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Abstract: We consider the estimation of the value of a linear functional of
the slope parameter in functional linear regression, where scalar responses
are modeled in dependence of random functions. The theory in this pa-
per covers in particular point-wise estimation as well as the estimation of
weighted averages of the slope parameter. We propose a plug-in estimator
which is based on a dimension reduction technique and additional thresh-
olding. It is shown that this estimator is consistent under mild assumptions.
We derive a lower bound for the maximal mean squared error of any es-
timator over a certain ellipsoid of slope parameters and a certain class of
covariance operators associated with the regressor. It is shown that the
proposed estimator attains this lower bound up to a constant and hence
it is minimax optimal. Our results are appropriate to discuss a wide range
of possible regressors, slope parameters and functionals. They are illus-
trated by considering the point-wise estimation of the slope parameter or
its derivatives and its average value over a given interval.
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1. Introduction

A common problem in functional regression is to investigate the dependence of
a real random variable Y on the variation of an explanatory random function
X . It is usually assumed that the regressor X takes its values in a separable
Hilbert space H which is endowed with an inner product 〈·, ·〉 and its induced
norm ‖·‖H. For convenience, the regressor X is often supposed to be centered
in the sense that for all f ∈ H the real valued random variable 〈X, f〉 has mean
zero. In this paper, the dependence of Y on X is supposed to be linear, that is

Y = 〈β,X〉+ σε, σ > 0, (1.1)

with an unknown slope parameter β ∈ H and a centered and standardized error
term ε. We focus on the estimation of the value of a known linear functional
of the slope β, which we denote by ℓ(β). The non-parametric estimation of the
value of a linear functional from Gaussian white noise observations is subject
of considerable literature (in case of direct observations see Speckman [28], Li
[19] or Ibragimov and Has’minskii [15], while in case of indirect observations
we refer to Donoho and Low [8], Donoho [7] or Goldenshluger and Pereverzev
[11] and references therein). In the literature, the most studied examples for
estimating linear functionals are point-wise estimation of β and the estimation
of (possibly weighted) averages over a subinterval of its domain. These exam-
ples are particular cases of our general setting. The objective of this paper is
to establish a minimax theory for the non-parametric estimation of the value
of a linear functional of the slope parameter β in the functional linear model
as considered in (1.1), which in general does not lead to Gaussian white noise

observations. For this purpose we use a plug-in estimator ℓ̂m := ℓ(β̂m) based on

an estimator β̂m of the slope parameter that has been proposed by Cardot and
Johannes [4] and is inspired by the linear Galerkin approach coming from the in-
verse problem community (c.f. Efromovich and Koltchinskii [9] or Hoffmann and
Reiß [14]). In recent years, the non-parametric estimation of the slope function
β from an independent and identically distributed (i.i.d.) sample of (Y,X) has
been of growing interest in the literature. For example, Bosq [1], Cardot et al.
[5] or Müller and Stadtmüller [22] analyze a functional principal components
regression, while a penalized least squares approach combined with projection
onto some basis (such as splines) is studied in Ramsay and Dalzell [27], Eilers
and Marx [10], Cardot et al. [3], Hall and Horowitz [12] or Crambes et al. [6].
All the proposed estimators of β have in common that they achieve under rea-
sonable assumptions only very poor rates of convergence. In other words, even
relatively large sample sizes may not be much of a help for estimating the slope
parameter accurately as a whole. The reason for these poor convergence rates
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is intrinsic to the considered model as it leads in a natural way to an ill-posed
inverse problem. To be more precise, as considered for example in Bosq [1], Car-
dot et al. [3] or Cardot et al. [5], we suppose that the regressor X has a finite
second moment, i.e., E‖X‖2

H
< ∞, and that X is uncorrelated to the random

error ε in the sense that E[ε〈X, f〉] = 0 for all f ∈ H. Multiplying both sides in
(1.1) by 〈X, f〉 and taking the expectation leads to the continuous equivalent of
the normal equation in a classical multivariate linear model. That is, we have
for all f ∈ H

〈g, f〉 := E[Y 〈X, f〉] = E[〈β,X〉〈X, f〉] =: 〈Γβ, f〉, (1.2)

where g belongs to H and Γ denotes the covariance operator associated with
the random function X . In what follows we always assume that there exists a
unique solution β ∈ H of equation (1.2), i.e., that Γ is strictly positive and that
g belongs to its range (for a detailed discussion we refer to Cardot et al. [3]).
Obviously, these conditions ensure as well that the value of a linear functional of
β is identified. Since the estimation of β involves the inversion of the covariance
operator Γ it is called an inverse problem. Moreover, due to the finite second
moment of the regressor X , the associated covariance operator Γ is nuclear,
i.e., its trace is finite. Consequently, unlike in a multivariate linear model, a
continuous generalized inverse of Γ does not exist as long as the range of Γ
is an infinite dimensional subspace of H. Therefore, the reconstruction of β
is ill-posed (with the additional difficulty that Γ is unknown and has to be
estimated). As usual in the context of ill-posed inverse problems we impose
additional conditions on the unknown slope parameter β and the covariance
operator Γ which will be expressed in the form β ∈ F and Γ ∈ G, for suitably
chosen classes F ⊆ H and G. The class F reflects prior information on the
solution β, e.g., its level of smoothness, and will be constructed flexibly enough
to characterize, in particular, differentiable or analytic functions. The class G
links the mapping properties of the operator Γ to the regularity conditions
imposed on the slope function β. Typically, the assumption Γ ∈ G results in
conditions on the decay of the eigenvalues of the operator Γ. The construction
of the class G allows us to discuss both a polynomial and exponential decay of
those eigenvalues. It is interesting to note that Cai and Hall [2] also consider
the estimation of a linear functional in functional linear regression. However,
their results are restricted to differentiable slope parameters β and polynomially
decreasing eigenvalues of the operator Γ. Moreover, the restrictions imposed on
the linear functional ℓ by Cai and Hall [2] implicitly exclude the particularly
interesting case of point-wise estimation.

We shall assess the accuracy of the proposed plug-in estimator ℓ̂m of the value
ℓ(β) by its maximal mean squared error over the classes F and G, that is,

Rℓ[ℓ̂m,F ,G] := sup
β∈F

sup
Γ∈G

E|ℓ̂m − ℓ(β)|2. (1.3)

Below we derive a lower bound for Rℓ[ℓ̃,F ,G] for all estimators ℓ̃ and show that
it provides up to a constant C > 0 also an upper bound for the maximal risk
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over F and G of the estimator ℓ̂m, i.e.,

Rℓ[ℓ̂m,F ,G] 6 C · inf
ℓ̃
Rℓ[ℓ̃,F ,G],

where the infimum is taken over all estimators of ℓ(β). We thereby prove the

minimax optimality of the estimator ℓ̂m. Our results are appropriate to discuss
a wide range of possible regressors, slope parameters and functionals. Moreover
they yield in a natural way uniform bounds if the functional varies over a certain
subset of the dual space. The paper is organized in the following way: in Section
2 we develop the plug-in estimator and introduce our basic assumptions. In
particular we define and illustrate the classes F and G. Moreover, we embed the
cases of point-wise and local average estimation in this general framework and
present the resulting plug-in estimators. In this situation the classes F and G
cover the often considered cases of Sobolev ellipsoids and finitely or infinitely
smoothing covariance operators. We provide, in Section 3, sufficient conditions
for consistency of the proposed plug-in estimator and then show its minimax-
optimality. More precisely, we derive a lower bound for the maximal risk over
the classes F and G based on an i.i.d. sample obeying the functional linear model
(1.1). We show that the proposed plug-in estimator attains the lower bound up
to a constant for a wide range of classes F and G. These results are used to
discuss the point-wise estimation of the slope parameter or its derivatives and
its average value over a given interval. The proofs can be found in the appendix.

2. Methodology and notations

2.1. Thresholding projection estimator

Following Cardot and Johannes [4] we construct an estimator of the unknown
slope function β using a linear Galerkin approach. The estimation of β is based
on a dimension reduction together with an additional thresholding, which we
elaborate in the following. Let us specify an arbitrary orthonormal basis {ψj}∞j=1

of H. We require in the following that the slope function β belongs to a function
class F containing {ψj}∞j=1 and, moreover that F is included in the domain
of the linear functional ℓ. For technical reasons and without loss of generality
we assume that ℓ(ψ1) 6= 0 which can always be ensured by reordering, except
for the trivial case ℓ ≡ 0. With respect to this basis we consider for f ∈ H

the expansion f =
∑∞

j=1 [f ]jψj , with [f ]j := 〈f, ψj〉, for j > 1. The unknown
solution β ∈ H is hence uniquely determined by its coefficients ([β]j)j>1. Given
an integer dimension parameter m > 1, we consider the subspace Sm spanned
by the functions {ψj}mj=1. We recall that a Galerkin solution βm ∈ Sm of the
operator equation (1.2) with respect to Sm satisfies

‖g − Γβm‖H 6 ‖g − Γβ̃‖H, ∀β̃ ∈ Sm. (2.1)

Since Γ is strictly positive, the Galerkin solution exists in a unique way. Precisely,
if we consider the expansion βm =

