3(x)

:= Vn,1(x) + Vn,2(x) + Vn,3(x). (4.36)

Under the given conditions, we have the following claims:
Claim 1.

Vn,1(x)

= (n∆h)1−
1
αh2Λ(x)

[

(b
′

(x)f
′

(x) +
1

2
b
′′

(x)f(x))

∫ ∞

−∞
u2K(u)du+ o(1)

]

+oP (1). (4.37)

Claim 2.

Vn,2(x) = oP (1). (4.38)

Claim 3.

Vn,3(x) ⇒ f(x)Sα(1, β, 0). (4.39)

Here the notation oP (1) (or OP (1)) means a sequence of random variables con-
verging to zero (or a finite constant) in probability.

Proof of Claim 1. We can express Vn,1(x) as

Vn,1(x) = (n∆h)1−
1
αΛ(x) · 1

n

n−1
∑

i=0

(b(Xti)− b(x))Kh(Xti − x).
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Note that Vn,1(x) = E[Vn,1(x)] + (Vn,1(x)− E[Vn,1(x)]). We have the following
two claims:
Claim 1-(i):

E[Vn,1(x)]

= (n∆h)1−
1
αh2Λ(x)

[

(b
′

(x)f
′

(x) +
1

2
b
′′

(x)f(x))

∫ ∞

−∞
u2K(u)du+ o(1)

]

.

(4.40)

Claim 1-(ii):

Vn,1(x)− E[Vn,1(x)] = oP (1). (4.41)

Then, claim 1 follows immediately from claims 1-(i) and 1-(ii).

Proof of Claim 1-(i). By stationarity of Xt, condition (A.5) for the kernel func-
tion K(·), Taylor’s formula and Lebesgue dominated convergence, we find that
for some θ, θ̃ ∈ [0, 1]

E[Vn,1(x)]

= (n∆h)1−
1
αΛ(x) · 1

n

n−1
∑

i=0

E[(b(Xti)− b(x))Kh(Xti − x)]

= (n∆h)1−
1
αΛ(x)E[(b(X0)− b(x))Kh(X0 − x)]

= (n∆h)1−
1
αΛ(x)

∫ ∞

−∞
(b(y)− b(x))

1

h
K

(

y − x

h

)

f(y)dy

= (n∆h)1−
1
αΛ(x)

∫ ∞

−∞
(b(x+ hu)− b(x))K(u)f(x+ hu)du

= (n∆h)1−
1
αΛ(x)

∫ ∞

−∞

[

b′(x)hu +
1

2
b
′′

(x+ θhu)h2u2

]

×(f(x) + f ′(x + θ̃hu)hu)K(u)du

= (n∆h)1−
1
αΛ(x)

[

hb′(x)f(x)

∫ ∞

−∞
uK(u)du

+h2b′(x)

∫ ∞

−∞
f ′(x+ θ̃hu)u2K(u)du

+
1

2
h2f(x)

∫ ∞

−∞
b
′′

(x+ θhu)u2K(u)du

+
1

2
h3

∫ ∞

−∞
b
′′

(x+ θhu)f ′(x+ θ̃hu)u3K(u)du

]

= (n∆h)1−
1
αh2Λ(x)

[

(b
′

(x)f
′

(x) +
1

2
b
′′

(x)f(x))

∫ ∞

−∞
u2K(u)du+ o(1)

]

,

where we have used the facts that
∫∞
−∞ uK(u)du = 0 and

∫∞
−∞ u3K(u)du = 0.
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Proof of Claim 1-(ii). For i = 1, 2, . . . , n, set

ξn,i(x) = (n∆h)1−
1
α

(

(b(Xti−1)− b(x))Kh(Xti−1 − x)

− E[(b(Xti−1)− b(x))Kh(Xti−1 − x)]
)

.

Then, we have

Vn,1(x) − E[Vn,1(x)] = Λ(x) · 1
n

n
∑

i=1

ξn,i(x).

It suffices to show that 1
n

∑n
i=1 ξn,i(x) = oP (1). By Lipschitz condition on b(·)

and condition (A.5), we find

sup
1≤i≤n

|ξn,i(x)| ≤ LM0(n∆h)1−
1
α a.s.

