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1. Introduction

Presently, long memory processes have become a widely-studied subject area and
find frequent applications (see for instance [9]). The best known long-memory
stationary time series are the fractional Gaussian noises (FGN) with Hurst pa-
rameter H and the FARIMA(p, d, q) processes. For both these time series, the
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spectral density f at 0 follows a power law: f(λ) ∼ C |λ|−2d where H = d+1/2
in the case of the FGN. This behavior of the spectral density is frequently con-
sidered as a definition of a stationary long-memory (or long-range dependent)
process where d is the long memory parameter.

In this paper, we study a general case of linear process with a memory param-
eter d and we propose an adaptive wavelet-based estimator of this parameter.
Hence for d < 1/2 and d′ > 0, we consider the following semiparametric frame-
work:

Assumption A(d, d′): X = (Xt)t∈Z is a zero mean stationary linear process,

such as

Xt =
∑

s∈Z

α(t− s)ξs, t ∈ Z, where

• (ξs)s∈Z is a sequence of independent identically distributed random vari-

ables following a symmetric distribution, i.e. Pr(ξ0 > M) = Pr(ξ0 < −M)
for all M ∈ R, and satisfying Eξ0 = 0, Var ξ0 = 1 and µ4 := Eξ40 <∞;

• (α(t))t∈Z is a sequence of real numbers such that there exist cd > 0 and

cd′ ∈ R satisfying

|α̂(λ)|2 =
1

|λ|2d
(
cd+cd′ |λ|d

′

(1+ε(λ))
)

for any λ ∈ [−π, 0)∪(0, π], (1)

where α̂(λ) := 1
2π

∑
k∈Z

α(k)e−ikλ for λ ∈ [−π, 0) ∪ (0, π] and ε(λ) → 0
when λ→ 0.

Consequently, if X satisfies Assumption A(d, d′), the spectral density f of X
is such that for any λ ∈ [−π, 0) ∪ (0, π],

f(λ) = 2π |α̂(λ)|2 =
2π

|λ|2d
(
cd + cd′ |λ|d

′

(1 + ε(λ))
)
, (2)

with ε(λ) → 0 when λ → 0. Thus, if d ∈ (0, 1/2), the process X is a long-
memory process, and if d ≤ 0, it is a short-memory process (see [9]). Finally,
an estimator of d will be to be adaptive when this estimator has an expression
that is valid for all processes in the semi-parametric class A(d, d′), i.e. when this
estimator does not depend on d and d′.

After preliminary studies devoted to self-similar processes, [1] was the first
to propose the use of a wavelet-based estimator for estimating the parameter d
of a long memory process by computing the log-log regression slope for different
scales of wavelet coefficient sample variances. [6] provided proofs of the consis-
tency of such an estimator in a Gaussian semiparametric frame. [19] improved
these results and established a central limit theorem (CLT in the sequel) for the
estimator of d which they proved rate optimal for the minimax criterion. Finally,
[25] yielded similar results in a semiparametric frame for linear processes.

All of these studies used a wavelet analysis based on a discrete multi-resolution
wavelet transform, which in particular allows to compute the wavelet coeffi-
cients with the fast Mallat’s algorithm. However, these results are inferred from
a semiparametric frame such as to (2) and consider the “optimal” scale used
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for the wavelet analysis (which depends on the second order expansion d′) to
be known although, in fact it is unknown. Two studies present automatic selec-
tion method for this “optimal” scale in the Gaussian semiparametric frame. A
procedure based on a chi-square test was introduced in [28] but despite convinc-
ing numerical results, it lacks proofs of its consistency. Whereas, [4] proved the
consistency of a procedure for choosing optimal scales based on the detection
of the “most linear part” of the log-variogram graph. Moreover, the considered
wavelet function is not necessarily associated with a multi-resolution analysis:
although the computation cost is more important, this offers a larger wavelet
function choice and scales are not limited to powers of 2.

The present paper is an extension of this previous study of [4]. Improvements
concern three following central issues:

1. The semiparametric Gaussian framework of [4] is extended to the semi-
parametric framework Assumption A(d, d′) for linear processes. The same
automatic procedure of the optimal scale selection can also be used and
thus we obtain adaptive estimators.

2. As in [4], the “mother” wavelet is not necessarily associated with a dis-
crete multi-resolution transform. We also slightly modified the definition
of the wavelet coefficient sample variance (“variogram”). The result of
both these changes is a multidimensional central limit theorem satisfied
by the logarithms of variograms with a very simple asymptotic covariance
matrix (see (9) for its definition) depending only on d and the Fourier
transform of the wavelet function. Hence it is easy to compute an adap-
tive pseudo-generalized least square estimator (PGLSE in the sequel) of
d, satisfying a CLT with an asymptotic variance which is smaller than
the adaptive ordinary least square estimator of d. Simulations confirm the
good performance of this PGLSE.

3. Finally, we used this PGLSE to perform an adaptive goodness-of-fit test.
It represents a normalized sum of the squared PGLS-distance between the
PGLS-regression line and the points. We proved that this test statistic
converges in distribution to a chi-square distribution. Since the asymp-
totic covariance matrix is easily approximated, the test is very simple to
compute. When d > 0 this test is a long-memory test. Moreover, simu-
lations show that this test provides good properties of consistency under
H0: “the process is such that Assumption A(d, d′) holds”, and reasonable
properties of robustness under H1: “the process is such that Assumption
A(d, d′) does not hold”.

In the light of these results, this paper is a conclusion to the study of [4], and
the adaptive PGLS estimator and test are interesting extensions of [25].

The present paper is organized into four sections as follows. Assumptions,
definitions and a first multidimensional central limit theorem are the subject
matter of Section 2. Section 3 is devoted to the construction and consistency
of the adaptive PGLS estimator and goodness-of-fit test. Section 4 features a
Monte Carlo simulations-based demonstration of the convergence of the adaptive
estimator, followed by comparisons with other efficient semiparametric estima-
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tors and investigations into the consistency and robustness properties of the
adaptive goodness-of-fit test. Proofs figure in Section 5.

2. A central limit theorem for the sample variance of wavelet

coefficients

Let ψ : R → R be a function (called the wavelet function) and k ∈ N
∗ (with the

usual notation N∗ = N \ {0}). We shall consider the following assumption on ψ:

Assumption Ψ(k): the function ψ : R → R is such that

1. the support of ψ is included in (0, 1);

2.

∫ 1

0

ψ(t) dt = 0;

3. ψ ∈ Ck(R), the set of k-times continuously differentiable functions on R.

Straightforward implications of Assumption Ψ(k) are:

• ψ(j)(0) = ψ(j)(1) = 0 for any 0 ≤ j ≤ k, where ψ(j) is the j-th derivative
of ψ.

• If ψ̂(u) is the Fourier transform of ψ, i.e.

ψ̂(u) :=

∫ 1

0

ψ(t) e−iutdt,

then ψ̂(u) = C u(1 + ε(u)) when u → 0 with C a complex number not

depending on u and ε(u) → 0 when u → 0 since ψ̂(0) = 0 from the

assumption
∫ 1

0
ψ(t) dt = 0.

• Moreover,

sup
u∈R

∣∣uk ψ̂(u)
∣∣ ≤ sup

x∈[0,1]

|ψ(k)(x)|. (3)

If Y = (Yt)t∈R is a continuous-time process, with a.s. continuous trajectories,
for (a, b) ∈ R∗

+ × R, the “classical” wavelet coefficient d(a, b) of the process Y

for the scale a and the shift b is d(a, b) := 1√
a

∫
R
ψ( t−ba )Yt dt. However, since the

process X satisfying Assumption A(d, d′) is a discrete-time process, we define
the wavelet coefficients of X by

e(a, b) :=

a∑

j=1

( 1√
a
ψ(
j

a
)
)
Xb+j (4)

for (a, b) ∈ N∗ × Z. Note that if a path (X1, . . . , XN ) is observed, for a ∈ N∗

and b = 1, . . . , N − a we can also write e(a, b) = 1√
a

∑N
t=1 ψ(

t−b
a )Xt, which is

more directly implied by the definition of d(a, b).
In the sequel, we will use the usual convention y = o(g(x)) (x → ∞) when

limx→∞ y/g(x) = 0,

Property 1. Under Assumption A(d, d′) with d < 1/2 and d′ > 0, and if ψ
satisfies Assumption Ψ(k) with k > d′ − d+ 1/2, for a ∈ N∗, then (e(a, b))b∈Z
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is a zero mean stationary linear process and when a→ ∞,

E(e2(a, 0)) = 2π
(
cdK(ψ,2d)a

2d + cd′K(ψ,2d−d′)a
2d−d′)+ o

(
a2d−d

′)
,

with K(ψ,α) :=

∫ ∞

−∞
|ψ̂(u)|2 |u|−αdu > 0 for all α < 1. (5)

Refer to Section 5 for all the proofs of this paper.

Remark 1. The condition k > d′ − d + 1/2 of Property 1 could be surprising
since the larger d′, i.e. the smoother the spectral density, the larger k is re-
quired. Heuristically, the reason of such a condition is the following: the larger
the second order term |λ|d′−2d of the spectral density (i.e. the smoother the
spectral density), the larger k should be (i.e. the smoother the wavelet func-
tion should be) to detect this second order term, which is required for the
adpative procedure (see Section 3). Moreover, from the proof of Property 1,
if k ≤ d′ − d + 1/2 then the second order expansion term a2d−d

′
in (5) is re-

placed by O
(
a2da1/2−d−k

)
. Then the forthcoming central limit theorem (8) still

holds but under the condition aN N
−1/(2d+2k) → ∞ replacing the condition

aN N
−1/(1+2d′) → ∞: this induces a slower convergence rate of this CLT than

under the condition k > d′ − d+ 1/2.

Let (X1, . . . , XN ) be an observed path of X satisfying Assumption A(d, d′).
As soon as a consistent estimator of E(e2(a, 0)) is provided, Property 1 allows to
make a log-log regression-based estimation of 2d. Hence, for a ∈ {1, . . . , N − 1},
consider the sample variance of the wavelet coefficients,

TN (a) :=
1

N − a

N−a∑

b=1

e2(a, b). (6)

Remark 2. In [6, 4, 19] or [25], the considered sample variance of wavelet
coefficients is

VN (a) :=
1

[N/a]

[N/a]∑

b=1

e2(a, ab) (7)

(with a = 2j in case of multiresolution analysis). Definition (6) has both a
drawback and two advantages with respect to the usual definition (7). On the
one hand, TN(a) is not adapted to the fast Mallat’s algorithm and therefore
its use is more time consuming than the one of VN (a). On the other hand its
advantage is twofold: if γ and γ′ respectively denote the asymptotic variances
of

√
N/aTN (a) and

√
N/aVN (a) when a, N → ∞, then the expression of γ is

clearly simpler than the one of γ′ since




γ = 4π
1

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(λ)
∣∣4

|λ|4d dλ (see (9) below)

γ′ =
2

K2
(ψ,2d)

∞∑

m=−∞

(∫ ∞

−∞

∣∣ψ̂(u)
∣∣2

|u|2d cos(um) du
)2

(see [4]) ,
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and this will have consequences to the computation of PGLS estimators below.
Furthermore, as inferred from numerical approximations not reported here, for
our choice of ψ (see Section 4), γ(d) ∈ [γ′(d)/2, γ′(d)] (following d). This confers
the same advantage to the variance of the wavelet-based estimators of d com-
puted from (TN (ari))i with respect to the one computed from (VN (ari))i (see
below).