∑m
j=1 [βm]jψj then βm is uniquely determined
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by the vector of coefficients [βm]m := ([βm]1, . . . , [βm]m)t. In this context, the
restriction of Γ to an operator from Sm to itself can be identified with a matrix
operating on R

m. This matrix is given by the entries 〈ψj ,Γψl〉 for 1 6 j, l 6 m
and will be denoted as [Γ]m, in slight abuse of notation. It is easy to verify

that the Galerkin solution defined by (2.1) satisfies [Γ]m[βm]m = [g]m. Since Γ

is strictly positive, the matrix [Γ]m is nonsingular for all m > 1, such that its

inverse [Γ]−1
m always exists. Therefore, the Galerkin solution βm is determined

by
[βm]m = [Γ]

−1
m [g]m. (2.2)

Here and subsequently, we denote by {(Yi, Xi)}ni=1 an i.i.d. sample of (Y,X) of
size n satisfying (1.1). We observe that [g]m = EY [X ]m and [Γ]m = E[X ]m[X ]tm
and hence it is natural to consider the estimators

[ĝ]m :=
1

n

n∑

i=1

Yi [Xi]m and [Γ̂]m :=
1

n

n∑

i=1

[Xi]m[Xi]
t
m

of [g]m and [Γ]m, respectively. The estimator of [βm]m is derived from (2.2) by

replacing [g]m and [Γ]m by their empirical counterparts. However, the inversion

of the empirical covariance matrix [Γ̂]m introduces an instability to the estima-

tion procedure even if the matrix [Γ]m is well-conditioned. This instability issue

is treated by an additional thresholding step. Let us denote by ‖[Γ̂]−1

m ‖S the

spectral norm of the matrix [Γ̂]
−1

m , which equals its largest eigenvalue. Then,

the estimator β̂m ∈ Sm of β is determined by the vector of coefficients

[β̂m]m :=

{
[Γ̂]

−1

m [ĝ]m, if [Γ̂]m is non-singular and ‖[Γ̂]−1

m ‖S 6 n,

0, otherwise.
(2.3)

In order to estimate the value of the linear functional ℓ(β) we consider the plug-

in estimator ℓ̂m := ℓ(β̂m) and observe that ℓ(β̂m) = (ℓ(ψ1), . . . , ℓ(ψm))[β̂m]m =:

[ℓ]tm[β̂m]m with the slight abuse of notations [ℓ]m := ([ℓ]j)16j6m and generic
elements [ℓ]j := ℓ(ψj). The estimator obviously satisfies

ℓ̂m =

{
[ℓ]tm[Γ̂]−1

m [ĝ]m, if [Γ̂]m is non-singular and ‖[Γ̂]−1
m ‖S 6 n,

0, otherwise.
(2.4)

This procedure raises the question how to choose the dimension parameter m,
which depends on the sample size n. It needs to tend to infinity as n increases
and we will discuss its optimal choice in Section 3.2.

2.2. Basic model assumptions

Let us introduce the class F which we determine by means of a weighted norm
in H. Given the orthonormal basis {ψj}∞j=1 and a strictly positive sequence
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of weights (γj)j>1, or γ for short, we define for f ∈ H the weighted norm

‖f‖2γ :=
∑

j>1 γj [f ]
2
j . Furthermore, we define Fγ as the completion of H with

respect to ‖·‖γ . Obviously, for a non-decreasing sequence γ the class Fγ is a
subspace of H. In the illustrations of Section 3.4 the order of the sequence γ
directly reflects smoothness assumptions on the solution. If there exist an integer
p > 0 and a constant c > 0 such that c−1j2p 6 γj 6 c−1j2p, or γj ∼ j2p for
short, then this polynomial increase will corresponds to p-times differentiable
functions. However, the theory in this paper is not restricted to polynomially
increasing sequences γ. We also consider an exponential increase, i.e., γj ∼
exp(j2p), which is known to specify analytic functions. We will assume in the
following, that there exist a non-decreasing, unbounded sequence of weights
γ with γ1 = 1 and a constant ρ > 0 such that the solution β belongs to the
ellipsoid Fρ

γ :=
{
f ∈ Fγ : ‖f‖2γ 6 ρ

}
. In order to guarantee that Fρ

γ is contained
in the domain of the linear functional ℓ and that ℓ(f) =

∑
j>1[ℓ]j [f ]j for all

f ∈ Fρ
γ with [ℓ]j = ℓ(ψj), j > 1, it is sufficient that

∑
j>1[ℓ]

2
jγ

−1
j <∞. In what

follows, we understand arithmetic operations on a sequence of real numbers γ
component-wise, e.g., we write 1/γ instead of (1/γj)j>1. As no confusion can be
caused we define ‖ℓ‖21/γ =

∑
j>1[ℓ]

2
jγ

−1
j and denote the set of all linear functions

with ‖ℓ‖21/γ < ∞ by L1/γ . We may emphasize that we neither impose that the

sequence [ℓ] = ([ℓ]j)j>1 tends to zero nor that it is square summable. However,
if it is square summable then the entire of H is the domain of ℓ. Moreover, [ℓ]
coincides with the sequence of generalized Fourier coefficients of the representer
of ℓ given by Riesz’s theorem. The assumption ℓ ∈ L1/γ enables us in specific
cases to deal with more demanding functionals, such as the estimation of the
point-wise evaluation of the slope. As a byproduct, our theory allows us to assess
the performance of the estimation procedure of ℓ(β) not only for a single ℓ ∈
L1/γ , but also for ℓ varying over an ellipsoid in L1/γ . For this purpose we suppose
that there exists a non-negative sequence ω with ω1 = 1 and a constant τ > 0
such that ℓ belongs to the ellipsoid Lτ

ω := {ℓ ∈ L1/γ : ‖ℓ‖2ω :=
∑

j>1 ωj[ℓ]
2
j 6 τ}.

Under the condition supj>1{1/(ωjγj)} <∞ the ellipsoid Lτ
ω is clearly a subset

of L1/γ . In order to describe the mapping properties of the covariance operator
Γ, stated in the form Γ ∈ G, we introduce the set N of all strictly positive
nuclear operators defined on H. We suppose that there exists a constant d > 1
and a strictly positive, non-increasing sequence of weights υ with υ1 = 1 and∑∞

j=1 υj <∞, such that Γ belongs to the class

N d
υ :=

{
T ∈ N : d−2‖f‖2υ2 6 ‖Tf‖2H 6 d2 ‖f‖2υ2, ∀f ∈ H

}
.

Note that for each T ∈ N the trace tr(T ) :=
∑∞

j=1〈ψj , Tψj〉 is finite. Hence,
setting [T ]j,j := 〈ψj , Tψj〉, j > 1, the sequence ([T ]j,j)j>1 converges to zero.

Moreover, for T ∈ N d
υ the decay of this sequence is characterized by υ since

d−1υj 6 [T ]j,j 6 dυj for all j > 1. Furthermore, if λ denotes its sequence of

eigenvalues then d−1υj 6 λj 6 dυj holds true for all j > 1. Let us summarize
the conditions on the sequences γ, ω and υ.
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Assumption 2.1. Let γ, ω and υ be strictly positive sequences of weights such
that γ and 1/υ are non-decreasing. We suppose that the sequences satisfy γ1 =
ω1 = υ1 = 1, supj>1{1/(ωjγj)} <∞,

∑∞
j=1 υj <∞ and that γ tends to infinity.

We illustrate the last assumption for typical choices of the sequences γ, ω and υ:

(ppp) Consider γj ∼ |j|2p, υj ∼ |j|−2a and either (i) [ℓ]2j ∼ |j|−2s, or (ii) ωj ∼
|j|2s then Assumption 2.1 holds true if p > 0, a > 1/2, and either (i)
s > 1/2− p or (ii) s > −p.

(pep) Consider γj ∼ |j|2p, υj ∼ exp(−|j|2a) and either (i) [ℓ]2j ∼ |j|−2s or (ii)

ωj ∼ |j|2s then Assumption 2.1 holds true if p > 0, a > 0 and either (i)
s > 1/2− p or (ii) s > −p.

(epp) Consider γj ∼ exp(|j|2p), υj ∼ |j|−2a and either (i) [ℓ]2j ∼ |j|−2s or (ii)

ω2
j ∼ |j|2s then Assumption 2.1 holds true if p > 0, a > 1/2 and s ∈ R.

(ppe) Consider γj ∼ |j|2p, υj ∼ |j|−2a and either (i) [ℓ]2j ∼ exp(−|j|2s) or (ii)

ωj ∼ exp(|j|2s) then Assumption 2.1 holds true if p > 0, a > 1/2 and
s > 0.

Remark 2.1. Cai and Hall [2] consider only (i) in the case (ppp) and suppose
a decay of the representing coefficients [ℓ] of order (|j|−s) with s > 1/2. This
condition excludes, for example, point-wise estimation which we will consider,
together with the other four cases, below. �

The only assumptions on the stochastic behavior of the error term ε and the
regressor X that we need in order to derive our mean squared error results
concern their moments. We observe that for all f ∈ H the random variable 〈f,X〉
has mean zero and variance 〈Γf, f〉 and we will impose moment conditions on
the standardized random variable 〈Γf, f〉−1/2〈f,X〉.
Assumption 2.2. There exist an integer k > 12 and a constant η > 1 such that
E|ε|4k 6 η and that for all f ∈ H with 〈Γf, f〉 = 1 it holds E|〈f,X〉|4k 6 η.

