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Abstract: We consider quasi maximum likelihood (QML) estimation for
general non-Gaussian discrete-time linear state space models and equidis-
tantly observed multivariate Lévy-driven continuous-time autoregressive
moving average (MCARMA) processes. In the discrete-time setting, we
prove strong consistency and asymptotic normality of the QML estimator
under standard moment assumptions and a strong-mixing condition on the
output process of the state space model. In the second part of the paper, we
investigate probabilistic and analytical properties of equidistantly sampled
continuous-time state space models and apply our results from the discrete-
time setting to derive the asymptotic properties of the QML estimator of
discretely recorded MCARMA processes. Under natural identifiability con-
ditions, the estimators are again consistent and asymptotically normally
distributed for any sampling frequency. We also demonstrate the practical
applicability of our method through a simulation study and a data example
from econometrics.
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1. Introduction

Linear state space models have been used in time series analysis and stochastic
modelling for many decades because of their wide applicability and analytical
tractability (see, e. g., Brockwell and Davis, 1991; Hamilton, 1994, for a detailed
account). In discrete time they are defined by the equations

Xn = FXn−1 +Zn−1, Y n = HXn +W n, n ∈ Z, (1.1)
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where X = (Xn)n∈Z
is a latent state process; F , H are coefficient matrices;

and Z = (Zn)n∈Z
, W = (W n)n∈Z

are sequences of random variables, see Def-
inition 2.1 for a precise formulation of this model. In this paper we investigate
the problem of estimating the coefficient matrices F,H as well as the second
moments of Z and W from a sample of observed values of the output pro-
cess Y = (Y n)n∈Z

, using a quasi maximum likelihood (QML) or generalized
least squares approach. Given the importance of this problem in practice, it is
surprising that a proper mathematical analysis of the QML estimation for the
model (1.1) has only been performed in cases where the model is in the so-called
innovations form

Xn = FXn−1 +Kεn−1, Y n = HXn + εn, n ∈ Z, (1.2)

where the innovations ε have constant conditional variance and satisfy some
higher order moment conditions (Hannan and Deistler, 1988, Chapter 4). This
includes state space models in which the noise sequences Z,W are Gaussian,
because then the innovations, which are uncorrelated by definition, form an
i. i. d. sequence. Restriction to these special cases excludes, however, the state
space representations of aggregated linear processes, as well as of equidistantly
observed continuous-time linear state space models.

In the first part of the present paper we shall prove consistency (Theorem
2.4) and asymptotic normality (Theorem 2.5) of the QML estimator for the
general linear state space model (1.1) under the assumptions that the noise
sequences Z,W are ergodic, and that the output process Y satisfies a strong-
mixing condition in the sense of Rosenblatt (1956). This assumption is not very
restrictive, and is, in particular, satisfied if the noise sequence Z is i. i. d. with
an absolutely continuous component, and W is strongly mixing. Our results
are a multivariate generalization of Francq and Zaköıan (1998), who considered
the QML estimation for univariate strongly mixing ARMA processes. The very
recent paper Boubacar Mainassara and Francq (2011), which deals with the
structural estimation of weak vector ARMA processes, instead makes a mixing
assumption about the innovations sequence ε of the process under consideration,
which is very difficult to verify for state space models; their results can therefore
not be used for the estimation of general discretely-observed linear continuous-
time state space models.

As alluded to above, one advantage of relaxing the assumption of i. i. d. inno-
vations in a discrete-time state space model is the inclusion of sampled continu-
ous-time state space models. These were introduced in the form of continuous-
time ARMA (CARMA) models in Doob (1944) as stochastic processes satisfying
the formal analogue of the familiar autoregressive moving average equations of
discrete-time ARMA processes, namely

a(D)Y (t) = b(D)DW (t), D = d/dt, (1.3)

where a and b are suitable polynomials, and W denotes a Brownian motion.
In the recent past, a considerable body of research has been devoted to these
processes. One particularly important extension of the model (1.3) was intro-
duced in Brockwell (2001), where the driving Brownian motion was replaced by
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a Lévy process with finite logarithmic moments. This allowed for a wide range
of possibly heavy-tailed marginal distribution of the process Y as well as the
occurrence of jumps in the sample paths, both characteristic features of many
observed time series, e. g. in finance (Cont, 2001). Recently, Marquardt and
Stelzer (2007) further generalized Eq. (1.3) to the multivariate setting, which
gave researchers the possibility to model several dependent time series jointly by
one linear continuous-time process. This extension is important because many
time series exhibit strong dependencies and can therefore not be modelled ad-
equately on an individual basis. In that paper, the multivariate non-Gaussian
equivalent of Eq. (1.3), namely P (D)Y (t) = Q(D)DL(t), for matrix-valued poly-
nomials P and Q and a Lévy process L, was interpreted by spectral techniques
as a continuous-time state space model of the form

dG(t) = AG(t)dt+ BdL(t), Y (t) = CG(t); (1.4)

see Eq. (3.4) for an expression of the matrices A, B and C. The structural simi-
larity between Eq. (1.1) and Eq. (1.4) is apparent, and it is essential for many of
our arguments. Taking a different route, multivariate CARMA processes can be
defined as the continuous-time analogue of discrete-time vector ARMA models,
described in detail in Hannan and Deistler (1988). As continuous-time processes,
CARMA processes are suited particularly well to model irregularly spaced and
high-frequency data, which makes them a flexible and efficient tool for building
stochastic models of time series arising in the natural sciences, engineering and
finance (e. g. Benth and Šaltytė Benth, 2009; Todorov and Tauchen, 2006). In the
univariate Gaussian setting, several different approaches to the estimation prob-
lem of CARMA processes have been investigated (see, e. g., Larsson, Mossberg
and Söderström, 2006, and references therein). Maximum likelihood estima-
tion based on a continuous record was considered in Brown and Hewitt (1975);
Feigin (1976); Pham (1977). Due to the fact that processes are typically not
observed continuously and the limitations of digital computer processing, infer-
ence based on discrete observations has become more important in recent years;
these approaches include variants of the Yule–Walker algorithm for time-contin-
uous autoregressive processes (Hyndman, 1993), maximum likelihood methods
(Brockwell, Davis and Yang, 2011), and randomized sampling (Rivoira, Moud-
den and Fleury, 2002) to overcome the aliasing problem. Alternative methods
include discretization of the differential operator (Söderström et al., 1997), and
spectral estimation (Gillberg and Ljung, 2009; Lii and Masry, 1995). For the
special case of Ornstein–Uhlenbeck processes, least squares and moment esti-
mators have also been investigated without the assumptions of Gaussianity (Hu
and Long, 2009; Spiliopoulos, 2009).