The following proposition specifies a multidimensional central limit theorem
for a vector (logTN (riaN ))i, which provides the first step towards obtaining a
CLT for the estimator of d computed from an ordinary least square regression:

Proposition 1. Define ℓ ∈ N \ {0, 1} and (r1, . . . , rℓ) ∈ (N∗)ℓ with 0 < r1 <
r2 < · · · < rℓ. Under Assumption A(d, d′) with d < 1/2 and d′ > 0, if ψ satisfies

Assumption Ψ(k) with k ≥ d′ − d + 1/2 and if (an)n∈N is such as N/aN → ∞
and aN N

−1/(1+2d′) → ∞ when N → ∞, then

(√ N

riaN

(
logTN (riaN )− 2d log(riaN )− log(2π cdK(ψ,2d))

))
1≤i≤ℓ

d−→
N→∞

Nℓ

(
0 ; Γ(r1, . . . , rℓ, ψ, d)

)
, (8)

with Γ(r1, . . . , rℓ, ψ, d) = (γ(ri, rj))1≤i,j≤ℓ the asymptotic covariance matrix

such as

γ(ri, rj) = 4π
(rirj)

1/2−2d

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(riλ)
∣∣2|ψ̂(rjλ)

∣∣2

|λ|4d dλ. (9)

Remark 3. This result can be compared with the one of [25]. In this paper, two
assumptions are required concerning the process: Assumption 1 concerning the
behavior of the spectral density is a little weaker (and therefore more general)
than condition (2), while Assumption 2 is very close to our conditions on (ξs)s∈Z

in Assumption A(d, d′) except that we require the symmetry of the distribution
of this process. However, our proof of Proposition 1 could also be obtained under
Assumption 1 of [25]: the second order expansion in (2) is only required for
obtaining the adaptive estimation of the minimal scale (see forthcoming Section
3). The condition on the symmetry of the distribution of (ξs)s∈Z provides a
very simple expression (9) of the asymptotic covariance while its expression
(Vij(d, ψ) in (66)) in [25] is notably more complicated (and therefore almost

impossible to be approximated). Finally, our condition aN N
−1/(1+2d′) → ∞

exactly corresponds to the condition (63) of Theorem 4 in [25] since aN = 2L(n).
Note that if aN N

−1/(1+2d′) → ℓ0 with 0 ≤ ℓ0 <∞, then

√
N

aN

[
logE

(
e2(aN , 0)

)
−
(
2d log(aN ) + log

(
2π cdK(ψ,2d)

))]

does not tend to 0 (see (57)) and thus CLT (8) does not hold (if 0 < ℓ0 < ∞
then the limit distribution in CLT (8) is a non-centered Gaussian distribution).
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Since it is not easy to minimize (following the order relation induced by defi-
nite positive matrices) Γ(r1, . . . , rℓ, ψ, d) in terms of (r1, . . . , rℓ) and for simplify-
ing the following results, we chose now only to consider the case (r1, r2, . . . , rℓ) =
(1, 2, . . . , ℓ). It is also possible to consider the case when ℓ→ ∞.

Proposition 2. Under Assumption A(d, d′) with d < 1/2 and d′ > 0, if ψ
satisfies Assumption Ψ(k) with k ≥ d′− d+1/2 and if (an)n∈N and (ℓn)n∈N are

two sequences of positive integer numbers such as when N → ∞

aN/N → 0, aN N
−1/(1+2d′) → ∞, ℓN → ∞ and ℓN aN/N → 0,

then

(√ N

riaN

(
logTN (riaN )− 2d log(riaN )− log(2π cdK(ψ,2d))

))
1≤i≤ℓN

f.d.d.−→
N→∞

(Zn)n∈N∗ (10)

where
f.d.d.−→
N→∞

denotes the convergence for finite dimensional distributions and

(Zn)n∈N∗ is a sequence of centered Gaussian random variables with covariance

Cov (Zi, Zj) = γ(i, j) where γ is defined in (9).

3. Adaptive estimator of the memory parameter and adaptive

goodness-of-fit test

The CLT of Proposition 1 opens a certain number of perspectives. As we shall
see, the simple expression of the asymptotic covariance matrix reveals to be very
advantageous as compared to the complicated expression of the asymptotic co-
variance obtained in the case of a multiresolution analysis (see [25]). Proposition

1 confirms the consistency of estimator d̂N of d. Hence, we define

d̂N (aN ) :=
(
0
1

2

)
(Z ′

aN ZaN )
−1Z ′

aN

(
log TN(riaN )

)
1≤i≤ℓ

with ZaN =

(
1 1 · · · 1

log(aN ) log(2aN ) · · · log(ℓaN )

)′
. (11)

where A′ denotes the transpose of a matrix A. Then, it can be clearly inferred
from Proposition 1 that d̂N (aN ) converges to d following a CLT with convergence
rate

√
N/aN when aN satisfies the condition aN N

−1/(1+2d′) → ∞ (N → ∞).
But d′ is actually unknown. [4] presented an automatic procedure for choosing

an “optimal” scale aN . We shall presently apply this procedure. Here a brief
recall of its principle: for α ∈ (0, 1), define

QN(α, c, d) =
(
YN (α)− ZNα

(
c
2d

))′
·
(
YN (α) − ZNα

(
c
2d

))

with YN (α) =
(
logTN(iN

α)
)
1≤i≤ℓ.
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QN(α, c, d) corresponds to a squared distance between the line of slope 2d and
intercept c and the ℓ points

(
log(iNα) , logTN (iNα)

)
i
. It can be minimized in

terms of α, c and d first by defining for α ∈ (0, 1)

Q̂N (α) = QN
(
α, ĉ(Nα), 2d̂(Nα)

)

with
( ĉ(Nα)

2d̂(Nα)

)
=

(
Z ′
NαZNα

)−1
Z ′
NαYN (α);

and then by defining α̂N by:

Q̂N (α̂N ) := min
α∈AN

Q̂N(α) where AN :=
{ 2

logN
,

3

logN
, . . . ,

log[N/ℓ]

logN

}
.

Remark 4. As outlined in [4] in the definition of the set AN , logN can be
replaced by any sequence negligible with respect to any power law of N . Hence,
in numerical applications we will use 10 logN which significantly increases the
precision of α̂N .

Under the assumptions of Proposition 1, we obtain (see the proof in [4]),

α̂N =
log âN
logN

P−→
N→∞

α∗ =
1

1 + 2d′
.

We then define:

̂̂
dN := d̂(N α̂N ) and Γ̂N := Γ(1, . . . , ℓ,

̂̂
dN , ψ). (12)

It is clear that
̂̂
dN

P−→
N→∞

d (for a convergence rate see also [4]) and from

the expression of Γ in (9) which is a continuous function of the variable d,

Γ̂N
P−→

N→∞
Γ(1, . . . , ℓ, d, ψ). We will prefer to consider:

α̃N := α̂N +
6α̂N

(ℓ − 2)(1− α̂N )

log logN

logN
.

rather than α̂N for technical reasons (i.e. Pr(α̃N ≤ α∗) −→
N→∞

0 which is not

satisfied by α̂N , see [4]). Consequently, with the usual expression of PGLSE, the
adaptive estimators of c and d can be defined as follows:

( c̃N
2d̃N

)
:=

(
Z ′
N α̃N Γ̂−1

N ZN α̃N
)−1

Z ′
N α̃N Γ̂−1

N YN (α̃N ). (13)

The following theorem provides the asymptotic behavior of the estimator d̃N ,

Theorem 1. Under the assumptions of Proposition 1,
√

N

N α̃N

(
d̃N − d

) d−→
N→∞

N
(
0 ; σ2

d(ℓ)
)

with σ2
d(ℓ) :=

(
0
1

2

)(
Z ′
1

(
Γ(1, . . . , ℓ, d, ψ)

)−1
Z1

)−1(
0
1

2

)′
(14)

and for all ρ >
2(1 + 3d′)

(ℓ− 2)d′
,

N
d′

1+2d′

(logN)ρ
×
∣∣d̃N − d

∣∣ P−→
N→∞

0. (15)
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We can note the following points:

1. From Gauss-Markov Theorem, the asymptotic variance of d̃N is smaller or

equal to the one of
̂̂
dN . Moreover d̃N satisfies the CLT (14) which provides

confidence intervals which can be easily computed.
2. In the Gaussian case, the adaptive estimator d̃N converges to d with a rate

of convergence being equal to the minimax rate of convergence N
d′

1+2d′ up
to a logarithm factor (see [13]). Thus, this estimator is comparable to
adaptive log-periodogram or local Whittle estimators (see [21]).

3. Under additive assumptions on ψ (ψ is supposed to have its first m van-

ishing moments), the estimator d̃N can also be applied to a process X
with an additive polynomial trend of degree ≤ m − 1. Then the trend is
being “vanished” by the wavelet function in the expression of the wavelet
coefficient and the value of d̃N is the same as the result obtained without
this additive trend. No such robustness property can be obtained with
the cited adaptive log-periodogram or local Whittle estimator (however
adaptive versions of the local Whittle and FEXP estimators robust for
polynomial trends were respectively defined in [2] and [16]).

Remark 5. As we studied the case ℓ→ ∞ in Proposition 2, we have expected
to extend Theorem 1 to the case ℓ → ∞. For establishing such a result, it is

sufficient to prove that limℓ→∞
(
Z ′
1

(
Γ(1, . . . , ℓ, d, ψ)

)−1
Z1

)−1
exists. But unfor-

tunately we did not succeed to theoretically prove that this limit exists or to
prove that the sequence (σ2

d(ℓ))ℓ decreases. However, since Γ(1, . . . , ℓ, d, ψ) is de-
fined from the general term (9) which can be easily approximated using classical
approximations of the integrals once ψ is chosen, we realized numerical exper-
iments for exhibiting the dependence of the asymptotic variance σ2

d(ℓ) with d
and ℓ. For the results of these numerical experiments refer to Figure 1. It can be
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Fig 1. Graph of the approximated values of σ2
d
(ℓ) defined in (14) for d ∈ [0, 0.5] and ℓ =

10, 20, 50, 100 and 200.
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inferred that for any d ∈ [0, 0.5), σ2
d(ℓ) is almost independent on d and decreases

as ℓ increases. Then it could be interesting to select the “largest” possible value
of ℓ (since we necessarily have ℓ ≤ N/Nα∗

) for improving the estimation of
d. This will induce both the choices of ℓ realized in the forthcoming Section 4
devoted to simulations.

Finally an adaptive goodness-of-fit test can be deduced from the previous
PGLS regression. It consists of a sum of the PGLS squared distances between
the PGLS regression line and the points. To be precise, consider the statistic:

W̃N :=
N

N α̃N

(
YN (α̃N )− ZN α̃N

( c̃N
2d̃N

))′
Γ̂−1
N

(
YN (α̃N )− ZN α̃N

( c̃N
2d̃N

))
.

(16)
This test statistic can be used as a goodness-of-fit test for deciding between
hypothesis H0: “the process is a linear LRD process” and H1: “the process is
not a LRD process”. Then, using the previous results, we obtain:

Theorem 2. Under the assumptions of Proposition 1,

W̃N
d−→

N→∞
χ2(ℓ − 2). (17)

This (adaptive) goodness-of-fit test is therefore very simple to be computed
and used. In the case where d > 0, which can be tested easily using Theorem 1,
this test can also be seen as a test of long memory for linear processes.

4. Simulations

We then examined the numerical consistency and robustness of d̃N . We realized
simulations and we compared the values of d̃N with those of the more accurate
semiparametric long-memory estimators. To conclude we examined the numer-
ical properties of the test statistic W̃N .

Remark 6. Note that all softwares (in Matlab language) used in this section
are freely available on:
http://samm.univ-paris1.fr/-Jean-Marc-Bardet.

The wavelet-based estimator has been computed using the following param-
eters:
Choice of the function ψ: A wavelet function ψ associated with a multi-
resolution analysis being not mandatory, as mentioned above, we use function
ψ(x) = x4(1−x)4

(
x− 1

2

)
Ix∈[0,1] which satisfies Assumption Ψ(3) (and therefore

in any cases 3 = k > d′ − d + 1/2 which is required for theoretical limit theo-
rems).
Choice of the parameter ℓ: This parameter is important since it deter-
mines the “beginning” of the linear part of the graph drawn by the points
(log(iaN ), logTN (iaN ))1≤i≤ℓ and hence the data-driven estimator ãN , but also
the chosen number of scales used for the regression. Hence, we adopted on this
point a two step procedure:

http://samm.univ-paris1.fr/-Jean-Marc-Bardet
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1. According to numerical studies (not detailed here), the choice of ℓ = [5 +
2 ∗ log(N/100)] (therefore ℓ = 6, 9 and 12 respectively for N = 250, 1000
and 5000) seems to be an appropriated choice for a first step: the com-
putation of α̃n. This choice is almost not influenced by the values of d
or the roughness of the spectral density of X . Note also that a choice as
ℓ = 10 for all N provides only slightly worse results to those obtained with
ℓ = [5 + 2 ∗ log(N/100)] but still reasonable. We also use this value of ℓ

for computing the goodness-of-fit W̃N .
2. Concerning the computation of d̃N , we can follow the arguments of Re-

mark 5 based on Figure 1. Then we selected for the second step a large
value of ℓ close to the largest possible value, i.e. ℓ = N1−α̃N (logN)−1 since
necessarily ℓ ≤ N/N α̃N by construction and for checking the conditions of
the CLT (10), we should have N α̃ × ℓ = o(N)).

First of all we need to specify the simulation conditions. The results are obtained
from generated independent samples of each process belonging to the following
“benchmark”. The practical generation procedures of these processes are based
on the circulant matrix method in case of Gaussian processes and the truncation
of an infinite sum if the process is non-Gaussian (see [9]). The simulations are
carried out for d = 0, 0.1, 0.2, 0.3 and 0.4, for N = 250, 1000 and 5000 for all
the following processes which satisfy Assumption A(d, d′):

1. the fractional Gaussian noise (FGN) of parameter H = d + 1/2 for d ∈
[0, 0.5) and σ2 = 1. A FGN(d+1/2) is such that Assumption A(d, 2) holds
(even if a FGN is rarely presented as a Gaussian linear process);

2. a FARIMA(p, d, q) process with parameter d such that d ∈ [0, 0.5), p, q ∈
N. A FARIMA(p, d, q) process is such that Assumption A(d, 2) holds if (ξi)i
the innovation process is such that Eξi = 0, Eξ4i < ∞ and ξi symmetric
random variables.