Note that any centered Gaussian random function X with finite second mo-
ment satisfies Assumption 2.2, since for all f ∈ H with 〈Γf, f〉 = 1 the corre-
sponding random variable 〈f,X〉 is standard normally distributed and conse-
quently E|〈f,X〉4k| 6 (4k − 1) · (4k − 3) · . . . · 5 · 3 · 1.

2.3. Point-wise and local average estimation

Consider H = L2[0, 1] with its usual norm and inner product and the trigono-
metric basis

ψ1 :≡ 1, ψ2j(s) :=
√
2 cos(2πjs), ψ2j+1(s) :=

√
2 sin(2πjs), s ∈ [0, 1], j ∈ N.

(2.5)
Recall the typical choices of the sequences γ, ω and υ as introduced above. If
γj ∼ |j|2p for a positive integer p, see cases (ppp),(pep),(ppe), then the subset
Fγ coincides with the Sobolev space of p-times differential periodic functions
(c.f. Neubauer [25, 24]). In the case (epp) it is well-known that for p > 1 every
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f ∈ Fγ is an analytic function (c.f. Kawata [17]). On the other hand we consider
two special cases describing a “regular decay” of the unknown eigenvalues of Γ.
Precisely, we assume a polynomial decay of υ with a > 1/2 in the cases (ppp),
(epp) and (ppe). Easy calculus shows that the covariance operator Γ ∈ N d

υ acts
for integer a like integrating (2a)-times and hence it is called finitely smoothing
(c.f. Natterer [23]). In the case (pep) we assume an exponential decay of υ and
it is easily seen that the range of Γ ∈ N d

υ is a subset of C∞[0, 1], therefore the
operator is called infinitely smoothing (c.f. Mair [20]).

Point-wise estimation By evaluation in a given point t0 ∈ [0, 1] we mean
the linear functional ℓt0 mapping f to f(t0) := ℓt0(f) =

∑∞
j=1[f ]jψj(t0). In the

following we shall assume that the point evaluation is well-defined on the set of
slope parameters Fγ which is obviously implied by

∑∞
j=1[ℓt0 ]

2
jγ

−1
j <∞. Conse-

quently, the condition
∑

j>1 γ
−1
j < ∞ is sufficient to guarantee that the point

evaluation is well-defined on Fγ . Obviously, in case (pep) or in other words for
exponentially increasing γ, this additional condition is automatically satisfied.
However, a polynomial increase, as in the cases (ppp) and (ppe), requires the
assumption p > 1/2. Roughly speaking, this means that the slope parameter
has at least to be continuous. In order to estimate the value β(t0) we consider
the plug-in estimator

ℓ̂mt0 =

{
[ℓt0 ]

t
m[Γ̂]−1

m [ĝ]m, if [Γ̂]m is non-singular and ‖[Γ̂]−1
m ‖S 6 n,

0, otherwise,

with [ℓt0 ]m = (ψ1(t0), . . . , ψm(t0))
t. Moreover, we observe that ℓ̂mt0 = ℓt0(β̂m) =

β̂m(t0) for β̂m ∈ Sm as determined by (2.3).

Local average estimation Next we are interested in the average value of
β on the interval [0, b] for b ∈ (0, 1]. If we denote the linear functional map-

ping f to b−1
∫ b

0
f(t)dt by ℓb, then it is easily seen that [ℓb]1 = 1, [ℓb]2j =

(
√
2πjb)−1 sin(2πjb), [ℓb]2j+1 = (

√
2πjb)−1 cos(2πjb) for j > 1. In this situation

the plug-in estimator ℓ̂bm = b−1
∫ b

0 β̂m(t)dt is written as

ℓ̂bm =

{
[ℓb]tm[Γ̂]−1

m [ĝ]m, if [Γ̂]m is non-singular and ‖[Γ̂]−1
m ‖S 6 n,

0, otherwise.

Again, with β̂m ∈ Sm as determined by (2.3), we observe that ℓ̂bm = ℓ(β̂m) =

b−1
∫ b

0
β̂m(t)dt.

3. Theoretical properties

3.1. Consistency under mild assumptions

In this section we provide sufficient conditions for the consistency of the estima-
tor ℓ̂m defined in (2.4) for all β ∈ Fγ and ℓ ∈ L1/γ . Recall that this estimator
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is based on the Galerkin solution βm. The next assertion summarizes that con-
sistency can be ensured if

‖β − βm‖γ = o(1) as m→ ∞ (3.1)

which is in general not satisfied without further assumptions, not even for γ ≡ 1.

Proposition 3.1. Let {(Yi, Xi)}ni=1 be an i.i.d. sample of (Y,X) satisfying
(1.1). Suppose that β ∈ Fγ and ℓ ∈ L1/γ , where the sequence γ satisfies As-

sumption 2.1 and let Assumption 2.2 hold true. Consider the estimator ℓ̂m with
dimension m = m(n) satisfying 1/m = o(1) and m3 = O(n) as n → ∞ and
suppose that in addition the following conditions are fulfilled

‖[Γ]−1
m ‖S = o(n) and [ℓ]tm[Γ]−1

m [ℓ]m = o(n) as n→ ∞. (3.2)

If condition (3.1) holds true then we have E|ℓ̂m − ℓ(β)|2 = o(1) as n→ ∞.

If the operator Γ satisfies a link condition, i.e., Γ ∈ N d
υ , then condition (3.1)

is automatically fulfilled which is expressed in the next assertion.

Corollary 3.2. Let the covariance operator Γ be an element of N d
υ with d > 1

and let the sequence υ satisfy Assumption 2.1. The conclusion of Proposition
3.1 still holds true without imposing condition (3.1) provided (3.2) is substituted
by

1

nυm
= o(1), and

1

n

m∑

j=1

[ℓ]
2
j

υj
= o(1) as n→ ∞. (3.3)

Remark 3.1. Consider the case (ppp) and suppose that
∑

j>1[ℓ]
2 <∞. In this

situation, the assumptionm2a = o(n) as n→ ∞ implies the additional condition
in Corollary 3.2. Interestingly, in a direct regression model the condition m =
o(n) as n→ ∞ is needed to ensure consistency, which would correspond to the
case a = 1/2. This, however, cannot hold true for any X with finite second
moment. �

3.2. The lower bound

In order to obtain a lower bound for the minimax risk inf ℓ̃Rℓ[ℓ̃,Fρ
γ ,N d

υ ] defined
in (1.3) we assume in addition that for all f ∈ H the conditional distribution
of ε given 〈X, f〉 is Gaussian with mean zero and variance one, or ε|〈X, f〉 ∼
N (0, 1) for short. This assumption is only used to simplify the calculation of
the distance between distributions of the observations corresponding to different
slope functions. In order to formulate the lower bounds below let us define

m∗
n := arg max

m>1

{
min{υm

γm
, n−1}

max{υm

γm
, n−1}

}
, K∗

n := max

{
υm∗

n

γm∗

n

, n−1

}
for all n > 1.

(3.4)
The lower bound needs the following assumption.
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Assumption 3.1. Let γ and υ be sequences such that

0 < κ := κ(υ, γ) := inf
n>1

{
(K∗

n)
−1 min

{υm∗

n

γm∗

n

, n−1
}}

6 1. (3.5)

Now we are in the position to state the main result of this section.

Theorem 3.3. Let {(Yi, Xi)}ni=1 be an i.i.d. sample of (Y,X) satisfying (1.1).
Suppose that Assumptions 2.1, 2.2 and 3.1 hold true and assume in addition
that ε|〈X, f〉 ∼ N (0, 1) for all f ∈ H. If m∗

n ∈ N is given by equation (3.4) then
we have for all ℓ ∈ L1/γ and all n > 1:

inf
ℓ̃
Rℓ[ℓ̃,Fρ

γ ,N d
υ ] >

κ

4
min

(
σ2

2d
, ρ

)
max



K

∗
n

m∗

n∑

j=1

[ℓ]
2
j

υj
,
∑

j>m∗

n

[ℓ]
2
j

γj



 .

Remark 3.2. Below we derive an upper bound for Rℓ[ℓ̂m∗

n
,Fρ

γ ,N d
υ ] of the esti-

mator ℓ̂m∗

n
assuming that the error term ε and the regressorX are uncorrelated.

Obviously, in this situation Theorem 3.3 provides a lower bound for any estima-
tor as long as Assumption 2.2 does not exclude a Gaussian error. It is worth to
note that the lower bound tends to zero with parametric rate n−1 if and only if∑∞

j=1[ℓ]
2
jυj

−1 <∞, independently of the class Fρ
γ of slope parameters. �

A straightforward consequence of Theorem 3.3 is the following lower bound
over the class Lτ

ω of functionals. We define j∗ := arg max16j6m∗

n
(ω−1

j υ−1
j ) and

the functional ℓ∗ given by [ℓ∗]j := (τ/ωj∗)
1/2 for j = j∗ and 0 otherwise. Obvi-

ously ℓ∗ is an element of Lτ
ω. By evaluating the lower bound given by Theorem

3.3 for the specific functional ℓ∗ we immediately obtain the following result and
we omit its proof.

Corollary 3.4. Under the conditions of Theorem 3.3 we have

inf
ℓ̃

sup
ℓ∈Lτ

ω

Rℓ[ℓ̃,Fρ
γ ,N d

υ ] >
κτ

4
min

(
σ2

2d
, ρ

)
max

16j6m∗

n

( 1

υjωj

)
K∗

n.

