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Abstract: We focus on a capture-recapture model in which capture prob-
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the undetected fraction of population based on the unconditional likelihood
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than the conditional likelihood especially when one is willing to infer on
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1. Introduction

In capture-recapture model Mh [21] there are S capture occasions and the cap-
ture probability of each animal is constant over all occasions but is allowed to
be different from animal to animal. The individual probability is assumed to be
distributed according to some unknown F . Untestable parametric assumptions
are usually needed in order to make inference about the unknown population
size N . In this paper, we investigate the consequences of having no assumptions
on F , and give some insights on what can be learned about N in this setting.

Our semiparametric framework has been considered in the traditional works
of [3] and [4], while likelihood-based approaches can be found in [20] and [29].
There are also Bayesian approaches in [2], [28] and [8]. However, none of the
above can be considered a conclusive solution of the problem.

In recent papers different cautionary notes have been written to discuss trou-
blesome effects of the presence of heterogeneity [12, 13] and warn against identi-
fiability issues [11, 16, 10, 19]. Surprisingly, we find out that some identifiability
issues suffered by the most widely used approach based on the so-called con-
ditional likelihood are not suffered by the unconditional likelihood when the
appropriate model parameterization is used. The use of the unconditional like-
lihood under a suitable parameterization will be shown to lead to a classical
notion of model identifiability.

However, our positive identifiability result related to the uniqueness of the
sampling distribution corresponding to each parameter configuration is not suf-
ficient to guarantee consistency of the unconditional MLE for the population
size parameter. Notice that in the capture recapture setting consistency is a
peculiar concept, defined as an asymptotic property related to the behaviour of
the estimators as N – one of the model parameters – grows to infinity.

In order to infer on the unknown fraction of unobserved units we will consider,
as in [19], a uniquely defined lower bound of the probability that an individual
is never captured, and, correspondingly, a lower bound on the true unknown
population size. We show consistency to this sharpest lower bound under mild
conditions.
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Both the conditional and unconditional likelihood have been shown by [26]
to yield consistent estimators of the population size and to be asymptotically
equivalent under suitable regularity conditions. We point out in the following
that the usually invoked equivalence in Sanathanan [26, Theorem 2, p. 147] is
valid under a strong identifiability condition [24], [Theorem A2 in the original
paper], which is not met in our setting for the conditional likelihood [16]. See
also [27].

We show that the estimator based on the unconditional likelihood yields
consistent inference for the sharpest lower bound. We finally argue through
theoretical results and numerical evidence that for that lower bound parameter
there is some useful extra information in the unconditional likelihood which
cannot be gathered for finite N through the conditional likelihood.

The paper is organized as follows: in Section 2 we fix the notation and model
setup and review the two different likelihood approaches as well as properties
and relations between the corresponding MLE. In Section 3, after reviewing the
nonidentifiability arguments of [16] for the conditional likelihood, we prove iden-
tifiability of the unconditional sampling model under a suitable parameteriza-
tion. In Section 4 we investigate more thoroughly the asymptotic unconditional
likelihood behaviour showing how one can get consistency to the sharpest lower
bound. In Section 5 we illustrate some inferential benefits of the unconditional
likelihood approach over the conditional likelihood approach. In Section 6 we
give some concluding remarks.

2. Model specification and alternative likelihoods

In a capture-recapture experiment one records the occurrence of trapping of
N animals during a sequence of S trapping occasions. Each trapped animal is
uniquely identified with a tag so that the whole capture history can be recorded.
The goal is inferring the unknown population size N based on the capture
histories of those animals which have been trapped at least once. Only a random

part of the population will be actually observed. If we conventionally label the
observed units as 1, 2, . . . , n the remaining N − n units correspond to animals
for which S consecutive zeros should have been recorded.

Capture histories are collected in a binary N ×S matrix X, up to row index
permutation. We denote with xi = (xi1, . . . , xiS) (i = 1, 2, . . . , N) the sequence
of binary capture history for the i-th animal.

ModelMh assumes independent and identically distributed (i.i.d) binary cap-
ture outcomes Xik with subject-specific capture probability

pi = Pr(Xik = 1|pi) ∀k = 1, . . . , S

and pi is in turn assumed i.i.d. from an unknown distribution F with sup-
port in [0, 1]. Let X be an N × S binary matrix, with generic i-th row Xi =
(Xi1, . . . , XiS), with Xij = 1 if the i-th subject has been captured at the j-
th occasion. Let nk denote the number of subjects which have been captured
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exactly k times, n0 = N − n, n =
∑S

k=1 nk, and

Pk(F ) =

(

S

k

)
∫ 1

0

pk(1 − p)(S−k)F (dp) k = 0, 1, . . . , S. (2.1)

be the corresponding capture probability. Note that the quantity n =
∑S

k=1 nk

is random.
We consider the sampling distribution of the count vector nobs = (n1, . . . , nk,

. . . , nS), which is a sufficient statistic,

Pr(nobs;N,F ) =
N !

∏S

k=0 nk!

S
∏

k=0

Pk(F )nk (2.2)

depending on the unknown finite population size N and the distribution of
unobservable capture probabilities F . The likelihood function expressed in terms
of the unknown parameters is also referred to as unconditional likelihood to
distinguish it from a related likelihood function called conditional likelihood,
which assumes as sampling distribution the same vector of positive counts of
units conditionally on the observed sample size n and on the fact that the
observed animals are captured at least once:

Pr(c)(nobs;F, n) =
n!

∏S
k=1 nk!

∏S

k=1 Pk(F )nk

(1− P0(F ))
∑

S

k=1
nk

(2.3)

In this conditional perspective the number of observed units n is no longer a
random quantity but it is assumed to be fixed. The likelihood functions cor-
responding to the two model specifications (2.2) and (2.3) are in fact closely
related by the following factorization

L(N,F ) = Pr (X;N,F ) = L(c)(F )× L(r)(N,F ). (2.4)

The first factor L(c)(F ) is basically a multinomial likelihood corresponding to
S cell counts (nk, k = 1, 2, . . . , S) and it is usually referred to as conditional

likelihood

L(c)(F ) =
n!

∏S
k=1 nk!

∏S

k=1 Pk(F )nk

(1− P0(F ))
∑

S

k=1
nk

=
n!

∏S

k=1 nk!

S
∏

k=1

P(c),k(F )nk (2.5)

It depends only on the F parameter through the conditional probabilities

P(c),k(F ) =
Pk(F )

1− P0(F )
= Pr
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S
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where, for any k ≥ 1, P(c),k(F ) denotes the conditional probability of capturing
an animal exactly k times given that it will be captured at least once in the S
occasions. The residual factor L(r)(N,F ) corresponds to

L(r)(N,F ) =
N !

