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Abstract: This paper presents a new derivation of nonparametric distri-
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and exact, and no stochastic approximation is needed: it simply requires
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1. Preliminaries on Dirichlet processes with incomplete data

An important extension of Bayesian nonparametric theory is the treatment of
incomplete data as they involve indirect observations or latent variables. The
first completely Bayesian approach to the problem of dealing with observations
censored on the right was made by Susarla and Van Ryzin [15] who used a
Dirichlet process [5, 2] as a prior for the random distribution F and obtained in
closed form the mean of the posterior distribution of F given the data. Blum and
Susarla [3] complemented this result by showing that the conditional survival
function turns out to be a Dirichlet processes mixture, as considered by Antoniak
[1] with specified transition and mixing measures.

In the class of models under consideration, instead of the “precise, micro-
scopic” values of the random sample t1, . . . , tn i.i.d ∼ F , the unknown dis-
tribution, the evidence is given by less precise “fuzzy, macroscopic” observa-
tions. That is the t’s are not directly observed; instead we only know that
t1 ∈ A1, . . . , tn ∈ An, where the A’s are subsets of R. In the case of right-
censoring, Ai is a singleton if ti is uncensored, while Ai = (ci,∞) is an interval
containing ti > ci, where ci is the censoring time.

In the case of “precise” evidence, standard Bayesian calculations are induced
by placing a Dirichlet process prior distribution with parameter α on F , denoted
Dα. This prior is indexed by a positive finite measure α(·) defined on the range

Ω of ti. The base distribution F0(·) = α(·)
α(Ω) is obtained by normalizing the

measure α(·) having total mass α(Ω), which in turn measures the strength of
the prior belief. The meaning of F0 is that of initial (predictive) probability on
the first observation, that is P(t1 ∈ B) = F0(B) for a measurable set B ⊂ Ω.
Moreover F0 can be seen as a prior guess about the unknown distribution F, as
F0(·) = E[F (·)] is the expectation of F with regards to the prior Dα. Conditional
on the precise data Dp = {ti}, the posterior mean Fn(·) = E[F (·)|Dp] of the
random probability measure F , is the expectation with regards to the posterior
Dα+

∑
δti

, and its meaning is the posterior predictive distribution P(tn+1 ∈
·|Dp) = Fn(·) = (α(·) +

∑
δti(·))/(α(Ω) + n).

In the case of “compound evidence”, that is conditional on the data Dc =
{Ai}, the posterior results to be a mixture of Dirichlet processes, which is cum-
bersome [14]. (This type of mixture comes from the incomplete data, and it is
different in principle from those mixtures with a Dirichlet process mixing distri-
bution, which have been studied only with the advent of Monte Carlo Markov
chain (among others [8, 9]) and related solutions, such as sequential importance
sampling [13].

In order to escape the complication of mixtures induced by incomplete data,
one can use the alternative and powerful approach of Blackwell and MacQueen
[2], which have shown that the extension of the Polya updating rule to a con-
tinuous space, based only on the predictive distribution, is equivalent to Fergu-
son’s setting. In this framework the predictive distributions Fn(·) = F0(·|Dp)
are easy to calculate, and Fn is a simple recursive function of Fn−1. Extend-
ing this approach to compound evidence, Newton et al. [10, 11, 12] proposed a
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class of computationally efficient methods to approximate mixtures of Dirichlet
processes, involving a recursive algorithm. The advantage is that the predictive
uncertainty can be encoded in a single measure approximating Bayes estimator
in general, and avoiding the high computational cost required for both an exact
solution and the Markov chain Monte Carlo calculations. Unfortunately the typ-
ical problem of Newton’s estimate is that F̂n(·) depends on the order in which
data are processed, i.e. the recursive algorithm is order dependent. Hence one
can approximate the final result averaging on (a sample of) all permutations.
A recent paper by Martin and Ghosh [7] explores the above-said fast recursive
algorithm as a special case of stochastic approximation.

In the present note, in the right censoring case A1 ⊂ · · · ⊂ An, we prove that
no stochastic approximation is necessary, as there is a sole rational pattern which
recursively produces the exact posterior predictive distributions for subsequent
samples under a Dirichlet process prior.