Remark 3.3. It is easily seen that the lower bound given in Corollary 3.4 tends
to zero if and only if (ωjγj)j>1 tends to infinity. In other words, consistency of
an estimator of ℓ(β) uniformly over spheres in Fγ and L1/γ is impossible. This
obviously reflects the ill-posedness of the underlying inverse problem. �

By considering the typical choices of γ and υ gathered in the cases (ppp),(pep),
(ppe) and (epp) above, we illustrate now the lower bounds for the minimax risks
inf ℓ̃ Rℓ[ℓ̃,Fρ

γ ,N d
υ ] and inf ℓ̃ supℓ∈Lτ

ω
Rℓ[ℓ̃,Fρ

γ ,N d
υ ]. We see from Theorem 3.3 and

Corollary 3.4, respectively, that their orders are determined by the sequences
δ∗ := (δ∗n)n>1 and ∆∗ := (∆∗

n)n>1 given by

δ∗n := max



K

∗
n

m∗

n∑

j=1

[ℓ]
2
j

υj
,
∑

j>m∗

n

[ℓ]
2
j

γj



 and ∆∗

n := max
16j6m∗

n

( 1

υjωj

)
K∗

n. (3.6)

In the next assertion we present the orders of those sequences.
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Proposition 3.5. Let the assumptions of Theorem 3.3 hold true. Under the
following conditions the Assumptions 2.1 and 3.1 are satisfied and the lower
bounds are determined by the orders of δ∗ and ∆∗ as given below.

(ppp) If p > 0 and a > 1/2, then m∗
n ∼ n1/(2p+2a) and if

(i) s > 1/2− p, then

δ∗n ∼





n−(2p+2s−1)/(2p+2a), if s− a < 1/2

n−1 log(n), if s− a = 1/2

n−1, if s− a > 1/2,

(ii) s > −p, then ∆∗
n ∼ max(n−(p+s)/(p+a), n−1).

(pep) If p > 0 and a > 0, then m∗
n ∼ log(n[log(n)]−p/a)1/(2a) and if

(i) s > 1/2− p, then δ∗n ∼ [log(n)]−(2p+2s−1)/(2a),

(ii) s > −p, then ∆∗
n ∼ [log(n)]−(p+s)/a.

(epp) If p > 0, a > 1/2 and s ∈ R then m∗
n ∼ log(n[log(n)]−a/p)1/(2p) and

(i) δ∗n ∼





n−1[log(n)](2a−2s+1)/(2p), if s− a < 1/2

n−1 log[log(n)], if s− a = 1/2

n−1, if s− a > 1/2,

(ii) ∆∗
n ∼ max(n−1[log(n)](a−s)/p, n−1).

(ppe) If p > 0, a > 1/2 and s > 0 then m∗
n ∼ n1/(2p+2a) and

(i) δ∗n ∼ n−1 (ii) ∆∗
n ∼ n−1.

Remark 3.4. The rates given in Proposition 3.5 determine up to a constant
the minimax optimal rate of convergence, as we will show in Proposition 3.8
below. Nevertheless, we shall already emphasize here the interesting influence
of the parameters p, s and a characterizing the ‘smoothness’ of β, ℓ and the
decay of the eigenvalues of Γ respectively. As we see from Proposition 3.5, an
increase of the value of a leads in each case to a slower obtainable optimal rate of
convergence. Therefore, the parameter a is often called degree of ill-posedness
(c.f. Natterer [23]). On the other hand, an increase of the value of p or s leads
to a faster optimal rate. In other words values of a linear functional given by
a smoother slope function or representer can be estimated faster, as expected.
Moreover, in the cases (ppp) and (epp) the parametric rate n−1 is obtained if
and only if the functional is ‘smoother’ than the degree of ill-posedness of Γ
in the sense that (i) s > a − 1/2 and (ii) s > a. The situation is different in
the cases (pep) and (ppe), where the optimal rates are always logarithmic or
parametric, respectively. �

Remark 3.5. There is an interesting issue hidden in the parametrization that
we have chosen. Consider a classical indirect regression model given by the
covariance operator Γ and Gaussian white noise Ẇ , i.e., gn = Γβ + n−1/2Ẇ
(for details see e.g. Hoffmann and Reiß [14]). It is shown in Johannes and Kroll
[16] that, for example in case (ppp), the optimal rate of convergence over the
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classes Fρ
γ and Lτ

ω of any estimator of ℓ(β) is of order max(n−(p+s)/(p+2a), n−1).
In contrast, Proposition 3.5 states that the optimal rate in a functional linear
model is of order max(n−(p+s)/(p+a), n−1). Thus, we see by comparing the two
rates that the covariance operator Γ in a functional linear model has the degree
of ill-posedness a while the same operator has a degree of ill-posedness (2a)
in the indirect regression model. In other words, in a functional linear model
we do not face the complexity of the inversion of Γ but only of its square root
Γ1/2. It is interesting to note that in case (ppp) functional linear regression is
asymptotically equivalent in Le Cam’s sense to the white noise problem with
the square root of the covariance operator (cf. Meister [21]). Similar remarks
hold true for the other cases, however, in case (pep) the rate of convergence
is the same as in an indirect regression model with Gaussian white noise (c.f.
Johannes and Kroll [16]). This is due to the fact that if υj ∼ exp(−r|j|2a) for
some r > 0, then the dependence of the rate of convergence on the value r is
hidden in the constant. �

3.3. The upper bound

Proposition 3.1 shows that the estimator ℓ̂m defined in (2.4) is consistent for
all slope functions and functionals belonging to Fγ and L1/γ , respectively. The
following theorem provides an upper bound if β belongs to an ellipsoid Fρ

γ .

Theorem 3.6. Let {(Yi, Xi)}ni=1 be an i.i.d. sample of (Y,X) satisfying (1.1).
Suppose that Assumptions 2.1, 2.2 and 3.1 hold true and that

sup
m∈N

{υm
γm

m3
}
<∞. (3.7)

Consider δ∗n as in (3.6) and the estimator ℓ̂m defined with dimension m := m∗
n

given by (3.4). There exists a constant C(d, υ, γ) depending on d, υ and γ only

such that Rℓ[ℓ̂m∗

n
,Fρ

γ ,N d
υ ] 6 C(d, υ, γ)η{(σ2+ρ)·δ∗n+ρ‖ℓ‖21/γn−1} and therefore

Rℓ[ℓ̂m∗

n
,Fρ

γ ,N d
υ ] 6 C(d, υ, γ)η(σ2 + ρ+ ρ‖ℓ‖21/γ) · inf

ℓ̃
Rℓ[ℓ̃,Fρ

γ ,N d
υ ].

The rate δ∗ := (δ∗n)n>1 of the lower bound given in Theorem 3.3 provides up

to a constant also an upper bound of the estimator ℓ̂m∗

n
. Thus, we have shown

that the rate δ∗ is optimal and hence ℓ̂m∗

n
is minimax-optimal. We observe that

δ∗n 6 τ ·max16j6m∗

n

(
υ−1
j ω−1

j

)
K∗

n = τ ·∆∗
n for all ℓ ∈ Lτ

ω and therefore we obtain
the following result as a consequence of Theorem 3.6 and we omit the proof.

Corollary 3.7. Under the conditions of Theorem 3.6 we have that
supℓ∈Lτ

ω
Rℓ[ℓ̂m∗

n
,Fρ

γ ,N d
υ ] 6 C(d, υ, γ)η(σ2 + 2ρ) · τ ·∆∗

n and therefore

sup
ℓ∈Lτ

ω

Rℓ[ℓ̂m∗

n
,Fρ

γ ,N d
υ ] 6 C(d, υ, γ)η(σ2 + 2ρ) · inf

ℓ̃
sup
ℓ∈Lτ

ω

Rℓ[ℓ̃,Fρ
γ ,N d

υ ].

In the following we illustrate the previous results by considering the typical
choices of γ and υ presented below Assumption 2.1.
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Proposition 3.8. Let {(Yi, Xi)}ni=1 be an i.i.d. sample of (Y,X) satisfying

(1.1) and suppose that Assumption 2.2 holds true. Let the estimator ℓ̂m be de-

fined with dimension m := m∗
n as given in Proposition 3.5. Then ℓ̂m∗

n
attains the

optimal rates δ∗n and respectively ∆∗
n given in Proposition 3.5 if we additionally

assume p+ a > 3/2 in the cases (ppp) and (ppe).

Remark 3.6. It is of interest to compare our results with those of Cai and Hall
[2] who consider only (i) in the case (ppp). In their notations the decay of the
eigenvalues of Γ is assumed to be of order (|j|−α), i.e., α = 2a, with α > 1.
Furthermore, they suppose a decay of the coefficients of the slope function and
the representing sequence [ℓ] of order (|j|−β), i.e., β = p+ 1/2, with β > α+ 2,
and (|j|−γ), i.e., γ = s, with γ > 1/2 respectively. By using this parametrization
we see that our results in the case (ppp) imply the same rate of convergence as
the one presented in Cai and Hall [2]. However, we shall stress that the condition
β > α + 2 or equivalently p > 3/2 + 2a is much stronger than the condition
p+ a > 3/2 used in Proposition 3.8. �

3.4. Optimal point-wise and local average estimation

We continue the discussion of Section 2.3.

