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Abstract: We complement the results of Fourdrinier, Mezoued and Straw-
derman in [5] who considered Bayesian estimation of the location parameter
θ of a random vector X having a unimodal spherically symmetric density
f(‖x − θ‖2) for a spherically symmetric prior density π(‖θ‖2). In [5], ex-
pressing the Bayes estimator as δπ(X) = X+∇M(‖X‖2)/m(‖X‖2), where
m is the marginal associated to f(‖x − θ‖2) and M is the marginal with
respect to F (‖x − θ‖2) = 1/2

∫∞
‖x−θ‖2 f(t) dt, it was shown that, under

quadratic loss, if the sampling density f(‖x − θ‖2) belongs to the Berger
class (i.e. there exists a positive constant c such that F (t)/f(t) ≥ c for all
t), conditions, dependent on the monotonicity of the ratio F (t)/f(t), can
be found on π in order that δπ(X) is minimax.

The main feature of this paper is that, in the case where F (t)/f(t) is
nonincreasing, if π(‖θ‖2) is a superharmonic power prior of the form ‖θ‖−2k

with k > 0, the membership of the sampling density to the Berger class can
be droped out. Also, our techniques are different from those in [5]. First,
writing δπ(X) = X + g(X) with g(X) ∝ ∇M(‖X‖2)/m(‖X‖2), we follow
Brandwein and Strawderman [4] proving that, for some b > 0, the function
h = b∆M/m is subharmonic and satisfies ‖g‖2/2 ≤ −h ≤ −divg. Also,
we adapt their approach using the fact that R2(k+1)

∫
Bθ,R

h(x) dVθ,R(x) is
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nonincreasing in R for any θ ∈ R
p, when Vθ,R is the uniform distribution

on the ball Bθ,R of radius R and centered at θ. Examples illustrate the
theory.
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1. Introduction

We recall the framework considered by Fourdrinier, Mezoued and Strawderman
in [5]. Let X be a random vector in R

p with spherically symmetric density

f(‖x− θ‖2) (1.1)

around an unknown location parameter θ that we wish to estimate. Any esti-
mator δ is evaluated under the square error loss

‖δ − θ‖2 , (1.2)

through the corresponding quadratic risk R(θ, δ(X)) = Eθ[‖δ(X)− θ‖2], where
Eθ denotes the expectation with respect to the density in (1.1). As soon as
E0[‖X‖2] < ∞, the standard estimator X is minimax, and has constant risk
(actually, equal to E0[‖X‖2]), which entails that minimaxity of δ will be obtained
by proving that the risk of δ is less than or equal to the risk of X , that is, if
Eθ[‖δ(X) − θ‖2] ≤ E0[‖X‖2] for any θ ∈ R

p (domination of δ over X being
obtained if, furthermore, this inequality is strict for some θ).

Brandwein and Strawderman [4] gave general conditions on estimators of the
form

δa,g(X) = X + a g (X) (1.3)
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to dominate the standard estimator X , when p ≥ 3. Here g = (g1, g2, . . . , gp) is
a function from R

p into R
p and a is a positive constant. Besides the finiteness

risk condition
Eθ[‖g(X)‖2] <∞ (1.4)

for δa,g(X), these conditions require that
(j) 0 < a ≤ 1/[pE0(‖X‖−2)]

and involve the existence of a subharmonic function h such that
(jj) ‖g‖2 /2 ≤ −h ≤ −divg,

where div is the divergence operator defined, for x = (x1, . . . , xp) ∈ R
p, by

divg(x) =
∑p

i=1 ∂gi(x)/∂xi, and, denoting by Vθ,R the uniform distribution on
the ball Bθ,R = {x ∈ R

p/‖x− θ‖ ≤ R} of radius R and centred at θ, such that
the function

(jjj) R 7→ R2EVθ,R
[h(X)] is nonincreasing in R.

Note that (jjj), as (jj), is just a condition on the function h, while (j) is a
distributional condition on f in (1.1).

In that context, it should be noticed that, although Brandwein and Straw-
derman [4] gave examples for which (jjj) holds, this condition may be difficult to
prove, in particular, in the situation where Bayesian estimators are concerned.
In that situation, a more flexible condition is needed and it would be easier,
for instance, to deal with a monotonicity condition such that, for some q ≥ 1,
R2q EVθ,R

[h(X)] is nonincreasing in R.
In this paper, we will show that a modification of the Brandwein and Straw-

derman approach in [4], taking into account the above new monotonicity con-
dition, can be used to obtain domination over X , and hence minimaxity, of
generalized Bayes estimators for density prior of the form

‖θ‖−2k , (1.5)

where k is a positive constant.
As stated in [8] and [5], for spherical prior densities, the generalized Bayes

estimator associated to (1.5) is the posterior mean and can be written under
the form

δk(X) = X +
∇M(‖X‖2)
m(‖X‖2)

(1.6)

where ∇ denotes the gradient operator and where

m(‖x‖2) =
∫

Rp

f(‖x− θ‖2) ‖θ‖−2k dθ (1.7)

and

M(‖x‖2) =
∫

Rp

F (‖x− θ‖2) ‖θ‖−2k dθ (1.8)

are respectively the marginal densities with respect to the density in (1.1) and
the density proportional to F (‖x− θ‖2) with

F (t) =
1

2

∫ ∞

t

f(u) du (1.9)
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for t ≥ 0. Note that, in (1.6), (1.7) and (1.8) the marginals depend on the
observable X through its squared norm since the prior in (1.5) is spherically
symmetric around 0.

It is easily seen that the finiteness risk condition of X is µ2 = E0[‖X‖2] <∞.
It is worth noting that this condition is sufficient to guarantee the finiteness of
the risk of Bayesian estimator δk(X) in (1.6) (see [5]).

In the literature, minimaxity of Bayesian estimators is mainly addressed when
the sampling in (1.1) is in the Berger class, that is, when there exists a positive
constant c such that F (t)/f(t) ≥ c for any t. Thus, for that class, Fourdrinier,
Mezoued and Strawderman [5] provide two wide sets of sampling densities (ac-
cording to the nondecreasing/nonincreasing monotonicity of the ratio F (t)/f(t))
and a wide class of prior densities of the form π(‖θ‖2) for which the correspond-
ing Bayes estimators δπ are minimax (it is worth noting that, in [8], the fun-
damental harmonic prior ‖θ‖2−p is shown to be a member of that class when
F (t)/f(t) is nondecreasing in t). When one is not restricted to the Berger class,
minimaxity of δπ is much more complicated to obtain (and the techniques used
in [8] and [5] fail). That difficulty prompted us to consider a different approach
based on a modification of the minimaxity result from Brandwein and Strawder-
man [4] as mentioned above. Also, dealing only with the case where F (t)/f(t) is
nonincreasing in t, we only prove minimaxity when the prior densities are power
priors of the form (1.5).