(N − n)!n!
P0(F )(N−n)(1 − P0(F ))n (2.6)

=
N !

(

N −
∑S

k=1 nk

)

!
(
∑S

k=1 nk

)

!
P0(F )N−

∑

S

k=1
nk(1− P0(F ))

∑

S

k=1
nk

which can be also immediately recognized as a binomial likelihood and turns
out to be a function of both N and F .

From the seminal work of [26], the classical inferential approach consists in
breaking down the estimation process into two consecutive steps:

• estimate F , or its corresponding parameters, through the conditional like-
lihood L(c)(F ), obtaining

F̂c = argmax
F

L(c)(F ).

• plug F̂c in P0(F ) and hence in the residual likelihood and obtain an esti-
mate of the population size through L(r)(N, F̂c). In this step the estimation
of the parameter of interest N is simplified since we are left with a stan-
dard binomial model structure with unknown size parameter for which
maximizing the likelihood yields the explicit expression

N̂P0(F̂c)
= argmax

N
L(r)(N, F̂c) ∼=

[

n

1− P0(F̂c)

]

.

i.e. the so-called Horvitz-Thompson estimator.

We define

N(P0(·)) =
n

1− P0(·)
(2.7)

which will be useful in the following since it allows to maximize the binomial
residual likelihood for any fixed P0(·).

2.1. The notion of identifiability

We believe that it is essential to clarify different notions of identifiability of
model parameters. Since alternative inferential approaches and different likeli-
hood functions can be used to draw inference we make explicit the following iden-
tifiability and non-identifiability concepts. We refer to Basu [1] for the general
definition of identifiability in statistical models and to Paulino and Pereira de
Barganca [22] for a wider review and references.
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We say that a statistical model represented by the usual triple

M = {X , f(x; θ); Θ}

is identified when for any arbitrarily fixed true parameter θ∗ generating the
observed data X ∈ X at random according to f(x; θ∗) one has that there is no
other θ′ ∈ Θ for which

f(x; θ∗) = f(x; θ′) ∀x ∈ X . (2.8)

We stress the fact that the notion of identifiability is fundamentally related to
the parameterization used to specify the family of distributions, rather than
to the family itself. This explains why sometimes it is explicitly claimed that
identification is “a property of the likelihood” [14].

When there are two parameters say θ∗ and θ′ for which (2.8) holds they
are termed observationally equivalent and in this case we say that the model
parameter θ is not identified. Indeed when there are observationally equivalent
parameters the likelihood function is necessarily flat over all equivalence classes
defined as the subsets of Θ containing observationally equivalent parameters.
The likelihood function L(θ) = f(xobs; θ) cannot distinguish parameters within
the same equivalence class.

In the original statistical model Mh the sampling distribution is specified as
f(nobs; (N,F )) = Pr(nobs;N,F ) and is defined for any vector nobs in the set of
non-negative integers ZS

+ and for any parameter θ = (N,F ) ∈ N × P ; the first
component N lives in the positive integer set N and the other one in the space
of all probability distributions in the unit interval. We can therefore formally
specify model Mh as follows

{

ZS
+; f(nobs; (N,F ));N ×MS

}

(2.9)

We will see that for the statistical model specified as in (2.9) there is some
source of non-identifiability for the distributional part F of the parameter θ so
that two distinct parameters (N,F1) and (N,F2) can be observationally equiv-
alent provided that F1 and F2 have the same first S moments (see Section 3 for
a detailed argument). A natural way to simplify the inferential problem is refor-
mulating the model in terms of the first S moments of F , that is, reformulating
the same family of distributions for the observable quantities as in (2.2), but in
terms of a simpler parameter space.

Indeed we will show in Theorem 3.1 that under the suitable moment-based
parameterization the usual notion of identifiability holds.

On the other hand if we specify the sampling distribution conditionally on
each unit being captured the resulting statistical model

M
(c)
h =

{

ZS
+; f(c)(nobs;F ) = Pr(c)(nobs;F );P

}

(2.10)

without any functional restriction on F suffers from a more severe problem of
non-identifiability as neatly pointed out in [16].
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We finally stress that another inferential issue affects both models and is re-
lated to parameter estimability. The usual notion of estimability of a parameter
is associated with that of consistency, i.e., the asymptotic behaviour of the infer-
ential process with an arbitrarily growing number of observations. However in
our finite population setting especially in the first specification the asymptotic
behaviour of the estimators can be (and typically is) understood as N , a part
of the unknown parameter, grows to ∞. Hence both the parameter and the ob-
served frequencies jointly diverge and this makes our asymptotic investigation
a little bit different from the standard setting.

2.2. Alternative parameterization based on moments of F

We now introduce the alternative parameterization for the specification of Mh.

It has long been recognized in the binomial mixture literature [25, 15] and
more recently in the capture-recapture context [30, 28, 16] that the probabilities
P (F ) as in (2.1) are in one-to-one correspondence with the first S moments of
F through the linear relation

Pk(F ) =

S
∑

r=k

S!

k!(r − k)!(S − r)!
(−1)(r−k)mr(F ) k = 0, 1, . . . , S (2.11)

where mr(F ) =
∫

[0,1] p
rF (dp) is the ordinary r-th moment of F . Recall we

denote with P the class of probability distributions with support in [0, 1]. The set

MS =
{

m = (m1(F ), . . . ,mS(F )) : mr(F ) =
∫ 1

0
prF (dp), r = 1, . . . , S, F ∈ P

}

is called the S-truncated moment space.

Hence one can represent more parsimoniously the model structure in terms
of moment parametrization as follows

Mh = {Pr(nobs;N,m);m ∈ MS , N ∈ N} (2.12)

The likelihood factorization (2.4) is rephrased as follows:

L(N,m) = L(c)(m)× L(r)(N,m) (2.13)

where the moment vector parameter m lies in the S-dimensional convex body
MS with non empty interior. Analogously one can rephrase equivalently the
conditional model in terms of moments

M
(c)
h =

{

Pr(c)(nobs;m);m ∈ MS

}

.

In the following section we review the main argument leading to the non-
identifiability of the conditional model specification and show that the same
problem does not occur with the unconditional model reparameterized with the
first S moments of F as in (2.12).
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3. Identifiability issues

[16] showed that the use of the conditional likelihood for estimating P0(F ) suffers
from non identifiability which eventually prevents from achieving valid inference
for the unknown population size N .