In the second part of this paper we consider the estimation of general mul-
tivariate CARMA (MCARMA) processes with finite second moments based on
equally spaced discrete observations exploiting the results about the QML esti-
mation of general linear discrete-time state space models. Under natural iden-
tifiability assumptions we obtain in the main Theorem 3.16 strongly consistent
and asymptotically normal estimators for the coefficient matrices of a second-
order MCARMA process and the covariance matrix of the driving Lévy process,
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which determine the second-order structure of the process. It is a natural re-
striction of the QML method that distributional properties of the driving Lévy
process which are not determined by its covariance matrix cannot be estimated.
However, once the autoregressive and moving average coefficients of a CARMA
process are (approximately) known, and if high-frequency observations are avail-
able, a parametric model for the driving Lévy process can be estimated by the
methods described in Brockwell and Schlemm (2012). Thus it should be noted
that the paper Brockwell and Schlemm (2012) considers the same model, but
whereas the present paper considers the estimation of the autoregressive and
moving average parameters from equidistant observations letting the number
of observations go to infinity, Brockwell and Schlemm (2012) assume that the
autoregressive and moving average parameters are known and show how to es-
timate the driving Lévy process and its parameters when both the observation
frequency and the time horizon go to infinity. A further related paper is Schlemm
and Stelzer (2012) whose result on the equivalence of MCARMA processes and
state space models provides the foundations for the estimation procedure con-
sidered here. That paper also aimed at using the results of Boubacar Mainassara
and Francq (2011) directly to estimate the autoregressive and moving average
parameters of an MCARMA process and therefore provided conditions for the
noise of the induced discrete-time state space model to be strongly mixing.
However, when we investigated this route further it turned out that the ap-
proach we take in the present paper is more general and far more convenient,
since any stationary discretely sampled MCARMA process with finite second
moments is strongly mixing, whereas assumptions ensuring a non-trivial abso-
lutely continuous component of the noise are needed to be able to use the results
of Boubacar Mainassara and Francq (2011). Hence, the approach taken in the
present paper appears rather natural for MCARMA processes. Finally, we note
that the estimation of the spectral density of univariate CARMA processes and
the estimation in the case of an infinite variance has recently been considered
in Fasen and Fuchs (2012a,b), and that Fasen (2012) looks at the behaviour of
the sample autocovariance function of discretely observed MCARMA processes
in a high frequency limit.

Outline of the paper The organization of the paper is as follows. In Section 2
we develop a QML estimation theory for general non-Gaussian discrete-time
linear stochastic state space models with finite second moments. In Section 2.1
we precisely define the class of linear stochastic state space models as well as
the QML estimator. The main results, that under a set of technical conditions
this estimator is strongly consistent and asymptotically normally distributed as
the number of observations tends to infinity, are given as Theorems 2.4 and 2.5
in Section 2.2. The following two Sections 2.3 and 2.4 present the proofs.

In Section 3 we use the results from Section 2 to establish asymptotic proper-
ties of a QML estimator for multivariate CARMA processes which are observed
on a fixed equidistant time grid. As a first step, we review in Section 3.1 their
definition as well as their relation to the class of continuous-time state space
models. This is followed by an investigation of the probabilistic properties of
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a sampled MCARMA process in Section 3.3 and an analysis of the important
issue of identifiability in Section 3.4. Finally, we are able to state and prove our
main result, Theorem 3.16, about the strong consistency and asymptotic nor-
mality of the QML estimator for equidistantly sampled multivariate CARMA
processes in Section 3.5.

In the final Section 4, we present canonical parametrizations, and we demon-
strate the applicability of the QML estimation for continuous-time state space
models with a simulation study.

Notation We use the following notation: The space of m × n matrices with
entries in the ring K is denoted byMm,n(K) orMm(K) ifm = n. The set of sym-
metric matrices is denoted by Sm(K), and the symbols S+m(R) (S++

m (R)) stand
for the subsets of positive semidefinite (positive definite) matrices, respectively.
AT denotes the transpose of the matrix A, imA its image, kerA its kernel,
σ(A) its spectrum, and 1m ∈ Mm(K) is the identity matrix. The vector space
Rm is identified with Mm,1(R) so that u = (u1, . . . , um)T ∈ Rm is a column
vector. ‖·‖ represents the Euclidean norm, 〈·, ·〉 the Euclidean inner product,
and 0m ∈ Rm the zero vector. K[X ] (K{X}) denotes the ring of polynomial
(rational) expressions in X over K, IB(·) the indicator function of the set B,
and δn,m the Kronecker symbol. The symbols E, Var, and Cov stand for the
expectation, variance and covariance operators, respectively. Finally, we write
∂m for the partial derivative operator with respect to the mth coordinate and
∇ =

(
∂1 · · · ∂r

)
for the gradient operator. When there is no ambiguity, we

use ∂mf(ϑ0) and ∇ϑf(ϑ0) as shorthands for ∂mf(ϑ)|ϑ=ϑ0 and ∇ϑf(ϑ)|ϑ=ϑ0 ,
respectively. A generic constant, the value of which may change from line to
line, is denoted by C.

2. Quasi maximum likelihood estimation for state space models

In this section we investigate QML estimation for general linear state space
models in discrete time, and prove consistency and asymptotic normality. On
the one hand, due to the wide applicability of state space systems in stochastic
modelling and control, these results are interesting and useful in their own right.
In the present paper they will be applied in Section 3 to prove asymptotic
properties of the QML estimator for discretely observed multivariate continuous-
time ARMA processes.

Our theory extends existing results from the literature, in particular concern-
ing the QML estimation of Gaussian state space models, of state space models
with independent innovations (Hannan, 1975), and of weak univariate ARMA
processes which satisfy a strong mixing condition (Francq and Zaköıan, 1998).
The techniques used in this section are similar to Boubacar Mainassara and
Francq (2011).
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2.1. Preliminaries and definition of the QML estimator

The general linear stochastic state space model is defined as follows.

Definition 2.1. An Rd-valued discrete-time linear stochastic state space model
(F,H,Z ,W ) of dimension N is characterized by a strictly stationary RN+d-

valued sequence
(
ZT W T

)T
with mean zero and finite covariance matrix

E

[(
Zn

W n

)(
ZT

m W T
m

)]
= δm,n

(
Q R
RT S

)
, n,m ∈ Z, (2.1)

for some matrices Q ∈ S
+
N (R), S ∈ S

+
d (R), and R ∈MN,d(R); a state transition

matrix F ∈ MN (R); and an observation matrix H ∈ Md,N(R). It consists of a
state equation

Xn = FXn−1 +Zn−1, n ∈ Z, (2.2a)

and an observation equation

Y n = HXn +W n, n ∈ Z. (2.2b)

The RN -valued autoregressive process X = (Xn)n∈Z is called the state vector
process, and Y = (Y n)n∈Z is called the output process.

The assumption that the processes Z and W are centred is not essential for
our results, but simplifies the notation considerably. Basic properties of the out-
put process Y are described in Brockwell and Davis (1991, §12.1); in particular,
if the eigenvalues of F are less than unity in absolute value, then Y has the
moving average representation

Y n = W n +H

∞∑

ν=1

F ν−1Zn−ν , n ∈ Z. (2.3)

Before we turn our attention to the estimation problem for this class of state
space models, we review the necessary aspects of the theory of Kalman filtering,
see Kalman (1960) for the original control-theoretic account and Brockwell and
Davis (1991, §12.2) for a treatment in the context of time series analysis. The
linear innovations of the output process Y are of particular importance for the
QML estimation of state space models.

Definition 2.2. Let Y = (Y n)n∈Z be an Rd-valued stationary stochastic pro-
cess with finite second moments. The linear innovations ε = (εn)n∈Z of Y are
then defined by

εn = Y n − Pn−1Y n, (2.4)

Pn = orthogonal projection onto span {Y ν : −∞ < ν 6 n} ,

where the closure is taken in the Hilbert space of square-integrable random
variables with inner product (X,Y ) 7→ E〈X,Y 〉.
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This definition immediately implies that the innovations ε of a stationary
stochastic process Y are stationary and uncorrelated. The following proposition
is a combination of Brockwell and Davis (1991, Proposition 12.2.3) and Hamilton
(1994, Proposition 13.2).