As a last remark, note that, if we consider f(t) to be proportional to a density
of a positive random variable, then 2F (t)/f(t) is the reciprocal of the hazard
rate. Its monotonicity may be determined in many cases by studying the log-
convexity or the log-concavity of f(t) (see e.g. Barlow and Proschan [2]).

In Section 2, we propose a new version of Theorem 2.1 of Brandwein and
Strawderman [4]. In Section 3, we give general results on Bayes estimators δk in
(1.6) with respect to the spherical priors in (1.5). In Section 4, we focus on the
case where the function F (t)/f(t) is nonincreasing and we show that our result
in Section 2 can be applied to obtain minimaxity of δk. Section 5 is devoted
to examples which illustrate the theory while Section 6 is a concluding section.
Finally, we provide an appendix which contains technical results needed in the
development of the paper.

2. A minimaxity theorem

To prove the version of Theorem 2.1 of Brandwein and Strawderman [4] below,
we will follow the lines of their proof making use of the radial distribution of
R = ‖X − θ‖2 with density related to f by

ξ : r 7→ 2 πp/2

Γ(p/2)
rp−1 f(r2) (2.1)

and whose expectation will be denoted by E.
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Theorem 2.1. Let X be a random vector in R
p with spherically symmetric

density as in (1.1) such that, for some fixed q ≥ 1, µ−2q = E0(‖X‖−2q) < ∞.
Let δa,g(X) an estimator as in (1.3). Assume that

0 < a ≤ 1

p

µ−2(q−1)

µ−2q
. (2.2)

Assume also that there exists a subharmonic function h such that

‖g‖2 /2 ≤ −h ≤ −divg (2.3)

and such that
R2q EVθ,R

[h(X)] is nonincreasing in R . (2.4)

Then δa,g(X) has a risk smaller than or equal to that of X.

Proof. In the proof of Theorem 2.1 of [4], it is shown that the risk difference at
θ between δa,g(X) and X satisfies

dθ = R(θ, δa,g(X))−R(θ,X)

≤ E

[(

−2 a2

R2
+

2 a

p

)

R2EVθ,R
[h(X)]

]

. (2.5)

Introducing R2(q−1) in its right hand side Inequality (2.5) can be written as,

dθ ≤ E[ϕ(R)ψ(R)] (2.6)

where

ϕ(R) =
2 a

R2(q−1)

(

1

p
− a

R2

)

and ψ(R) = R2q EVθ,R
[h(X)] . (2.7)

As ϕ(R) changes sign once from − to + at R0 = a p and as, by assumption,
ψ(R) is nonincreasing, we have

dθ ≤ E[ϕ(R)]ψ(R0) . (2.8)

Also, by nonpositivity of h, we have ψ(R0) ≤ 0, and hence, we will have dθ ≤ 0
when E[ϕ(R)] ≥ 0, that is, as soon as

1

p
E

[

1

R2(q−1)

]

≥ aE

[

1

R2q

]

or, equivalently, as soon as

a ≤ 1

p

E
[

1
R2(q−1)

]

E
[

1
R2q

] =
1

p

µ−2(q−1)

µ−2q
,

which is the desired result.
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Remark 2.1. Note that, for q > 0, the ratio E[R−2(q−1)]/E[R−2q] is nonin-
creasing in q so that, for q ≥ 1, we have

µ−2(q−1)

µ−2q
=
E
[

1
R2(q−1)

]

E
[

1
R2q

] ≤
(

E

[

1

R2

])−1

. (2.9)

Thus, comparing with Condition (j) in Section 1, we can see that the range
of values of a is smaller with Condition 2.2 than with Condition (j), since it
is respectively described by 0 < a < (1/p)E[R−2(q−1)]/E[R−2q] and 0 < a <
(1/p) 1/E[R−2] .

3. Generalized Bayes estimators

As mentioned in Section 1, our aim is to study the minimaxity of the Bayes
estimator δk(X) in (1.6) using Theorem 2.1, that is, Conditions (2.2), (2.3) and
(2.4) in Section 2. Linking the forms of the estimators in (1.6) and (1.3) leads,

for any x ∈ R
p, to g(x) = ∇M(‖x‖2)/(am(‖x‖2)). Hence, insofar as Condition

(2.2) is concerned, just fix

0 < a ≤ 1

p

µ−2(q−1)

µ−2q

and, as a candidate for a suitable function h, set h(x) = ∆M(‖x‖2)/(am(‖x‖2)),
so that, clearly, it suffices to prove that Conditions (2.3) and (2.4) are satisfied
for that function h to obtain improvement of δk(X) over X . Actually, in Section
4, it will turn out that the choice of the upper bound of the value of a will be
appropriate for q = k + 1, that is,

a =
1

p

µ−2k

µ−2(k+1)
. (3.1)

The first inequality in Condition (2.3) reduces to

1

2 a

∥

∥

∥

∥

∥

∇M(‖x‖2)
m(‖x‖2)

∥

∥

∥

∥

∥

2

≤ −∆M(‖x‖2)
m(‖x‖2)

(3.2)

and the second one to

0 ≤ ∇m(‖x‖2) · ∇M(‖x‖2) (3.3)

since

−div
∇M(‖x‖2)
m(‖x‖2)

=
∇M(‖x‖2).∇m(‖x‖2)

m2(‖x‖2)
− ∆M(‖x‖2)

m(‖x‖2)
.

Note that the superharmonicity condition on −h reduces to the subharmonicity
of the ratio ∆M(‖x‖2)/m(‖x‖2), that is, ∆

(

∆M(‖x‖2)/m(‖x‖2)
)

≥ 0, and it
will be convenient to write this Laplacian as

∆

(

∆M(‖x‖2)
m(‖x‖2)

)

= A(‖x‖2) +B(‖x‖2) (3.4)
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where

A(‖x‖2) = ∆(2)M(‖x‖2)
m(‖x‖2)

− ∆M(‖x‖2)∆m(‖x‖2)
m2(‖x‖2)

+ 2
∆M(‖x‖2)
m(‖x‖2)

∥

∥

∥

∥

∥

∇m(‖x‖2)
m(‖x‖2)

∥

∥

∥

∥

∥

2

(3.5)

and

B(‖x‖2) = −2
∇
(

∆M(‖x‖2)
)

· ∇m(‖x‖2)

m2(‖x‖2)
(3.6)

and to prove separately that
A(‖x‖2) ≥ 0 (3.7)

and
B(‖x‖2) ≥ 0 . (3.8)

The above conditions involve the marginals m(‖x‖2) and M(‖x‖2) through
the ratios

∇m(‖x‖2)/m(‖x‖2), ∆m(‖x‖2)/m(‖x‖2), ∇M(‖x‖2)/m(‖x‖2),

∆M(‖x‖2)/m(‖x‖2), ∇(∆M(‖x‖2))/m(‖x‖2),
and

∆(2)M(‖x‖2)/m(‖x‖2) .
As noticed by Fourdrinier, Mezoued and Strawderman in [5], where general
spherical priors π(‖θ‖2) are considered, conditions on π and f are needed to
express these quantities as expectations with respect the a posteriori distribution
given x. To this end, they rely on formulas of the type