For any mixing distribution F with corresponding P0(F ) < 1, there is at least
an infinite collection of other mixing distributions {Gγ = γF + (1 − γ)δ0; γ ∈
(0, 1)} for which L(c)(F ) = L(c)(Gγ), where δ0 is the degenerate distribution
at 0.

The first S moments of Gγ are linearly related to those of F by the relation
mk(Gγ) = γmk(F ) and hence Pk(Gγ) = γPk(F ) for any k = 1, . . . , S so that

1− P0(Gγ) =

S
∑

k=1

Pk(Gγ) =

S
∑

k=1

γPk(F ) = γ(1− P0(F )).

The ratios defining the corresponding conditional probabilities are identical even
if the first S moments differ:

P(c),k(Gγ) =
Pk(Gγ)

1− P0(Gγ)
=

Pk(F )

1− P0(F )
= P(c),k(F ) k = 1, . . . , S. (3.1)

This means that there is structural non-uniqueness and potential unboundedness
(degeneracy) of conditional maximum likelihood. In fact F and Gγ or, rather,
mF and mGγ

will provide equally likely different conditional estimates n/(1 −
P0(F )) and n/(1−P0(Gγ)) so that with an arbitrarily small value of γ one can
get an unbounded estimate of N .

Similar problems can be seen to occur when catchability is bounded below
by a fixed constant, and even in other more restricted cases. Refer to [16] for a
more thorough discussion about non-identifiability of the conditional likelihood.

It is easy to argue that the same identifiability issue holds if one considers

model M
(c)
h parameterized in terms of moments since the observational equiv-

alence can be also derived directly from the proportional moments mk(Gγ) =
γmk(F ).

In the next subsection we show that the unconditional likelihood is not af-
fected by the same kind of non-identifiability.

3.1. Full identifiability of the unconditional model specification

In this section we prove that using the unconditional model specification as in
(2.12) overcomes the identifiability problem for a finite population size N . This
amounts to say that one cannot find non trivial equivalence classes such as those
found in (3.1).

Theorem 3.1. Assume N > 0 and consider the parametric model

{

ZS
+; f(nobs; (N,F ));N ×MS

}

In this model the parameter vector (N,m) is fully identified.
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Proof. It is easy to argue that the mapping from (N,m) to the space of distri-
butions over ZS

+ specified as in (2.2) is injective. In fact, if we take two different
(N,m) 6= (N ′,m′) either N 6= N ′ or N = N ′ but m 6= m

′. In the first case

the distribution of n =
∑S

k=1 nk is different since it is supported over different
sets of integers hence the joint distributions of nobs cannot be identical. In the
second case again the multinomial distributions of (N − n, nobs) cannot be the
same since the mapping m → (P0(m), . . . , PS(m)) is linear hence continuous
and invertible.

In order to get a more direct feeling of the different behaviour of the two
likelihoods in [27] it is shown how one can perform simple numerical checks
and see that the unconditional likelihood L(N,Gγ) does not appear flat with
γ ∈ (0, 1) as is the case with L(c)(Gγ) in [16].

Unfortunately, the positive result in Theorem 3.1 does not overcome all the
inferential difficulties. As a matter of fact the likelihood surface can appear
nearly flat on the log-scale on parameter regions derived from the conditional
probability equivalence classes.

Indeed in a personal communication W. A. Link has pointed out that if one
restricts the attention to the distributions belonging to conditional probability
equivalence classes the conditional likelihood is constant and all that is left to
help distinguishing among them is a single binomial with unknown index and
succes rate. In fact that is another statistical model where inference is rather
troublesome. Nonetheless there is still interest in comparing estimators, im-
proving them and understanding their drawbacks (e.g., [5]). We can get insights
considering the following example suggested by W. A. Link.

Example 3.1. We consider the same example as in Link’s response to [10] with
the following alternative parameter configurations:

• N1 = 384, F1 ∼ Beta(1/2, 3/2)
• N2 = 256, F2 discrete with two point masses at (1/4, 3/4) with probabili-
ties (3/4, 1/4).

For these distributions, taking S = 4 the corresponding first four moments differ
being respectively (1/4, 1/8, 5/64, 7/128) and (3/8, 3/16, 15/128, 21/256). These
are exactly proportional with ratio γ = 3/2 hence both conditional probabilities

P
(c)
j will coincide. On the other hand, the distribution of n will be different

and precisely Bin(384, 195/384) under (N1, F1) and Bin(256, 195/256) under
(N2, F2). Looking at the following figure one can appreciate that there is some
difference in these two marginal distributions. We stress that the ratio of the
conditional likelihoods evaluated the true moments of F1 and F2 will always be
equal to the unity, while the ratio of the unconditional likelihoods will not. This
is reflected by the fact that, even if the conditional probabilities coincide, the
two models will generate rather different sample sizes n. In principle, then, one
can find a threshold for the unconditional likelihood ratio to distinguish between
the two models.

We performed a little simulation study to illustrate this point. We first gen-
erate data from a model with a parameter setting equal to (N1, F1) and decide
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Fig 1. Marginal distributions of the number of trapped units under parameter configuration
(N1, F1) (solid line) and (N2, F2) (dotted line).
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Fig 2. Estimated ROC curve of the unconditional likelihood ratio test (solid line) to select
between two alternative parameter configurations. The ROC curve is obtained by varying the
likelihood ratio test threshold. 1000 simulated data under each parameter configurations has
been used for the estimate. ROC curve of the conditional likelihood ratio test corresponds to
the dotted segment joining the origin with the point (1,1).

whether the data have been generated by a model with parameter (N1, F1) or
(N2, F2) using the maximized unconditional likelihood ratio using 1 as a thresh-
old. In this first setting we select the true model 41% of the times. On the other
hand when we simulate data from (N2, F2) we select the correct model in 76%
of the cases. The actual percentages are obviously dependent on the threshold
and the correspondence between the two types of errors determined by different
values of the threshold can be read from the ROC curve in Figure 2. What is im-
portant here to note is that the conditional likelihood is not able to distinguish
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between these two cases, while the unconditional is: the use of the unconditional
likelihood brings about discriminatory power which cannot be gained with the
conditional likelihood. This does not anyway imply that one can safely test be-
tween the two models, and indeed our aim in this work is not to distinguish
separate models.

On the other hand the claimed identifiability of model parameters is somehow
concealing another inferential issue which is related to the desired asymptotic
behavior of MLE.

Interestingly, following from a personal communication by W. A. Link, we
remark that our Mh model is a rare example of statistical parametric models
where the sufficient statistic nobs has a dimension which is smaller than the
dimension of the fully identified parameter θ = (N,m).