Proposition 2.1. Assume that Y is the output process of the state space model
(2.2), that at least one of the matrices Q and S is positive definite, and that the
absolute values of the eigenvalues of F are less than unity. Then the following
hold.

i) The discrete-time algebraic Riccati equation

Ω = FΩFT +Q−
[
FΩHT +R

] [
HΩHT + S

]−1 [
FΩHT +R

]T
(2.5)

has a unique positive semidefinite solution Ω ∈ S
+
N (R).

ii) The absolute values of the eigenvalues of the matrix F −KH ∈MN (R) are
less than one, where

K =
[
FΩHT +R

] [
HΩHT + S

]−1 ∈MN,d(R) (2.6)

is the steady-state Kalman gain matrix.
iii) The linear innovations ε of Y are the unique stationary solution to

X̂n = (F −KH) X̂n−1 +KY n−1, εn = Y n −HX̂n, n ∈ Z. (2.7a)

Using the backshift operator B, which is defined by BY n = Y n−1, this can
be written equivalently as

εn =
{
1d −H [1N − (F −KH) B]

−1
K B

}
Y n

= Y n −H

∞∑

ν=1

(F −KH)ν−1KY n−ν . (2.7b)

The covariance matrix V = Eεnε
T
n ∈ S

+
d (R) of the innovations ε is given

by

V = Eεnε
T
n = HΩHT + S. (2.8)

iv) The process Y has the innovations representation

X̂n = FXn−1 +Kεn−1, Y n = HXn + εn, n ∈ Z, (2.9a)

which, similar to Eqs. (2.7), allows for the moving average representation

Y n =
{
1d −H [1N − F B]

−1
K B

}
Y n = εn +H

∞∑

ν=1

F ν−1Kεn−ν , n ∈ Z.

(2.9b)
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For some parameter space Θ ⊂ Rr, r ∈ N, the mappings

F(·) : Θ →MN (R), H(·) : Θ →Md,N , (2.10a)

together with a collection of strictly stationary stochastic processes Zϑ, Wϑ,
ϑ ∈ Θ, with finite second moments determine a parametric family of linear state
space models (Fϑ, Hϑ,Zϑ,Wϑ)ϑ∈Θ according to Definition 2.1. For the vari-
ance and covariance matrices of the noise sequences Z,W we use the notation
(cf. Eq. (2.1)) Qϑ = EZϑ,nZ

T
ϑ,n, Sϑ = EWϑ,nW

T
ϑ,n, and Rϑ = EZϑ,nW

T
ϑ,n,

which defines the functions

Q(·) : Θ → S
+
N (R), S(·) : Θ → S

+
d , R(·) : Θ →MN,d(R). (2.10b)

It is well known (Brockwell and Davis, 1991, Eq. (11.5.4)) that for this model,
minus twice the logarithm of the Gaussian likelihood of ϑ based on a sample
yL = (Y 1, . . . ,Y L) of observations can be written as

L (ϑ,yL) =

L∑

n=1

lϑ,n =

L∑

n=1

[
d log 2π + log det Vϑ + εTϑ,nV

−1
ϑ

εϑ,n

]
, (2.11)

where εϑ,n and Vϑ are given by analogues of Eqs. (2.7a) and (2.8), namely

εϑ,n =
{
1d −Hϑ [1N − (Fϑ −KϑHϑ) B]

−1
Kϑ B

}
Y n, n ∈ Z, (2.12a)

Vϑ = HϑΩϑH
T
ϑ + Sϑ, (2.12b)

and Kϑ,Ωϑ are defined in the same way as K, Ω in Eqs. (2.5) and (2.6). In the
following we always assume that yL = (Y ϑ0,1, . . . ,Y ϑ0,L) is a sample from the
output process of the state space model (Fϑ0 , Hϑ0 ,Zϑ0 ,Wϑ0) corresponding
to the parameter value ϑ0. We therefore call ϑ0 the true parameter value. It is
important to note that εϑ0

are the true innovations of Y ϑ0
, and that therefore

Eεϑ0,nε
T
ϑ0,n

= Vϑ0 , but that this relation fails to hold for other values of ϑ. This
is due to the fact that εϑ is not the true innovations sequence of the state space
model corresponding to the parameter value ϑ. We therefore call the sequence
εϑ pseudo-innovations.

The goal of this section is to investigate how the value ϑ0 can be estimated
from yL by maximizing Eq. (2.11). The first difficulty one is confronted with
is that the pseudo-innovations εϑ are defined in terms of the full history of
the process Y = Y ϑ0

, which is not observed. It is therefore necessary to use
an approximation to these innovations which can be computed from the finite
sample yL. One such approximation is obtained if, instead of using the steady-
state Kalman filter described in Proposition 2.1, one initializes the filter at
n = 1 with some prescribed values. More precisely, we define the approximate
pseudo-innovations ε̂ϑ via the recursion

X̂ϑ,n = (Fϑ −KϑHϑ) X̂ϑ,n−1 +KϑY n−1, ε̂ϑ,n = Y n −HϑX̂ϑ,n, (2.13)

and the prescription X̂ϑ,1 = X̂ϑ,i. The initial values X̂ϑ,i are usually either
sampled from the stationary distribution of Xϑ, if that is possible, or set to
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some deterministic value. Alternatively, one can additionally define a positive
semidefinite matrix Ωϑ,i and compute Kalman gain matrices Kϑ,n recursively
via Brockwell and Davis (1991, Eq. (12.2.6)). While this procedure might be
advantageous for small sample sizes, the computational burden is significantly
smaller when the steady-state Kalman gain is used. The asymptotic properties
which we are dealing with in this paper are expected to be the same for both
choices because the Kalman gain matrices Kϑ,n converge to their steady state
values as n tends to infinity (Hamilton, 1994, Proposition 13.2).

The QML estimator ϑ̂
L

for the parameter ϑ based on the sample yL is
defined as

ϑ̂
L
= argmin

ϑ∈Θ L̂ (ϑ,yL), (2.14)

where L̂ (ϑ,yL) is obtained from L (ϑ,yL) by substituting ε̂ϑ,n from Eq. (2.13)
for εϑ,n, i. e.

L̂ (ϑ,yL) =

L∑

n=1

l̂ϑ,n =

L∑

n=1

[
d log 2π + log detVϑ + ε̂

T
ϑ,nV

−1
ϑ

ε̂ϑ,n

]
. (2.15)

2.2. Technical assumptions and main results

Our main results about the QML estimation for discrete-time state space models

are Theorem 2.4, stating that the estimator ϑ̂
L
given by Eq. (2.14) is strongly

consistent, which means that ϑ̂
L

converges to ϑ0 almost surely, and Theo-

rem 2.5, which asserts the asymptotic normality of ϑ̂
L

with the usual L1/2

scaling. In order to prove these results, we need to impose the following condi-
tions.

Assumption D1. The parameter space Θ is a compact subset of Rr.

Assumption D2. The mappings F(·), H(·), Q(·), S(·), and R(·) in Eqs. (2.10)
are continuous.

The next condition guarantees that the models under consideration describe
stationary processes.

Assumption D3. For every ϑ ∈ Θ, the following hold:

i) the eigenvalues of Fϑ have absolute values less than unity,
ii) at least one of the two matrices Qϑ and Sϑ is positive definite,
iii) the matrix Vϑ is non-singular.

The next lemma shows that the assertions of Assumption D3 hold in fact
uniformly in ϑ.