∫

Rp

Dαψ
(

‖x− θ‖2
)

π(‖θ‖2) dθ = (−1)α
∫

Rp

ψ
(

‖x− θ‖2
)

Dαπ(‖θ‖2) dθ (3.9)

where ψ is, either the function f , or the function F and where, for a multi-index
α = (α1, . . . , αp) (a p-uple of nonnegative integers) with lengh |α| = α1+· · ·+αp,
the operator Dα = ∂α/∂xα1

1 . . . ∂x
αp

p is the corresponding partial derivative
operator. In order (3.9) to hold the required conditions in [5] are

• f (t) ∈ Sα−1,p/2+1+ǫ (R+ \ {0}) for a certain ǫ > 0

and

• π(‖θ‖2) ∈Wα,1
loc (R

p) ∩ Cα
b (Rp \Br) for a certain r > 0,

where Sα,p+ǫ (Rp \Br) is the space of functions α-times continuously differen-
tiable on R

p \Br such that supx∈Rp\Br ;|β|≤α;γ≤p+ǫ ‖x‖γ
∣

∣Dβψ
(

‖x− θ‖2
)∣

∣ <∞,

Wα,1
loc (R

p) is the Sobolev space
{

u ∈ L1
loc(R

p)
/

∀β, |β| ≤ α, Dβu ∈ L1
loc(R

p)
}

,
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and Cα
b (Rp \Br) is the space of functions α-times continuously differentiable

and bounded on R
p \Br where Br is the ball of radius r centered at 0.

Clearly this is the highest order of derivation which matters so that, as the
bi-Laplacian is involved, we have to consider α = 4. Insofar as the prior in
(1.5) is concerned, the membership of π(‖θ‖2) = (‖θ‖2)−k to Cα

b (Rp \Br) is
guaranteed while it can be checked that its membership to the Sobolev space
W 4,1

loc (R
p) holds for k < p/2− 2. Hence, in conjunction with

•
∥

∥

∥

∇π(‖θ‖2)
π(‖θ‖2)

∥

∥

∥

2

= 4 k2

‖θ‖2 ,

• ∆π(‖θ‖2)
π(‖θ‖2) = −2 k (p−2 (k+1))

‖θ‖2

and

• ∆(2)π(‖θ‖2)
π(‖θ‖2) = 4 k (k+1) (p−2 (k+1))(p−2 (k+2))

‖θ‖4 ,

this leads to the following lemma where Ex denotes the conditional expectation
of θ given x. Note that there is no confusion with the notation Eθ introduced
after Formula (1.2) since, in the former notation, x is a superscript while, in the
latter, θ is a subscript.

Lemma 3.1. Consider a prior as in (1.5) with k < p/2− 2 and ǫ > 0 such that
f (t) ∈ S3,p/2+1+ǫ

(

R
∗
+

)

. We have

∇m(‖x‖2)
m(‖x‖2)

= −2 k Ex

[

θ

‖θ‖2
]

(3.10)

∆m(‖x‖2)
m(‖x‖2)

= −2 k (p− 2 (k + 1))Ex

[

1

‖θ‖2
]

(3.11)

∇M(‖x‖2)
m(‖x‖2)

= −2 kEx

[

F (‖x− θ‖2)
f(‖x− θ‖2)

θ

‖θ‖2
]

(3.12)

∆M(‖x‖2)
m(‖x‖2)

= −2 k (p− 2 (k + 1))Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖2
]

(3.13)

∇
(

∆M(‖x‖2)
)

m(‖x‖2)
= 4 k (k + 1) (p− 2 (k + 1))Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

θ

‖θ‖4
]

(3.14)

∆(2)M(‖x‖2)
m(‖x‖2)

= 4 k (k + 1)(p− 2 (k + 1)) (p− 2 (k + 2))

Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖4
]

. (3.15)
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Remark 3.1. Similarly to what was noticed in [6], Lemma 3.1 still holds when
requiring only that the assumptions on the generating function f(t) are satisfied
except on a finite set T of values of t. This will be implicit in the following and
will be used in an example of Section 5.

In order to obtain minimaxity of δk in (1.6), expressions in (3.10) and (3.14)
will play an important role through their inner product with x. This can be seen
in the following lemma whose proof is postponed to Appendix A.1.

Lemma 3.2. For any x ∈ R
p, let

ω(‖x‖2) = −∆M(‖x‖2)
m(‖x‖2)

= 2 k (p− 2(k + 1))Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖2

]

. (3.16)

We have

x · ∇m(‖x‖2)
m(‖x‖2) = ω(‖x‖2)− 2k (3.17)

and

x · ∇(∆M(‖x‖2))
m(‖x‖2) = (−p+ 2(k + 1))ω(‖x‖2) + δ(‖x‖2) (3.18)

where

δ(‖x‖2) = 2 k (p− 2(k + 1))Ex

[

‖x− θ‖2 1

‖θ‖2
]

. (3.19)

4. Bayes minimax estimators

We can now formulate our main results about the minimaxity of the generalized
Bayes estimators δk(X) in (1.6). This minimaxity will be obtained through
improvement on the usual estimator X .

Theorem 4.1. Assume that X has a spherically symmetric unimodal density
f(‖x− θ‖2) as in (1.1) such that µ2 = E0[‖X‖2] < ∞, f (t) ∈ S3,p/2+1+ǫ

(

R
∗
+

)

for some ǫ > 0 and the function F (t)/f(t) is nonincreasing. Consider a prior
as in (1.5) with 0 < k ≤ p/2− 3.

Then the Bayes estimator δk in (1.6) dominates X (and hence is minimax),

under the quadratic loss (1.2), as soon as µ−2 (k+1) = E0[‖X‖−2 (k+1)
] <∞,

p
F (0)

f(0)

µ−2 (k+1)

µ−2 k
k − [p− 2 (k + 1)] ≤ 0 (4.1)

and

2

[

F (0)

f(0)
+
µ2

p

]

k2 +

[

(p− 2)
F (0)

f(0)
− (p− 6)

µ2

p

]

k − (p− 4)
µ2

p
≤ 0. (4.2)
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Remark 4.1. The assumption 0 < k ≤ p/2−3 imposes that p ≥ 7 and is made
to guarantee the superharmonicity of the function ‖θ‖− 2 (k+2) (which implies
the superharmonicity of the pior density in (1.5)). It is worth noting that this
upper bound for k is implied by Condition (4.2) (see Appendix A.4).

Conditions (4.1) and (4.2) express that k lies in a neighborhood of 0 since, in
(4.1), according to Remark 2.1, the ratio µ−2 (k+1)/µ−2 k is nondecreasing in k.

Proof. As it was noticed in Section 3, we are reduced to prove Conditions (2.3)
and (2.4). Condition (2.3) will follow in proving Inequalities (3.2), (3.7), (3.3)
and (3.8) successively.