4. Asymptotic inference and equivalence for the identified sharpest

lower bound

[18, 19] shows that despite the non-identifiability of the conditional likelihood

corresponding to model M
(c)
h and the fact that one can always admit as MLE

an arbitrarily large probability that an individual is never captured P0(F ) it
can be still of interest to draw inference on a non trivial, uniquely determined,
sharpest lower bound of N , or equivalently of P0(F ).

Given the true underlying (N∗, F∗), or, correspondingly in moment parame-
terization of (2.12), (N∗,m∗) where m∗ = m(F∗), the sharpest lower bound for
P0(·) is defined as

φ∗ = φF∗
= φm∗

= inf
m∈MS :P (c)(m)=P (c)(m∗)

P0(m). (4.1)

In order to make inference on φF∗
[19] shows how one can restrict the attention

to a parametric family of identifiable distributions. He relies on the following
identifiability notion related to a subfamily A of distributions

Definition 4.1. A mixing distribution G ∈ A is strongly identifiable if the
corresponding conditional probabilities P (c)(G) cannot be reproduced by any
other mixing distribution H ∈ A, that is to say if P (c)(G) = P (c)(H) for any
H ∈ A, then G = H .

[19] shows that there exists a parametric family K of discrete mixing distri-
butions with a suitable restriction on the number of positive masses which is
strongly identifiable. Indeed each member of the K family is one-to-one with
the space of all conditional probabilities P(c),k(F ) spanned by the whole class P
of probability distributions with support in [0, 1] and attains the corresponding
sharpest lower bound. In the rejoinder to [19], [9] show that if one assumes that
the individual capture probability is larger than a fixed threshold, say δ > 0,
then the conditional likelihood approach consistently estimates φm∗

with the
conditional MLE estimator

φ̂(c) = inf

{

P0(m
′) : m′ ∈ arg max

m∈MS

L(c)(m)

}

(4.2)
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Note that φ̂(c) can be derived also as the conditional MLE restricted to the

parametric identifiable sub-family K namely as the probability P0(Ĝ) where

Ĝ ∈ argmax
F∈K

L(c)(F )

We will show now that the unconditional estimator of P0(m∗) is strictly
related to the sharpest lower bound. In fact, it can be argued that

φ̂ = P0(m̂) (4.3)

is an estimator of the sharpest lower bound.
Notice that m̂ corresponds to the unconditional likelihood maximization

L(N̂, m̂) ≥ L(N,m) ∀N > 0 ∀m ∈ MS .

Under suitable conditions (slightly less general than the conditions in [9])
the sharpest lower bound φF∗

can be consistently estimated by maximizing the
unconditional likelihood. Precisely, if (N∗,m∗) is the true underlying parame-
ter for model (2.12) and one considers the truncated moment sequence m

LB
∗

attaining the corresponding true sharpest lower bound

φ∗ = φm∗
= inf

m∈MS :P(c)(m)=P(c)(m∗)
P0(m) = P0(m

LB
∗ ) (4.4)

then m
LB
∗ can be consistently estimated.

We will see in Theorem 4.2 that both the conditional and unconditional
likelihood estimators yield consistent estimators for the sharpest lower bound
under suitable conditions. In this sense we extend somehow the equivalence
result in [26] beyond the regularity assumptions originally considered.

4.1. Likelihood asymptotics

Now we investigate formally the asymptotic behaviour of the unconditional like-
lihood evaluated at (N(P0(m̂)), m̂) in absence of the strong identifiability condi-
tion A.2 in [26], which is clearly not met in the present case where no restriction
is imposed on F .

The main result of the following theorem is in equation (4.6), which will be
needed in the proof of (4.3) in the next section.

Recall that the binomial mixture probability space of all Pk(·) as in (2.1)
and the truncated moment space are one-to-one, isomorphic and compact. In
the following, to simplify the notation, we will use the same notation P (m)
for the mapping from the truncated moment space. Moreover, we will consider
that any sequence of estimators m̂N∗

depends on an underlying true N∗ and the
corresponding estimates of the binomial mixture probabilities P (m̂N∗

) always
admit further subsequences converging to a limit, say m̃. With a slight abuse
of notation, we will denote (unless otherwise explicitly stated) the subsequence
as m̂N∗

and P (m̂N∗
) and the corresponding limits m̃ and P (m̃). Notice that
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m̃ could be trivial (i.e. corresponding to a distribution δ0 with all its mass at 0)
and in that case the conditional probabilities are not well defined. Hence, with
a slight abuse of notation again P (c)(m̃) must be understood as an accumu-
lation point for a suitable subsequence of well-defined conditional probabilities
P (c)(m̂N∗

).

Theorem 4.1. Assume the non trivial case where N∗ and F∗, the parame-

ters generating the observed counts nobs, are such that N∗ > 0 and m∗ =
(m1(F∗), . . . ,mS(F∗)) has its first component m1(F∗) > 0. Let m̃ denote an

accumulation point of a subsequence of nontrivial moments m̂N∗
for which the

conditional probabilities P (c)(m̂N∗
) are well defined and converge to P (c)(m̃).

Then, denoting with KL the Kullback-Leibler divergence,

lim
N∗→∞

log
L(r)(N(P0(m̂N∗

)), m̂N∗
)

L(r)(N∗,m∗)
= −

1

2
log

P0(m̃)

P0(m∗)
(4.5)

lim
N∗→∞

1

N∗

log
L(c)(m̂N∗

)

L(c)(m∗)
= −(1− P0(m∗))KL(P (c)(m̃),P (c)(m∗))

(4.6)

log
L(c)(m̂N∗

)

L(c)(m∗)
= O(N∗) (4.7)

Furthermore if P0(m̃) > 0 then

log
L(r)(N(P0(m̂N∗

)), m̂N∗
)

L(r)(N∗,m∗)
= o(N−1

∗ ) (4.8)

logL(N(P0(m̂N∗
)), m̂N∗

) ≈ logL(c)(m̂N∗
) (4.9)

Proof. It is immediately argued that (4.8) and (4.7) are consequences of (4.5)
and (4.6). Comparing (4.8) and (4.7) one also gets the asymptotic equivalence
of the behaviour of the conditional and unconditional likelihood evaluated at
the MLE as stated in (4.9).

First we prove (4.5). Consider logL(r)(N∗,m∗). Indeed

logL(r)(N∗,m∗) = logN∗!− log(N∗ − n)!− logn!