3. the centered Gaussian stationary process X(d,d′), with spectral density is

f3(λ) =
1

|λ|2d (1 + |λ|d′) for λ ∈ [−π, 0) ∪ (0, π], (18)

with d ∈ [0, 0.5) and d′ ∈ (0,∞). X(d,d′) being a Gaussian process with
spectral density f3, it is considered a linear process within the Wold de-
composition Theorem, thus confirming Assumption A(d, d′) holds.

4.1. Comparison of the wavelet-based estimator with other

estimators

We computed d̃N following the two steps procedure to a benchmark referred to
below including the following particular processes for d = 0, 0.1, 0.2, 0.3, 0.4:

• X1 : FGN processes with parameters H = d+ 1/2;
• X2 : FARIMA(0, d, 0) processes with standard Gaussian innovations;
• X3 : FARIMA(0, d, 0) processes with innovations following a uniform
U [−1, 1] distribution;
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• X4 : FARIMA(1, d, 1) processes with standard Gaussian innovations, MA
coefficient φ = −0.3 and AR coefficient θ = 0.7;

• X5 : FARIMA(1, d, 1) processes with innovations following a uniform dis-
tribution U [−1, 1], MA coefficient φ = 0.8 and AR coefficient θ = −0.6;

• X6 : X(d,d′) Gaussian processes with d′ = 1.

We also compared the results obtained with d̃N with those obtained with both
the other following semiparametric d-estimators known for their accuracies (see
[7] or 2008):

• d̂MS is the adaptive global log-periodogram estimator, also called FEXP
estimator, defined by [17] and based on results obtained in [23] and [20].
The review article [21] is an excellent survey on semiparametric spectral
estimators of the long memory parameter (local log-periodogram, local
Whittle or FEXP estimators). We thank Eric Moulines for having provided
a Matlab sofware of this adaptive estimator (as it was recommended by
E. Moulines, the bias-variance balance parameter κ was set to 2, as in [7].

• d̂R is the local Whittle estimator introduced by [18] and asymptotically
studied by [24]. We used the typical non-data-based choice of bandwidth
m = [N4/5] (see [15]). Note that this choice is not an adaptive choice
but an optimal choice under a regularity condition of the spectral density
f (corresponding to d′ = 2 which is the case of FARIMA processes; for

d′ > 0 known a choice [N
2d′

1+2d′ ] can be done).

For simulation results see Table 1.

Conclusions from Table 1: Compared to other estimators, d̃N numerically shows
a convincing convergence rate. With a bandwidth parameter m = [N4/5] which
is optimal (up to a constant) for FGN and FARIMA processes, the local Whittle

estimator d̂R provides excellent and best results for the processes X1, X2 and
X3 having very flat spectral densities, but less good results for the processes
X4−6 having more rough spectral densities. The adaptive FEXP d̂MS presents
opposite properties: its results are almost constant whatever is the roughness
of spectral density. Finally the adaptive wavelet based estimator d̃N provides
intermediary results between those of d̂R and d̂MS : good but not excellent for
processes having smooth spectral densities (X1− 3) and not very good but not
bad results for processes having rough spectral densities (X4− 6).

Remark 7. A previous comparison [4] of two adaptive wavelet-based estimators

(respectively defined in [28] and in [4]) with d̂MS and d̂R (as well as with two
further estimators as defined respectively in [14], and [8] neither of which display

good numerical properties of consistency) shows that
√
MSE of d̃N obtained

in Table 1 is generally smaller to
√
MSE of [4]-based estimator (especially for

processes X4 and X6) because we opted for definition (6) instead of (7) and
PGLS regression instead of LS regression.

Robustness of the estimator d̃N : To study the robustness of the estimator
d̃N and also of the goodness-of-fit test W̃N , we chose different processes not
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Table 1

Comparison of long-memory parameter estimators for benchmark processes.
√
MSE is

computed from 1000, 500 and 200 independent samples (for N = 250, 1000 and 5000 resp.).

The frequency of the goodness-of-fit test acceptation is p̃n = 1
n
#
(
W̃N < qχ2(ℓ−2)(0.95)

)

N = 250 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

X1
√
MSE d̂MS 0.176 0.163 0.157 0.173 0.182√
MSE d̂R 0.063 0.060 0.062 0.067 0.071√
MSE d̃N 0.098 0.095 0.089 0.086 0.089
p̃n 0.95 0.94 0.94 0.91 0.91

X2
√
MSE d̂MS 0.165 0.165 0.166 0.169 0.185√
MSE d̂R 0.061 0.065 0.064 0.064 0.065√
MSE d̃N 0.098 0.107 0.104 0.105 0.106
p̃n 0.95 0.93 0.93 0.94 0.88

X3
√
MSE d̂MS 0.167 0.168 0.171 0.168 0.172√
MSE d̂R 0.063 0.061 0.065 0.066 0.065√
MSE d̃N 0.099 0.102 0.105 0.099 0.101
p̃n 0.95 0.96 0.95 0.92 0.93

X4
√
MSE d̂MS 0.179 0.175 0.178 0.175 0.175√
MSE d̂R 0.333 0.330 0.325 0.324 0.317√
MSE d̃N 0.219 0.204 0.194 0.190 0.183
p̃n 0.85 0.84 0.82 0.79 0.77

X5
√
MSE d̂MS 0.170 0.171 0.156 0.173 0.180√
MSE d̂R 0.478 0.518 0.532 0.538 0.539√
MSE d̃N 0.359 0.381 0.383 0.381 0.371
p̃n 0.86 0.85 0.86 0.81 0.80

X6
√
MSE d̂MS 0.175 0.183 0.177 0.177 0.178√
MSE d̂R 0.173 0.176 0.177 0.172 0.172√
MSE d̃N 0.223 0.225 0.218 0.209 0.202
p̃n 0.94 0.93 0.92 0.92 0.91

N = 1000 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

X1
√
MSE d̂MS 0.091 0.088 0.089 0.090 0.097√
MSE d̂R 0.033 0.034 0.035 0.038 0.043√
MSE d̃N 0.062 0.053 0.050 0.049 0.045
p̃n 0.89 0.88 0.90 0.94 0.91

X2
√
MSE d̂MS 0.089 0.089 0.089 0.091 0.090√
MSE d̂R 0.034 0.033 0.036 0.035 0.035√
MSE d̃N 0.059 0.060 0.061 0.065 0.058
p̃n 0.93 0.90 0.90 0.90 0.89

X3
√
MSE d̂MS 0.086 0.094 0.093 0.096 0.098√
MSE d̂R 0.034 0.033 0.033 0.035 0.035√
MSE d̃N 0.065 0.064 0.062 0.062 0.059
p̃n 0.89 0.88 0.90 0.88 0.87

X4
√
MSE d̂MS 0.091 0.090 0.095 0.094 0.095√
MSE d̂R 0.204 0.201 0.195 0.194 0.193√
MSE d̃N 0.119 0.117 0.111 0.114 0.109
p̃n 0.83 0.80 0.82 0.79 0.77

X5
√
MSE d̂MS 0.092 0.089 0.083 0.094 0.097√
MSE d̂R 0.355 0.361 0.366 0.365 0.364√
MSE d̃N 0.193 0.192 0.183 0.173 0.172
p̃n 0.85 0.83 0.82 0.78 0.85

X6
√
MSE d̂MS 0.096 0.096 0.099 0.100 0.109√
MSE d̂R 0.133 0.129 0.131 0.133 0.130√
MSE d̃N 0.151 0.154 0.151 0.152 0.140
p̃n 0.86 0.84 0.86 0.82 0.84

N = 5000 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

X1
√
MSE d̂MS 0.043 0.046 0.045 0.041 0.043√
MSE d̂R 0.017 0.019 0.019 0.020 0.020√
MSE d̃N 0.025 0.022 0.025 0.028 0.027
p̃n 0.92 0.95 0.95 0.96 0.98

X2
√
MSE d̂MS 0.045 0.045 0.040 0.044 0.048√
MSE d̂R 0.018 0.016 0.016 0.017 0.019√
MSE d̃N 0.031 0.032 0.030 0.029 0.029
p̃n 0.94 0.94 0.93 0.93 0.93

X3
√
MSE d̂MS 0.044 0.044 0.046 0.044 0.049√
MSE d̂R 0.019 0.017 0.017 0.019 0.018√
MSE d̃N 0.030 0.038 0.026 0.031 0.032
p̃n 0.92 0.95 0.92 0.92 0.93

X4
√
MSE d̂MS 0.046 0.043 0.043 0.050 0.045√
MSE d̂R 0.113 0.110 0.110 0.109 0.108√
MSE d̃N 0.059 0.054 0.058 0.062 0.049
p̃n 0.93 0.87 0.87 0.84 0.88

X5
√
MSE d̂MS 0.042 0.048 0.046 0.043 0.054√
MSE d̂R 0.242 0.244 0.245 0.246 0.243√
MSE d̃N 0.087 0.081 0.074 0.076 0.074
p̃n 0.78 0.80 0.79 0.80 0.77

X6
√
MSE d̂MS 0.049 0.050 0.047 0.051 0.048√
MSE d̂R 0.100 0.100 0.099 0.099 0.096√
MSE d̃N 0.090 0.087 0.083 0.084 0.077
p̃n 0.82 0.81 0.76 0.82 0.86
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satisfying Assumption A(d, d′) (except sometimes for d = 0) and defined as
follows:

1. a FARIMA(0, d, 0) processes with innovations satisfying a symmetric Burr
distribution with cumulative distribution function F (x) = 1 − 1

2
1

1+|x|3/2

for x ≥ 0 and F (x) = 1
2

1
1+|x|3/2 for x ≤ 0 (and therefore E|Xi|2 = ∞ but

E|Xi| < ∞). Note that X4 does not satisfy the condition Eξ40 required in
Theorems 1 and 2. However, considering the logarithm of wavelet coeffi-
cient sample variance and not only the wavelet coefficient sample variance,
we think that one should be able to prove the consistency of d̃N under the
condition Eξr0 with r > 0.

2. a Gaussian stationary process with a spectral density f(λ) =
∣∣|λ|−π/2

∣∣−2δ

for all λ ∈ [−π, π] \ {−π/2, π/2} so called a GARMA(0, δ, 0) process. The
local behavior of f in 0 is f(|λ|) ∼ (π/2)−2δ, therefore d = 0, but it does
not satisfy Assumption A(0, d′) (here d′ should be 2) since f(λ) → ∞
when λ→ π/2, except when δ = 0.

3. a Gaussian FARIMA(0, d, 0) with an additive linear trend such as Xt =
FARIMAt+(1− 2t/N) for t = 1, . . . , N and therefore the mean value of

(X1, . . . , XN ) ≃ 0. The process (Xt) is not a stationary process but d̃N is
not sensible to polynomial trends.

4. a Gaussian FARIMA(0, d, 0) with an additive linear trend and an ad-
ditive sinusoidal seasonal component of period T = 12 such as Xt =
FARIMAt + (1 − 2t/N) + sin(π t/6) for t = 1, . . . , N hence the mean
value of (X1, . . . , XN ) ≃ 0. The process (Xt) is not a stationary process.

5. a Gaussian process (Xt) denoted by [FGN(0.1),FGN(d + 1/2)] and com-
posed by a FGN with parameter H = 0.1 for 1 ≤ t ≤ N/2 and a FGN
with parameter H = d+1/2 for 1+N/2 ≤ t ≤ N . This is a non stationary
process since there is a change of the model.