By “exact”we mean that our result coincides with the Susarla- Van Ryzin
estimator under squared error loss.

1.1. On n = 1

On the basis of a single observation, the Dirichlet process implies that the (exact)
updating rule for the measure is linear:

α(·|t1) = α(·) + δt1(·) (1)

and the associated predictive probability is

P(t2 ∈ B|t1) =
α(B|t1)

α(Ω|t1)
=

α

1 + α
F0(B) +

1

1 + α
1B(t1). (2)

The extension to missing data, posing α1(B) := α(B|t1 ∈ A1), is given by:

α1(B) = α(B) +
∑

t1∈A1

1B(t1)P(t1|A1) (3)

= α(B) + P(t1 ∈ B|A1)

= α(B) +
α(B ∩A1)

α(A1)
(4)

α1(Ω) = α+ 1

where α1(B) is determined as the expectation value of α(B|t1) weighted by
P(t1|A1), see Appendix A. (We reserve the subscript n to measures and proba-
bilities conditioned to observables A1, . . . , An).

The associated probability is

F1(B) := P(t2 ∈ B|A1) =
α1(B)

α+ 1
=

α

1 + α
F0(B) +

1

1 + α
P(t1 ∈ B|A1). (5)

This result was first derived in [1] where missing data are analyzed in the field
of mixtures of Dirichlet processes. It is interesting that Bayes’ rule enters in the
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second term of (4) through probability calculus. The corresponding posterior
calculations are given by the initial F0 on t1.

The usual Polya scheme (2) is contained in (5) if A1 reduces to t1. If the
information is complete, it implies the addition of a unit mass concentrated at
the observed value, which coincides with the discreteness property of F . If the
information is not complete, in general one needs to add an entire probability
distribution to the urn, whose support is the observed A1. In this case F is
modified proportionally to its value.

1.2. Newton’s approximate recursive algorithm

After precise evidence t1, . . . , tn the updating rule for the measure is

α(tn+1 ∈ B|t1, . . . , tn) = α(B) + δt1(B) + · · ·+ δtn(B) (6)

which can be easily transformed into a recursive algorithm

α(tn+1 ∈ B|t1, . . . , tn) = α(B|t1, . . . , tn−1) + δtn(B). (7)

Does the idea that the predictive uncertainty can be encoded in a single
measure, and that learning occurs by adding measure, hold also for missing
data? Thus would lead us to the following recursive generalization of (4)

αn(tn+1 ∈ B) = αn−1(B) + Pn−1(tn ∈ B|An) (8)

Fn(tn+1 ∈ B) =
α+ n− 1

n+ α
Fn−1(B) +

1

n+ α
Pn−1(tn ∈ B|An)

approximating uncertainty in F with a single Dirichlet process centered at Fn−1,
on the basis of the well-known Polya sequence characterization. Again Bayes’
rule enters in the second term taking Fn−1 as the updated prior distribution for
tn. As constructed Fn(B) is not the exact posterior predictive distribution for
tn+1 in general, except the case n = 1. It will be only the case of no information
loss, that is when Ai = ti, and (8) and (6) coincide. In facts the value depends
on the order in which A1, . . . , An are processed.

The main hindrance of this recursion method is the dependence of the result
upon the data order. The suggested algorithm in [10, 11, 12] implies to process
data in some order through (8), to re-calculate it over a permutation of the data
and average the results. Does a privileged order, providing an exact result, exist?

2. An exact recursive algorithm

If no information is lost the updating of F0(·) and α(·) after n data is given as
follows, since the added measure is a point mass at ti for each datum, uncondi-
tioned to any other quantity:

α(tn+1 ∈ B|t1, . . . , tn) = α(B) + δt1(B) + · · ·+ δtn(B) (9)

In fact δti(·) is a point mass distribution concentrated in ti.
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Otherwise if there is information loss, that is Dc = (t1 ∈ A1) ∩ · · · ∩ (tn ∈
An), Ai ⊂ Ω, and the exact generalization of (4) is, with αn(B) := α(B|Dc) =
α(B|A1, . . . , An):

αn(B) = α(B) + E[

n∑

i=1

1B(ti)|D] (10)

= α(B) +
∑

t1,...,tn∈Dc

(
n∑

i=1

1B(ti)