Point-wise estimation - continued Recall that ℓt0(β̂m∗

n
) = β̂m∗

n
(t0) with

[ℓt0 ]
2
j = ψ2

j (t0) ∼ j−2s and s = 0. By applying Proposition 3.8, the estimator’s

maximal mean squared error over the classes Fρ
γ and N d

υ is uniformly bounded

for t0 ∈ [0, 1] up to a constant by δ∗n, i.e., supβ∈Fρ
γ
supΓ∈Nd

υ
E|β̂m∗

n
(t0)−β(t0)|2 6

Cδ∗n for some C > 0. Moreover, due to Proposition 3.5, δ∗n is the minimax-
optimal rate of convergence. This means in the three considered cases:

(ppp) If p > 1/2, a > 1/2 and p+ a > 3/2, then m∗
n ∼ n1/(2p+2a) and

δ∗n ∼ n−(2p−1)/(2p+2a).
(pep) If p > 1/2 and a > 0, then m∗

n ∼ log(n[log(n)]−p/a)1/(2a) and
δ∗n ∼ [log(n)]−(2p−1)/2a.

(epp) If p > 0 and a > 1/2, then m∗
n ∼ log(n[log(n)]−a/p)1/(2p) and

δ∗n ∼ n−1[log(n)](2a+1)/2p.

Let us compare the optimal rate n−(2p−1)/(2p+1) in a direct regression model
with a p-times differentiable slope function β with our results in the cases (ppp)
and (pep). Obviously, the optimal rate in a functional linear model is never
faster than the one of a direct regression model. Furthermore, they would only
coincide in the case (ppp) for a = 1/2, however, this cannot hold true for any
random function X with finite second moment.

It is interesting to note that by slightly adapting the previously presented
procedure we are able to estimate the value of the q-th derivative of β at t0.
Given the exponential basis, which is linked to the trigonometric basis for k ∈ Z

and t ∈ [0, 1] by the relation exp(2iπkt) = 21/2(ψ2k(t) + iψ2k+1(t)) with i
2 = 1.
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We recall that for 0 6 q < p the q-th derivative β(q) of β in a weak sense satisfies

β(q)(t0) =
∑

k∈Z

(2iπk)q exp(2iπkt0)
(∫ 1

0

β(u) exp(2iπku)du
)
.

Given a dimension m > 1, we denote now by [Γ̂]m the (2m+1)×(2m+1) matrix

with generic elements 〈ψj , Γ̂ψk〉, −m 6 j, k 6 m and by [ĝ]m the (2m + 1)
vector with elements 〈ĝ, ψj〉, −m 6 j 6 m. Furthermore, we define for integer q

the (2m+ 1) vector [ℓ
(q)
t0 ]m with elements [ℓ

(q)
t0 ]j := (2iπj)q exp(2iπjt0), −m 6

j 6 m. In the following we shall assume that the point evaluation of the q-th
derivative is well-defined on the set of slope parameters Fγ which is implied by∑

j>1(j
2qγ−1

j ) < ∞, since |[ℓ(q)t0 ]j |2 ∼ j2q. Obviously, this additional condition
is automatically satisfied in case (pep) and requires the assumption q < p− 1/2

in the cases (ppp) and (ppe). We consider the estimator of β(q)(t0) = ℓ
(q)
t0 (β)

given by

β̂(q)
m (t0) =

{
[ℓ
(q)
t0 ]tm[Γ̂]−1

m [ĝ]m if [Γ̂]m is non-singular and ‖[Γ̂]−1
m ‖S 6 n,

0, otherwise.

The estimator β̂
(q)
m∗

n
(t0) can be represented as ℓ

(q)
t0 (β̂m∗

n
) with [ℓ

(q)
t0 ]2j ∼ j−2s and

s = −q. By applying Proposition 3.5 and 3.8, the maximal mean squared error

over the classes Fρ
γ and N d

υ of the estimator β̂
(q)
m (t0) is uniformly bounded for

t0 ∈ [0, 1] up to a constant by the minimax rate δ∗n. This means in the three
considered cases:

(ppp) If p > 1/2, a > 1/2 and p+ a > 3/2, then m∗
n ∼ n1/(2p+2a) and

δ∗n ∼ n−(2p−2q−1)/(2p+2a).
(pep) If p > 1/2 and a > 0, then m∗

n ∼ log(n[log(n)]−p/a)1/(2a) and
δ∗n ∼ [log(n)]−(2p−2q−1)/2a.

(epp) If p > 0 and a > 1/2, then m∗
n ∼ log(n[log(n)]−a/p)1/(2p) and

δ∗n ∼ n−1[log(n)](2a+2q+1)/2p.
�

Local average estimation - continued Recall that ℓ̂bm = b−1
∫ b

0
β̂m(t)dt

with [ℓb]
2
j ∼ j−2s and s = 1. Its maximal mean squared error over Fρ

γ and

N d
υ is bounded up to a constant by δ∗n, that is supβ∈Fρ

γ ,Γ∈Nd
υ
E|

∫ b

0 β̂m∗

n
(t)dt −

∫ b

0
β(t)dt|2 6 Cδ∗n for some C > 0 (Proposition 3.8). Moreover, due to Proposi-

tion 3.5, δ∗n is again minimax-optimal. In the three cases the order of δ∗n is given
as follows:

(ppp) If p > 0, a > 1/2 and p+ a > 3/2, then m∗
n ∼ n1/(2p+2a) and

δ∗n ∼ n−(2p+1)/(2p+2a).
(pep) If p > 0 and a > 0, then m∗

n ∼ log(n[log(n)]−p/a)1/(2a) and
δ∗n ∼ [log(n)]−(2p+1)/2a.

(epp) If p > 0 and a > 1/2, then m∗
n ∼ log(n[log(n)]−a/p)1/(2p) and

δ∗n ∼ n−1[log(n)](2a−1)/2p.



On rate optimal local estimation in FLR 205

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t

β1
β2

0 5 10 15 20 25 30

−
0.

04
0.

00
0.

02
0.

04
0.

06
0.

08

Index

[β1]
[β2]

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

pol.
exp.

Fig 1. In the left panel the slope function β1 is drawn with a solid red line and β2 with a
dashed green line. The middle panel depicts the Fourier coefficients of β1 with red triangles
and those of β2 with green circles. The right panel illustrates the polynomial decay of υ with
black circles and an exponential decay with magenta crosses respectively.

In contrast to a direct regression model where the average value of the regres-
sion function can be estimated with parametric rate n−1, we find that in the
considered cases the optimal rate is always slower than n−1. Observe that in
the cases (ppp) and (epp) the rate could only be parametric for a 6 1/2, which
again cannot hold true. �

A simulation study We consider in this paragraph the problem of point-wise
estimation of the following slope functions

β1(t) := 20t1[0;0.1]− 20
9 (t−1)1(0.1;1] and β2(t) := 2·cos(2πt(2t+1)) ; t ∈ [0, 1].

For computation, the infinite dimensional vectors [β1] and [β2] of coefficients
with respect to the trigonometric basis given in (2.5) are truncated at a suf-
ficiently large index L; in the following we set L := 1024. The slope func-
tions and their respective first 32 Fourier coefficients are illustrated in figure 1.
Furthermore, we assume that [X ]L follows a multivariate normal distribution
with mean 0 and covariance matrix [Γ]L = [Diag(υ)]L+[Diag(υ2)]LU [Diag(υ2)]L,
where U is a randomly generated covariance matrix with spectral norm 1.
This construction guarantees that Γ belongs to the operator class N d

υ for a
sufficiently large d. In the case (ppp) we set υj ∼ j−3 and in case (pep)
υj ∼ exp(−j), 1 6 j 6 L. The noise level σ2 is assumed to equal 0.1. In the
following we estimate the evaluation of the slope functions on a equidistantly
spaced grid of length 200. The dimension parameter m is chosen optimally by
minimizing the cummulative error |ℓ̂mt0 −βi(t0)|2, i ∈ {1, 2}, over 101 repetitions.
The results of the simulation are depicted in figure 2. As expected, for both β1
and β2 a higher number of coefficients is chosen in the polynomial case than
in the exponential case as seen in figure 3. We may also state that the optimal
parameter m becomes larger as the sample size increases. An increase of the
noise level to σ2 = 1 leads to wider 90% bands as illustrated in figure 4.
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Fig 2. Between the dotted blue lines are 90% of the estimates. The dashed blue represents
their point-wise median. The first and third row depict the results for a polynomial decay of
υ, whereas the second and fourth row correspond to an exponential decay.
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Fig 3. The slope functions are rescaled for reference. The solid black lines illustrates the
optimally chosen dimension parameter in the case of polynomially decaying υ, whereas the
dashed magenta line corresponds to the case of an exponential decay.
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Fig 4. The noise level has been increased to σ2 = 1. Between the dotted blue lines are 90%
of the estimates. The dashed blue represents their point-wise median. The first and third row
depict the results for a polynomial decay of υ, whereas the second and fourth row correspond
to an exponential decay.

Similar findings hold true, if the Haar wavelet basis is used, however the
resulting estimates are less convincing, due to the fact that only a few coefficients
in the trigonometric basis are needed to approximate the chosen slope functions
reasonable well, whereas more coefficients in the Haar wavelet basis are needed.

Conclusion In this paper we have presented a minimax optimal plug-in esti-
mation technique that is suited to deal in particular with point-wise estimation
and the estimation of local averages. Obviously, the data driven choice of the
dimension parameter m is only one amongst the many interesting questions for
further research and we are currently exploring this topic. Another one might
be the exploitation of local structures and sparse representations of the slope
parameter β by wavelet thresholding techniques.