6. a process X denoted MGN(d) defined by the increments of a multifrac-
tional Brownian motion (introduced in [22]). Using the harmonizable rep-
resentation, define Y = (Yt)t by

Yt := C(t)

∫

R

eitx − 1

|x|H(t)+1/2
dW (x)

whereH(·) as well as C(·) are functions (the caseH(·) = H withH ∈ (0, 1)
is the case of fBm) and the complex isotropic random measure dW satis-
fies dW = dW1+ i dW2 with dW1 and dW2 two independent real-valued
Brownian measures (see more details on this part in section 7.2.2 of [27]).
When g = g1 + i g2 and h = h1 + i h2 where g1, h1 and g2, h2 are respec-
tively even and odd real-valued functions such that

∫
R
(g2i (x))dx <∞ and∫

R
(h2i (x))dx < ∞ (i = 1, 2), then E

[( ∫
R
g(ξ) dW (ξ)

)( ∫
R
h(ξ) dW (ξ)

)]
=∫

R
g(x)h(x) dx. Here we choseH(t) = 0.5+d sin(t/10) and C(t) = 1. Then

with Xt = Yt+1 − Yt for t ∈ Z, the process X is not a stationary process,
it rather behaves “locally” as a FGN with a parameter H(t) (therefore
depending on t).
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7. a process X denoted MFGN(d) and defined by the increments of a mul-
tiscale fractional Brownian motion (introduced in [3]). Let Z = (Zt)t be
such that

Zt :=

∫

R

σ(x)
eitx − 1

|x|H(x)+1/2
dW (x)

with dW previously defined, H(·) and σ(·) being piecewise constant func-
tions. We chose σ(x) = I0.001≤|x|≤0.1 and H(x) = d + 1/2 for 0.001 ≤
|x| ≤ 0.04 and H(x) = 0.1 for 0.04 ≤ |x| ≤ 3 (such a choice was done for
modeling heartbeat signals in the paper [5]). Define Xt := Zt+1 − Zt for
t ∈ Z; then X = (Xt)t∈Z is a Gaussian stationary process which can be
written as a Gaussian linear process (Wold decomposition Theorem) and
behaving as a FGN of parameter d+ 1/2 for low frequencies (large time)
and as a FGN of parameter 0.1 for high frequencies (small time).

For results of these simulations see Table 2.

Conclusions from Table 2: An advantage of d̃N is its robustness with respect to
smooth trends (or seasonality). Note that there exist versions of d̂MS and d̂R
which are also efficient for processes with smooth trend or with smooth trend
and seasonality (see [2] and [16]), but d̃N has the advantage to keep the same
expression for such processes or for stationary processes.

4.2. Consistency and robustness of the adaptive goodness-of-fit test

Tables 1 and 2 also provide informations concerning the adaptive goodness-of-fit
test W̃N .

Conclusions from Table 1: Considering Table 1, i.e. processes satisfying the
theoretical assumptions required in the article, the consistency properties of
this test are clearly satisfactory and almost not depend on d. However note that
smoother the spectral density better the goodness-of-fit test results. Note also
that results of the goodness-of-fit test do not improve with N because we chose
a parameter ℓ = [5 + 2 ∗ log(N/100)] increasing with N and therefore the test
is more difficult to be accepted when N increases.

Conclusions from Table 2: Considering Table 2, i.e. processes which do not sat-
isfy the theoretical assumptions required in the article, the adaptive goodness-
of-fit test W̃N has good robustness properties when N is large enough. For
processes with heavy tail distributions or smooth trends, or GARMA processes,
the test can be reasonably used when N is larger than N ≥ 1000 (for those
processes, it should be perhaps possible to prove the consistency of the test).
But for the 3 last processes ([FGN(0.1),FGN(d+1/2)], MGN(d) or MFGN(d))
there is clearly no consistency of the test statistic to a χ2 distribution (except for
d = 0 for MGNd): we are clearly under the test hypothesis H1 and for N ≥ 5000
the results of the test are almost convincing.
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Table 2

Robustness of d̃N :
√
MSE is computed from 1000, 500, 200 and 100 independent samples

(for N = 250, 1000, 5000 and 20000 resp.). The frequency of the goodness-of-fit test

acceptation is p̃n = 1
n
#
(
W̃N < qχ2(ℓ−2)(0.95)

)

N = 250 −→

Model
√
MSE d ou δ = 0 d ou δ = 0.1 d ou δ = 0.2 d ou δ = 0.3 d ou δ = 0.4

FARIMA(0, d, 0)
√
MSE d̃N 0.116 0.113 0.113 0.115 0.119

with Burr innovations p̃n 0.94 0.93 0.93 0.93 0.90

GARMA(0, δ, 0)
√
MSE d̃N 0.102 0.128 0.178 0.241 0.268
p̃n 0.94 0.94 0.84 0.86 0.87

Trend + FARIMA(0, d, 0)
√
MSE d̃N 0.110 0.114 0.102 0.102 0.107
p̃n 0.93 0.90 0.92 0.92 0.90

Trend + Seasonality
√
MSE d̃N 0.190 0.202 0.225 0.250 0.290

+ FARIMA(0, d, 0) p̃n 0.07 0.12 0.16 0.16 0.17

[FGN(0.1), FGN(d + 1/2)]
√
MSE d̃N - - - - -
p̃n 0.87 0.84 0.80 0.79 0.79

MGN(d)
√
MSE d̃N - - - - -
p̃n 0.93 0.91 0.83 0.78 0.75

MFGN(d)
√
MSE d̃N - - - - -
p̃n 0.95 0.95 0.91 0.88 0.81

N = 1000 −→

Model
√
MSE d ou δ = 0 d ou δ = 0.1 d ou δ = 0.2 d ou δ = 0.3 d ou δ = 0.4

FARIMA(0, d, 0)
√
MSE d̃N 0.069 0.070 0.074 0.070 0.064

with Burr innovations p̃n 0.92 0.95 0.88 0.90 0.88

GARMA(0, δ, 0)
√
MSE d̃N 0.058 0.090 0.111 0.112 0.138
p̃n 0.91 0.82 0.85 0.88 0.88

Trend + FARIMA(0, d, 0)
√
MSE d̃N 0.059 0.058 0.064 0.060 0.067
p̃n 0.84 0.86 0.90 0.87 0.84

Trend + Seasonality
√
MSE d̃N 0.245 0.187 0.155 0.147 0.141

+ FARIMA(0, d, 0) p̃n 0.44 0.64 0.69 0.66 0.69

[FGN(0.1), FGN(d + 1/2)]
√
MSE d̃N - - - - -
p̃n 0.62 0.57 0.54 0.53 0.53

MGN(d)
√
MSE d̃N - - - - -
p̃n 0.92 0.74 0.58 0.46 0.40

MFGN(d)
√
MSE d̃N - - - - -
p̃n 0.67 0.53 0.38 0.19 0.09

N = 5000 −→

Model
√
MSE d ou δ = 0 d ou δ = 0.1 d ou δ = 0.2 d ou δ = 0.3 d ou δ = 0.4

FARIMA(0, d, 0)
√
MSE d̃N 0.047 0.040 0.051 0.044 0.027

with Burr innovations p̃n 0.90 0.93 0.89 0.85 0.93

GARMA(0, δ, 0)
√
MSE d̃N 0.035 0.058 0.053 0.064 0.094
p̃n 0.95 0.82 0.90 0.86 0.78

Trend + FARIMA(0, d, 0)
√
MSE d̃N 0.037 0.029 0.025 0.027 0.028
p̃n 0.79 0.88 0.89 0.94 0.95

Trend + Seasonality
√
MSE d̃N 0.079 0.071 0.056 0.056 0.064

+ FARIMA(0, d, 0) p̃n 0.37 0.65 0.73 0.77 0.78

[FGN(0.1), FGN(d + 1/2)]
√
MSE d̃N - - - - -
p̃n 0.40 0.36 0.35 0.34 0.30

MGN(d)
√
MSE d̃N - - - - -
p̃n 0.91 0.65 0.39 0.20 0.12

MFGN(d)
√
MSE d̃N - - - - -
p̃n 0.05 0.04 0.02 0.02 0.05

N = 20000 −→

Model
√
MSE d ou δ = 0 d ou δ = 0.1 d ou δ = 0.2 d ou δ = 0.3 d ou δ = 0.4

FARIMA(0, d, 0)
√
MSE d̃N 0.047 0.040 0.051 0.044 0.027

with Burr innovations p̃n 0.90 0.93 0.89 0.85 0.93

GARMA(0, δ, 0)
√
MSE d̃N 0.013 0.030 0.033 0.039 0.040
p̃n 0.98 0.91 0.92 0.90 0.93

Trend + FARIMA(0, d, 0)
√
MSE d̃N 0.027 0.016 0.012 0.018 0.015
p̃n 0.82 0.84 0.92 0.96 0.94

Trend + Seasonality
√
MSE d̃N 0.079 0.041 0.040 0.031 0.048

+ FARIMA(0, d, 0) p̃n 0.33 0.67 0.83 0.81 0.83

[FGN(0.1), FGN(d + 1/2)]
√
MSE d̃N - - - - -
p̃n 0.35 0.33 0.29 0.28 0.27

MGN(d)
√
MSE d̃N - - - - -
p̃n 0.93 0.51 0.26 0.15 0.06

MFGN(d)
√
MSE d̃N - - - - -
p̃n 0.05 0.06 0.04 0.07 0.04
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5. Proofs

First, we will use many times the following lemmas:

Lemma 1. If g is a function satisfying Assumption Ψ(k) with k ≥ 1, then for

all λ ∈ R and a ∈ N
∗,

∣∣∣1
a

a∑

j=1

g
( j
a

)
e−iλ

j
a −

∫ 1

0

g(t)e−iλ tdt
∣∣∣ ≤ Cg(k) min

(1 + |λ|k
ak

, 1
)

with Cg(k) = 2

k∑

p=0

( k
p

)
sup
x∈[0,1]

|g(p)(x)|. (19)

Proof of Lemma 1. 1/ We first prove that if h is a Ck(R) function such as h(x) =
0 for x /∈ [0, 1] with k ≥ 1, then for all a > 0:

∣∣∣1
a

a∑

j=1

h
( j
a

)
−
∫ 1

0

h(t)dt
∣∣∣ ≤ sup

x∈[0,1]

|h(k)(x)| 1

ak
. (20)

This proof is established by induction on k. If k = 1, the classical approximation
of an integral by a Riemann sum implies

∣∣∣1
a

a∑

j=1

h
( j
a

)
−
∫ 1

0

h(t)dt
∣∣∣ ≤ sup

x∈[0,1]

|h′(x)| 1
a
.

Now assume that the relationship (20) is true for any k ≤ n with n ∈ N∗. We
are going to prove that (20) is also true for k = n + 1. Indeed, assume that h
satisfies Assumption Ψ(n+ 1). Then, with the usual Taylor expansion

∣∣h(t)− h(u)−
n∑

k=1

(t− u)k

k!
h(k)(u)

∣∣ ≤ |t− u|n+1

(n+ 1)!
sup
x∈[0,1]

|h(n+1)(x)|

for (t, u) ∈ [0, 1]2,

∣∣∣1
a

a∑

j=1

h
( j
a

)
−
∫ 1

0

h(t)dt
∣∣∣ ≤

∣∣∣
a∑

j=1

∫ j/a

(j−1)/a

n∑

k=1

(j/a− t)k

k!
h(k)(j/a)dt

∣∣∣

+
1

(n+ 2)!
sup
x∈[0,1]

|h(n+1)(x)| 1

an+1

≤
n∑

k=1

1

ak(k + 1)!

∣∣∣1
a

a∑

j=1

h(k)(j/a)dt
∣∣∣

+
1

(n+ 2)!
sup
x∈[0,1]

|h(n+1)(x)| 1

an+1
.

Using (20) for h(k) and k = 1, . . . , n, we have

∣∣∣1
a

a∑

j=1

h(k)(j/a)dt−
∫ 1

0

h(k)(t)dt
∣∣∣ ≤ 1

(n− k + 1)!
sup
x∈[0,1]

|h(n+1)(x)| 1

an+1−k
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since h(k) satisfies Assumption Ψ(n+1−k). But
∫ 1

0
h(k)(t)dt =

[h(k+1)(t)
(k+1)!

]1
0
= 0.

Therefore,

∣∣∣1
a

a∑

j=1

h
( j
a

)
−
∫ 1

0

h(t)dt
∣∣∣ ≤

( n∑

k=1

1

(k + 1)!

1

(n− k + 1)!
+

1

(n+ 2)!

)

× sup
x∈[0,1]

|h(n+1)(x)| 1

an+1

≤ (e − 2) sup
x∈[0,1]

|h(n+1)(x)| 1

an+1
,

and thus (20) is true for k = n+ 1 and therefore for any k ∈ N∗.
2/ Now, we apply (20) for h(t) = g(t)e−itλ when λ ∈ [a, a]. Since we have

|h(k)(t)| ≤ ∑k
p=0

( k
p

)
|λ|p|g(k−p)(t)|, and for all λ ∈ [a, a],

sup
x∈[0,1]

|h(k)(x)| ≤ max(1, |λ|k)
k∑

p=0

( k
p

)
sup
x∈[0,1]

|g(p)(x)|

and (19) follows.