+(N∗ − n) logP0(m∗) + n log(1− P0(m∗))

= (⋆)− logn! + (N∗ − n) logP0(m∗) + n log(1 − P0(m∗))

where for the sum of the first two log-factorial terms, denoted with (⋆) we make
use of the following Stirling’s approximation

log x! ∼= x log x− x+
1

2
log x+ o(log(x)),

which is better and better as x grows, suppressing the o(log(x)) summand in
the following; hence we obtain
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(⋆) = N∗ logN∗ −N∗ +
1

2
logN∗ − (N∗ − n) log(N∗ − n) + (N∗ − n) −

1

2
log(N∗ − n)

= N∗ logN∗ − (N∗ − n) log(N∗ − n)− n−

1

2
log

N∗ − n

N∗

= (N∗ − n+ n) logN∗ − (N∗ − n) log(N∗ − n)− n−

1

2
log

N∗ − n

N∗

= (N∗ − n) logN∗ − (N∗ − n) log(N∗ − n) + n logN∗ − n−

1

2
log

N∗ − n

N∗

= −(N∗ − n) log
N∗ − n

N∗

+ n logN∗ − n−

1

2
log

N∗ − n

N∗

Similarly, consider logL(r)(N(P0(m̂N∗
)), m̂N∗

). Indeed,

logL(r)(N(P0(m̂N∗
)), m̂N∗

) = logN(P0(m̂N∗
))!− log(N(P0(m̂N∗

))− n)!− log n!

+ (N∗(P0(m̂N∗
))−n) logP0(m̂N∗

)+n log(1−P0(m̂N∗
))

= (⋆⋆)− log n! + (N∗(P0(m̂N∗
))− n) logP0(m̂N∗

)

+ n log(1− P0(m̂N∗
))

where we approximate and rearrange the factorial part (⋆⋆), using (2.7), as
follows

(⋆⋆) = N(P0(m̂N∗
)) logN(P0(m̂N∗

))−N(P0(m̂N∗
)) +

1

2
logN(P0(m̂N∗

))

− (N(P0(m̂N∗
))− n) log(N(P0(m̂N∗

)) − n) + (N(P0(m̂N∗
)) − n)

−
1

2
log(N(P0(m̂N∗

))− n)

= N(P0(m̂N∗
)) logN(P0(m̂N∗

))− (N(P0(m̂N∗
)) − n) log(N(P0(m̂N∗

))− n)− n

−
1

2
log

N(P0(m̂N∗
)) − n

N(P0(m̂N∗
))

= (N(P0(m̂N∗
))− n+ n) logN(P0(m̂N∗

))− (N(P0(m̂N∗
)) − n) log(N(P0(m̂N∗

))− n)

− n−
1

2
log

N(P0(m̂N∗
)) − n

N(P0(m̂N∗
))

= (N(P0(m̂N∗
))− n) logN(P0(m̂N∗

))− (N(P0(m̂N∗
)) − n) log(N(P0(m̂N∗

))− n)

+ n logN(P0(m̂N∗
))− n−

1

2
log

N(P0(m̂N∗
))− n

N(P0(m̂N∗
))

= − (N(P0(m̂N∗
))− n) log

N(P0(m̂N∗
))− n

N(P0(m̂N∗
))

+ n logN(P0(m̂N∗
))+

− n−
1

2
log

N(P0(m̂N∗
))− n

N(P0(m̂N∗
))

= −
nP0(m̂N∗

)

1− P0(m̂N∗
)
logP0(m̂N∗

) + n log
n

1− P0(m̂N∗
)
− n−

1

2
logP0(m̂N∗

)

= − n
P0(m̂N∗

)

1− P0(m̂N∗
)
logP0(m̂N∗

) + n logn− n log (1 − P0(m̂N∗
))− n−

1

2
logP0(m̂N∗

)

Now the residual log-likelihood ratio in (4.5) is

log
L(r)(N(P0(m̂N∗

)), m̂N∗
)

L(r)(N∗,m∗)
= [(⋆⋆)− (⋆))] + (N(P0(m̂N∗

))− n) logP0(m̂N∗
)
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+ n log (1 − P0(m̂N∗
))− (N∗ − n) logP0(m∗)

− n log(1 − P0(m∗))

= [(⋆⋆)− (⋆))] + n
P0(m̂N∗

)

1− P0(m̂N∗
)
logP0(m̂N∗

)

+ n log (1 − P0(m̂N∗
))− (N∗ − n) logP0(m∗)

− n log(1 − P0(m∗))

which simplifies as follows considering (⋆) and (⋆⋆)

n log
n

N∗

+ (N∗ − n) log
N∗ − n

N∗

− (N∗ − n) logP0(m∗)− n log(1− P0(m∗))

−
1

2
log

P0(m̂N∗
)

N∗−n
N∗

= n log
n
N∗

1− P0(m∗)
+ (N∗ − n) log

N∗−n
N∗

P0(m∗)
−

1

2
log

P0(m̂N∗
)

N∗−n
N∗

(4.10)

Since as N∗ → ∞ we have n
N∗

→ 1 − P0(m∗) and N∗−n
N∗

→ P0(m∗) hence we
get that asymptotics of the first two summands can be obtained discussing the
following possible subsequences

1. n
N∗

> 1− P0(m∗) (and hence N∗−n
N∗

< P0(m∗))

2. n
N∗

< 1− P0(m∗) (and hence N∗−n
N∗

< P0(m∗))

3. n
N∗

= 1− P0(m∗) (and hence N∗−n
N∗

= P0(m∗)).

In the first case the first summand in (4.10) converges to +1 while the second
converges to −1. In the second case the first summand in (4.10) converges to −1
while the second converges to 1. The last case is trivial. Hence (4.5) is proved.

In order to prove (4.6) we start from the definition of the conditional likeli-
hood

lim
N∗→∞

1

N∗

log
L(c)(m̂N∗

)

L(c)(m∗)
= lim

N∗→∞

1

N∗

S
∑

k=1

nk log
P(c),k(m̂N∗

)

P(c),k(m∗)

= lim
N∗→∞

S
∑

k=1

nk

N∗

log
P(c),k(m̂N∗

)

P(c),k(m∗)

=

S
∑

k=1

Pk(m∗) log
P(c),k(m̃)

P(c),k(m∗)

= (1− P0(m∗))
S
∑

k=1

Pk(m∗)

1− P0(m∗)
log

P(c),k(m̃)

P(c),k(m∗)

= (1− P0(m∗))

S
∑

k=1

P(c),k(m∗) log
P(c),k(m̃)

P(c),k(m∗)

= −(1− P0(m∗))KL(P(c),k(m̃), P(c),k(m∗))

Notice that m1(F∗) > 0 necessarily yields that Pk(m∗) > 0.
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4.2. Consistent estimator of the sharpest lower bound

We now prove the consistency of the unconditional MLE estimator of the sharpest
lower bound under suitable compactness restrictions. In Section 5 we argue that
when N∗ is finite the unconditional likelihood can be a much better choice for
deriving inference even if there is asymptotic equivalence.