Lemma 2.2. Suppose that Assumptions D1 to D3 are satisfied. Then the fol-
lowing hold.
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i) There exists a positive number ρ < 1 such that, for all ϑ ∈ Θ, it holds that

max {|λ| : λ ∈ σ (Fϑ)} 6 ρ. (2.16a)

ii) There exists a positive number ρ < 1 such that, for all ϑ ∈ Θ, it holds that

max {|λ| : λ ∈ σ (Fϑ −KϑHϑ)} 6 ρ, (2.16b)

where Kϑ is defined by Eqs. (2.5) and (2.6).
iii) There exists a positive number C such that

∥∥V −1
ϑ

∥∥ 6 C for all ϑ.

Proof. Assertion i) is a direct consequence of Assumption D3, i), the assumed
smoothness of ϑ 7→ Fϑ (Assumption D2), the compactness of Θ (Assump-
tion D1), and the fact (Bernstein, 2005, Fact 10.11.2) that the eigenvalues of a
matrix are continuous functions of its entries. Claim ii) follows with the same ar-
gument from Proposition 2.1, ii) and the fact that the solution of a discrete-time
algebraic Riccati equation is a continuous function of the coefficient matrices
(Sun, 1998). Moreover, by Eq. (2.8), the function ϑ 7→ Vϑ is continuous, which
shows that Assumption D3, iii) holds uniformly in ϑ as well, and so iii) is
proved.

For the following assumption about the noise sequences Z and W we use the
usual notion of ergodicity (see, e. g., Durrett, 2010, Chapter 6).

Assumption D4. The process
(
W T

ϑ0
ZT

ϑ0

)T
is ergodic.

The assumption that the processes Zϑ0 and Wϑ0 are ergodic implies via the
moving average representation (2.3) and Krengel (1985, Theorem 4.3) that the
output process Y = Y ϑ0

is ergodic. As a consequence, the pseudo-innovations
εϑ defined in Eq. (2.12a) are ergodic for every ϑ ∈ Θ.

Our first identifiability assumption precludes redundancies in the parametri-
zation of the state space models under consideration and is therefore necessary
for the true parameter value ϑ0 to be estimated consistently. It will be used
in Lemma 2.10 to show that the quasi likelihood function given by Eq. (2.15)
asymptotically has a unique global minimum at ϑ0.

Assumption D5. For all ϑ0 6= ϑ ∈ Θ, there exists a z ∈ C such that

Hϑ [1N − (Fϑ −KϑHϑ) z]
−1
Kϑ 6= Hϑ0

[1N − (Fϑ0
−Kϑ0

Hϑ0
) z]

−1
Kϑ0

or Vϑ 6= Vϑ0 .

Assumption D5 can be rephrased in terms of the spectral densities fY ϑ
of the

output processes Y ϑ of the state space models (Fϑ, Hϑ,Zϑ,Wϑ). This char-
acterization will be very useful when we apply the estimation theory developed
in this section to state space models that arise from sampling a continuous-time
ARMA process.

Lemma 2.3. If, for all ϑ0 6= ϑ ∈ Θ, there exists an ω ∈ [−π, π] such that
fY ϑ

(ω) 6= fY ϑ0
(ω), then Assumption D5 holds.
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Proof. We recall from Hamilton (1994, Eq. (10.4.43)) that the spectral density
fY ϑ

of the output process Y ϑ of the state space model (Fϑ, Hϑ,Zϑ,Wϑ) is
given by fY ϑ

(ω) = (2π)−1Hϑ(e
iω)VϑHϑ(e

−iω)T , ω ∈ [−π, π], where Hϑ(z) ≔

Hϑ [1N − (Fϑ −KϑHϑ) z]
−1
Kϑ + z. If Assumption D5 does not hold, we have

that both Hϑ(z) = Hϑ0
(z) for all z ∈ C, and Vϑ = Vϑ0

, and, consequently,
that fY ϑ

(ω) = fY ϑ0
(ω), for all ω ∈ [−π, π], contradicting the assumption of the

lemma.

Under the assumptions described so far we obtain the following consistency
result.

Theorem 2.4 (Consistency of ϑ̂
L
). Assume that (Fϑ, Hϑ,Zϑ,Wϑ)ϑ∈Θ is a

parametric family of state space models according to Definition 2.1, and let yL =
(Y ϑ0,1, . . . ,Y ϑ0,L) be a sample of length L from the output process of the model
corresponding to ϑ0. If Assumptions D1 to D5 hold, then the QML estimator

ϑ̂
L
= argminϑ∈Θ L̂ (ϑ,yL) is strongly consistent, i. e. ϑ̂

L → ϑ0 almost surely,
as L→ ∞.

We now describe the conditions which we need to impose in addition to
Assumptions D1 to D5 for the asymptotic normality of the QML estimator to
hold. The first one excludes the case that the true parameter value ϑ0 lies on
the boundary of the domain Θ.

Assumption D6. The true parameter value ϑ0 is an element of the interior
of Θ.

Next we need to impose a higher degree of smoothness than stated in As-
sumption D2 and a stronger moment condition than Assumption D4.

Assumption D7. The mappings F(·), H(·), Q(·), S(·), and R(·) in Eqs. (2.10)
are three times continuously differentiable.

By the results of the sensitivity analysis of the discrete-time algebraic Riccati
equation in Sun (1998), the same degree of smoothness, namely C3, also carries
over to the mapping ϑ 7→ Vϑ.

Assumption D8. The process
(
W T

ϑ0
ZT

ϑ0

)T
has finite (4 + δ)th moments

for some δ > 0.

Assumption D8 implies that the process Y has finite (4 + δ)th moments. In
the definition of the general linear stochastic state space model and in Assump-
tion D4, it was only assumed that the sequences Z and W are stationary and
ergodic. This structure alone does not entail a sufficient amount of asymptotic
independence for results like Theorem 2.5 to be established. We assume that the
process Y is strongly mixing in the sense of Rosenblatt (1956), and we impose
a summability condition on the strong mixing coefficients, which is known to be
sufficient for a Central Limit Theorem for Y to hold (Bradley, 2007; Ibragimov,
1962).

Assumption D9. Denote by αY the strong mixing coefficients of the process

Y = Y ϑ0
. There exists a constant δ > 0 such that

∑∞
m=0 [αY (m)]

δ
2+δ <∞.
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In the case of exponential strong mixing, Assumption D9 is always satisfied,
and it is no restriction to assume that the δ appearing in Assumptions D8
and D9 are the same. It has been shown in Mokkadem (1988); Schlemm and
Stelzer (2012) that, because of the autoregressive structure of the state equation
(2.2a), exponential strong mixing of the output process Y ϑ0

can be assured
by imposing the condition that the process Zϑ0

is an i. i. d. sequence whose
marginal distributions possess a non-trivial absolutely continuous component in
the sense of Lebesgue’s decomposition theorem.

Finally, we require another identifiability assumption, that will be used to en-
sure that the Fisher information matrix of the QML estimator is non-singular.
This is necessary because the asymptotic covariance matrix in the asymptotic

normality result for ϑ̂
L
is directly related to the inverse of that matrix. Assump-

tion D10 is formulated in terms of the first derivative of the parametrization of
the model, which makes it relatively easy to check in practice; the Fisher infor-
mation matrix, in contrast, is related to the second derivative of the logarithmic
Gaussian likelihood. For j ∈ N and ϑ ∈ Θ, the vector ψϑ,j ∈ R(j+2)d2

is defined
as

ψϑ,j =



[
1j+1 ⊗KT

ϑ
⊗Hϑ

] [
(vec1N)

T
(vecFϑ)

T · · ·
(
vecF j

ϑ

)T ]T

vecVϑ


 ,

where ⊗ denotes the Kronecker product of two matrices, and vec is the linear
operator that transforms a matrix into a vector by stacking its columns on top
of each other.