Applying Theorem 1.3 of Bosq [6], we have for each integer q ∈ [1, n
2 ] and each

ε > 0

P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

ξn,i(x)

∣

∣

∣

∣

∣

> ε

)

≤ 4 exp

(

− ε2q

8v2(q)

)

+22

(

1 +
4LM0(n∆h)1−

1
α

ε

)1/2

qαX ([p]∆) ,

where

v2(q) =
2

p2
s(q) +

LM0(n∆h)1−
1
α ε

2

with p = n
2q and

s(q) = max
0≤j≤2q−1

E[([jp] + 1− jp)ξn,[jp]+1(x) + ξn,[jp]+2(x)

+ · · ·+ ξn,[(j+1)p](x) + ((j + 1)p− [(j + 1)p])ξn,[(j+1)p]+1(x)]
2.

By using Billingsley’s inequality (see Corollary 1.1 of Bosq [6])and stationarity
of ξn,i(x), it is easy to find that

s(q) = O(p(n∆h)2(1−
1
α
)∆−1),

here we have used the fact that
∑[p]

k=0 αX(k∆) = O(∆−1) under the GSM
condition on Xt. Then, we have

ε2q

8v2(q)
=

ε2n

O((n∆h)2(1−
1
α
)∆−1) +O(εp(n∆h)1−

1
α )

,

which goes to ∞ by choosing q = [
√
n∆/

√
h] and p = n

2q = O(
√
nh/

√
∆). It is

also easy to see that (by GSM property of Xt again)

22

(

1 +
4M0(n∆h)1−

1
α

ε

)1/2

qαX ([p]∆) → 0.

Therefore, we conclude that 1
n

∑n
i=1 ξn,i(x) = oP (1).
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Proof of Claim 2. By (4.21), we have

|Vn,2(x)| = (n∆h)1−
1
αΛ(x)|gn,2(x)|

≤ (n∆h)1−
1
αΛ(x)

[

L∆eL∆ · 1
n

n−1
∑

i=0

Kh(Xti − x)|b(Xti)|

+ LeL∆ · 1
n

n−1
∑

i=0

Kh(Xti − x) sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

]

.

= (n∆h)1−
1
αΛ(x)Bn,3(x) + (n∆h)1−

1
αΛ(x)Bn,4(x).

As in the proof of Claim (ii) of Theorem 2.3 via Lemma 4.4, we can show that

(n∆h)1−
1
αΛ(x)Bn,3(x) = OP (1) · O((n∆h)1−

1
α∆),

which goes to zero in probability since (n∆h)1−
1
α∆ = (n∆h)1−

1
α∆1/α ·∆(α−1)/α

= o(1), and

P ((n∆h)1−
1
αΛ(x)Bn,4(x) > ε) ≤ O((n∆h)1−

1
α∆1/α),

which goes to zero under the condition (n∆h)1−
1
α∆1/α = o(1). Thus, it follows

that claim 2 holds.

Proof of Claim 3. Recall that

φn(t, x) =

n−1
∑

i=0

1

h1/α
K

(

Xti − x

h

)

σ(Xt−)1(ti,ti+1](t).

and

Φtn =

(

tnσ
α(x)f(x)

∫ ∞

−∞
Kα(u)du

)− 1
α

.

Then, we have

Vn,3(x) = (n∆h)1−
1
αΛ(x)gn,3(x)

= (n∆h)1−
1
αΛ(x)

1

n∆

n−1
∑

i=0

Kh(Xti − x)

∫ ti+1

ti

σ(Xs−)dZs

= f(x) · Φtn

∫ tn

0

φn(t, x)dZt.

By Lemma 4.3, it suffices to prove that (4.33) holds for 1 < α < 2. Since the
proof is similar to that of (4.33) for 0 < α ≤ 1, we sketch only the main steps.
Recall that (4.27) gives

Φα
tn ·
∫ tn

0

φα
n(t, x)dt

= Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

σα(Xti)∆
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+Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)∫ ti+1

ti

(σα(Xt−)− σα(Xti))dt

=: I + J.

From (4.28) and (4.29), we have I →P 1 under the given conditions since (4.28)
is true for any α ∈ (0, 2). Next, it remains to prove that J →P 0. Similar to
(4.30), for 1 < α < 2, by using the basic inequality ||u+ v|p − |u|p| ≤ |u| ·
|v|p−1 + |u|p−1 · |v|+ |v|p for 1 < p ≤ 2 and the Lipschitz condition on σ(·), we
find

|J | ≤ Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)∫ ti+1

ti

|σα(Xt−)− σα(Xti)| dt

≤ Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)∫ ti+1

ti

(|σ(Xt−)− σ(Xti)|α

+|σ(Xti)| · |σ(Xt−)− σ(Xti)|α−1

+ |σ(Xti)|α−1 · |σ(Xt−)− σ(Xti)|
)

dt

≤ Φα
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

Lα∆ sup
ti≤t≤ti+1

|Xt −Xti |α

+σ1Φ
α
tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

Lα−1∆ sup
ti≤t≤ti+1

|Xt −Xti |α−1

+σα−1
1 Φα

tn

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

L∆ sup
ti≤t≤ti+1

|Xt −Xti |

= H1 +H2 +H3.