Theorem 4.2. Suppose that the true population size is N∗ and the truncated

moment sequence m∗ = (m1(F∗), . . . ,mS(F∗)) corresponds to the true capture

probability distribution F∗. We assume that the support of any F is restricted

to [L,U ] ⊂ [0, 1] with 0 < L < U < 1. If (N̂ , m̂N∗
) ∈ argmaxN,m L(N,m) and

we consider any sequence m̂N∗
= m̂[N∗] of maximizers when N∗ → ∞ then we

get that

P0(m̂N∗
) → φm∗

(4.11)

m̂N∗
→ m

LB (4.12)

where mLB denotes the truncated moment sequence achieving the sharpest lower

bound as in (4.1)

Proof. Since the truncated moment space is compact, the set argmaxN,mL(N,m)
is always non empty. The assumptions on the support of F yield estimates
(N̂ , m̂N∗

) ∈ argmaxN,m L(N,m) such that 0 < (1 − U)S ≤ P0(m̂N∗
) ≤

(1 − L)S < 1. Furthermore, under the above assumptions, the space of condi-
tional probabilities P (c)(m) becomes compact hence also the conditional MLE
always yields estimates bounded in the same interval.

We start proving that, if m̃ is an accumulation point of the sequence m̂N∗

then it must be

KL(P (c)(m̃),P (c)(m∗)) = 0 (4.13)

First, note that, if (N(P0(m̂)), m̂) maximizes the unconditional likelihood
and N(P0(m̂)) maximizes the residual likelihood L(r)(·, m̂) when m̂ is held
fixed, we have

L(N(P0(m̂)), m̂) ≥ L(N(P0(m)),m) ∀m (4.14)

From (4.5), (4.6), (4.14) and the fact that Kullback-Leibler divergence is non
negative one can obtain the following chain of inequalities

0 ≤ lim
N∗→∞

1

N∗

log
L(r)(N(P0(m̂N∗

)), m̂N∗
)

L(r)(N∗,m∗)
+

1

N∗

log
L(c)(m̂N∗

)

L(c)(m∗)

= −KL(P (c)(m̃),P (c)(m∗))

≤ 0.

which proves (4.13). We have used the fact that P0(m̃) ≥ (1−U)S > 0 to ensure
the appropriate asymptotic negligibility of the residual likelihood part resulting
from (4.5).
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From (4.13) it follows that any converging subsequence of any subsequence of
the conditional probabilities must converge to the same limit P (c)(m∗) hence,
for the whole original sequence P (c)(m̂N∗

) it must be

P (c)(m̃) = lim
N∗→∞

P (c)(m̂N∗
) = P (c)(m∗). (4.15)

Let us consider the conditional likelihood L(c)(m) and the corresponding

conditional likelihood estimator m̂
(c) such that L(c)(m̂

(c)) ≥ L(c)(m) for all

m ∈ MS . Since the corresponding sharpest lower bounds φ(m̂(c)) are consis-
tent estimators of the true sharpest lower bound under the assumptions of the
theorem [9], there exists a sequence of conditional likelihood estimates such that

φ(m̂(c)) → φm∗
. From the well known monotonicity relation (see also (5.1)) we

get P0(m̂N∗
) ≤ P0(m̂

(c)) for any m̂
(c) so that P0(m̂N∗

) ≤ φ(m̂(c)) and hence

P0(m̃) ≤ φm∗
. (4.16)

On the other hand

P0(m̃) ≥ φm∗
(4.17)

by definition of φm∗
and (4.15).

By (4.16) and (4.17) we get consistency as in (4.11). Finally, combining (4.11)
with (4.15) and (4.4) for any accumulation point of suitable subsequences of the
unconditional MLE it must be

P (m̃) = P (mLB).

From the one-to-one correspondence between the truncated moment space and
the space of mixture of binomial probabilities (4.12) is proved.

[9] assume only a lower bound L > 0 the support of F while here we we
also need to restrict the upper bound U < 1. The consistency result can be
generalized under a milder moment condition such that 0 < L < m1 < U < 1,
which is weaker than the lower bound on p. Details are omitted for reasons of
space.

We now come back to Example 1 to show other arguments which can help
understanding the role of the residual likelihood and the meaning of the sharpest
lower bound in inference.

Example 4.1. The following issue has been raised by W. A. Link in a personal
communication where the discussion was focused on the inferential limit of the
likelihood function for model Mh. Quoting from his note “inference will rarely
be limited to a choice of A) N1 = 384, F1 ∼ B(1/2, 3/2) versus B) N2 = 256, F2

is discrete with two point masses at (1/4, 3/4) with probabilities (3/4, 1/4).
Instead, suppose that we know that F = F1 or F2, but N is unknown. Either
way, n|N ∼ B(N, p) but with p = pβ = 195/384 if F = F1, and with p = p2 =
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195/256 if F = F2. Letting X denote an indicator for F = F1, the full likelihood
is then proportional to

L(X,N) =

(

N

n

)

{pnβ(1− pβ)
N−n}X{pn2 (1− p2)

N−n}1−X

it can be shown that this is maximized by X = 0 and N ≈ n/p2, for all n.
Thus, regardless of the data, the 2-point mixture model is favored. And why?
for no other reason than that p2 > p.” This seemingly unsatisfactory likelihood
behaviour can reveal from a different perspective the motivation behind the use
of the sharpest lower bound. In fact, if we assume no restriction on the success
probability and we follow the likelihood principle we must agree that the best
inference that we can do with a single number of successes n = 195 from an
unknown number of trials with completely unknown probability is to guess that
they have been most likely yielded by N̂ = 195 and success probability equals to
1. Though partially disappointing there is nothing wrong with that. When we
have the choice of the success probability restricted within a single equivalence
class of distributions for which the conditional probabilities are the same, but
they correspond to different binomial success probabilities (actually the prob-
abilities p2 and pβ correspond to the probability of never being observed) this
can help us understanding once again why the unconditional likelihood is geared
towards the sharpest lower bound.