Assumption D10. There exists an integer j0 ∈ N such that the [(j0+2)d2]×r
matrix ∇ϑψϑ0,j0 has rank r.

Our main result about the asymptotic distribution of the QML estimator for
discrete-time state space models is the following theorem. Equation (2.18) shows
in particular that this asymptotic distribution is independent of the choice of
the initial values X̂ϑ,i.

Theorem 2.5 (Asymptotic normality of ϑ̂
L
). Assume that (Fϑ, Hϑ,Zϑ,Wϑ),

ϑ ∈ Θ, is a parametric family of state space models according to Definition 2.1,
and let yL = (Y ϑ0,1, . . . ,Y ϑ0,L) be a sample of length L from the output pro-
cess of the model corresponding to ϑ0. If Assumptions D1 to D10 hold, then

the maximum likelihood estimator ϑ̂
L
= argmin

ϑ∈Θ L̂ (ϑ,yL) is asymptotically
normally distributed with covariance matrix Ξ = J−1IJ−1, i. e.

√
L
(
ϑ̂
L − ϑ0

)
d−−−−→

L→∞
N (0,Ξ), (2.17)

where

I = lim
L→∞

L−1
Var

(
∇ϑL

(
ϑ0,y

L
))
, J = lim

L→∞
L−1∇2

ϑ
L
(
ϑ0,y

L
)
. (2.18)
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Note that I and J , which give the asymptotic covariance matrix Ξ of the
estimators, are deterministic and only depend on the true parameter value ϑ0.
The matrix J actually is the Fisher information and an alternative expression
for J can be found in Lemma 2.17. Despite being deterministic, the asymp-
totic variance Ξ is not immediate to obtain and needs to be estimated, as
usually in connection with QML estimators. This is a non-trivial task and a
detailed analysis of this is beyond the scope of the present paper, but worthy
of consideration in more detail in future work. However, it should be noted
that when Ξ̂L is a consistent estimator for Ξ, then Theorem 2.5 implies that√
L(Ξ̂L)−1/2

(
ϑ̂
L−ϑ0

) d−−−−→
L→∞

N (0,1r). In practice, estimating the asymptotic

covariance matrix Ξ is important in order to construct confidence regions for the
estimated parameters or in performing statistical tests. The problem of estimat-
ing it has also been considered in the framework of estimating weak VARMA
processes in Boubacar Mainassara and Francq (2011) where the following pro-
cedure has been suggested, which is also applicable in our set-up. First, J(ϑ0)

is estimated consistently by ĴL = L−1∇2L̂ϑ

(
ϑ̂
L
,yL

)
. For the computation of

ĴL we rely on the fact that the Kalman filter cannot only be used to evaluate
the Gaussian log-likelihood of a state space model but also its gradient and
Hessian. The most straightforward way of achieving this is by direct differen-
tiation of the Kalman filter equations, which results in increasing the number
of passes through the filter to r + 1 and r(r + 3)/2 for the gradient and the
Hessian, respectively. The construction of a consistent estimator of I = I(ϑ0)
is based on the observation that I =

∑
∆∈Z

Cov(ℓϑ0,n, ℓϑ0,n+∆), where ℓϑ0,n =

∇ϑ[log detVϑ0
+εT

ϑ0,n
V −1
ϑ0

εϑ0,n]. Assuming that (ℓϑ0,n)n∈N+ admits an infinite-

order AR representation Φ(B)ℓϑ0,n = Un, where Φ(z) = 1r +
∑∞

i=1 Φiz
i and

(Un)n∈N+ is a weak white noise with covariance matrix ΣU , it follows from
the interpretation of I/(2π) as the value of the spectral density of (ℓϑ0,n)n∈N+

at frequency zero that I can also be written as I = Φ−1(1)ΣUΦ(1)−1. The
idea is to fit a long autoregression to (ℓ

ϑ̂
L
,n
)n=1,...L, the empirical counterparts

of (ℓϑ0,n)n∈N+ which are defined by replacing ϑ0 with the estimate ϑ̂
L
in the

definition of ℓϑ0,n. This is done by choosing an integer s > 0, and perform-
ing a least-squares regression of ℓ

ϑ̂
L
,n

on ℓ
ϑ̂

L
,n−1

, . . . , ℓ
ϑ̂

L
,n−s

, s + 1 6 n 6 L.

Denoting by Φ̂L
s (z) = 1r +

∑s
i=1 Φ̂

L
i,sz

i the obtained empirical autoregressive

polynomial and by Σ̂L
s the empirical covariance matrix of the residuals of the

regression, it was claimed in Boubacar Mainassara and Francq (2011, Theorem

4) that under the additional assumption E[‖εn‖8+δ
] <∞ the spectral estimator

ÎLs =
(
Φ̂L

s (1)
)−1

Σ̂L
s

(
Φ̂L

s (1)
)T,−1

converges to I in probability as L, s → ∞ if

s3/L→ 0. The covariance matrix of ϑ̂
L
is then estimated consistently as

Ξ̂L
s =

1

L

(
ĴL
)−1

ÎLs

(
ĴL
)−1

. (2.19)

In the simulation study performed in Section 4.2, we estimate the covariance
matrix Ξ of the estimators in the way just described. From a comparison with
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the standard deviations of the estimators obtained from the simulations it can
be seen that the approach performs convincingly.

A possible alternative approach to estimate the asymptotic covariance matrix
Ξ may also be the use of bootstrap techniques. However, it seems that to this
end the existing bootstrapping techniques need to be extended considerably (cf.
Brockwell, Kreiß and Niebuhr (2012)).

2.3. Proof of Theorem 2.4 – Strong consistency

In this section we prove the strong consistency of the QML estimator ϑ̂
L
.

Intuitively, the idea why the QML (sometimes also calledGaussian maximum
likelihood) estimators work in a linear time series/state space model setting
is that the Kalman filter uses only second-order properties of the model and
can thus not distinguish it from a Gaussian process with the same mean and
covariance function. For such Gaussian processes, however, the QML estimator
becomes a genuine maximum-likelihod estimator (see e.g. Brockwell and Davis
(1991, Chapter 10)). Therefore, as soon as one knows that the parameters to
be estimated are identifiable from the autocovariance function (and the mean)
and the process is known to be ergodic, the QML estimators should be strongly
consistent. Despite this simple idea, the actual proof of the strong consistency
is quite long as well as technical and consists of the following steps:

1. When we use the the Kalman filter with fixed parameters ϑ on the fi-
nite sample yL, the obtained pseudo-innovations ε̂ϑ approximate the true
pseudo-innovations εϑ (obtainable from the steady state Kalman filter in
theory) well; see Lemma 2.6.

2. The quasi likelihood (QL) function L̂ obtained from the finite sample yL

(via ε̂ϑ) converges for the sample size L→ ∞ uniformly in the parameter
space to the true QL function L (obtained from the pseudo-innovations
εϑ); see Lemma 2.7.

3. As the number L of observation grows, the QL function L̂ divided by
L converges to the expected QL function Q uniformly in the parameter
space; see Lemma 2.8.