)
P(t1, . . . , tn|A1, . . . , An) (11)

where P is based on the initial probability α(·)/α(Ω).
Equation (11) holds for all cases of predictive inferences based on uncer-

tain or indirect evidence. If Ω is finite the predictive probability can be exactly
computed, but in general an exact recursive method does not exist [10]. The
computation is easy to perform, although its length is rapidly increasing as a
function of #Ω. One must compute the probability of all unobserved patterns
(t1, . . . , tn), that are the elementary events compatible with the evidence, by
means of the initial measure α(·), and then normalize to the evidence, obtain-

ing thus the joint conditional distribution P(t1, . . . , tn|A1, . . . , An) =
P(t1,...,tn)
P(A1,...,An)

that rules (11). Hence the empirical weights result as an average on the proba-
bility of any pattern. If Ω is continuous this procedure is impossible, as in (11)
the sum is substituted by integrals.

Fortunately the case of right-censoring is peculiar, because the compound
events {Ai} are all of the same kind, that is they are events in the tail. We can
show that (11) can be represented in the form (8) in an exact way, if the data
are reordered and processed so that A1 ⊂ · · · ⊂ An, that is Ai = (ci,∞), and
c1 ≥ · · · ≥ cn. Recall that we are speaking about the order in which data are
processed, not the order in which they are collected, which is inessential due to
the exchangeability property of the process.

To this end we re-write (10) in the following form, interchanging E and
∑

;

αn(B) = α(B) +

n∑

i=1

P(ti ∈ B|Dc) (12)

where
∑n

i=1 P(ti ∈ B|Dc) is the expected number of unobserved events that
happen in B conditioned to Dc.

2.1. On n = 2

Given two compound events Dc = A1, A2, and A1 ⊂ A2, that is c1 ≥ c2, (12)
implies:

α2(B) =: α(B|A1, A2) = α(B) + P(t1 ∈ B|Dc) + P(t2 ∈ B|Dc). (13)

Let us denote ti ∈ B with Bi. From Appendix B, for (B1 ∩A1) ⊂ A1 ⊂ A2, we
have that P(B1|A1, A2) = P(B1|A1); while P(B2|A1, A2) = P1(B2|A2).
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Hence substituting in (13) we have

α2(B) = α(B) + P(B1|A1) + P1(B2|A2) = α1(B) + P1(B2|A2), (14)

that is exactly the (8) for n = 2.

2.2. On n = n

From (12), posingDn =A1, . . . , An, we pass from αn(B) = α(B)+
∑n

i=1 P(Bi|Dn)

to αn+1(B) = α(B) +
∑n+1

i=1 P(Bi|Dn+1) adding An+1 in all the evidence, and
adding the term P(tn+1 ∈ B|Dn+1).

If An+1 contains all previous evidence (that is cn+1 precedes all other censor-
ing times), then P(Bi|Dn, An+1) = P(Bi|Dn). The first n terms are just αn(B).

The last term is P(Bn+1|Dn, An+1) =
P(Bn+1∩An+1|Dn)

P(An+1|Dn)
= Pn(Bn+1|An+1).

Hence αn+1(B) = αn(B) + Pn(Bn+1|An+1). See also Appendix C.
The solution of the recursion, that is the final predictive probability, is equiv-

alent to the Susarla-Van Ryzin estimator [15]. Moreover it appears as a predic-
tive generalization of the alternative method to Efron’s algorithm proposed by
Dinse [4].

3. Example

We briefly illustrate the algorithm on the dataset used by Susarla and Van
Ryzin [15], which is nothing else the “classical” dataset used in the original
paper by Kaplan and Meier [6] and re-used in many successive works (see f.i.
Walker and Muliere [16, 17], whose approach, based on the beta-Stacy pro-
cess and the right-neutrality, is predictive, but not recursive). The data are
0.8, 1.0+, 2.7+, 3.1, 5.4, 7.0+, 9.2, 12.1+, where a “+”denotes a censored obser-
vation. Our illustration is intended to make a numerical comparison of our
algorithm with the exact results obtained by Susarla and Van Ryzin. They took
F0 to be the exponential distribution with mean 1/0.12, and for α(R+) they
considered three cases, α(R+) = 4, 8 and 16. They obtained the mean of the
posterior distribution of F , under a squared error loss, as t ranges over the eight
censored and uncensored points. For the sake of maximizing discrepancies we
make our comparison only for the case α(R+) = 4.