5. Advantages of the unconditional likelihood in finite samples

5.1. Theoretical arguments in favor of the unconditional likelihood

It is argued in [26], and very easy to show, that

P0(m̂) ≤ P0(m̂
(c)) (5.1)

for any m̂ maximizing the unconditional and any m̂
(c) maximizing the condi-

tional likelihood.
Since (5.1) holds for any m̂

(c) maximizing the conditional likelihood, it turns
out that

φ̂ = P0(m̂) ≤ inf
m∈MS :P(c)(m)=P(c)(m̂

(c))
P0(m̂

(c)) = φ̂(c). (5.2)

This fact reveals that the unconditional likelihood always provides an es-
timate which represents an approximation from below of the sharpest lower
bound. Indeed we will see that for finite N∗ estimating φ0 from below yields a
more stable behaviour than the corresponding conditional MLE.

Another relevant argument against the use of the conditional maximum like-
lihood estimator of φm∗

is that it can (and does sometimes) occur at the bound-

ary, i.e., P0(m̂
(c)) can be arbitrarily close to 1, leading to an unbounded estimate

for the population size N . This has been already formally argued and empirically
experienced also in parametric subclasses [17].
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Fig 3. Residual maximized likelihood L(r)(N(P0(m)),m) when n = 10.

The fundamental reason is of topological nature: the mapping from the trun-
cated moment space to the mixture of binomial probabilities is continuous and
maps a compact subset into another compact subset, while the mapping from
the truncated moment space to the conditional probabilities corresponding to
the mixture of binomial probability space is not continuous and maps to an open
set. Discontinuities are in fact encountered for those sequences of truncated mo-
ments corresponding to sequences for which the first moment vanishes. In such
cases the limit points of the conditional probabilities can be indeterminate. This
can explain why maximizing the conditional likelihood can in practice yield an
arbitrarily large estimate of P0(F ).

Remark 5.1. One might wonder whether the unconditional MLE, unlike the
conditional MLE, enjoys a theoretical non-degeneracy property. Although one
verifies in practice that maximizing the unconditional likelihood yields only
very rarely unstable/degenerate estimates 1− P0(m̂) and hence an unbounded
estimate of the unknown population size N̂ one has to acknowledge that the
penalization due to the presence of the residual likelihood cannot prevent that
to happen. In fact it is easy to check either numerically (see Figure 3) or with
formal arguments similar to those used in the proof of Theorem 3.1 that the
residual likelihood L(r)(N(P0(m)),m) evaluated at the maximizing N(P0(m)
represents a penalization term which does not vanish as P0(m) → 1. In fact it
is bounded from below by a constant which has a functional form proportional
to P0(m)−

1
2 as P0(m) → 1.

5.2. Unconditional likelihood performance in estimating the

sharpest lower bound

In this subsection we consider the estimable sharpest lower bound as the quan-
tity of interest and empirically show that the performance of the two likelihood
approaches can differ substantially when N∗ is finite. We do not compare the
conditional and unconditional likelihood in terms of the corresponding estimates
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of N , as we have clarified that P0(m∗) and hence N cannot be consistently es-
timated. One can consider the unconditional estimate N̂ or the corresponding

n
1−P0(m̂) a partial inference on tre true N . Indeed given that both likelihoods

yield consistent estimates for the sharpest lower bound we will focus on com-
paring the estimators of the sharpest lower bound. It is crucial to verify which
one (if any) gives a better performance in terms of the ability to recover the un-
derlying φ∗. We will see that the unconditional likelihood approach can improve
the quality of inference in terms of a reduced frequency of boundary estimates,
reduced bias (typically positive), and a much smaller mean square error.

We consider the same benchmark simulation plan used in [23], also revisited
by other authors (e.g., [17, 7]). The simulation settings considered are divided
in three groups (A,B,C), and there are six settings for each group, numbered
from 1 to 6. Overall there are 18 different underlying distributions F ranging
from discrete distributions to continuous distributions from different parametric
families. We refer the reader to [23] for a detailed description of those distribu-
tions. From each distribution we generated B = 100 simulated data sets using
as a true population size N∗ = 100 and N∗ = 1000. Hence the simulation plan
considered 18× 2× 100 simulated data and the corresponding estimates.

In order to implement the conditional and unconditional MLE we have repa-
rameterized the model (2.12) in terms of canonical moments [6], an uncon-
strained one-to-one transformation of the moments. For a similar transforma-
tion see for instance [28] and [8]. This allowed us to use standard maximization
routines in an unconstrained space. For the unconditional likelihood we have
avoided the maximization over the integer N by using a reparameterized ver-
sion of the profile likelihood L(N(P0(m)),m), where N(P0(m)) is defined as
in (2.7).

We estimate the root mean square error (RMSE) of each estimator with
√

1/B
∑B

b=1(φ̂b − φm∗
)2, where φ̂b represents the estimator obtained with the

b-th simulated dataset (either the conditional or unconditional likelihood esti-
mator) and B = 100 is the total number of replications. As relative efficiency
measure of unconditional MLE versus conditional MLE we report the ratio be-
tween the two RMSE in estimating the sharpest lower bound. We also report
for each simulation setting the odds corresponding to the sharpest lower bound
φm∗

/(1 − φm∗
) and the ratio of RMSE for estimating the odds. In the ratios,

we put the RMSE corresponding to the unconditional likelihood at numerator
(RMSE

φ̂
) and the one corresponding to the conditional likelihood at denom-

inator. Therefore, a ratio greater than 1 indicates a better performance of the
unconditional likelihood estimator. Finally, for both estimators we report the
estimated probability of obtaining an estimate larger than 0.95. Results are
displayed in Table 1 when the true population size is set as N∗ = 100 and in
Table 2 when N∗ = 1000. We denote with φm∗

and τ∗ the true sharpest lower
bound and true odds corresponding to each simulation setting.