4. The expected QL function Q has a unique minimum at the true parameter
ϑ0; see Lemmas 2.9 and 2.10.

5. The QL function L̂ divided by the number of observations evaluated at
its minimum in the parameter space (i.e., at the QML estimator) con-
verges almost surely to the expected QL function Q evaluated at the true
parameter ϑ0 (its minimum).

6. Finally, one can show that also the argument of the minimum of the QL

function L̂ (i.e. the QML estimators) converges for L→ ∞ to ϑ0, which
proves the strong consistency.

As a first step we show that the stationary pseudo-innovations processes
defined by the steady-state Kalman filter are uniformly approximated by their
counterparts based on the finite sample yL.
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Lemma 2.6. Under Assumptions D1 to D3, the pseudo-innovations sequences
εϑ and ε̂ϑ defined by the Kalman filter equations (2.7a) and (2.13) have the
following properties.

i) If the initial values X̂ϑ,i are such that sup
ϑ∈Θ ‖X̂ϑ,i‖ is almost surely finite,

then, with probability one, there exist a positive number C and a positive
number ρ < 1, such that supϑ∈Θ ‖εϑ,n − ε̂ϑ,n‖ 6 Cρn, n ∈ N. In particular,
ε̂ϑ0,n converges to the true innovations εn = εϑ0,n at an exponential rate.

ii) The sequences εϑ are linear functions of Y , i. e. there exist matrix sequences
(cϑ,ν)ν>1, such that εϑ,n = Y n +

∑∞
ν=1 cϑ,νY n−ν . The matrices cϑ,ν are

uniformly exponentially bounded, i. e. there exist a positive constant C and
a positive constant ρ < 1, such that supϑ∈Θ ‖cϑ,ν‖ 6 Cρν , ν ∈ N.

Proof. We first prove part i) about the uniform exponential approximation of ε
by ε̂. Iterating the Kalman equations (2.7a) and (2.13), we find that, for n ∈ N,

εϑ,n = Y n −Hϑ (Fϑ −KϑHϑ)
n−1

X̂ϑ,1 −
n−1∑

ν=1

Hϑ (Fϑ −KϑHϑ)
ν−1

KϑY n−ν ,

ε̂ϑ,n = Y n −Hϑ (Fϑ −KϑHϑ)
n−1

X̂ϑ,i −
n−1∑

ν=1

Hϑ (Fϑ −KϑHϑ)
ν−1

KϑY n−ν .

Thus, using the fact that, by Lemma 2.2, the spectral radii of Fϑ −KϑHϑ are
bounded by ρ < 1, it follows that

sup
ϑ∈Θ

‖εϑ,n − ε̂ϑ,n‖ = sup
ϑ∈Θ

∥∥∥Hϑ (Fϑ −KϑHϑ)
n−1

(Xϑ,0 −Xϑ,i)
∥∥∥

6 ‖H‖L∞(Θ) ρ
n−1 sup

ϑ∈Θ
‖Xϑ,0 −Xϑ,i‖ ,

where ‖H‖L∞(Θ) ≔ supϑ∈Θ ‖Hϑ‖ denotes the supremum norm of H(·), which
is finite by the Extreme Value Theorem. Since the last factor is almost surely
finite by assumption, the claim follows. For part ii), we observe that Eq. (2.7a)
and Lemma 2.2, ii) imply that εϑ has the infinite-order moving average repre-

sentation εϑ,n = Y n −Hϑ

∑∞
ν=1 (Fϑ −KϑHϑ)

ν−1
KϑY n−ν , whose coefficients

cϑ,ν ≔ −Hϑ (Fϑ −KϑHϑ)
ν−1

Kϑ are uniformly exponentially bounded. Ex-
plicitly, ‖cϑ.ν‖ 6 ‖H‖L∞(Θ) ‖K‖L∞(Θ) ρ

n−1. This completes the proof.

Lemma 2.7. Let L and L̂ be given by Eqs. (2.11) and (2.15). If Assump-

tions D1 to D3 are satisfied, the sequence L−1 supϑ∈Θ

∣∣L̂ (ϑ,yL)− L (ϑ,yL)
∣∣

converges to zero almost surely, as L→ ∞.

Proof. We first observe that the absolute difference between L̂ (ϑ,yL) and

L (ϑ,yL) is given by
∑L

n=1

[
(ε̂ϑ,n − εϑ,n)

T
V −1
ϑ

ε̂ϑ,n + εT
ϑ,nV

−1
ϑ

(ε̂ϑ,n − εϑ,n)
]
.

The fact that, by Lemma 2.2, iii), there exists a constant C such that ‖V −1
ϑ

‖ 6 C
implies that

1

L
sup
ϑ∈Θ

∣∣∣L̂ (ϑ,yL)− L (ϑ,yL)
∣∣∣ 6 C

L

L∑

n=1

ρn
[
sup
ϑ∈Θ

‖ε̂ϑ,n‖+ sup
ϑ∈Θ

‖εϑ,n‖
]
. (2.20)
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Lemma 2.6, ii) and the assumption that Y has finite second moments imply
that E sup

ϑ∈Θ ‖εϑ,n‖ is finite. Applying Markov’s inequality, one sees that, for
every positive ǫ,

∞∑

n=1

P

(
ρn sup

ϑ∈Θ
‖εϑ,n‖ > ǫ

)
6 E sup

ϑ∈Θ
‖εϑ,1‖

∞∑

n=1

ρn

ǫ
<∞,

because ρ < 1. The Borel–Cantelli Lemma shows that ρn sup
ϑ∈Θ ‖εϑ,n‖ con-

verges to zero almost surely, as n→ ∞. In an analogous way one can show that
ρn supϑ∈Θ ‖ε̂ϑ,n‖ converges to zero almost surely, and, consequently, so does the
Cesàro mean in Eq. (2.20). The claim thus follows.

Lemma 2.8. If Assumptions D1 to D4 hold, then, with probability one, the se-

quence of random functions ϑ 7→ L−1L̂ (ϑ,yL) converges, as L tends to infinity,
uniformly in ϑ to the limiting function Q : Θ → R defined by

Q(ϑ) = d log(2π) + log det Vϑ + EεTϑ,1V
−1
ϑ

εϑ,1. (2.21)

Proof. In view of the approximation results in Lemma 2.7, it is enough to show
that the sequence of random functions ϑ 7→ L−1L (ϑ,yL) converges uniformly
to Q. The proof of this assertion is based on the observation following Assump-
tion D4 that for each ϑ ∈ Θ the sequence εϑ is ergodic and its consequence
that, by Birkhoff’s Ergodic Theorem (Durrett, 2010, Theorem 6.2.1), the se-
quence L−1L (ϑ,yL) converges to Q(ϑ) point-wise. The stronger statement
of uniform convergence follows from Assumption D1 that Θ is compact by an
argument analogous to the proof of Ferguson (1996, Theorem 16).

Lemma 2.9. Assume that Assumptions D3 and D4 as well as the first alter-
native of Assumption D5 hold. If εϑ,1 = εϑ0,1 almost surely, then ϑ = ϑ0.