Assume Conditions (4.1) and (4.2) and consider first Inequality (3.2). Ac-
cording to (3.12) and (3.13) in Lemma 3.1, taking

a =
1

p

µ−2k

µ−2(k+1)

in (3.1), this one can be expressed as

p

2

µ−2 (k+1)

µ−2 k
× 4 k2

∥

∥

∥

∥

Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

θ

‖θ‖2
]
∥

∥

∥

∥

2

− 2 k (p− 2(k + 1))

Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖2
]

≤ 0 .

After simplifying, it is clear that, through Jensen’s inequality, it is sufficient to
prove that

p
µ−2 (k+1)

µ−2 k
kEx

[

(

F (‖x− θ‖2)
f(‖x− θ‖2)

)2
1

‖θ‖2

]

− (p− 2(k + 1))

Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖2
]

≤ 0 .

(4.3)

In the left hand side of Inequality (4.3), as for the first expectation, using the
fact that F (t)/f(t) ≤ F (0)/f(0) since F (t)/f(t) is nonincreasing, this inequality
is satisfied if

(

p
F (0)

f(0)

µ−2 (k+1)

µ−2 k
k − [p− 2 (k + 1)]

)

Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖2
]

≤ 0. (4.4)

Therefore it follows from (4.4) that Inequality (4.3) holds, and hence Inequality
(3.2) holds as well, as soon as Inequality (4.1) is satisfied.

To prove (3.7) note that, similarly, by (3.15), (3.13), (3.11) and (3.10) in
Lemma 3.1, the term A(x) in (3.5) equals
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A(x) = 4 k (k + 1)(p− 2 (k + 1))(p− 2 (k + 2))Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖4
]

− 4 k2(p− 2(k + 1))2 Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖2
]

Ex

[

1

‖θ‖2
]

− 16 k3 (p− 2 (k + 1))Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖2
]
∥

∥

∥

∥

Ex

[

θ

‖θ‖2
]
∥

∥

∥

∥

2

. (4.5)

By applying Jensen’s inequality to the last expectation of the right hand side of
(4.5) and using the fact that F (t)/f(t) ≤ F (0)/f(0), we have A(x) ≥ 0 as soon
as

(k + 1)(p− 2 (k + 2))Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖4
]

− k (p− 2 (k + 1))

F (0)

f(0)

(

Ex

[

1

‖θ‖2
])2

− 4 k2
F (0)

f(0)

(

Ex

[

1

‖θ‖2
])2

≥ 0 . (4.6)

The first expectation in the left hand side of (4.6) can be written as

Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖4
]

=
1

m(‖x‖2)

∫

Rp

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖4 f(‖x− θ‖2) ‖θ‖− 2 k dθ

=
1

m(‖x‖2)

∫ ∞

0

∫

Sr,x

‖θ‖− 2 (k+2) dUr,x(θ)
F (r2)

f(r2)
ξ(r) dr

(4.7)

where Ur,x is the uniform distribution on the sphere of radius r centered at x
and ξ(r) is the radial density in (2.1). Note that, as 0 < k ≤ p/2− 3, the func-
tion ‖θ‖− 2 (k+2) is superharmonic, so that the function

∫

Sr,x
‖θ‖− 2 (k+2) dUr,x is

nonincreasing in r. Note also that, by assumption, F (r2)/f(r2) is nonincreasing
in r. Hence, by the covariance inequality, it follows from (4.7) that

Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖4
]

≥ E

[

F (R2)

f(R2)

]

Ex

[

1

‖θ‖4
]

=
µ2

p
Ex

[

1

‖θ‖4
]

, (4.8)

since

E

[

F (r2)

f(r2)

]

=

∫ ∞

0

F (r2)
2πp/2

Γ(p/2)
rp−1 dr

=
πp/2

Γ(p/2)

∫ ∞

0

∫ ∞

r2
f(u) du rp−1 dr

=
πp/2

Γ(p/2)

∫ ∞

0

∫

√
u

0

rp−1 dr f(u) du

=
πp/2

pΓ(p/2)

∫ ∞

0

up/2 f(u) du

=
µ2

p
,
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where the second equality follows from (1.9), the third one is obtained from an
application of Fubini’s theorem and, for the fourh one, a change of variable is
used.

Using (4.8) and applying Jensen’s inequality, (4.6) is satisfied if

(k + 1) (p− 2 (k + 2))
µ2

p
Ex

[

1

‖θ‖4
]

− k (p− 2 (k + 1))
F (0)

f(0)
Ex

[

1

‖θ‖4
]

−4 k2
F (0)

f(0)
Ex

[

1

‖θ‖4
]

≥ 0 ,

that is, if

(k + 1) (p− 2 (k + 2))
µ2

p
− k (p− 2 (k + 1))

F (0)

f(0)
− 4 k2

F (0)

f(0)
≥ 0 . (4.9)

As (4.9) is equivalent to (4.2), Inequality (3.7) is proved.
We now turn our attention to Inequality (3.3). Note that F (t) is nonincreasing

and that, by unimodality of f(‖x − θ‖2), the function f(t) is nonincreasing in
t as well. As an immediate consequence of (3.10) and (3.12) in Lemma 3.1, the
right hand side of (3.3) equals, for any x ∈ R

p,

∇m(‖x‖2)·∇M(‖x‖2) =

4 k2
∫

Rp

f(‖x− θ‖2) ‖θ‖−2(k+1) θ dθ ·
∫

Rp

F (‖x− θ‖2) ‖θ‖−2(k+1) θ dθ .

(4.10)

Now, since f(·) and F (·) are nonincreasing functions and since ‖θ‖−2(k+1) is a
nonnegative function, Lemma A.3 in Appendix A.1 guarantees that each integral
in (4.10) equals x multiplied by a nonnegative function of x. Hence the left hand
side of (4.10) is nonnegative and (3.3) is satisfied.

Similarly, by (3.10) and (3.14) in Lemma 3.1, the inner product term in the
right hand side of (3.6) equals, for any x ∈ R

p,

∇(∆M(‖x‖2))·∇m(‖x‖2) =

ζ(k)

∫

Rp

F (‖x− θ‖2)‖θ‖−2(k+2)θdθ ·
∫

Rp

f(‖x− θ‖2)‖θ‖−2(k+1)θdθ

(4.11)

where ζ(k) = −8k2(k + 1) (p − 2(k + 1)). As the function ζ(k) is nonposi-
tive, we can conclude, as in (4.10), that the left hand side of (4.11) is nonposi-
tive. Therefore we obtain that B(x) in (3.6) is nonnegative, that is, Inequality
(3.8) which, with Inequality (3.7) proved above, provides the subharmonicity of

∆M(‖x‖2)/m(‖x‖2) according to (3.4). Finally, gathering Conditions (3.2) and
(3.3) obtained above, we have completely proved Condition (2.3).