For H1, we can get essentially the same decomposition as (4.30) by just mul-
tiplying a constant 2α−1 on the right hand side of (4.30). The same derivation
from (4.31) to (4.32) yields H1 →P 0 under the given conditions since when
1 < α < 2 we can choose q = α

2α−1 such that

nh∆
q

1−q = nh∆
α

α−1 = [(n∆h)1−
1
α∆1/α]α/(α−1) = o(1).

For H2, using (4.20), we have

|H2| ≤ σ1L
α−1e(α−1)L∆∆α−1

σα(x)f(x)
∫∞
−∞ Kα(u)du

· 1
n

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

|b(Xti)|α−1

+
σ1L

α−1e(α−1)L∆

σα(x)f(x)
∫∞
−∞ Kα(u)du

· 1
n

n−1
∑

i=0

1

h
Kα

(

Xti − x

h

)

× sup
ti≤t≤ti+1

∣

∣

∣

∣

∫ t

ti

σ(Xs−)dZs

∣

∣

∣

∣

α−1

= H2,1 +H2,2.
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It is easy to see that H2,1 →P 0 under the given conditions (similar to Lemma
4.1). Similar to (4.22), we can use Markov inequality and Lemma 4.4 to show
that

P (H2,2 > ε) ≤ O(∆
α−1
α ).

Hence, we have H2 →P 0 under the given conditions. Similarly, we can prove
that H3 →P 0 under the given conditions. Combining the above arguments, we
have J →P 0. Finally, by (4.36) and the claims 1-3, we obtain

Vn(x) ⇒ f(x)Sα(1, β, 0) (4.42)

under the given conditions. By using (4.35), (4.42), Slutsky’s theorem and
Lemma 4.1, we conclude that

Λ(x)(n∆h)1−
1
α (b̂n(x) − b(x)) =

Vn(x)

f̂n(x)
⇒ Sα(1, β, 0).

This completes the proof of Theorem 2.5(a)-(i).

Proof of Theorem 2.5(a)-(ii). If (n∆h)1−
1
αh2 = O(1), by (4.37), we have

Vn,1(x) = (n∆h)1−
1
αh2Λ(x)Γb(x)f(x) + oP (1).

By (4.38) and (4.39), we know that Vn,2(x) = oP (1) and Vn,3(x) ⇒ f(x)Sα(1, β, 0)

under the condition (n∆h)1−
1
α∆

1
α = o(1). Then, we use (4.36) to obtain

Vn(x)− (n∆h)1−
1
αh2Λ(x)Γb(x)f(x) ⇒ f(x)Sα(1, β, 0).

By Slutsky’s theorem and the fact that f(x)/f̂n(x) → 1 in probability, we find

(n∆h)1−
1
αΛ(x)(b̂n(x)− b(x)− h2Γb(x))

=
Vn(x)

f̂n(x)
− (n∆h)1−

1
αh2Λ(x)Γb(x)

=
Vn(x)− (n∆h)1−

1
αh2Λ(x)Γb(x)f(x)

f̂n(x)

+(n∆h)1−
1
αh2Λ(x)Γb(x)

(

f(x)

f̂n(x)
− 1

)

⇒ Sα(1, β, 0).

This completes the proof.

Proof of Theorem 2.5 (b). Note that Claims 1-2 in the proof of Theorem 2.5(a)-
(i) are still valid for α = 1. When α = 1, by (4.34), it follows that

Vn,3(x) ⇒ f(x)Sα(1, β, 0),

i.e., Claim 3 holds in this case. Here we remark that the condition nh∆
q

1−q =
o(1) for some 1

2 < q < 1 is required for (4.34) via the derivation of (4.32). These
three claims along with Slutsky’s theorem and Lemma 4.1 immediately follow
that 1

σ(x) (b̂n(x)− b(x)) ⇒ Sα(1, β, 0). This completes the proof.
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