Appendix A: Proofs

We begin by defining and recalling notations to be used in the proofs of this
section. Given m > 1, let us denote by ‖·‖ the euclidean norm in R

m, by
[Diag(γ)]m the m-dimensional diagonal matrix with entries (γ1, . . . , γm) and

by [I]m the m-dimensional identity matrix. Furthermore recall that βm ∈ Sm
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denotes the Galerkin solution of g = Γβ defined by (2.1). Let us introduce the
notations

[Γ̂]m =
1

n

n∑

i=1

[Xi]m[Xi]
t
m, [Ξ]m := [Γ]−1/2

m [Γ̂]m[Γ]−1/2
m − [I]m,

[Z]m := [ĝ]m − [Γ̂]m[βm]m.

Moreover, we define the events

Ω := {‖[Γ̂]−1
m ‖S 6 n}, Ω1/2 := {‖[Ξ]m‖S 6 1/2}

Ωc := {‖[Γ̂]−1
m ‖S > n} and Ωc

1/2 = {‖[Ξ]m‖S > 1/2}.

We shall prove in the end of this section two technical Lemmata (B.1 and B.2)
which are used in the following proofs. Furthermore, we will denote by C univer-
sal numerical constants and by C(·) constants depending only on the arguments.
In both cases, the values of the constants may change from line to line.

A.1. Proof of the consistency result

Proof of Proposition 3.1. Let us define ℓ̃m := ℓ(βm)1Ω. Then the proof is
based on the decomposition

E|ℓ̂m − ℓ(β)|2 6 2{E|ℓ̂m − ℓ̃m|2 + E|ℓ̃m − ℓ(β)|2}

where we will bound each term on the right hand side separately. On the one
hand we have

E|ℓ̃m − ℓ(β)|2 6 2{|ℓ(β − βm)|2 + |ℓ(β)|2 P (Ωc)}. (A.1)

On the other hand, we conclude from the identity [ĝ]m− [Γ̂]m[βm]m = [Z]m that

E|ℓ̂m − ℓ̃m|2 = E|[ℓ]tm {[Γ]−1
m + ([Γ̂]

−1

m − [Γ]
−1
m )} [Z]m|2 1Ω .

By using ‖[Γ̂]−1
m ‖S 1Ω 6 n and ‖{[I]m + [Ξ]m}−1‖S 1Ω1/2

6 2 it follows that

E|ℓ̂m − ℓ̃m|2 6 4
[
E|[ℓ]tm [Γ]−1

m [Z]m|2

+ ‖[ℓ]tm [Γ]−1/2
m ‖2

{
4(E‖[Ξ]m‖4S)1/2(E‖[Γ]−1/2

m [Z]m‖4)1/2

+ n2 ‖[Γ]m‖2S (E‖[Ξ]m‖8S)1/4(E‖[Γ]−1/2
m [Z]m‖8)1/4(P (Ωc

1/2))
1/2

}]
.

We observe that E|[ℓ]tm [Γ]−1
m [Z]m|2 6 ‖[ℓ]tm [Γ]

−1/2
m ‖2 supz∈Rm:ztz=1 E|zt [Γ]−1/2

m ×
[Z]m|2 and that ‖[Γ]m‖S is less or equal than the operator norm ‖Γ‖S of Γ, which
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equals its largest eigenvalue. Therefore, by using (B.1) - (B.3) in Lemma B.1
with k = 12 we have

E|ℓ̂m − ℓ̃m|2 6 C (‖[ℓ]tm [Γ]−1/2
m ‖2/n) η

{
‖Γ1/2(β − βm)‖2

H
+ σ2

}

·
{
1 +m3/n+ η−1/2‖Γ‖2Sm3n (P (Ωc

1/2))
1/2

}
. (A.2)

The combination of (A.1) and (A.2) leads to the estimate

E|ℓ̂m − ℓ(β)|2 6 C
{
|ℓ(β − βm)|2 + |ℓ(β)|2 P (Ωc) + (‖[ℓ]tm [Γ]−1/2

m ‖2/n) η

· {‖Γ1/2(β − βm)‖2
H
+ σ2}

[
1 +m3/n+ η−1/2‖Γ‖2Sm3n(P (Ωc

1/2))
1/2

)]}
.

(A.3)

We observe that the identity [Γ̂]m = [Γ]
1/2
m {[I]m + [Ξ]m}[Γ]1/2m implies by the

usual Neumann series argument that if ‖[Ξ]m‖S 6 1/2 then ‖[Γ̂]−1
m ‖S 6 2‖[Γ]−1

m ‖S.
Thereby, n > 2‖[Γ]−1

m ‖S implies Ωc ⊂ Ωc
1/2. Furthermore, due to (B.3) in

Lemma B.1 with k = 12 we obtain by applying Markov’s inequality that
P (Ωc

1/2) 6 Cηm24n−12. This leads to

E|ℓ̂m − ℓ(β)|2 6 C
{
|ℓ(β − βm)|2 + |ℓ(β)|2 (m3/n)8n−4 η

+(‖[ℓ]tm [Γ]−1/2
m ‖2/n) η {‖Γ1/2(β−βm)‖2H+σ2}

[
1+(m3/n)+(m3/n)5‖Γ‖2S

]}

(A.4)

Furthermore, for each β ∈ Fγ , we have ‖β − βm‖γ = o(1) as m → ∞ from
condition (3.1), which implies |ℓ(β − βm)|2 = o(1) and ‖Γ1/2(β − βm)‖H = o(1)
as m→ ∞ under Assumption 2.1. Consequently, the conditions m3 = O(n) and
[ℓ]tm[Γ]−1

m [ℓ]m = o(n) as n → ∞ ensure the convergence to zero of the bound
given in (A.4) as n→ ∞, which proves the result.

Proof of Corollary 3.2. First, we prove that Γ ∈ N d
υ implies (3.1). Let

us denote by Πm and Π⊥
m the orthogonal projections on Sm and its orthogonal

complement, respectively. On the one hand, we have ‖Π⊥
mβ‖γ = o(1) as m→ ∞

by Lebesgue’s dominated convergence theorem. On the other hand, from the
identity [Πmβ − βm]m = −[Γ]−1

m [ΓΠ⊥
mβ]m we conclude ‖Πmβ − βm‖2γ 6 2(1 +

d2)‖Π⊥
mβ‖2γ for all Γ ∈ N d

υ , because the estimate (B.8) in Lemma B.2 implies

sup‖f‖γ=1‖[Diag(γ)]
1/2
m [Γ]

−1
m ([Γf ]m − [Γ]m[f ]m)‖2 6 2(1 + d2). By combining

the two results, we obtain the assertion. It remains to show that (3.2) can
be substituted by (3.3). Due to (B.5) in Lemma B.2 the link condition Γ ∈ N d

υ

implies υm‖[Γ]−1
m ‖S 6 4d3. Since 1/υm = o(n) we conclude that ‖[Γ]−1

m ‖S = o(n)

as n → ∞. Furthermore, from (B.6) in Lemma B.2 we have [ℓ]tm [Γ]−1
m [ℓ]tm 6

∑m
j=1[ℓ]

2
jυ

−1
j ‖[Diag(υ)]

1/2
m [Γ]

−1/2
m ‖2S 6 4d3

∑m
j=1[ℓ]

2
jυ

−1
j . Thus

∑m
j=1[ℓ]

2
jυ

−1
j =

o(n) implies [ℓ]tm [Γ]−1
m [ℓ]tm = o(n) as n→ ∞, which proves the result. �
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A.2. Proof of the lower bound

Proof of Theorem 3.3. Consider ε and X with Γ ∈ N d
υ such that Assump-

tion 2.2 is satisfied and ε|〈X, f〉 ∼ N (0, 1) holds true for all f ∈ H. Assume
i.i.d. copies {(εi, Xi)}ni=1 of (ε,X) and let β∗ ∈ Fρ

γ with 2dn‖β∗‖2υ 6 σ2, to be
specified below. Obviously, for each θ ∈ {−1, 1} the function βθ := θ β∗ belongs
also to Fρ

γ and the random variables {(Yi, Xi)}ni=1 with Yi := 〈βθ, Xi〉 + σεi
form a sample of the model (1.1). We denote its joint distribution by Pθ. We
observe that the conditional distribution of Yi given Xi is Gaussian with mean
θ〈β∗, Xi〉 and variance σ2. Thereby, it is easily seen that the expectation of the
log-likelihood function of P1 with respect to P−1 satisfies

EP−1
[log(dP1/dP−1)] = (2n/σ2) 〈Γβ∗, β∗〉 = (2n/σ2)‖Γ1/2β∗‖2H.