Now when |λ| > a, it is clear that

∣∣∣1
a

a∑

j=1

g
( j
a

)
e−iλ

j
a −

∫ 1

0

g(t)e−iλ tdt
∣∣∣ ≤ 2 sup

x∈[0,1]

|g(x)|

and (19) follows. Moreover, if g is not the null function, we can not expect a really

smaller bound. Indeed, if we denote λ′ such as
∫ 1

0 g(t)e
−iλ′tdt 6= 0 (if λ′ does not

exist, g(x) = 0 for all x ∈ R). Then, for a > λ′ and for λ = λ′+2nπa with n ∈ Z∗,

then 1
a

∑a
j=1 g(j/a)e

−iλj/a = 1
a

∑a
j=1 g(j/a)e

−iλ′j/a =
∫ 1

0
g(t)e−iλ

′tdt+O(a−k)

when a→ ∞ from the previous case |λ′| ≤ a. But we also have
∫ 1

0
g(t)e−iλtdt =

O(|λ|−k) = O(a−k) from k integrations by parts since g satisfies Assumption
Ψ(k). Therefore, for any λ = λ′ + 2nπa with n ∈ Z∗,

∣∣∣1
a

a∑

j=1

g
( j
a

)
e−iλ

j
a −

∫ 1

0

g(t)e−iλ tdt
∣∣∣ =

∣∣∣
∫ 1

0

g(t)e−iλ
′tdt

∣∣∣+O
(
a−k

)

that induces that we cannot expect a better bound than O(1) when λ ∈ R.

Lemma 2. If g is a function satisfying Assumption Ψ(k) with k ≥ 0, then for

all a ∈ N∗ and λ ∈ [−aπ, 0) ∪ (0, aπ],

∣∣∣1
a

a∑

j=1

g
( j
a

)
e−iλ

j
a

∣∣∣ ≤ Dg(k)
1

|λ|k with Dg(k) = 10k sup
x∈[0,1]

|g(k)(x)|. (21)
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Proof of Lemma 2. This proof is also established by induction on k. If k = 0, it
is obvious that: ∣∣∣1

a

a∑

j=1

g
( j
a

)
e−iλ

j
a

∣∣∣ ≤ sup
x∈[0,1]

|g(x)|,

and (21) is satisfied. Now assume that property (21) is true for any k ≤ n
with n ∈ N

∗. We are going to prove that (21) is also true for k = n + 1.
Indeed, assume that g satisfies Assumption Ψ(n + 1). Then, with Sj(a, λ) :=
j∑

ℓ=0

e−iλℓ/a =
1

2i sin(λ/2a)

(
eiλ/2a − e−iλ/2ae−ijλ/a

)
for j ∈ {0, 1, . . . , a},

∣∣∣1
a

a∑

j=1

g
( j
a

)
e−iλ

j
a

∣∣∣ =
∣∣∣1
a

a∑

j=1

g
( j
a

)(
Sj(a, λ)− Sj−1(a, λ)

)∣∣∣

≤ Ia(λ) +
1

a

∣∣g
(1
a

)∣∣ (22)

with Ia(λ) :=
∣∣∣1
a

a−1∑

j=1

(
g
( j
a

)
− g

(j + 1

a

))
Sj(a, λ)

∣∣∣.

But since g satisfies Assumption Ψ(n+ 1) and a ≥ 1,

1

a

∣∣g
(1
a

)∣∣ ≤ sup
x∈[0,1]

|g(n+1)(x)| 1

an+1(n+ 1)!
. (23)

Now, with the usual Taylor expansion

∣∣g
(j + 1

a

)
− g

( j
a

)
−

n∑

k=1

1

akk!
g(k)

( j
a

)∣∣ ≤ 1

an+1(n+ 1)!
sup
x∈[0,1]

|g(n+1)(x)|

for j ∈ {0, 1, . . . , a− 1}. Therefore,

Ia(λ) ≤
n∑

k=1

1

akk!

∣∣∣1
a

a−1∑

j=1

g(k)
( j
a

)
Sj(a, λ)

∣∣∣+ 1

an+1(n+ 1)!
sup
x∈[0,1]

|g(n+1)(x)|.

From the definition of Sj(a, λ) and with the inequality 2
π u ≤ sin(u) ≤ u for

u ∈ [0, π/2], we have for λ ∈ [−aπ, 0) ∪ (0, aπ] and k ∈ {1, . . . , n}:
∣∣∣1
a

a−1∑

j=1

g(k)
( j
a

)
Sj(a, λ)

∣∣∣ ≤ 1

2| sin(λ/2a)|
(∣∣∣1
a

a−1∑

j=1

g(k)
( j
a

)∣∣∣

+
∣∣∣1
a

a−1∑

j=1

g(k)
( j
a

)
e−iλ

j
a

∣∣∣
)

≤ πa

2|λ|
( 1

an+1−k(n+ 1− k)!
sup
x∈[0,1]

|g(n+1)(x)|

+Dg(k)(n+ 1− k)
1

|λ|n+1−k

)
,
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using (20) for bounding 1
a

∑a−1
j=1 g

(k)
(
j
a

)
and the induction hypothesis for bound-

ing 1
a

∑a−1
j=1 g

(k)
(
j
a

)
e−iλ

j
a . Hence, with (23),

Ia(λ) +
1

a

∣∣g
(1
a

)∣∣ ≤ 1

an+1
sup
x∈[0,1]

|g(n+1)(x)|
n+1∑

k=0

1

(n+ 1− k)! k!

+
πa

2|λ| sup
x∈[0,1]

|g(n+1)(x)|
n∑

k=1

10n+1−k

akk!

1

|λ|n+1−k

≤ (2π)n+1

(n+ 1)! |λ|n+1
sup
x∈[0,1]

|g(n+1)(x)|

+
10n+1

|λ|n+1
sup
x∈[0,1]

|g(n+1)(x)|
n∑

k=1

1

k!

( π
10

)k
(24)

≤ 10n+1

|λ|n+1
sup
x∈[0,1]

|g(n+1)(x)|
n+1∑

k=1

1

k!

(π
5

)k

≤ 10n+1

|λ|n+1
sup
x∈[0,1]

|g(n+1)(x)|
(
eπ/5 − 1

)
, (25)

since a−k ≤ πk |λ|−k for all λ ∈ [−aπ, 0) ∪ (0, aπ] and k ∈ {0, 1, . . . , n + 1}.
Thus since eπ/5 − 1 < 1 and from (22) and (25), we deduce that (21) is true for
k = n+ 1 and therefore for any k ∈ N.

Proof of Property 1. First, since (Xt)t∈Z is a stationary centered linear pro-
cess, e(a, b) =

∑a
j=1

(
1√
a
ψ( ja )

)
Xb+j for any (a, b) ∈ N

∗ × Z from (4) and
∑a

j=1
1√
a

∣∣ψ
(
j
a

)∣∣ < ∞, it is clear that for a ∈ N
∗, (e(a, b))b∈Z is a stationary

centered linear process.
Now following similar computations to those performed in [4] [Proof of Prop-

erty 1], we obtain with f the spectral density of X and for a ∈ N∗,

E(e2(a, 0)) =

∫ aπ

−aπ
f
(u
a

)
×
∣∣∣1
a

a∑

j=1

ψ
( j
a

)
e−i

j
au

∣∣∣
2

du.

Now, since ψ satisfies Assumption Ψ(k) and therefore (3), from Lemma 1, for
u ∈ [−√

a,
√
a] and a large enough,

∣∣∣
∣∣1
a

a∑

j=1

ψ
( j
a

)
e−i

j
au

∣∣2 − |ψ̂(u)|2
∣∣∣ ≤ 2Cψ(k)

|u|k
ak

|ψ̂(u)|+ C2
ψ(k)

|u|2k
a2k

≤
(
2Cψ(k) sup

x∈[0,1]

|ψ(k)(x)|+ C2
ψ(k)

) 1

ak
. (26)

Moreover, for |u| ∈ [
√
a , aπ], from Lemma 2 and a ∈ N∗, we have,

∣∣∣1
a

a∑

j=1

ψ
( j
a

)
e−i

j
au

∣∣∣
2

≤ D2
ψ(k)

1

|u|2k , (27)
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Now, using (26) and (27), since there exists cf > 0 satisfying f(λ) ≤ cf |λ|−2d

for all λ ∈ [−π, π], we deduce with Fψ(k) = 2Cψ(k) supx∈[0,1] |ψ(k)(x)| + C2
ψ(k)

and for all d < 1/2,

∣∣∣E(e2(a, 0))−
∫ √

a

−√
a

f
(u
a

)
× |ψ̂(u)|2 du

∣∣∣

≤ Fψ(k)

ak

∫ √
a

−√
a

f
(u
a

)
du+ 2D2

ψ(k)

∫ aπ

√
a

1

|u|2k f
(u
a

)
du

≤ a2d
(2cf Fψ(k)

1− 2d
+

2D2
ψ(k)

2k + 2d− 1

) 1

ak+d−1/2
. (28)

Now, using again (3), for a large enough,

∣∣∣
∫ √

a

−√
a

f
(u
a

)
|ψ̂(u)|2 du−

∫ ∞

−∞
f
(u
a

)
|ψ̂(u)|2 du

∣∣∣

≤
(
2cf sup

x∈[0,1]

|ψ(k)(x)|
)
a2d

∫ ∞

√
a

1

u2d+2k
du

≤ a2d
(2cf supx∈[0,1] |ψ(k)(x)|

2k + 2d− 1

) 1

ak+d−1/2
. (29)

Finally, from Assumption A(d, d′) and using the definition (5) of K(ψ,α), we
obtain the following expansion:

∫ ∞

−∞
f
(u
a

)
|ψ̂(u)|2 du

= 2π

∫ ∞

−∞

(
cd
∣∣u
a

∣∣−2d
+ cd′

∣∣u
a

∣∣d′−2d
+
∣∣u
a

∣∣d′−2d
ε(
u

a
)
)
|ψ̂(u)|2 du

= 2π cdK(ψ,2d) a
2d + 2π cd′ K(ψ,2d−d′) a

2d−d′ + o(a2d−d
′

) (30)

because limλ→0 ε(λ) = 0 and applying Lebesgue Theorem. Then, using (28),
(29) and (30), we obtain that there exists C only depending on ψ and k such
as for a large enough,

∣∣∣E(e2(a, 0))− 2π cdK(ψ,2d) a
2d − 2π cd′ K(ψ,2d−d′) a

2d−d′
∣∣∣

≤ a2d
(
C a−k−d+1/2 + o(a−d

′

)
)
. (31)

When k > d′ − d+ 1/2 implying k + d− 1/2 > d′, then (5) holds.

Proof of Proposition 1. We decompose this proof in 4 steps. First define the
normalized wavelet coefficients of X by:

ẽN(a, b) :=
e(a, b)√
E(e2(a, 0))

for a ∈ N
∗ and b ∈ Z, (32)



2404 J.-M. Bardet and H. Bibi

and the normalized sample variance of wavelet coefficients by:

T̃N (a) :=
1

N − a

N−a∑

k=1

ẽ2(a, k). (33)

Step 1 We prove in this part that
(

N√
rirjaN

Cov (T̃N(riaN ), T̃N(rjaN )
))

1≤i,j≤ℓ
converges to the asymptotic covariance matrix Γ(r1, . . . , rℓ, ψ, d) defined in (9).
First for λ ∈ R, denote

Sa(λ) :=
1

a

a∑

t=1

ψ(
t

a
)eiλt/a.