The recursion proceeds as follows: first of all the four precise data are pro-
cessed, the order being inessential. Introducing the cumulative weight function
G(t) = α(0, t), from (7) one gets for n = 1, . . . , 4

Gn(t) = Gn−1(t) + Θ(t− tn), (15)

where Θ is Heaviside’s function. The Survival function after the precise data
is given by S4(t) = 1 − G4(t)/G4(∞), see Fig. 1. Restarting from G4(t), the
recursive equation for Gn(t) is:

Gn(t) = Gn−1(t) + Θ(t− tn)
Gn−1(t)−Gn−1(tn)

Gn−1(∞)−Gn−1(tn)
, (16)

for n = 5, . . . , 8, and the final Survival function is S8(t) = 1−G8(t)/G8(∞), see
Fig. 1 again.
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Fig 1. The thin gray graph is S4(t), conditioned on the dead only; the two in black are S8(t),
conditioned to the losses too. The thicker curve, obtained processing censored data in decreas-
ing order, is the correct one; the other curve is obtained processing them in increasing order.

Table 1

Maximum differences between the correct Survival function and the permuted ones. The table
shows the value and the abscissa of the maximum difference. All permuted survival functions
are dominated by the correct one, so that any average on them produces a systematic error
on the final estimate. This deviation tends to increase with the lag of the last observed value
from the first place, and (conditioned to it) with the the lag of the second-last one, and so on

MaxDiff Abscissa Order
0.00067 2.7 {12.1,7.0,1.0,2.7}
0.00067 2.7 {7.0,12.1,1.0,2.7}
0.00536 7.0 {12.1,2.7,7.0,1.0}
0.00584 7.0 {12.1,1.0,7.0,2.7}
0.00973 7.0 {12.1,2.7,1.0,7.0}
0.01019 7.0 {12.1,1.0,2.7,7.0}
0.01518 12.1 {1.0,12.1,7.0,2.7}
0.01581 12.1 {2.7,12.1,7.0,1.0}
0.01740 12.1 {1.0,12.1,2.7,7.0}
0.01803 12.1 {2.7,12.1,1.0,7.0}
0.01827 12.1 {7.0,12.1,2.7,1.0}
0.02746 12.1 {7.0,1.0,12.1,2.7}
0.02757 12.1 {2.7,1.0,12.1,7.0}
0.02772 12.1 {1.0,2.7,12.1,7.0}
0.02777 12.1 {7.0,2.7,12.1,1.0}
0.02988 12.1 {1.0,7.0,12.1,2.7}
0.03024 12.1 {2.7,7.0,12.1,1.0}
0.03500 12.1 {7,2.7.0,1.0,12.1}
0.03516 12.1 {7.0,1.0,2.7,12.1}
0.03750 12.1 {2.7,7.0,1.0,12.1}
0.03763 12.1 {1.0,7.0,2.7,12.1}
0.03943 12.1 {2.7,1.0,7.0,12.1}
0.03960 12.1 {1.0,2.7,7.0,12.1}

The result of our recursive algorithm is exactly the same if censored data
are processed in decreasing order. Any permutation of this privileged order
produces appreciable deviations, and the maximum deviation is obtained by the
reversed order (Fig. 1). These deviations increase in the limit α(R+) → 0, where
one obtains the Kaplan-Meier estimate in the empirical range. All “permuted”
Survival functions are dominated by the correct one, so that any average on them
produces a systematic error on the final estimate. Table 1 shows the value and
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Fig 2. The same prior, α(R+) = .4, and only two censored data, 7.0+ and 12.1+. In the
first two graphs the dotted line denotes the prior, the thin black line denotes the first updated
Survival function, and the thick one the second (final) one. At each new-processed datum a
cusp appears. The first graph describes S obtained in the correct order, that is {12.1+, 7.0+},
the second S∗ in the reversed one. The third plot magnifies the difference between the two
final estimates. The difference is null in the domain [0, 7.0] , it is maximum at the end of the
data domain.

the abscissa of the maximum difference between the correct Survival function
and the “permuted” one is reported. This deviation roughly increases with the
lag of the last observed value from the first place, and (conditioned to it) with
the the lag of the second-last one, and so on.