It remains to address Condition (2.4). As it will be more convenient to deal
with nonnegative functions, we will be interested in proving the nondecreasing
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monotonicity in R of

R2(k+1)

∫

Bθ,R

ω(‖x‖2) dVθ,R(x) , (4.12)

for ω(‖x‖2) defined in (3.16) which was above shown to be superharmonic, so
that the function t 7→ ω(t) is necessarily nonincreasing. Hence, according to
Corollary A in Appendix A.1, this desired result will be obtained if we prove
that t 7→ r(t) = tk+1 ω(t) is nondecreasing. Note that the monotonicity of the
functions ω and r can be expressed respectively as

1

2

1

‖x‖2 x · ∇ω(‖x‖2) ≤ 0 (4.13)

and

1

2

1

‖x‖2 x · ∇r(‖x‖2) ≥ 0 (4.14)

since the quantities in the left hand side of (4.13) and (4.14) are the derivatives
of ω(t) and r(t) at t = ‖x‖2 respectively.

It is easily seen, through the expression of ω(‖x‖2), that the inner product
in (4.13) equals

x · ∇ω(‖x‖2) = −ω(‖x‖2)x · ∇m(‖x‖2)
m(‖x‖2) − x · ∇(∆M(‖x‖2))

m(‖x‖2)
= −ω(‖x‖2) {ω(‖x‖2)− 2 k}+ (p− 2(k + 1))ω(‖x‖2)− δ(‖x‖2)
= −ω2(‖x‖2) + {p− 2}ω(‖x‖2)− δ(‖x‖2) , (4.15)

according to (3.17) and (3.18) in Lemma 3.2. Therefore the fact that Inequality
(4.13) is satisfied (as mentioned above) can be expressed as

ω2(t)− {p− 2}ω(t) + δ(t) ≥ 0 . (4.16)

Also, since
r′(t) = (tk+1 ω(t))′ = ((k + 1)ω(t) + t ω′(t)) tk ,

it follows from the left hand sides of (4.13) and (4.14) that

1

‖x‖2 x · ∇r(‖x‖2) = [2 (k + 1)ω(‖x‖2) + x · ∇ω(‖x‖2)] (‖x‖2)k

and hence Inequality (4.14) will be satisfied if and only if

ω2(t)− {p− 2 + 2 (k + 1)}ω(t) + δ(t) ≤ 0 , (4.17)

according to (4.15).
Finally, we have, according to (A.17) in Appendix A.3,

δ(t) ≤ p ω(t) . (4.18)
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Therefore it follows from (4.18) that

ω2(t)− {p+ 2 k}ω(t) + δ(t) ≤ ω2(t)− {2 k}ω(t)

so that a sufficient condition for (4.17) to hold is

0 ≤ ω(t) ≤ 2 k .

As ω(t) is nonincreasing in t and ω(0) = 2 k (see Lemma A.4 in Appendix A.3),
this is clearly satisfied.

Remark 4.2. In [5], the minimaxity conditions are weaker but the sampling
densities are restricted to the Berger class, that is, there exists a positive con-
stant c such that F (t)/f(t) > c for any t ≥ 0. Here our approach allows to
include the case where limt→∞ F (t)/f(t) = 0.

5. Examples of sampling densities

As a consequence of Remark 4.2, all the examples in [5] work. So, we focus on
sampling densities for which

lim
t→∞

F (t)/f(t) = 0. (5.1)

Note that, in the examples below, it is guaranteed that f ∈ S3,p/2+1+ǫ
(

R
∗
+

)

for some ǫ > 0 since the densities are elementary functions of the exponential
function (with the exception of Example 1 for which this assumption is not
fulfilled at one point; see Remark 3.1).

Example 1. Let

f(t) =
Γ(p/2 +A)

πp/2 Γ(A)Rp

(

1− t

R2

)A−1 1[0,R2](t)

where A ≥ 1 and R > 0. Clearly f(t) and

F (t)

f(t)
=
R2

2A

(

1− t

R2

)1[0,R2](t)

are nonincreasing in t. Also
F (0)

f(0)
=
R2

2A
,

and the condition (5.1) is fulfilled, since

lim
t→R2

F (t)

f(t)
= 0 .

As, for any i > −p, it can be easily checked that

µi = Ri Γ((p+ i)/2) Γ(p/2 +A)

Γ((p+ i)/2 +A) Γ(p/2)
,
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then we have
µ2

p
=

R2

2A+ p

and, for k < p/2− 1,

µ−2 (k+1)

µ−2 k
=
p− 2(k + 1) + 2A

R2 [p− 2(k + 1)]
.

Consequently, one can see, after straightforward calculations, that Condition
(4.1) reduces to

2 (p+ 4A) k2 − [8 (p− 2)A+ p (p− 2 + 2A)] k + 2 (p− 2)2A ≥ 0,

and hence (see Remark 4.1) to

0 < k ≤ ψ(p,A) =:

8 (p− 2)A+p (2A+ p− 2)−
√

p2 (2A+ p− 2)2 + 32 p (p− 2)A2

4 [4A+ p]
.

(5.2)

On the other hand, Condition (4.2) expresses as

(

2

p+ 2A
+

1

A

)

k2 +

(

p− 2

2A
− p− 6

p+ 2A

)

k − p− 4

2A+ p
≤ 0 ,

and is satisfied if

0 < k ≤ ξ(p,A) =:

p−6
p+2A − p−2

2A +

√

(

p−2
2A − p−6

p+2A

)2

+ 4
(

2
p+2A + 1

A

)

p−4
2A+p

2
(

2
p+2A + 1

A

) . (5.3)

Finally, according to (5.2) and (5.3), Conditions (4.1) and (4.2) are satisfied
as soon as

0 < k ≤ min{ψ(p,A), ξ(p,A)} =: kmax(p,A) . (5.4)

It is quite involved to investigate formally this upper bound of the values of k.
However, for different values of p and A, Table 1 provides the values kmax(p,A)
in (5.4).

We can see that the upper bound1 kmax(p,A) is increasing in A, for any
fixed p.

Example 2. Consider

f(t) =
Γ(p/2)β γp/2β

πp/2Γ(p/2β)
exp(−γ tβ)

1 Note that, for the set of values of p and A in Table 1, kmax(p,A) always equals ξ(p,A).
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Table 1

Values of kmax(p, A) for different values of p and A

p\A 1 2 3 5 10 20 30 50 75 100
7 0.130 0.209 0.261 0.324 0.394 0.441 0.459 0.474 0.483 0.487

10 0.130 0.203 0.306 0.414 0.556 0.666 0.712 0.753 0.775 0.786
15 0.106 0.199 0.281 0.416 0.637 0.851 0.953 1.050 1.106 1.135
20 0.085 0.166 0.240 0.372 0.621 0.911 1.067 1.229 1.326 1.379

with γ > 0 and β > 1. Clearly f(t) is nonincreasing. Furthermore we have

2
F (t)

f(t)
=

∫ ∞

t

exp(−γ [uβ − tβ ]) du

=

∫ ∞

0

exp(−γ [(v + t)β − tβ]) dv

≤
∫ ∞

0

exp(−γ [(v + t) tβ−1 − tβ ]) dv

=

∫ ∞

0

exp(−γ v tβ−1) dv

which shows that F (t)/f(t) is nonincreasing as well and, by the Lebesgue dom-
inated convergence theorem, implies that

lim
t→∞

F (t)

f(t)
= 0 ,

since β > 1.
Now, through straightforward calculations, we have

F (0)

f(0)
=

1

2

1

β

Γ(1/β)