Then for a ∈ N∗ and b = 1, . . . , N − a, since ψ is [0, 1]-supported function and
α̂ ∈ L2([−π, π]) inducing α(k) =

∫ π
−π α̂(λ)e

ikλdλ,

N∑

t=1

α(t− s)ψ(
t− b

a
) =

a∑

t=0

ψ
( t
a

) ∫ π

−π
α̂(λ)eiλ(t−s+b)dλ

=

∫ π

−π
aSa(aλ)α̂(λ)e

i(b−s)λdλ

=

∫ aπ

−aπ
Sa(λ)α̂(

λ

a
)ei(b−s)

λ
a dλ. (34)

But, for a, a′ ∈ N∗,

Cov (T̃N (a), T̃N(a
′))

=
1

N − a

1

N − a′

N−a∑

b=1

N−a′∑

b′=1

Cov (ẽ2(a, b), ẽ2(a′, b′))

=
(E(e2(a, 0))E(e2(a′, 0)))−1

(N − a)(N − a′)

N−a∑

b=1

N−a′∑

b′=1

Cov (e2(a, b), e2(a′, b′)). (35)

Now,

Cov (e2(a, b), e2(a′, b′))=
1

a a′

N∑

t1,t2,t3,t4=1

∑

s1,s2,s3,s4∈Z

( 2∏

i=1

α(ti − si)ψ(
ti − b

a
)
)

×
( 2∏

i=1

α(ti − si)ψ(
ti − b′

a′
)
)
Cov

(
ξs1ξs2 , ξs3ξs4

)

= C1 + C2, (36)

since there are only two nonvanishing cases: s1 = s2 = s3 = s4 (Case 1 => C1),
s1 = s3 6= s2 = s4 and s1 = s4 6= s2 = s3 (Case 2 => C2).
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* Case 1: in such a case, Cov
(
ξs1ξs2 , ξs3ξs4

)
= µ4 − 1 and

C1=
µ4 − 1

a a′

∑

s∈Z

∣∣∣
N∑

t=1

α(t− s)ψ(
t− b

a
)
∣∣∣
2∣∣∣

N∑

t=1

α(t− s)ψ(
t− b′

a′
)
∣∣∣
2

C1=(µ4 − 1) a a′ lim
M→∞

∫

[−π,π]4
dλdλ′dµdµ′ei[b(λ−λ

′)+b′(µ−µ′)]

×
M∑

s=−M
eis[(λ−λ

′)+(µ−µ′)]Sa(aλ)α̂(λ)Sa(aλ′)α̂(λ′)Sa′(a
′µ)α̂(µ)Sa′(a′µ′)α̂(µ′)

using the relation (34), with z denoting the conjugate of z ∈ C. From the usual
asymptotic behavior of Dirichlet kernel (see [10]), for f a 2π-periodic Lp-function
with p > 1, lim

M→∞

∫ π
−πDM (z)f(x+ z)dz = f(x) a.e. in x with

DM (z) :=
1

2π

M∑

k=−M
eikz =

1

2π

sin
(
(2M + 1)z/2

)

sin
(
z/2

) . (37)

Thus with g : R4 7→ R a Lp-function 2π-periodic for each component (p > 1),

lim
M→∞

∫

[−π,π]4
DM ((λ− λ′) + (µ− µ′))g(λ, λ′, µ, µ′)dλdλ′dµdµ′

= lim
M→∞

∫

[−π,π]4
DM (λ)g(λ + λ′ − µ+ µ′, λ′, µ, µ′)dλdλ′dµdµ′

=

∫

[−π,π]3
g(λ′ − µ+ µ′, λ′, µ, µ′)dλ′dµdµ′.

Therefore,

C1 = 2π (µ4 − 1) a a′
∫

[−π,π]3
dλ′dµdµ′ei(µ−µ

′)(b′−b)Sa(a(λ
′ − µ+ µ′))

× α̂(λ′ − µ+ µ′)Sa(aλ′)α̂(λ′)Sa′(a
′µ)α̂(µ)Sa′(a′µ′)α̂(µ′). (38)

* Case 2: in such a case, with s1 6= s2, Cov
(
ξs1ξs2 , ξs1ξs2

)
= 1 and

C2=
2

a a′

∑

(s,s′)∈Z2,s6=s′

N∑

t1=1

α(t1 − s)ψ(
t1 − b

a
)
N∑

t2=1

α(t2 − s)ψ(
t2 − b′

a′
)

×
N∑

t3=1

α(t3 − s′)ψ(
t3 − b

a
)
N∑

t4=1

α(t4 − s′)ψ(
t4 − b′

a′
)

=− 2C1

µ4 − 1
+

1

a a′

∑

(s,s′)∈Z2

N∑

t1=1

α(t1 − s)ψ(
t1 − b

a
)

N∑

t2=1

α(t2 − s)ψ(
t2 − b′

a′
)

×
N∑

t3=1

α(t3 − s′)ψ(
t3 − b

a
)

N∑

t4=1

α(t4 − s′)ψ(
t4 − b′

a′
)
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=− 2C1

µ4 − 1
+ 2 a a′ lim

M→∞
lim

M ′→∞

∫

[−π,π]4
dλdλ′dµdµ′ei[b(λ−µ)−b

′(λ′−µ′)]

×
M∑

s=−M

M ′∑

s=−M ′

eis(λ
′−λ)+is′(µ′−µ)Sa(aλ)α̂(λ)Sa′(a′λ′)α̂(λ′)

×Sa(aµ)α̂(µ)Sa′(a′µ′)α̂(µ′)

=− 2C1

µ4 − 1
+ 8π2 a a′

∫

[−π,π]2
ei(λ−µ)(b−b

′)Sa(aλ)Sa′ (a′λ)

×Sa(aµ)Sa′(a′µ) ×
∣∣α̂(λ)

∣∣2 ∣∣α̂(µ)
∣∣2dλdµ,

using the asymptotic behaviors of two Dirichlet kernels.
Now we are going back to (35). First, from (38),

N

(N − a)(N − a′)

N−a∑

b=1

N−a′∑

b′=1

C1

= 2π (µ4 − 1)
aa′N

(N − a)(N − a′)

∫

[−π,π]3
dλ′dµdµ′FN (a, a′, µ− µ′)

× Sa(a(λ
′ − µ+ µ′))α̂(λ′ − µ+ µ′)Sa(aλ′)α̂(λ′)Sa′(a

′µ)α̂(µ)Sa′(a′µ′)α̂(µ′)

= 2π (µ4 − 1)
aa“N

(N − a)(N − a′)

∫

[−π,π]3
dλ′dµdµ′FN (a, a′, µ)

× Sa(a(λ
′ − µ))α̂(λ′ − µ)Sa(aλ′)α̂(λ′)Sa′(a

′(µ+ µ′))α̂(µ+ µ′)Sa′(a′µ′)α̂(µ′)

= 2π (µ4 − 1)
1

(N − a)(N − a′)

∫ πa

−πa

∫ πa′

−πa′

∫ πN

−πN
dx dy dz FN (a, a′,

x

N
)

× Sa(y −
a

N
x)α̂(

y

a
− x

N
)Sa(y)α̂(

y

a
)Sa′(z +

a′

N
x)α̂(

z

a′
+
x

N
)Sa′(z)α̂(

z

a′
)

where we used the 2π-periodicity of functions and we denoted the Fejer-type
kernel:

FN (a, a′, v) :=
N−a∑

b=1

N−a′∑

b′=1

ei v (b−b
′)

= eiv(a−a
′)/2 sin((N − a)v/2) sin((N − a′)v/2)

sin2(v/2)
. (39)

Consider the function:

hN (x, y, z) = I{|x|≤πN, |y|≤πa, |z|≤πa′}
FN (a, a′, xN )

(N − a)(N − a′)
Sa(y −

a

N
x)Sa(y)

× Sa′(z +
a′

N
x)Sa′(z)

(
|a|2d α̂(y

a
− x

N
)α̂(

y

a
)
)(

|a′|2d α̂( z
a′

+
x

N
)α̂(

z

a′
)
)
.

We are going to apply the Lebesgue Theorem to
∫
R3 hN (x, y, z) dx dy dz when

min(a, a′, N) → ∞ and max(a, a′)/N −→
N→∞

0. Hence, for all (x, y, z) ∈ (R∗)3,
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from the usual expansion sinx ∼ x (x→ 0), from (2) and Lemmas 1 and 2,

hN(x, y, z) −→
N→∞

4
sin2(x/2)

x2

∣∣ψ̂(y)
∣∣2 ∣∣ψ̂(z)

∣∣2 cd
∣∣y
∣∣−2d

cd
∣∣z
∣∣−2d

.

Now, we are going to bound |hN (x, y, z)|.
Since sin(x)

N sin(x/N) ≤ 3
1+x for all x ∈]0, π/2] and N ≥ 1, and therefore,

∣∣∣4
FN (a, a′, xN )

(N − a)(N − a′)

∣∣∣ ≤ 9

(1 + |x/2|)2 .

Moreover, always with (2) and Lemmas 1 (for |λ| ≤ √
a) and 2 (for

√
a ≤ |λ| ≤

πa), we can state that there exists a positive real number Fψ > 0 such that for
all λ ∈ [−πa, πa],

∣∣Sa(λ)
∣∣ ≤ Fψ

1

1 + |λ|k .

Therefore, using the behavior of the spectral density of x implying the inequality
|α̂(λ)| ≤ c |λ|−d for all λ ∈ [−π, 0) ∪ (0, π] (with c > 0), there exists C > 0 such
as for all (x, y, z) ∈ (R∗)3,

∣∣hN (x, y, z)
∣∣ ≤ C

1

(1 + |x/2|)2
(|y| |y − ax

N |)−d
(1 + |y|k)(1 + |y − ax

N |k)

× (|z| |z + a′x
N |)−d

(1 + |z|k)(1 + |z + a′x
N |k) I{|x|≤πN, |y|≤πa, |z|≤πa

′}. (40)

Finally, we have |y − ax
N |−d ≤ |y|−d when y ∈ [−πa, axN ] and |y− ax

2N |−d ≥ |y|−d
when y ∈ [ ax2N , πa]. The same partition can be done with z and thus we can
write:

hN (x, y, z) = h
(1)
N (x, y, z) + h

(2)
N (x, y, z) + h

(3)
N (x, y, z) + h

(4)
N (x, y, z),

where the respective integration domains of h
(1)
N (x, y, z), h

(2)
N (x, y, z) and

h
(4)
N (x, y, z) are determined by I{|x|≤πN,−πa≤y≤ ax

2N ,−πa′≤z≤− a′x
2N },

I{|x|≤πN, ax2N≤y≤πa,−πa′≤z≤− a′x
2N } and I{|x|≤πN, ax2N≤y≤πa,− a′x

2N ≤z≤πa′}. Then, us-

ing (40), each function h
(i)
N , i = 1, . . . , 4, can be bounded. For instance,

|h(1)N (x, y, z)| ≤ C
1

(1 + |x/2|)2
|y|−2d

1 + |y|k
|z|−2d

1 + |z|k for all (x, y, z) ∈ (R∗)3

|h(2)N (x, y, z)| ≤ C
1

(1 + |x/2|)2
|y − ax

2N |−2d

1 + |y − ax
2N |k

|z|−2d

1 + |z|k for all (x, y, z) ∈ (R∗)3.

The Lebesgue Theorem can be directly applied for h
(1)
N (x, y, z) and after the

change of variable y → y − ax
2N for h

(2)
N (x, y, z) (which change nothing from

symmetry property). As a consequence,
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1

(aa′)2d
N

(N − a)(N − a′)

N−a∑

b=1

N−a′∑

b′=1

C1

−→
N→∞

8π (µ4 − 1) c2d

∫

R3

sin2(x/2)

x2

∣∣ψ̂(y)
∣∣2 ∣∣ψ̂(z)

∣∣2 ∣∣y
∣∣−2d ∣∣z

∣∣−2d
dxdydz.

Since
∫
R

sin2(x/2)
x2 dx = π

2 and (E(e2(a, 0)) ∼ 2π cdK(ψ,2d) a
2d (a→ ∞) from (5),

we deduce with (35) that

N
(E(e2(a, 0))E(e2(a′, 0)))−1

(N − a)(N − a′)

N−a∑

b=1

N−a′∑

b′=1

C1 −→
N→∞

µ4 − 1

=⇒ N√
aa′

(E(e2(a, 0))E(e2(a′, 0)))−1

(N − a)(N − a′)

N−a∑

b=1

N−a′∑

b′=1

C1 −→
N→∞

0. (41)

Using the Fejer kernel type FN defined previously, we have

N√
aa′

(E(e2(a, 0))E(e2(a′, 0)))−1

(N − a)(N − a′)

N−a∑

b=1

N−a′∑

b′=1

C2

=
N√
aa′

(E(e2(a, 0))E(e2(a′, 0)))−1

(N − a)(N − a′)

(
− 2

µ4 − 1

N−a∑

b=1

N−a′∑

b′=1

C1

+8π2 aa′
∫

[−π,π]2
FN (a, a′, λ)Sa(a(λ+ µ))Sa′(a

′(λ+ µ))

×Sa(aµ)Sa′(a′µ)
∣∣α̂(λ+ µ)

∣∣2 ∣∣α̂(µ)
∣∣2dλdµ

)
(42)

= I1 + I2,

where I1 is the first sum with C1, I2 the second sum. Using the asymptotic
expansion (41), it is clear that the term I1 written with C1 in (42) tends to
0 when min(a, a′, N) → ∞ and max(a, a′)/N −→

N→∞
0. It remains to consider

the limit of second term I2. For this, let a = raN and a′ = r′aN . Then, using
changes of variables,

I2 = 8π2
√
rr′

(E(e2(raN , 0))E(e
2(r′aN , 0)))−1

(N − raN )(N − r′aN )

×
∫ πaN

−πaN

∫ πN

−πN
FN (raN , r

′aN ,
x

N
)SraN (r(y +

aN
N
x))Sr′aN (r

′(y +
aN
N
x))

×SraN (ry)Sr′aN (r′y)
∣∣α̂( y

aN
+
x

N
)
∣∣2∣∣α̂( y

aN
)
∣∣2dxdy

−→
N→∞

4π
(rr′)1/2−2d

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(ry)
∣∣2|ψ̂(r′y)

∣∣2

|y|4d dy.
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Therefore, with (41) and from (35), one deduces that:

N√
raNr′aN

Cov (T̃N (r aN), T̃N (r′ aN ))

−→
N→∞

4π
(rr′)1/2−2d

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(rλ)
∣∣2|ψ̂(r′λ)

∣∣2

|λ|4d dλ. (43)

Note that if r = r′ then N
r aN

Var (T̃N (r aN )) −→
N→∞

σ2
ψ(d) = 64π5 K(ψ∗ψ,4d)

K2
(ψ,2d)

only

depending on ψ and d.