When N∗ = 100 and the conditional likelihood approach is used we have
experienced a basically unbounded estimate of of the sharpest lower bound in
a fraction of the simulated dataset ranging from 6% to 38%. With the uncon-
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Table 1

Performance of the unconditional and conditional MLE estimators under the 18 scenarios
in [23], when N∗ = 100. The results are based on B = 100 replications. φ̂ is the estimator of

the sharpest lower bound derived from the unconditional likelihood as in (4.3). φ̂(c) is the
estimator of the sharpest lower bound derived from the conditional likelihood as in (4.2)

φm∗

RMSE
φ̂

RMSE
φ̂(c)

τ∗ =
φm∗

1−φm∗

RMSEτ̂
RMSEτ̂(c)

Pr{φ̂(c) > 0.95} Pr{φ̂ > 0.95}

A1 0.40 2.08 0.67 4.57 0.30 0.02

A2 0.42 2.38 0.73 5.09 0.28 0.01

A3 0.46 1.77 0.84 3.35 0.28 0.02

A4 0.42 1.83 0.71 4.36 0.20 0.01

A5 0.44 1.84 0.79 > 250.00 0.28 0.02

A6 0.40 2.45 0.67 25.19 0.36 0.01

B1 0.24 2.87 0.31 220.95 0.26 0.00

B2 0.26 2.80 0.35 239.09 0.10 0.00

B3 0.33 2.10 0.49 3.17 0.35 0.04

B4 0.24 2.76 0.32 16.73 0.06 0.01

B5 0.32 2.38 0.47 176.53 0.38 0.00

B6 0.26 3.12 0.34 > 250.00 0.28 0.00

C1 0.34 1.81 0.52 2.89 0.26 0.05

C2 0.48 1.55 0.94 33.75 0.09 0.01

C3 0.35 2.02 0.54 3.15 0.33 0.04

C4 0.24 3.23 0.31 3.46 0.25 0.01

C5 0.33 2.43 0.49 > 250.00 0.29 0.01

C6 0.22 2.57 0.29 > 250.00 0.28 0.02

Table 2

Performance of the unconditional and conditional MLE estimators under the 18 scenarios
in [23], when N∗ = 1000. The results are based on B = 100 replications. φ̂ is the estimator

of the sharpest lower bound derived from the unconditional likelihood as in (4.3). φ̂(c) is the
estimator of the sharpest lower bound derived from the conditional likelihood as in (4.2)

φ∗

RMSE
φ̂

RMSE
φ̂(c)

τ∗ = φ∗

1−φ∗

RMSEτ̂
RMSEτ̂(c)

Pr{φ̂(c) > 0.95} Pr{φ̂ > 0.95}

A1 0.40 3.04 0.67 147.31 0.06 0.00

A2 0.42 2.64 0.73 31.46 0.04 0.00

A3 0.46 2.12 0.84 110.06 0.22 0.00

A4 0.42 2.38 0.71 31.92 0.02 0.00

A5 0.44 2.50 0.79 138.11 0.21 0.00

A6 0.40 3.01 0.67 76.58 0.13 0.00

B1 0.24 3.92 0.31 18.04 0.00 0.00

B2 0.26 4.72 0.35 11.45 0.00 0.00

B3 0.33 1.71 0.49 1.75 0.24 0.05

B4 0.24 4.61 0.32 9.95 0.00 0.00

B5 0.32 2.15 0.47 2.33 0.10 0.01

B6 0.26 2.89 0.34 23.77 0.02 0.00

C1 0.34 2.72 0.52 79.26 0.08 0.00

C2 0.48 3.05 0.94 22.18 0.03 0.00

C3 0.35 2.94 0.54 45.45 0.10 0.00

C4 0.24 3.67 0.31 50.31 0.01 0.00

C5 0.33 3.28 0.49 204.94 0.20 0.00

C6 0.22 3.43 0.29 44.60 0.03 0.00
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ditional likelihood this fraction is almost always null, and always drastically
reduced. The bias of the estimator is typically positive (not shown). The un-
conditional likelihood estimator is substantially better than the conditional es-
timator both for the estimable lower bound in its original scale and in terms
of the odds. It can be seen than the ratio between the estimated RMSE of the
conditional and unconditional likelihood approach is always larger than 1, and
often larger than 2.

When N∗ = 1000 we still see a non negligible fraction of unbounded estimates
with the conditional likelihood, while the unconditional likelihood never yields
unbounded estimates. There advantage in terms of RMSE when using the un-
conditional likelihood is more or less of the same magnitude as when N∗ = 100.
We do not report further simulations for reasons of space, but we can mention
that in our experiments the unconditional likelihood provides an advantage for
N∗ < 10000. For larger values of N∗ the two approaches become essentially
equivalent.

6. Concluding remarks

In this paper we have investigated from a theoretical perspective the contro-
versial issue about the identifiability of the parameters involved in model Mh

when no restrictive assumption is made on the distribution of the heteroge-
neous probabilities. We have shown how inference for model Mh through the
unconditional likelihood can be carried out overcoming some of the identifiabil-
ity concerns originally raised in [16]. Using the parametrization based on the
first S moments of F and the corresponding unconditional likelihood the model
as specified in (2.12) is fully identifiable. On the other hand we also pointed out
that it is still not possible to obtain a consistent estimator of the true popula-
tion size through the unconditional MLE. Indeed the unconditional MLE of the
probability P0 of never capturing an animal during all S trapping occasions is
actually consistently estimating the sharpest lower bound rather than the fully
identified probability of never capturing an individual. One could in principle
consider to carry out inference within a Bayesian setting. However, the asymp-
totic equivalence of the MLE and Bayesian estimators would probably prevent
consistent inference on P0.

On the other hand we have shown that the classical unconditional MLE es-
timator of P0 yields a consistent estimator for the sharpest lower bound under
suitable regularity conditions. Similarly one can get a consistent estimator for
the sharpest lower bound by computing the sharpest lower bound correspond-
ing to the conditional MLE of the parameters as in (4.2). The conditional and
unconditional likelihoods are asymptotically equivalent in this sense. This can
explain the primary source of (possibly severe) negative bias when the estimate
of the true population size N is at stake and one is trying to get an estimate
of N∗ with either one of the approaches. Nevertheless, suppose an upper bound
for N or P0 is roughly guessed, and (as typically the case in the ecological mod-
elling) the upper bound is believed to be relatively small. In that case, inference
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based on the unconditional likelihood is technically sound since model param-
eters are fully identifiable and for this reason it could be preferred to inference
based on the conditional likelihood. Other advantages have been also empiri-
cally illustrated with a benchmark simulation study where the unconditional
likelihood is seen to provide more stable inference and a substantially smaller
mean square error when the sharpest lower bound is the parameter of interest.

Other inferential aspects in modelMh may deserve further investigation start-
ing with the possibility of determining alternative estimators other than the
unconditional MLE which can possibly consistently estimate the sharpest lower
bound without any untestable compactness assumptions, i.e., without ruling out
a priori small capture probabilities.

Although we acknowledge and agree on the importance of the consistency
property for an estimator, the interesting point we highlight in this non-regular
model is the following: there are examples of statistical models where identi-
fiability and consistency – sometimes referred to as estimability – do not go
together. Yet there is some partial information, possibly limited, which can be
gained by inferring such identifiable models. Of course the reader must realize
that as more and more units are observed inference will make us learn more and
more on the sharpest lower bound φ(m∗) rather than on the P0(m∗) parameter.
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