γ1/β
, (5.5)

and, for i > −p,
µi =

1

γi/2β
Γ([p+ i]/2β)

Γ(p/2β)
, (5.6)

so that, for k < p/2− 1,

µ−2 (k+1)

µ−2 k
= γ1/β

Γ([p− 2 (k + 1)]/2β)

Γ([p− 2 k]/2β)
. (5.7)

Then Condition (4.1) reduces to

Gβ,p(k) =: p
Γ(1/β)

2 β

Γ([p− 2 (k + 1)]/2β)

Γ([p− 2 k]/2β)
k − [p− 2(k + 1)] ≤ 0 (5.8)

Also, according to (5.6), we have

µ2

p
=

1

p

1

γ1/β
Γ([p+ 2]/2β)

Γ(p/2β)
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Table 2

Values of Kmax(β, p) for different values of p and β

p\β 1 1.1 1.3 1.5 2 3 5
7 0.500 0.435 0.349 0.296 0.227 0.177 0.150

10 0.822 0.677 0.497 0.390 0.275 0.198 0.158
15 1.232 0.934 0.605 0.444 0.277 0.182 0.136
20 1.561 1.101 0.645 0.446 0.259 0.160 0.115

so that, after simplifying by 1/γ1/β, Condition (4.2) is expressed as

Hβ,p(k) =: 2

[

Γ(1/β)

2 β
+

1

p

Γ([p+ 2]/2β)

Γ(p/2β)

]

k2

+

[

(p− 2)
Γ(1/β)

2 β
− p− 6

p

Γ([p+ 2]/2β)

Γ(p/2β)

]

k

− p− 4

p

Γ([p+ 2]/2β)

Γ(p/2β)
≤ 0 , (5.9)

which is satisfied if

0 < k ≤
−
[

(p− 2) Γ(1/β)
2 β − p−6

p
Γ([p+2]/2β)

Γ(p/2β)

]

+
√
∆

4
[

Γ(1/β)
2β + 1

p
Γ([p+2]/2β)

Γ(p/2β)

] , (5.10)

with

∆=

[

(p− 2)
Γ(1/β)

2 β
− p− 6

p

Γ([p+ 2]/2β)

Γ(p/2β)

]2

+ 8

[

Γ(1/β)

2 β
+

1

p

Γ([p+ 2]/2β)

Γ(p/2β)

]

× p− 4

p

Γ([p+ 2]/2β)

Γ(p/2β)
.

Even if we know, according to (5.7) and to Remark 4.1, that the ratio Γ([p−
2 (k + 1)]/2β)/Γ([p − 2 k]/2β) is nondecreasing in k, it is difficult to compare
the upper bound for k implicit in (5.8) and the upper bound in (5.10). However
the upper bound for k combining Conditions (5.8) and (5.10), that is,

Kmax(β, p) = min{max{k > 0/Gβ,p(k) = 0},max{k > 0/Hβ,p(k) = 0}}
(5.11)

can be evaluated specifying values of p and β. For fixed values of p and β, Table 2
provides the corresponding values of Kmax(β, p).

Although, in this example, we assume β > 1 (since we deal with the case
where limt→∞ F (t)/f(t) = 0), in Table 2, we provide the value β = 1 corre-
sponding to the normal case (which is covered by Theorem 4.1 which does put
any restriction on the limit limt→∞ F (t)/f(t)). The upper bound of the value
of k for which the Bayes estimator δk is minimax, given in (5.11), is decreasing
in β, for any fixed p.

Example 3. We now give a fairly general example for which we do not express
explicitly Conditions (4.1) and (4.2). Let

f(t) ∝ exp(−α t g(t))



734 D. Foudrinier et al.

where g(t) is a nondecreasing and convex function such that limt→∞ g(t) = ∞
and α > 0.

It is clear that f(‖x− θ‖2) is unimodal. Also, expressing F (t)/f(t) as follows

F (t)

f(t)
∝

∫∞
t

f(s) ds

f(t)

=

∫ ∞

t

exp(−α [s g(s)− t g(t)]) ds

=

∫ ∞

0

exp(−α [(v + t) g(v + t)− t g(t)]) dv , (5.12)

we can see, first, that the function F (t)/f(t) is nonincreasing. Indeed, the func-
tion

ψ(t) = (v + t) g(v + t)− t g(t)

in (5.12) is nondecreasing, since

ψ′(t) = g(v + t)− g(t) + t [g′(v + t)− g′(t)] + v g′(v + t)

≥ 0 ,

by nondecreasing montonicity and convexity of the function g.
Secondly, for such class of generated functions f(t), it has been shown in

[3] that the condition inft≥0

∫∞
t f(s) ds/f(t) > 0 is violated and therefore

limt→∞(F (t)/f(t)) = 0 since, in our case, F (t)/f(t) is nonincreasing.
Note that a simple example of function g is g(t) = exp(t) so that f(t) ∝

exp(−α t et).
It is worth noting that f(t) ∝ exp(−α et) is not included in the previous

class but gives rise to another example satisfying the conditions of Theorem 4.1.
Indeed f(t) is clearly nonincreasing and f ′(t)/f(t) = −αet is nonincreasing so
that the function F (t)/f(t) is nonincreasing as well. We also have

lim
t→∞

F (t)

f(t)
∝ lim

t→∞

∫ ∞

t

exp(−α [es − et])ds

= lim
t→∞

∫ ∞

0

exp(−α et[ev − 1])dv

= 0 ,

from an application of the Lebesgue dominated convergence theorem.

6. Concluding remarks

We have seen that, for a sampling density f(‖x − θ‖2) which is unimodal and
such that the ratio F (t)/f(t) is nonincreasing (with F (t) in (1.9)), minimax-
ity of generalized Bayes estimators δk(X) can be obtained for spherical prior
densities ‖θ‖−2k under conditions involving constants depending on f(·) and k.



Bayes minimax estimators under power priors 735

We complement the results of Fourdrinier, Mezoued and Strawderman [5] in so
far as these authors reduce their framework to the Berger class. However we
only deal with the case where F (t)/f(t) is nonincreasing. Indeed, in the case
where F (t)/f(t) is nondecreasing, our techniques are unsuitable for this mono-
tonicity. Also, we adopted here a completely different approach since we relied
on a modification of the Brandwein and Strawderman approach [4], which may
be of an independent interest. Various examples of sampling densities illustrate
our findings while the basic example of prior densities is formed of the class of
‖θ‖−2k with k > 0. A natural scope of a future work is to extend that class of
priors.
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Appendix

A.1. Properties of some expectations and integrals

In the following lemma and its corollary, we mention in our notations the dimen-
sion of the spaces in which spheres and balls lie. Thus Up+k

R,θ denotes the uniform

distribution on the sphere Sp+k
R,θ = {(x, u) ∈ R

p+k/‖(x, u) − (θ, 0)‖ = R}, in
R

p+k, of radius R and centered at (θ, 0) ∈ R
p+k, while V p

R,θ holds for the uni-

form distribution on the ball Bp
R,θ = {x ∈ R

p/‖x− θ‖ ≤ R}, in R
p, of radius R

and centered at θ ∈ R
p. In that context, we extend a result given by Fourdrinier

and Strawderman [9].