Step 2 We prove here that if the distribution of the innovations (ξt)t is such
that there exists r0 > 0 satisfying

E
(
er0ξ0

)
≤ ∞ (the so-called Cramèr condition), (44)

then (T̃N (ri aN ))1≤i≤ℓ =
(

1
N−riaN

∑N−riaN
k=1 ẽ2(riaN , k)

)
1≤i≤ℓ satisfies a CLT

for any sequence of positive integer numbers (an)n∈N such as min(aN , N/aN) →
∞ when N → ∞. Such theorem is implied by proving that

√
N

aN

ℓ∑

i=1

ui
N − riaN

N−riaN∑

k=1

ẽ2(riaN , k)

asymptotically follows a Gaussian distribution for any vector (ui)1≤i≤ℓ ∈ R
ℓ.

For establishing this result we are going to adapt a proof of [12] where central
limit theorems for functionals of linear processes are proved using a decomposi-
tion with Appell polynomials. Indeed since X satisfies Assumption A(d, d′) and
can be a two-sided linear process, martingale type results as in [29] or [11] can not
be applied. Moreover, since (aN )N is a sequence depending on N it is required
to prove a central limit theorem for triangular arrays. Unfortunately the recent
paper of [26] dealing with central limit theorems for arrays of decimated linear
processes, and which can be applied to establish a multidimensional central limit
for the variogram of wavelet coefficients associated to a multi-resolution analysis
can not be applied here because in this paper this variogram is defined as in
(7) with coefficients taken every n/nj (≃ aN with our notation) and the mean
of nj (N/aN with our notation) coefficients is considered (with a convergence
rate

√
nj). Our definition of the wavelet coefficient variogram (6) is an average

of N − aN terms. Then we chose to adapt the method and results of [12].
More precisely, consider first the case ℓ = 1. We consider H2(x) = x2 − 1 the

second-order Hermite polynomial and we would like to prove that

( N
aN

)1/2 1

N − aN

N−aN∑

b=1

(
ẽ2(aN , b)− 1

)
≃

( 1

NaN

)−1/2
N−aN∑

b=1

H2(ẽ(aN , b))

L−→
N→∞

N
(
0, σ2

ψ(d)
)
. (45)
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We are going to follow the proof of Proposition 6 of [12] which is devoted to
CLT for polynomials in a linear process (note the Appell rank of H2 is 2) but we
have to adapt this proof to the case of triangular arrays (since ẽ(aN , b) depends
on N).

For a > 0 and ξ0 satisfying the Cramèr condition (44), the process
(ẽ(a, b))1≤b≤N−a is a stationary linear process satisfying assumptions of the
paper of Giraitis (called Xt in this article) since, from Step 1,

ẽ(a, b) =
∑

s∈Z

βa(b − s)ξs with βa(s) =

√
a√

Ee2(a, b)

∫ π

−π
Sa(aλ)α̂(λ)e

iλsdλ, (46)

where
∑

s∈Z
β2
a(s) = 1 for any a ∈ N∗. Then for u ∈ [−π, π],

β̂a(u) =
1

2π

∞∑

s=−∞
βa(s)e

−isu

=

√
a

2π
√
Ee2(a, b)

lim
m→∞

∫ π

−π

m∑

s=−m
Sa(aλ)α̂(λ)e

is(λ−u)dλ

=

√
a√

Ee2(a, b)
Sa(au)α̂(u),

with the asymptotic behavior of Dirichlet kernel. The behavior of β̂a(u) will be
considered in the sequel.

For random variables (η1, . . . , ηk) we denote χ(η1, . . . , ηk) the cumulant of
these random variables, defined by:

χ(η1, . . . , ηk) =
∂k log

[
E exp

(∑k
j=1 ajηj

)]

∂a1∂a2 · · · ∂ak
(0, 0, . . . , 0).

We also recall that for any centered random variable Z satisfying the Cramèr

condition (44) a sequence of Appel polynomials (A
(Z)
n (x))n∈N can be defined

following the relation:

A(Z)
n (x) =

n∑

k=0

xk
∑

(v)(n−k)
(−1)r

r∏

i=1

χ(Z)(|vi|)

where χ(Z)(k) = χ(Z,Z, . . . , Z) is the k − th cumulant of the random variable
Z, using also the convention

∑
(v)(0) · · · = 1,

∑
(v)(1) · · · = 0 and for j ≥ 2, the

sum
∑

(v)(j) is taken over all partitions (v1, . . . , vr), r = 1, 2, . . . , j of the set

{1, 2, . . . , j} such that |vi| ≥ 2 (with |vi| = #(vi)). Note that if Z is a standard

Gaussian random variable, A
(Z)
n is the usual Hermite polynomial of degree n.

Following the proof of Proposition 6 [12], define

S
(n)
N =

N−aN∑

b=1

A(ẽ(aN ,·))
n (ẽ(aN , b))
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where A
(ẽ(aN ,·))
n is the Appell polynomial of degree n of ẽ(aN , ·). Since there

exists (c
(N)
n )n≥2 ∈ ℓ2 such as H2 =

∑∞
n=2 c

(N)
n A

(ẽ(aN ,·))
n , for establishing (45), it

is sufficient to prove that the cumulants of order k ≥ 3 of SN (n) are such as

χ
(
S
(n(1))
N , . . . , S

(n(k))
N

)
= o

(
(NaN )k/2

)
(47)

for any n(1), . . . , n(k) ≥ 2 (the computations of the cumulants of order 2 are
induced by Step 1 of this proof).

From Proposition 5 and Corollary 1 of [12], we have

χ
(
S
(n(1))
N , . . . , S

(n(k))
N

)
=

∑

γ∈Γ0(T )

dγIγ(N) (48)

with: • I(V1,...,Vr)(N) = C

∫

[−π,π]n
dx11 . . . dxkn(k)δ(xV1) . . . δ(xVr )

×
k∏

j=1

DN (xj1 + · · ·+ xjn(j))gj(xj1, . . . , xjn(j)) (49)

• gj(xj1, . . . , xjn(j))=
(
β̂a ⊗ β̂a ⊗ · · · ⊗ β̂a

)
(xj1, . . . , xjn(j)) (n(j) times),

• DN (x) = sin(Nx/2)/ sin(x/2),

• δ(xV ) = 1 if
∑

(i,j)∈V
xij = 0 (mod. 2π), = 0 else,

where Γ0(T ) is the set of possible connected diagrams γ (a diagram γ = (V1, . . . ,
Vr) is a partition of the array T = ((i, j))1≤i≤k,1≤j≤n(i) and such as |Vi| > 1).

In the case of Gaussian diagrams, Iγ(N) = o((NaN )k/2), since this case is
induced by the Gaussian case and the second order moments.

If γ is a non-Gaussian diagram, mutatis mutandis, we are going to follow the
notation and proof of Lemma 2 of [12].
a/ Consider the case a/ of Lemma 2 of [12], corresponding to the case where
there exist at least 3 different rows Lj such as ∃V1, |V1 ∩ Lj | ≥ 1. Without loss
of generality, we chose the diagram V ∗

1 = {(1, 1), (2, 1), (3, 1)} which is such that
the rows L1, L2 and L3 of the array T satisfy |V ∗

1 ∩ Lj | ≥ 1.
We are going to bound I(V ∗

1 ,V2,...,Vr) (see its formula (49)). First, δ(xV ∗
1
) =

δ(x11 + x21 + x31) which yields that the integration domain of Iγ in (49) is
reduced to [−π, π]n−1 since x11 + x21 + x31 = 0 (mod. 2π). Then we have:

∣∣I(V ∗
1 ,V2,...,Vr)(N)

∣∣ ≤ C

∫

[−π,π]n−3

dx41 . . . dxkn(k)δ(xV2 ) . . . δ(xVr )

×
k∏

j=4

DN (xj1 + · · ·+ xjn(j))gj(xj1, . . . , xjn(j))

×
∫ π

−π

∫ π

−π
dx11dx21

∣∣DN

(
x11+

n(1)∑

j=2

x1j
)
β̂a(x11)DN

(
x21+

n(2)∑

j=2

x2j
)
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× β̂a(x21)DN

(
− x11 − x21 +

n(3)∑

j=2

x3j
)
β̂a(−x11 − x21)

∣∣.

Consider the second part (double integral) of the previous bound. As in (39) of
[12], we can write:

∫ π

−π

∫ π

−π
dx11dx21

∣∣DN

(
x11 +

n(1)∑

j=2

x1j
)
β̂a(x11)DN

(
x21 +

n(2)∑

j=2

x2j
)
β̂a(x21)

×DN

(
− x11 − x21 +

n(3)∑

j=2

x3j
)
β̂a(−x11 − x21)

∣∣

≤ C α1(u1)α2(u2)α3(u3).

with ui = xi2 + · · · + xin(i), α1(u) = ‖DN(· + u)β̂a(·)‖1 and αi(u) = ‖DN (· +
u)β̂a(·)‖2 for i = 2, 3. It remains to bound αi(u). But, with the same approxi-
mations as in the proof of Property 1, for aN and N large enough

α1(u) =

∫ π

−π

∣∣β̂aN (u)DN (x+ u)
∣∣dx

∼
√
2π

1√
aN

∫ aNπ

−aNπ

∣∣ ψ̂(x)
|x|d

∣∣ ∣∣DN

( x
aN

+ u
)∣∣du

≤ 2
√
aN sup

x∈R

{ |ψ̂(x)|
|x|d

} ∫ π

−π
|DN (x+ u)|dx

≤ 2C sup
x∈R

{ |ψ̂(x)|
|x|d

}√
aN logN,

since there exists C > 0 such as
∫ π
−π |DN (x+u)|dx ≤ C logN for any u ∈ [−π, π].

Now for i = 2, 3, aN and N large enough,

α2
i (u) = ‖β̂aN (·)DN (u+ ·)‖22

≤ 2

∫ aNπ

−aNπ

|ψ̂(x)|2
|x|2d D2

N

( x
aN

+ u
)
du

≤ 2C sup
x∈R

{ |ψ̂(x)|2
|x|2d

}
aN

∫ π

−π
|D2

N (x+ u)|dx

≤ C′ sup
x∈R

{ |ψ̂(x)|2
|x|2d

}
NaN .

Then α1(u1)α2(u2)α3(u3) = o((NaN )3/2).
For the k− 3 other terms (the first part of the bound of I(V ∗

1 ,V2,...,Vr)(N)), a
result corresponding to Lemma 1 of [12] can also be obtained. Indeed, for aN
and N large enough, and with gN,j = DN(xj1 + · · ·+ xjn(j))gj(xj1, . . . , xjn(j)),
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we have

‖gN,j‖22 =

∫

[−π,π]n(j)

dxD2
N (x1 + · · ·+ xn(j))

n(j)∏

i=1

|β̂aN (xi)|2

≤ C

∫

[−aNπ,aNπ]n(j)

dxD2
N

( 1

aN
(x1 + · · ·+ xn(j))

) n(j)∏

i=1

|ψ̂(xi)|2
|xi|2d

≤ C
∣∣ sup
x∈R

{ |ψ̂(x)|2
|x|2d

}∣∣n(j) aN ‖DN

(
·
)
‖22

≤ C′NaN

with C′ ≥ 0 not depending on N and aN . Thus ‖gN,j‖2 ≤ C (NaN )1/2 with
C ≥ 0. Using the same reasoning, there also exists C′ ≥ 0 such as ‖g′N,j‖2 ≤
C (NaN )1/2 for j ≥ 2 while ‖g′N,1‖2 = O(

√
aN logN) = o((NaN )1/2). As a

consequence, for γ such as |V1 ∩ Lj| ≥ 1 for at least 3 different rows Lj,

Iγ(N) = o
(
(NaN )k/2

)
. (50)

b/ For other diagrams γ, and following the part b/ of the proof of Lemma
2 in [12] (p. 32), it remains to bound the function h(u1, u2) = ‖DN(u1 +

·)DN (−u2)β̂a(·)‖1‖β̂a(·)‖22 as follows (with x = x11+x12) and with u1+u2 6= 0:

h(u1, u2) =
(∫ π

−π

∣∣β̂aN (−x)DN (u1 + x)DN (u2 − x)
∣∣dx

)( ∫ π

−π

∣∣β̂aN (x)
∣∣2dx

)

≤
∣∣ sup
x∈R

{ |ψ̂(x)|2
|x|2d

}∣∣ aN
(∫ π

−π

∣∣DN

(
u1 + x

)
DN

(
u2 − x

)∣∣dx
)

×
(
2π

∫ ∞

−∞

|ψ̂(x)|2
|x|2d dx

)
.