In terms of Kullback-Leibler divergence this means that the inequality
KL(P1,P−1) 6 (2dn/σ2)‖β∗‖2υ 6 1 holds true, by using the inequality of Heinz
[13], i.e., for all |s| 6 1, f ∈ H and T ∈ N d

υ we have ‖T sf‖2
H
6 d2|s|‖f‖2υ2s , to-

gether with the condition 2dn‖β∗‖2υ 6 σ2. Due to the bounded Kullback-Leibler
divergence, Le Cam’s general method (see Le Cam [18]) and Pinsker’s inequality
allow us to derive a lower bound. However, in this special setting a lower bound
can be obtained by the following elementary steps. We consider the Hellinger
affinity ρ(P1,P−1) =

∫ √
dP1dP−1 and obtain for any estimator ℓ̆ and for all

ℓ ∈ L1/γ that

ρ(P1,P−1) 6

∫ |ℓ̆− ℓ(β1)|
2|ℓ(β∗)|

√
dP1dP−1 +

∫ |ℓ̆− ℓ(β−1)|
2|ℓ(β∗)|

√
dP1dP−1

6
(∫ |ℓ̆− ℓ(β1)|2

4|ℓ(β∗)|2
dP1

)1/2

+
(∫ |ℓ̆− ℓ(β−1)|2

4|ℓ(β∗)|2
dP−1

)1/2

. (A.5)

By using the identity ρ(P1,P−1) = 1− 1
2H

2(P1,P−1) it follows from (A.5) that

{
EP1

|ℓ̆− ℓ(β1)|2 + EP−1
|ℓ̆− ℓ(β−1)|2

}
>

1

2
|ℓ(β∗)|2 (A.6)

since the Hellinger distance H(P1,P−1) between P1 and P−1 satisfies H
2(P1,P−1) 6

KL(P1,P−1) 6 1. From (A.6) we conclude for each estimator ℓ̆ that

sup
β∈Fρ

γ

E|ℓ̆− ℓ(β)|2 > sup
θ∈{−1,1}

EPθ
|ℓ̆− ℓ(βθ)|2

>
1

2

{
EP1

|ℓ̆− ℓ(β1)|2 + EP−1
|ℓ̆− ℓ(β−1)|2

}
>

1

4
|ℓ(β∗)|2. (A.7)

We will obtain the claimed result of the theorem by evaluating (A.7) for two
special choices of β∗ ∈ Fρ

γ with 2dn‖β∗‖2υ 6 σ2, which we will construct in

the following. Define ζ := min(σ
2

2d , ρ) and let κ be given by (3.5). On the one

hand, consider the slope function β∗ :=
∑m∗

n

j=1 [β∗]j ψj , with coefficients [β∗]j :=
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[ℓ]jυ
−1
j (ζκK∗

n)
1/2(

∑m∗

n
j=1 [ℓ]

2
jυ

−1
j )−1/2. Since υ/γ is monotonically decreasing and

by using the definition of κ and ζ it follows that ‖β∗‖2γ 6 ζκK∗
nγm∗

n
υ−1
m∗

n
6 ζ 6 ρ

and, hence β∗ ∈ Fρ
γ . Furthermore, we have that 2 dn‖β∗‖2υ = 2dζκK∗

nn 6

2dζ 6 σ2. Obviously, by evaluating (A.7) we conclude supβ∈Fρ
γ
E|ℓ̆ − ℓ(β)|2 >

(κ/4)ζK∗
n

∑m∗

n

j=1 [ℓ]
2
jυ

−1
j . On the other hand, consider β∗ :=

∑
j>m∗

n
[β∗]ψj with

[β∗]j := (κζ)1/2(γ2j
∑

j>m∗

n
[ℓ]

2
jγ

−1
j )−1/2[ℓ]j we conclude from κ 6 1 and ‖β∗‖2γ =

∑
j>m∗

n
[β∗]

2
jγj = ζκ 6 ρ that β∗ belongs to Fρ

γ . Moreover, we have 2nd‖β∗‖2υ 6

2ndζκυm∗

n
γm∗

n

−1 6 2dζ 6 σ2. By evaluating (A.7) we obtain supβ∈Fρ
γ
E|ℓ̆ −

ℓ(β)|2 > (κ/4)ζ
∑

j>m∗

n
[ℓ]2jγ

−1
j . Combining the two lower bounds, which hold

true for arbitrary Γ ∈ N d
υ , we obtain

inf
ℓ̃

inf
Γ∈Nd

υ

sup
β∈Fρ

γ

E|ℓ̆ − ℓ(β)|2 >
κ

4
ζmax

{
K∗

n

m∗

n∑

j=1

[ℓ]
2
jυ

−1
j ,

∑

j>m∗

n

[ℓ]
2
jγ

−1
j

}
,

which implies the result of the theorem.

Proof of Proposition 3.5. We start our proof with the observation that
under the conditions on p, a and s given in the proposition the sequences γ, υ
and ω satisfy Assumption 2.1 and Assumption 3.1.
Proof of (ppp). From the definition ofm∗

n in (3.4) it follows thatm∗
n ∼ n1/(2a+2p).

Consider case (i). The condition s − a < 1/2 implies n−1
∑m∗

n

j=1 |j|2a−2s ∼
n−1(m∗

n)
2a−2s+1 ∼ n−(2p+2s−1)/(2p+2a) and moreover we have

∑
j>m∗

n
|j|−2p−2s ∼

n−(2p+2s−1)/(2p+2a) since p+ s > 1/2. If s− a = 1/2, then n−1
∑m∗

n
j=1 |j|2a−2s ∼

n−1 log(n1/(2p+2a)) and
∑

j>m∗

n
|j|−2p−2s ∼ n−1. In the case s − a > 1/2 it

follows that
∑m∗

n
j=1 |j|2a−2s is bounded. Moreover, there exists a constant c > 0

such that
∑

j>m∗

n
|j|−2p−2s 6 c · n−1, or

∑
j>m∗

n
|j|−2p−2s . n−1 for short, and

hence δ∗n ∼ n−1. To prove (ii) we make use of Corollary 3.4. We observe that if
s− a > 0 the sequence ωυ is bounded from below, and hence δ∗n ∼ n−1. On the
other hand, the condition s− a < 0 implies δ∗n ∼ n−(p+s)/(p+a).
Proof of (pep). If υ is exponentially decreasing, thenm∗

n satisfies exp(−(m∗
n)

2a) ∼
n−1(m∗

n)
2p or equivalentlym∗

n ∼ log(n[log(n)]−p/a)1/(2a). To prove (i), we calcu-

late
∑

j>m∗

n
|j|−2p−2s ∼ [log(n)](−2p−2s+1)/(2a) and n−1

∑m∗

n

j=1 exp(|j|2a)|j|−2s .

n−1 exp(m∗
n
2a) ∼ [log(n)](−2p−2s+1)/(2a). In case (ii) we immediately obtain

δ∗n ∼ [log(n)]−(p+s)/a.
Proof of (epp). Only γ is an exponential sequence and hence we have m∗

n ∼
n−1 exp((m∗

n)
2p) or equivalently m∗

n ∼ log(n[log(n)−a/p])1/(2p). Consider case

(i). If s−a < 1/2, then n−1
∑m∗

n

j=1 |j|2a−2s ∼ n−1[log(n)](2a−2s+1)/(2p). If s−a =

1/2, then n−1
∑m∗

n

j=1 |j|2a−2s ∼ n−1 log(log(n)). On the other hand, the condition

s−a > 1/2 implies that
∑m∗

n

j=1 |j|2a−2s is bounded and thus, we obtain the para-

metric rate n−1. By using
∑

j>m∗

n
|j|−2s exp(−|j|2p) . exp(−(m∗

n)
2p)(m∗

n)
2s−2p+1

∼ n−1[log(n)](−2a−2s−2p+1)/(2p) it is easily seen that this sum is dominated by
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n−1
∑m∗

n
j=1 |j|2a−2s. In case (ii) if s − a > 0 then the sequence ωυ is bounded

from below as mentioned above and thus, δ∗n ∼ n−1. If s − a < 0 then δ∗n ∼
n−1[log(n)](a−s)/p.
Proof of (ppe). As in case of (ppp) both sequences γ and υ are polynomial
and thus m∗

n ∼ n1/(2p+2a). Consider case (i) where the coefficients of h de-

crease exponentially. Obviously the sum
∑m∗

n

j=1 |j|2a exp(−|j|2s) is bounded and

moreover,
∑

j>m∗

n
|j|−2p exp(−|j|2s) . exp(−|m∗

n|2s)|m∗
n|−2s−2p+1 . n−1. Con-

sequently, we have δ∗n ∼ n−1. Also in case (ii) it obviously holds δ∗n ∼ n−1,
which completes the proof. �

A.3. Proof of the upper bound

The following technical lemma is used in the proof of Theorem 3.6.

Lemma A.1. If the assumptions of Theorem 3.6 hold true, then we have P (Ωc) 6
C(γ, d, υ) η n−1.

Proof. Our proof starts with the observations that κγm∗

n
6 nυm∗

n
for all n > 1

by exploiting Assumption 3.1 and that 2‖[Γ]−1
m ‖S 6 8d3υ−1

m for all Γ ∈ N d
υ and

m > 1 due to (B.5) in Lemma B.2. Combining both estimates with γ−1
m∗

n
= o(1)

as n → ∞ we conclude 2‖[Γ]−1
m∗

‖S = o(n). Therefore, there exists an inte-

ger n0 := n0(γ, d, υ) such that for all n > n0 we have 2‖[Γ]−1
m∗

‖S 6 n−1,

and particularly Ω1/2 ⊂ Ω by applying the usual Neumann series argument.
We distinguish in the following the cases n < n0 and n > n0. Consider first
n > n0, from Markov’s inequality together with (B.3) in Lemma B.1 we ob-
tain P (Ωc) 6 P (Ωc

1/2) 6 Cη(m∗
n)

6n−3. Taking into account the condition

(3.7), that is D := D(γ, υ) := supm∈N

{
υm

γm
m3

}
< ∞, we have (m∗

n)
6n−3 6

((m∗
n)

3υm∗

n
γ−1
m∗

n
κ−1)2n−1 6 D2κ−2n−1, and hence P (Ωc) 6 CηD2κ−2n−1 for

all n > n0. On the other hand, if n < n0 then trivially P (Ωc) 6 n−1n0. Since
n0, D and κ depend on γ, d and υ only we obtain the result by combining both
cases, which completes the proof.