Lemma A.1. Let r(t) be a nonnegative and nondecreasing function on [0,∞]
such that r(t)/tq is nonincreasing, for some q ≥ 1. Then, for any fixed θ ∈ R

p,
the function

fθ : R 7−→ R2q

∫

Sp+k

R,θ

r(‖x‖2)
‖x‖2q

dUp+k
R,θ (x, u) (A.1)

is nondecreasing for p ≥ 1 and k ≥ 2.

Proof. Under Up+k
R,θ , it is well known that the marginal distribution of (x, u) 7→ x

is absolutely continuous with unimodal density ψ(‖x−θ‖2/R2)/Rp for all k ≥ 2
where ψ(t) = (1− t)k/2−11[0,1](t). Then fθ can be written as

fθ(R) =

∫

Bp
1,0

r(R2 ‖z + θ
R‖2)

‖z + θ
R‖2q

ψ(‖z‖2) dz .

For any R1 ≤ R2, we have, by nondecreasing monotonicity of r(t),

fθ(R1) ≤
∫

Bp
1,0

r(R2
2‖z + θ

R1
‖2)

‖z + θ
R1

‖2q
ψ(‖z‖2) dz .
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Furthermore nonincreasing monotonicity of r(t)/tq implies that the function
r(R2

2 ‖z+ θ/R1‖2)/‖z+ θ/R1‖2q is symmetric and unimodal in z about −θ/R1.
Hence, by Anderson’s theorem (see [1]),

∫

Bp

1,0

r(R2
2‖z + θ

R1
‖2)

‖z + θ
R1

‖2q
ψ(‖z‖2) dz ≤

∫

Bp

1,0

r(R2
2‖z + θ

R2
‖2)

‖z + θ
R2

‖2q
ψ(‖z‖2) dz

= fθ(R2) .

As, if (X,U) ∼ Up+2
R,θ then X ∼ V p

R,θ, the following corollary of Lemma A.1
is immediate.

Corollary A. Under the conditions of Lemma A.1, the function

R 7−→ R2q

∫

Bp

R,θ

r(‖x‖2)
‖x‖2q

dVp
R,θ(x) (A.2)

is nondecreasing for p ≥ 1.

When integrating with respect to F (‖θ − x‖2), the following result is useful.

Lemma A.2. For any function γ, we have

∫

Rp

γ(θ)F (‖θ − x‖2) dθ = λ(B)

∫ ∞

0

∫

Br,x

γ(θ) dVr,x(θ) r
p+1 f(r2) dr . (A.3)

Proof. We have the successive equalities

∫

Rp

γ(θ)F (‖θ − x‖2) dθ =

∫

Rp

γ(θ)
1

2

∫ ∞

‖θ−x‖2

f(u) du dθ

=

∫

Rp

γ(θ)

∫ ∞

‖θ−x‖
r f(r2) dr dθ

=

∫ ∞

0

∫

Br,x

γ(θ) dθ r f(r2) dr

= λ(B)

∫ ∞

0

∫

Br,x

γ(θ) dVr,x(θ) r
p+1 f(r2) dr

the second inequality following from the change of variable u = r2, the third
one from the Fubini theorem; in the fourth one, λ(B) is the volume of the unit
ball.

The following lemma can be found in Fourdrinier and Righi [7] where the
density in (1.2) is considered with fixed x as a function of θ, say θ 7→ f(‖θ−x‖2),
so that Ex denotes the expectation with respect to that density.

Lemma A.3. Let x ∈ R
p fixed and let Θ a random vector in R

p with spherically
symmetric density f(‖θ − x‖2). Let g be a function from R+ into R.
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Then there exists a function Γ from R
p into R such that

Ex[g(‖Θ‖2)Θ] = Γ(x) · x , (A.4)

provided this expectation exists. Moreover, if the function f is nonincreasing and
if the function g is nonnegative, then the function Γ is nonnegative.

A.2. Proof of Lemma 3.2

For any x ∈ R
p, we have

x · ∇m(‖x‖2) = x ·
∫

Rp

−2 k θ ‖θ‖−2(k+1) f(‖x− θ‖2) dθ

= −2 k

∫

Rp

(x− θ) · θ ‖θ‖−2(k+1) f(‖x− θ‖2) dθ

−2 k

∫

Rp

‖θ‖−2 k f(‖x− θ‖2) dθ (A.5)

substracting and adding θ. Now, denoting by σr,x the uniform measure on the
sphere Sr,x of radius r and of center x, the first integral in the right hand side
of (A.5) can be written as

∫

Rp

(x− θ) · θ ‖θ‖−2(k+1) f(‖x− θ‖2) dθ

=

∫ ∞

0

∫

Sr,x

(x− θ) · θ ‖θ‖−2(k+1) dσr,x(θ) f(r
2) dr

= −
∫ ∞

0

∫

Sr,x

θ − x

‖θ − x‖ · θ ‖θ‖−2(k+1) dσr,x(θ) r f(r
2) dr

= −
∫ ∞

0

∫

Br,x

div(θ ‖θ‖−2(k+1)) r f(r2) dr

= − (p− 2(k + 1))

∫ ∞

0

∫

Br,x

‖θ‖−2(k+1)dθ r f(r2) dr , (A.6)

by the Stokes theorem. Hence, according to (A.3), (A.6) gives
∫

Rp

(x − θ) · θ ‖θ‖−2(k+1) f(‖x− θ‖2) dθ=−(p− 2 (k + 1))

∫

Rp

‖θ‖−2(k+1)F (‖θ − x‖2) dθ .

(A.7)

Finally, substituting (A.7) in (A.5) yields

x · ∇m(‖x‖2) = 2 k (p− 2(k + 1))

∫

Rp

‖θ‖−2(k+1) F (‖θ − x‖2) dθ

−2k

∫

Rp

‖θ‖−2kf(‖θ − x‖2) dθ

(A.8)



738 D. Foudrinier et al.

and hence, according to the definition of the expectation Ex, we obtain

x · ∇m(‖x‖2)
m(‖x‖2) = 2 k (p− 2(k + 1))Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

1

‖θ‖2
]

− 2 k,

which gives (3.17) in Lemma 3.2.
As for (3.18), we have

x · ∇(∆M(‖x‖2)) = −2 k (p− 2(k + 1))x · ∇
∫

Rp

‖θ‖−2(k+1) F (‖θ − x‖2) dθ

= −2 k (p− 2(k + 1))

∫

Rp

x · (θ − x) ‖θ‖−2(k+1) f(‖θ − x‖2) dθ

= B1(‖x‖2) +B2(‖x‖2) (A.9)

where

B1(‖x‖2) = 2 k (p− 2(k + 1))

∫

Rp

‖θ − x‖2 ‖θ‖−2(k+1) f(‖θ − x‖2) dθ (A.10)

and

B2(‖x‖2) = −2 k (p−2(k+1))

∫

Rp

θ ·(θ−x) ‖θ‖−2(k+1) f(‖θ−x‖2) dθ (A.11)

since

x · (θ − x) = −(θ − x− θ) · (θ − x) = −‖θ− x‖2 + θ · (θ − x) .