Proof. Assume, for the sake of contradiction, that ϑ 6= ϑ0. By Assumption D5,
there exist matrices Cj ∈Md(R), j ∈ N0, such that, for |z| 6 1,

Hϑ [1N − (Fϑ −KϑHϑ)z]
−1
Kϑ −Hϑ0 [1N − (Fϑ0 −Kϑ0Hϑ0z]

−1
Kϑ0

equals
∑∞

j=j0
Cjz

j, where Cj0 6= 0, for some j0 > 0. Using Eq. (2.7b) and the as-

sumed equality of εϑ,1 and εϑ0,1, this implies that 0d =
∑∞

j=j0
CjY j0−j almost

surely; in particular, the random variable Cj0Y 0 is equal to a linear combina-
tion of the components of Y n, n < 0. It thus follows from the interpretation of
the innovations sequence εϑ0

as linear prediction errors for the process Y that
Cj0εϑ0,0 is equal to zero, which implies that ECj0εϑ0,0ε

T
ϑ0,0

CT
j0 = Cj0Vϑ0C

T
j0 =

0d. Since Vϑ0
is assumed to be non-singular, this implies the contradiction that

the matrix Cj0 is the null matrix, completing the proof.

Lemma 2.10. Under Assumptions D1 to D3 and D5, the function Q : Θ → R,
as defined in Eq. (2.21), has a unique global minimum at ϑ0.
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Proof. We first observe that the difference εϑ,1 − εϑ0,1 is an element of the
Hilbert space spanned by the random variables {Y n, n 6 0}, and that εϑ0,1

is orthogonal to this space. Thus, the expectation E (εϑ,1 − εϑ0,1)
T
V −1
ϑ

εϑ0,1 is
equal to zero and, consequently, Q(ϑ) can be written as

d log(2π) + EεTϑ0,1V
−1
ϑ

εϑ0,1 + E (εϑ,1 − εϑ0,1)
T
V −1
ϑ

(εϑ,1 − εϑ0,1) + log detVϑ.

In particular, since EεT
ϑ0,1

V −1
ϑ0

εϑ0,1 = tr[V −1
ϑ0

Eεϑ0,1ε
T
ϑ0,1

] = d, it follows that
Q(ϑ0) = log detVϑ0 + d(1 + log(2π)). The elementary inequality x− log x > 1,
for x > 0, implies that trM − log detM > d for all symmetric positive definite
d × d matrices M ∈ S

++
d (R) with equality if and only if M = 1d. Using this

inequality for M = V −1
ϑ0
Vϑ, we thus obtain that, for all ϑ ∈ Θ,

Q(ϑ)− Q(ϑ0) = d+ tr
[
V −1
ϑ

Eεϑ0,1ε
T
ϑ0,1

]
− log det

(
V −1
ϑ0
Vϑ
)

+ E (εϑ,1 − εϑ0,1)
T
V −1
ϑ

(εϑ,1 − εϑ0,1)− EεT
ϑ0,1V

−1
ϑ0

εϑ0,1

> E (εϑ,1 − εϑ0,1)
T
V −1
ϑ

(εϑ,1 − εϑ0,1) > 0.

It remains to argue that this chain of inequalities is in fact a strict inequality if
ϑ 6= ϑ0. If Vϑ 6= Vϑ0

, the first inequality is strict, and we are done. If Vϑ = Vϑ0
,

the first alternative of Assumption D5 is satisfied. The second inequality is an
equality if and only if εϑ,1 = εϑ0,1 almost surely, which, by Lemma 2.9, implies
that ϑ = ϑ0. Thus, the function Q has a unique global minimum at ϑ0.

Proof of Theorem 2.4. We shall first show that the sequence L−1L̂ (ϑ̂
L
,yL),

L ∈ N, converges almost surely to the deterministic number Q(ϑ0) as the sample
size L tends to infinity. Assume that, for some positive number ǫ, it holds that

sup
ϑ∈Θ

∣∣L−1L̂ (ϑ,yL)− Q(ϑ)
∣∣ 6 ǫ. It then follows that

L−1
L̂ (ϑ̂

L
,yL) 6 L−1

L̂ (ϑ0,y
L) 6 Q(ϑ0) + ǫ and

L−1
L̂ (ϑ̂

L
,yL) > Q(ϑ̂

L
)− ǫ > Q(ϑ0)− ǫ,

where it has been used that the QML estimator ϑ̂
L

is defined to minimize

L̂ (·,yL) and that, by Lemma 2.10, ϑ0 minimizes Q(·). In particular, it follows

that
∣∣L−1L̂ (ϑ̂

L
,yL) − Q(ϑ0)

∣∣ 6 ǫ. This observation and Lemma 2.8 immedi-
ately imply that

P

(
1

L
L̂ (ϑ̂

L
,yL) −−−−→

L→∞
Q(ϑ0)

)
> P

(
sup
ϑ∈Θ

∣∣∣∣
1

L
L̂ (ϑ,yL)− Q(ϑ)

∣∣∣∣ −−−−→L→∞
0

)

= 1. (2.22)

To complete the proof of the theorem, it suffices to show that, for every neigh-

bourhood U of ϑ0, with probability one, ϑ̂
L
will eventually lie in U . For every

such neighbourhood U of ϑ0, we define the real number δ(U) ≔ infϑ∈Θ\U Q(ϑ)−
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Q(ϑ0), which is strictly positive by Lemma 2.10. Then the following sequence
of inequalities holds:

P

(
ϑ̂
L −−−−→

L→∞
ϑ0

)
= P

(
∀U ∃L0 : ϑ̂

L ∈ U ∀L > L0

)

> P

(
∀U ∃L0 : Q(ϑ̂

L
)− Q(ϑ0) < δ(U) ∀L > L0

)

> P

(
∀U ∃L0 :

∣∣∣L−1
L̂ (ϑ̂

L
,yL)− Q(ϑ0)

∣∣∣ < δ(U)/2

and
∣∣∣L−1

L̂ (ϑ̂
L
,yL)− Q(ϑ̂

L
)
∣∣∣ < δ(U)/2 ∀L > L0

)
.

The last probability is equal to one by Eq. (2.22) and Lemma 2.8.

2.4. Proof of Theorem 2.5 – Asymptotic normality

In this section we prove the assertion of Theorem 2.5, that the distribution

of L1/2
(
ϑ̂
L − ϑ0

)
converges to a normal random variable with mean zero and

covariance matrix Ξ = J−1IJ−1, an expression for which is given in Eq. (2.18).
The idea behind the proof of the asymptotic normality essentially is that

the strong mixing property implies various central limit theorems. As already
said, the QML estimators are intuitively close to moment based estimators. So
the main task is to show that the central limit results translate into asymptotic
normality of the estimators. The individual steps in the again long and technical
proof are:

1. First we extend the result that the pseudo-innovations ε̂ϑ obtained via
the Kalman filter from the finite sample yL approximate the true pseudo-
innovations εϑ (obtainable from the steady state Kalman filter in theory)
well to their first and second derivatives; see Lemma 2.11.

2. The first derivatives of the QL function L obtained from the pseudo-
innovations εϑ have a finite variance for every possible parameter ϑ; see
Lemma 2.12.

3. Certain fourth moments (viz. covariances of scalar products of the vectors
of values of the process at different times) of a strongly mixing process
with 4 + δ finite moments can be uniformly bounded using the strong
mixing coefficients; see Lemma 2.13.

4. The covariance matrix of the gradients of the QL function L divided by
the number of observations converges for every possible parameter ϑ; see
Lemma 2.14.

5. The result that the QL function L̂ obtained from the finite sample yL

(via ε̂ϑ) converges for the sample size L→ ∞ uniformly in the parameter
space to the true QL function L (obtained from the pseudo-innovations
εϑ) is extended to the first and second derivatives; see Lemma 2.15.