Proof of Theorem 3.6. Consider again the bound (A.3). By using that
‖Γ‖S 6 d for Γ ∈ N d

υ , (m
∗
n)

3n−1 6 Dκ−1 with D = supm∈N

{
υm

γm
m3

}
< ∞

and recalling that P (Ωc
1/2) 6 Cη(m∗

n)
24n−12 we obtain

E|ℓ̂m∗

n
− ℓ(β)|2 6 C

{
|ℓ(β − βm∗

n
)|2 + |ℓ(β)|2P (Ωc)

+ (‖[ℓ]tm∗

[Γ]−1/2
m∗

‖2/n) η {‖Γ1/2(β − βm∗

n
)‖2H + σ2}

[
1 +Dκ−1 + d2D5κ−5

]}
.

From (B.6), (B.9) and (B.10) in Lemma B.2 we conclude (‖[ℓ]tm∗

[Γ]
−1/2
m∗

‖2/n) 6
4d3δ∗n, furthermore ‖Γ1/2(β−βm∗

n
)‖2

H
6 10d5‖β‖2γ and |ℓ(β−βm∗

n
)|2 6 16‖β‖2γd4δ∗n,

respectively. Therefore we conclude for all β ∈ Fρ
γ
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E|ℓ̂m∗

n
− ℓ(β)|2

6 C
{
ρd4δ∗n + ρ‖ℓ‖21/γP (Ωc) + d3 η δ∗n{ρd5 + σ2}

[
1 +Dκ−1 + d2D5κ−5

]}
.

Observe that D and κ depend on υ and γ only and thus by applying Lemma
A.1 we obtain

E|ℓ̂m∗

n
− ℓ(β)|2 6 C(d, υ, γ)

{
ρδ∗n + ρ η ‖ℓ‖21/γ n−1 + η {ρ+ σ2}δ∗n

}
,

which completes the proof.

Proof of Proposition 3.8. Under the stated conditions it is easy to verify
that the assumptions of Theorem 3.6 are satisfied. The result follows by applying
Theorem 3.6 and Corollary 3.7 and we omit the details. �

Appendix B: Technical assertions

The following two lemmata gather technical results used in the proof of Propo-
sition 3.1 and Theorem 3.6.

Lemma B.1. Under Assumption 2.2 there exists a constant C(k) > 0 such that

sup
z∈Rm:ztz=1

E

∣∣∣zt[Γ]−1/2
m [Z]m

∣∣∣
2k

6 C(k)n−k
(
σ2 + ‖Γ1/2(β − βm)‖2H

)k

η, (B.1)

E‖[Γ]−1/2
m [Z]m‖2k 6 C(k)

mk

nk

(
σ2 + ‖Γ1/2(β − βm)‖2

H

)k

η, (B.2)

E‖[Ξ]m‖2kS 6 C(k) · η · m
2k

nk
. (B.3)

Proof. Let us begin by deriving elementary bounds due to Assumption 2.2. For
m > 1 define U := σε+〈β−βm, X〉, where σ2

U = Var(U) = σ2+‖Γ1/2(β−βm)‖2
H
.

It is easily seen that for k as given in Assumption 2.2 and all m > 1 we have

E|U |4k 6 C(k)σ4k
U η, max

16j6m
E|([Γ]−1/2

m [X ]m)j |4k 6 η

and sup
z∈Rm:ztz=1

E

∣∣∣zt[Γ]−1/2
m [X ]m

∣∣∣
4k

6 η. (B.4)

Let z ∈ R
m satisfy ztz = 1 and define Ui := σεi+〈β−βm, Xi〉 then zt[Γ]−1/2

m [Z]m =
1
n

∑n
i=1 Uiz

t[Γ]
−1/2
m [Xi]m. Since E〈β − βm, X〉[X ]m = [Γ(β − βm)]m = [g]m −

[Γ]m[βm]m = 0, it follows that the random variables Uiz
t[Γ]

−1/2
m [Xi]m, i =

1, . . . , n, are i.i.d. with mean zero. From Theorem 2.10 in Petrov [26] we con-

clude E|zt[Γ]−1/2
m [Z]m|2k 6 C(k)n−k

E|Uzt[Γ]−1/2
m [X ]m|2k for some constant

C(k) > 0. Then we claim that (B.1) follows from the Cauchy-Schwarz inequality
together with the bounds given in (B.4). To deduce (B.2) from (B.1) we use that

E‖[Γ]−1/2
m [Z]m‖2k 6 mk max

16j6m
E

∣∣∣([Γ]−1/2
m [Z]m)j

∣∣∣
2k

6 mk sup
z∈Rm:ztz=1

E

∣∣∣zt[Γ]−1/2
m [Z]m

∣∣∣
2k

.
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Proof of (B.3). From the identity n([Ξ]m)j,l =
∑n

i=1{([Γ]
−1/2
m [Xi]m)j([Γ]

−1/2
m ×

[Xi]m)l− δjl} with δjl = 1 if j = l and zero otherwise, we conclude E([Ξ]m)2kj,l 6

C(k)n−kη by using Theorem 2.10 in Petrov [26] and the second bound given in
(B.4). Then using the elementary inequality E‖[Ξ]m‖2kS 6 m2k max16j,l6m E×
([Ξ]m)2kj,l implies (B.3), which completes the proof.

The next Lemma is partially shown in Cardot and Johannes [4].

Lemma B.2. Suppose the sequences γ and υ satisfy Assumption 2.1. Then we
have for T ∈ N d

υ

sup
m>1

{
υm‖[T ]−1

m ‖S
}
6 {2d2(2d4 + 3)}1/2 6 4d3, (B.5)

sup
m>1

‖[T ]−1/2
m [Diag(υ)]1/2m ‖2S 6 {2d2(2d4 + 3)}1/2 6 4d3. (B.6)

If in addition βm denotes a Galerkin solution of g = Tβ then

sup
m>1

{
sup

‖β‖H=1

‖Πmβ − βm‖2H
}
6 2(1 + d2), (B.7)

sup
m>1

{
sup

‖β‖γ=1

‖Πmβ − βm‖2γ
}
6 2(1 + d2), (B.8)

and if β ∈ Fρ
γ is additionally satisfied then

sup
m>1

{υ−1
m γm ‖Γ1/2(β − βm)‖2

H
} 6 10d5ρ. (B.9)

Furthermore, for all m > 1 and all ℓ ∈ L1/γ we have

|ℓ(β − βm)|2 6 2‖β‖2γ{
∑

j>m

[ℓ]2jγ
−1
j + 2(1 + d4)

υm
γm

m∑

j=1

[ℓ]2jυ
−1
j }. (B.10)

Proof. The estimates (B.5) - (B.6) are given in Lemma A.3 in Cardot and
Johannes [4]. Furthermore, from (A.19) and (A.20) in Lemma A.3 in Cardot
and Johannes [4] follow (B.7) and (B.8). We start our proof of (B.9) with the
observation that the link condition T ∈ N d

υ implies that T is strictly positive
and that for all |s| 6 1 by using the inequality of Heinz [13]

d−2|s|‖f‖2υ2s 6 ‖T sf‖2
H
6 d2|s|‖f‖2υ2s . (B.11)

Thus, by using successively the first inequality of (B.11), the Galerkin condition
(2.1) and the second inequality of (B.11), we obtain

‖β− βm‖2υ2 6 d2‖T (β− βm)‖2
H
6 d2‖T (β−Πmβ)‖2H 6 d4‖β−Πmβ‖2υ2 (B.12)

Since β ∈ Fρ
γ and γ−1υ2 is monotonically decreasing we have ‖β − Πmβ‖2υ2 6

γ−1
m υ2m‖β‖2γ , which together with (B.12) implies ‖β − βm‖2υ2 6 d4γ−1

m υ2m‖β‖2γ
and hence,

‖Πmβ−βm‖2υ2 6 2{‖β−βm‖2υ2+‖β−Πmβ‖2υ2} 6 2(1+d4)γ−1
m υ2m‖β‖2γ . (B.13)
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The last estimate and the second inequality of (B.11) imply further ‖Γ1/2(Πmβ−
βm)‖2

H
6 d‖Πmβ − βm‖2υ 6 dυ−1

m ‖Πmβ − βm‖2υ2 6 2d(1 + d4)γ−1
m υm‖β‖2γ be-

cause υ is monotonically non increasing. Taking into account ‖β − Πmβ‖2υ 6

γ−1
m υm‖β‖2γ we obtain (B.9). Finally, by applying the Cauchy-Schwarz inequal-

ity we have on the one hand |ℓ(β −Πmβ)|2 6 ‖β‖2γ
∑

j>m[ℓ]2jγ
−1
j and by using

(B.13) it follows on the other hand |ℓ(Πmβ−βm)|2 6 ‖Πmβ−βm‖2υ
∑m

j=1[ℓ]
2
jυ

−1
j 6

2(1+d4)‖β‖2γγ−1
m υm

∑m
j=1[ℓ]

2
jυ

−1
j . Combining both estimates implies now (B.10),

which completes the proof.
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