To magnify the effect of permutation on the recursion, we consider the sim-
plified case of Fig. 2, where one considers the same prior, α(R+) = .4, and only
two censored data, 7.0+ and 12.1+. In all the first two graphs the dotted line
denotes the prior, the thin black line denotes the first updated Survival function,
and the thick one the second (final) one. At each new-processed datum a cusp
appears. The first updated one contains one cusp, the final contains two cusps.
The first graph describes S obtained in the correct order, that is {12.1+, 7.0+},



An exact predictive recursion 2571

the second S∗ in the reversed one. The third graph magnifies the difference
between the two final Survival functions. The difference is null in the domain
[0, 7.0] , it is maximum at the end of the data domain.
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Appendixes

These appendixes show the demonstrations of the three statements on n = 1, 2
and n.

Appendix A. Considering that in the Dirichlet process F1(·) = E[F (·)|t1] , i.e.
it is the expectation of F taken over the Dirichlet conditioned to t1, whose weight
is α(·|t1) = α(·) + δt1(·), its generalization to compound evidence is straightfor-
ward, due to probability calculus: E[F (·)|A1] =

∫
t1∈A1

E[F (·)|t1]P(t1|A1)dt1 =

E[E[F (·)|t1]|A1]. The generalization to n compound events reads

Fn(·) = E[E[F (·)|t1, . . . , tn]|Dc],

where Dc = (t1 ∈ A1) ∩ · · · ∩ (tn ∈ An)

Appendix B. Suppose that A1 ⊂ A2. Now

P(t1 ∈ B|t1 ∈ A1, t2 ∈ A2) =
P(t1 ∈ (B ∩ A1)|t2 ∈ A2)

P(t1 ∈ A1|t2 ∈ A2)

=
α(t1 ∈ (B ∩ A1)|t2 ∈ A2)

α(t1 ∈ A1|t2 ∈ A2)
.

As in the domain t ∈ A2 it is true that α(t|t2 ∈ A2) = α(t) + P(t|A2) =
α(t){1+ 1

α(A2)
}, and both B1∩A1 and A1 lay in this region, it follows that they

both increase their probability in the same ratio, and

α(t1 ∈ (B ∩A1)|t2 ∈ A2)

α(t1 ∈ A1|t2 ∈ A2)
=

α(t1 ∈ B ∩ A1)

α(t1 ∈ A1)
.

Then
P(t1 ∈ B|t1 ∈ A1, t2 ∈ A2) = P(t1 ∈ B|t1 ∈ A1).

Denoting ti ∈ B with Bi, in short we have P(B1|A1, A2) = P(B1|A1). It means
that t2 ∈ A2 is “irrelevant” to t1 ∈ B|t1 ∈ A1. In words A1 “screens off” t1 ∈ B
from any further evidence less precise than A1. On the contrary a further more
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precise evidence t1 ∈ A1 is relevant for P(t2 ∈ B|t2 ∈ A2), so that A1 in
P(B2|A1, A2) cannot be neglected. Given that P1(·) := P(·|A1), we have:

P(B2|A1, A2) =
P(B2 ∩ A2|A1)

P(A2|A1)
=

P1(B2 ∩ A2)

P1(A2)
= P1(B2|A2).

Appendix C. Using the screening of property induced by A1 ⊂ · · · ⊂ An we
have αn(B) = α(B) +

∑n

i=1 P(Bi|Dn) = α(B) + P(B1|A1) + P(B2|A2, A1) +
· · ·+ P(Bi|Ai, Ai−1, . . . A1) + · · ·+ P(Bn|An, . . . , A1).

Now α(B) + P(B1|A1) = α1(B), and one can omit A1 in all remaining
evidence, substituting P1 to P. Hence αn(B) = α1(B) + P1(B2|A2) + · · · +
P1(Bi|Ai, Ai−1, . . . A2) + · · ·+ P1(Bn|An, . . . , A2).

Going on with the same algorithm, if A1 ⊂ · · · ⊂ Anthen αn(B) = αn−1(B)+
Pn−1(Bn|An). QED.
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