As above, a decomposition through the spheres Sr,x gives rise to

B2(‖x‖2) = −2 k (p− 2(k+1))

∫ ∞

0

∫

Sr,x

θ − x

‖θ − x‖ · θ ‖θ‖−2(k+1) dσr,x(θ) r f(r
2) dr

= −2 k (p− 2(k + 1))

∫ ∞

0

∫

Br,x

div(θ ‖θ‖−2(k+1)) dθ r f(r2) dr

= −2 k (p− 2(k + 1))

∫

Rp

div(θ ‖θ‖−2(k+1))F (‖θ − x‖2) dθ

= −2 k (p− 2(k + 1))2
∫

Rp

‖θ‖−2(k+1) F (‖θ − x‖2) dθ , (A.12)

according to the Stokes theorem and to (A.3), and expanding the divergence

term. Dividing B1(‖x‖2) and B2(‖x‖2) in (A.10) and (A.12) by m(‖x‖2) we
obtain

B1(‖x‖2)
m(‖x‖2)

= 2 k (p− 2(k + 1))Ex

[

‖θ − x‖2 1

‖θ‖2
]

, (A.13)

and

B2(‖x‖2)
m(‖x‖2)

= −2k(p− 2(k + 1))2 Ex

[

F (‖θ − x‖2)
f(‖θ − x‖2)

1

‖θ‖2

]

= (−p+ 2(k + 1))ω(‖x‖2) . (A.14)
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Finally, according to (A.9)and by using (A.13) and (A.14), we have obtained
(3.18) in Lemma 3.2.

A.3. Expressing the functions in Lemma 3.2

We now give expressions, in terms of sphere mean and ball mean, for the func-
tions ω(‖x‖2), γ(‖x‖2) and δ(‖x‖2) defined in Lemma 3.2.

Lemma A.4. For a prior as in (1.5) and for any x ∈ Rp, setting t = ‖x‖2, we
have

ω(t) =
2 k (p− 2− 2 k)

p

∫∞
0

∫

Br,x
‖θ‖−2(k+1) dVr,x(θ) r

p+1 f(r2) dr
∫∞
0

∫

Sr,x
‖θ‖−2 k dUr,x(θ) rp−1 f(r2) dr

(A.15)

and

δ(t) = 2 k (p− 2− 2 k)

∫∞
0

∫

Sr,x
‖θ‖−2(k+1) dUr,x(θ) r

p+1 f(r2) dr
∫∞
0

∫

Sr,x
‖θ‖−2k dUr,x(θ) rp−1 f(r2) dr

. (A.16)

Also, for k ≤ p/2− 2,

ω(t) ≥ 1

p
δ(t) (A.17)

and
ω(0) = 2 k , and δ(0) = 2 k (p− 2 − 2 k) . (A.18)

Proof. According to the definition of the conditional expectation Ex the func-
tion ω(t) in Lemma 3.2 can be written as

ω(t) = 2 k (p− 2(k + 1))

∫

Rp ‖θ‖−2(k+1) F (‖θ − x‖2) dθ
∫

Rp ‖θ‖−2k f(‖θ − x‖2) dθ

= 2 k (p− 2(k + 1))
λ(B)

∫∞
0

∫

Br,x
‖θ‖−2(k+1) dVr,x(θ) r

p+1 f(r2) dr

σ(S)
∫∞
0

∫

Sr,x
‖θ‖−2k dUr,x(θ) rp−1 f(r2) dr

,

applying (A.3), where σ(S) denote the surface of the unit sphere. Then (A.15)
follows from the fact that λ(B)/σ(S) = 1/p.

Similarily, for (A.16), the result follows directly from the representation of
δ(t) in (3.19) as

δ(t) = 2 k (p− 2(k + 1))

∫

Rp ‖θ − x‖2 ‖θ‖−2(k+1) f(‖θ − x‖2) dθ
∫

Rp ‖θ‖−2k f(‖θ − x‖2) dθ .

Now, note that, by superharmonicity of ‖θ‖−2(k+1) for k ≤ p/2− 2, we have
∫

Br,x

‖θ‖−2(k+1) dVr,x(θ) ≥
∫

Sr,x

‖θ‖−2(k+1) dUr,x(θ)

so that comparing (A.15) and (A.16) gives (A.17).
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Finally the values at 0 of the functions ω and δ will be derived expressing
the integrals on the balls Br and the spheres centered at 0. Considering the
right-hand side of (A.15), the innermost integral in the numerator of the second
ratio satisfies

rp+1

∫

Br

‖θ‖−2(k+1) dVr(θ) =
r

λ(B)

∫ r

0

τ−2(k+1) σ(S) τp−1 dτ

= p r

∫ r

0

τp−3−2k dτ

=
p

p− 2− 2k
rp−1−2k .

As for the innermost integral in the denominator, we have

rp−1

∫

Sr

‖θ‖−2k dUr(θ) = rp−1−2k

so that the same power of r appears in the integrals in r and, after simplifying,
we obtain that ω(0) = 2 k.

Finally, obtaining the value of δ(0) follows the same way and gives

δ(0) = 2 k (p− 2(k + 1)) .

A.4. Proof of the statement in Remark 4.1

As k > 0, Inequality (4.2) holds if and only if

k ≤ −B +
√
B2 − 4AC

2A

where

A = 2

(

F (0)

f(0)
+
µ2

p

)

, B =
F (0)

f(0)
(p−2)− µ2

p
(p−6) and C = −µ2

p
(p−4) .

This upper bound for k is less than or equal to p/2− 3 if and only if

B2 − 4AC ≤ [(p− 6)A+B]2

which is equivalent to

0 ≤ (p− 6)2A+ 2 (p− 6)B + 4C .

Then, according to the values of A, B and C, this equality results in

0 ≤ 2 (p−6)2
F (0)

f(0)
+2 (p−6)2

µ2

p
+2 (p−6)

F (0)

f(0)
(p−2)−2 (p−6)2

µ2

p
−4 (p−4)

µ2

p
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which, after simplication, gives rise to

0 ≤ (p− 6)
F (0)

f(0)
− µ2

p
.

Now, this last equality holds since p ≥ 7, the ratio F (t)/f(t) is nonincreasing in
t and E[F (R2)/f(R2)] = µ2/p. Therefore we have proved that Condition (4.2)
implies that k ≤ p/2− 3.
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