But
∫ π

−π

∣∣DN

(
u1 + x

)
DN

(
u2 − x

)∣∣dx ≤ 2

∫ 2πN

−2πN

∣∣∣ sin(x)
x

sin(N2 (u1 + u2)− x)

sin(12 (u1 + u2)− x
N )

∣∣∣dx

≤
{
C logN

∣∣ sin(12 (u1 + u2))
∣∣−1

if |u1 + u2| ≥ (N logN)−1

C N if |u1 + u2| < (N logN)−1 .

Therefore,

‖h(u1, u2)‖22 =

∫

[−π,π]2
h2(u1, u2)du1du2

≤ C a2N

(
log2N

∫ π

(N logN)−1

(sinx)−2 dx+N2

∫ (N logN)−1

0

dx
)

≤ C a2N
(
N log3N +N logN

)
,

and hence ‖h(u1, u2)‖2 = o(NaN ). Then using Corollary 2 of [12], we also
obtain (50).
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Finally, (50) holds for all diagrams γ and it implies (47) and therefore (45).
If ℓ > 1, the same proof can be repeated from the linearity properties of

cumulants. Thus, (T̃N (ri aN ))1≤i≤ℓ satisfies the following central limit:
√
N

aN

(
T̃N (ri aN )− 1

)
1≤i≤ℓ

d−→
N→∞

N
(
0 , Γ(r1, . . . , rℓ, ψ, d)

)
, (51)

with Γ(r1, . . . , rℓ, ψ, d) = (γ(ri, rj))1≤i,j≤ℓ given in (9).

Step 3 Now we extend the central limit obtained in Step 2 for linear processes
with an innovation distribution satisfying a Cramèr condition (E

(
er0ξ0

)
< ∞)

to the weaker condition Eξ40 < ∞ using a truncation procedure. Thus assume
now that Eξ40 <∞. Let M > 0 and define:

• ξ−t = ξt I|ξt|≤M and ξ+t = ξt I|ξt|>M for t ∈ Z;

• X−
t =

∑
s∈Z

α(t− s) ξ−s , X
+
t =

∑
s∈Z

α(t− s) ξ+s for t ∈ Z;
• For (a, b) ∈ N∗ × Z and βa defined in (46),

ẽ−(a, b) =
1√

Ee2(a, b)

a∑

j=1

( 1√
a
ψ(
j

a
)
)
X−
b+j =

∑

s∈Z

βa(b− s) ξ−s (52)

ẽ+(a, b) =
1√

Ee2(a, b)

a∑

j=1

( 1√
a
ψ(
j

a
)
)
X+
b+j =

∑

s∈Z

βa(b− s) ξ+s . (53)

Clearly ẽ(a, b) = ẽ+(a, b) + ẽ−(a, b). We are going to prove that (51) holds. For
this, we begin by writing

T̃N(ri aN)− 1 =
1

N − riaN

(N−riaN∑

b=1

(
ẽ−(riaN , b)

)2 − 1
)

+ 2ẽ+(riaN , b)ẽ
−(riaN , b) +

(
ẽ+(riaN , b)

)2)
. (54)

We first prove that

(√ N

aN

1

N − riaN

N−riaN∑

b=1

(
ẽ−(riaN , b)

)2 − 1
))

1≤i≤ℓ

L−→
N→∞

(
γ(ri, rj)

)
1≤i,j≤ℓ. (55)

Indeed X− is a linear process with innovations (ξ−t ) satisfying the Cramèr con-
dition, and X− has the same (up to a multiplicative constant) spectral density
as X . Therefore, from previous CLT (51),

(√ N

aN

1

N − riaN

N−riaN∑

b=1

( (ẽ−(riaN , b))2

E
(
ẽ−(riaN , b))2

− 1
))

1≤i≤ℓ

L−→
N→∞

(
γ(ri, rj)

)
1≤i,j≤ℓ. (56)
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Therefore it remains to prove that
√

N
aN

(
E(ẽ−(riaN , b))2 − 1

)
converges to 0

since then Slutsky Theorem will imply that CLT (55) yields. But, we have
E
(
ẽ(riaN , b))

2 =
(∑

s∈Z
β2
a(s)

)
E(ξ0)

2 = 1 and Eξ20 = 1. Then, from Cauchy-
Schwarz Inequality and since ẽ−(riaN , b) = ẽ(riaN , b)− ẽ+(riaN , b),

∣∣E
(
ẽ−(riaN , b))

2 − 1
∣∣ ≤ 2

(
E
(
ẽ+(riaN , b))

2
)1/2

+ E
(
ẽ+(riaN , b))

2.

We have E
(
ẽ+(riaN , b))

2 =
(∑

s∈Z
β2
a(s)

)
E(ξ+0 )2 = E(ξ+0 )2 from previous ar-

guments and since we assume that the distribution of ξ0 is symmetric. But using
Hölder’s and Markov’s inequalities:

E(ξ+0 )2 ≤ (Eξ40)
1/2(Pr(|ξ0| > M))1/2 ≤ (Eξ40)M

−2.

Hence, there exists C > 0 not depending on M and N ,
√
N

aN

∣∣E
(
ẽ−(riaN , b))

2 − 1
∣∣ ≤ C

M

√
NaN −→

N→∞
0

when M = N (for instance). Therefore the CLT (55) holds.
From (54), it remains to prove that

√
N

aN

1

N − riaN

(N−riaN∑

b=1

2ẽ+(riaN , b)ẽ
−(riaN , b) +

(
ẽ+(riaN , b)

)2) P−→
N→∞

0.

Using the previous results, from Markov’s and Hölder inequalities, this is im-

plied when
√

N
aN

(
E(ẽ+(riaN , b))

2+2
√
E(ẽ+(riaN , b))2

)
−→
N→∞

0. Using also the

inequality E(ẽ+(riaN , b))
2 ≤ (Eξ40)M

−2 obtained above, we deduce that this
statement holds when M = N (for instance). As a consequence, from (54),
the CLT (51) holds even if the distribution of ξ0 is symmetric and such that
Eξ40 <∞.

Step 4 It remains to apply the Delta-method to (51) by considering the func-
tion (x1, . . . , xℓ) 7→ (log x1, . . . , log xℓ):

√
N

aN

(
log

(
TN(ri aN )

)
− log

(
E
(
e2(aN , 0)

)))
1≤i≤ℓ
d−→

N→∞
N
(
0 , Γ(r1, . . . , rℓ, ψ, d)

)
,

With E
(
e2(aN , 0)

)
provided in Property 1, we obtain

logE
(
e2(aN , 0)

)
= 2d log(aN ) + log

(
2π cdK(ψ,2d)

)

+
cd′K(ψ,2d−d′)
cdK(ψ,2d)

1

ad
′

N

(
1 + o(1)

)
(57)

Therefore, when
√

N
aN

1
ad

′
N

−→
N→∞

0, i.e. N
1

1+2d′ = o(aN ), the CLT (8) holds.
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Proof of Proposition 2. This proposition can be deduced from Proposition 1 by
proving that Step 1 of its proof holds for ri = ri(N) and rj = rj(N) increasing
to ∞ with aN max(ri(N), rj(N)) = o(N) (Steps 2-3-4 are immediate because
we consider a finite dimensional distribution convergence).

For Step 1, consider two sequences of integer numbers (an)n∈N and (a′n)n∈N

such as min(aN , a
′
N )N−1/(1+2d) → ∞ and max(aN , a

′
N)/N → 0 when N →

∞. Then, we would like to study the asymptotic behavior when N → ∞ of
N√
aN a′N

Cov (T̃N(aN ), T̃N(a
′
N )

)
. The computations done in Proposition 1 can

be used. Concerning the term C1, we also have the asymptotic result (41).
Concerning C2 the case aN/a

′
N −→

N→∞
0 implies another expansion of I1 + I2.

On the one hand, we still have I1 −→
N→∞

0 from the asymptotic behavior of C1.

On the other hand, the behavior asymptotic of I2 can be deduced from (42).
Indeed, for N large enough we have:

I2 =8π2 N√
aN a′N

(E(e2(aN , 0))E(e
2(a′N , 0)))

−1

(N − aN )(N − a′N )
aN a

′
N

∫

[−π,π]2
FN (aN , a

′
N , λ)

×SaN (aN (λ+ µ))Sa′N (a
′
N (λ+ µ))SaN (aNµ)Sa′N (a

′
Nµ)

∣∣α̂(λ+ µ)
∣∣2 ∣∣α̂(µ)

∣∣2dλdµ

≤ C a−1
N

(aNa′N )2d−1/2

∫ πaN

−πaN

∫ πN

−πN

FN (aN , a
′
N ,

x
N )

N2
SaN (

aN
N
x+ y)Sa′N (

a′N
N
x+

a′N
aN

y)

×SaN (y)Sa′N (
a′N
aN

y)
∣∣α̂( x

N
+

y

aN
)
∣∣2 ∣∣α̂( y

aN
)
∣∣2dxdy

≤C′ (aN
a′N

)2d−1/2
∫ πaN

−πaN

|ψ̂(y)|2
|y|4d Sa′N (

a′N
aN

y)Sa′N (
a′N
aN

y)dy,

with C, C′ > 0. From inequalities (26) and (27), we have for N large enough,

|Sa′N (u)|
2 ≤ 2 |ψ̂(u)|2 for 0 ≤ |u| ≤

√
a′N

and |Sa′N (u)|
2 ≤

D2
ψ(k)

u2k
for

√
a′N ≤ |u| ≤ πa′N .

Thus using also the assumptions on ψ (notably (3)), we can write:

I2≤C′ (aN
a′N

)2d−1/2
(∫ aN√

a′
N

0

|ψ̂(y)|2
|y|4d |ψ̂(a

′
N

aN
y)|2 dy +

∫ πaN

aN√
a′
N

|ψ̂(y)|2
|y|4d

1
(a′N
aN
y
)2k dy

)
,

≤C′ (aN
a′N

)2d−1/2
(∫ √

aN
a′
N

0

|y|2
|y|4d dy +

∫ πaN

√
aN
a′
N

1

|y|4d
1

(a′N
aN
y
)2k dy

)

≤C′′ (aN
a′N

)
, (58)

with C′′ > 0. Therefore I2 → 0 when N → ∞ and we can deduce that
N√
aN a′N

Cov (T̃N(aN ), T̃N(a
′
N )

)
→ 0 when aN/a

′
N → 0 and N → ∞. Note
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that same computations also imply that γ(ri, rj) → 0 when ri/rj → 0. Thus
the proof of Proposition 2 is completed.

Proof of Theorem 1. Here we use the results obtained in [4] concerning α̂N , α̃N
and d̃N . The CLT (8) satisfied by

(
log

(
TN(riaN )

))
i
in Proposition 1 is the same

as the CLT (10) of [4], except that this CLT is devoted to Gaussian processes
(while we consider linear processes here), the definition of TN is not exactly the
same (see Remark 2) and the asymptotic covariance Γ is not exactly the same.
But the asymptotic properties of both these CLTs are the same: if aN = o(Nα∗

)
a bias appears in the asymptotic Gaussian distribution, and when Nα∗

= o(aN ),
the larger aN the larger the asymptotic variance of log

(
TN(riaN )

)
. Therefore

the construction of α̂N and α̃N proposed in [4] for Gaussian processes can be
exactly reproduced here for linear processes. Hence Proposition 3 of [4] for Gaus-
sian processes also holds here for linear processes and therefore the CLTs (8) and

(10) are still valid when aN is replaced by N α̃N . Then, since d̃N = M̃N YN (α̃N )

with M̃N =
(
0 1/2

)(
Z ′
1Γ̂

−1
N Z1

)−1
Z ′
1Γ̂

−1
N we deduce that

√
N/N α̃N

(
d̃N − d

)
is

asymptotically Gaussian with asymptotic variance the limit in probability of
M̃N Γ(1, . . . , ℓ, d, ψ) M̃ ′

N , that is σ
2
d(ℓ).

The relation (15) is also an obvious consequence of Theorem 1 of [4].

Proof of Theorem 2. The theory of linear models can be applied: ZN α̃N
( c̃N

2d̃N

)

is an orthogonal projector of YN (α̃N ) on a subspace of dimension 2, therefore

YN (α̃N ) − ZN α̃N
( c̃N

2d̃N

)
is an orthogonal projector of YN (α̃N ) on a subspace

of dimension ℓ− 2. Moreover, using the CLT (8) where aN is replaced by N α̃N ,

we deduce that
√
N/N α̃N Γ̂−1

N YN (α̃N ) asymptotically follows a Gaussian distri-
bution with asymptotic covariance matrix Iℓ (identity matrix). Hence from the
usual Cochran Theorem we deduce (17).
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