6. The previous steps allow to show that the QL function L̂ at the true
parameter ϑ0 divided by the number of observations is asymptotically
normal with limiting variance determined in step 4; see Lemma 2.16.



QMLE for strongly mixing SSMs and MCARMA processes 2203

7. The limit of the rescaled second derivative of the QL function L̂ at the
true parameter exists, equals the Fisher information and is invertible; see
Lemma 2.17.

8. A zeroth order Taylor expansion of the gradient of the QL function L̂ di-
vided by the number of observations at the true parameter ϑ0 is combined
with the asymptotic normality result of step 4 and the already established
strong consistency of the QML estimator. Using the third derivatives of

L̂ , the error of the Taylor approximation expressed in terms of second

derivatives of L̂ is controlled and using the result of step 7 the asymp-
totic normality of the QML estimator is deduced.

First, we collect basic properties of ∂mεϑ,n and ∂mε̂ϑ,n, where ∂m = ∂/∂ϑm

denotes the partial derivative with respect to the mth component of ϑ; the
following lemma mirrors Lemma 2.6.

Lemma 2.11. If Assumptions D1 to D3 and D7 hold, the pseudo-innovations
sequences εϑ and ε̂ϑ defined by the Kalman filter equations (2.7a) and (2.13)
have the following properties.

i) If, for an integer k ∈ {1, . . . , r}, the initial values X̂ϑ,i are such that

both sup
ϑ∈Θ ‖X̂ϑ,i‖ and sup

ϑ∈Θ ‖∂kX̂ϑ,i‖ are almost surely finite, then,
with probability one, there exist positive numbers C and ρ < 1, such that
supϑ∈Θ ‖∂kεϑ,n − ∂kε̂ϑ,n‖ 6 Cρn, n ∈ N.

ii) For each k ∈ {1, . . . , r}, the random sequences ∂kεϑ are linear functions

of Y , i. e. there exist matrix sequences
(
c
(k)
ϑ,ν

)
ν>1

, such that ∂kεϑ,n =
∑∞

ν=1 c
(k)
ϑ,νY n−ν . The matrices c

(k)
ϑ,ν are uniformly exponentially bounded,

i. e. there exist positive numbers C and ρ < 1, such that supϑ∈Θ

∥∥c(k)
ϑ,ν

∥∥ 6

Cρν ,ν ∈ N.
iii) If, for k, l ∈ {1, . . . , r}, the initial values X̂ϑ,i are such that supϑ∈Θ ‖X̂ϑ,i‖,

as well as supϑ∈Θ ‖∂iX̂ϑ,i‖, i ∈ {k, l}, and supϑ∈Θ ‖∂2k,lX̂ϑ,i‖ are almost
surely finite, then, with probability one, there exist positive numbers C and
ρ < 1, such that supϑ∈Θ

∥∥∂2k,lεϑ,n − ∂2k,lε̂ϑ,n

∥∥ 6 Cρn, n ∈ N.

iv) For each k, l ∈ {1, . . . , r}, the random sequences ∂2k,lεϑ are linear functions

of Y , i. e. there exist matrix sequences
(
c
(k,l)
ϑ,ν

)
ν>1

, such that ∂2k,lεϑ,n =
∑∞

ν=1 c
(k,l)
ϑ,ν Y n−ν . The matrices c

(k,l)
ϑ,ν are uniformly exponentially bounded,

i. e. there exist positive numbers C and ρ < 1, such that supϑ∈Θ

∥∥c(k,l)
ϑ,ν

∥∥ 6

Cρν , ν ∈ N.

Proof. Analogous to the proof of Lemma 2.6. One proceeds by repeatedly in-
terchanging differentiation and summation, and using the fact that, as a con-
sequence of Assumptions D1 to D3 and D7, both ∂k

[
Hϑ (Fϑ −KϑHϑ)

ν−1Kϑ

]

and ∂2k,l
[
Hϑ (Fϑ −KϑHϑ)

ν−1
Kϑ

]
are uniformly exponentially bounded.

Lemma 2.12. For each ϑ ∈ Θ and every m = 1, . . . , r, the random variable
∂mL (ϑ,yL) has finite variance.
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Proof. The claim follows from Assumption D8, the exponential decay of the

coefficient matrices cϑ,ν and c
(m)
ϑ,ν proved in Lemma 2.6, ii) and Lemma 2.11,

and the Cauchy–Schwarz inequality.

We need the following covariance inequality which is a consequence of Davy-
dov’s inequality and the multidimensional generalization of an inequality used
in the proof of Francq and Zaköıan (1998, Lemma 3). For a positive real number
α, we denote by ⌊α⌋ the greatest integer smaller than or equal to α.

Lemma 2.13. Let X be a strictly stationary, strongly mixing d-dimensional
stochastic process with finite (4 + δ)th moments for some δ > 0. Then there
exists a constant κ, such that for all d× d matrices A, B, every n ∈ Z, ∆ ∈ N,
and time indices ν, ν′ ∈ N0, µ, µ

′ = 0, 1 . . . , ⌊∆/2⌋, it holds that

Cov
(
XT

n−νAXn−ν′ ;XT
n+∆−µBXn+∆−µ′

)
6 κ ‖A‖ ‖B‖

[
αX

(⌊
∆

2

⌋)] δ
(δ+2

)

,

where αX denote the strong mixing coefficients of the process X.

Proof. We first note that the bilinearity of Cov(·; ·) and the elementary inequal-
ity Mij 6 ‖M‖, M ∈Md(R), imply that

Cov
(
XT

n−νAXn−ν′ ;XT
n+∆−µBXn+∆−µ′

)

6 d4 ‖A‖ ‖B‖ max
i,j,s,t=1,...,d

Cov
(
X i

n−νX
j
n−ν′ ;X

s
n+∆−µX

t
n+∆−µ′

)
.

Since the projection which maps a vector to one of its components is measur-

able, it follows that X i
n−νX

j
n−ν′ is measurable with respect to F

n−min{ν,ν′}
−∞ , the

σ-algebra generated by {Xk : −∞ < k 6 n−min{ν, ν′}}. Similarly, the ran-
dom variable Xs

n+∆−µX
t
n+∆−µ′ is measurable with respect to F∞

n+∆−max{µ,µ′}.

Davydov’s inequality (Davydov, 1968, Lemma 2.1) implies that there exists a
universal constant K such that

Cov
(
X i

n−νX
j
n−ν′ ;X

s
n+∆−µX

t
n+∆−µ′

)

6 K

(
E

∣∣∣X i
n−νX

j
n−ν′

∣∣∣
2+δ
)1/(2+δ) (

E
∣∣Xs

n+∆−µX
t
n+∆−µ′

∣∣2+δ
)1/(2+δ)

× [αX (∆−max {µ, µ′}+min {ν, ν′})]δ/(2+δ)

6 κ

[
αX

(⌊
∆

2

⌋)]δ/(2+δ)

,

where it has ben used that ∆ − max {µ, µ′} + min {ν, ν′} > ⌊∆/2⌋, and that
strong mixing coefficients are non-increasing. By the Cauchy–Schwarz inequality
the constant κ satisfies

κ = K
(
E
∣∣X i

n−νX
j
n−ν′

∣∣2+δ
)1/(2+δ) (

E
∣∣Xs

n+∆−µX
t
n+∆−µ′

∣∣2+δ
)1/(2+δ)

6 K
(
E ‖X1‖4+2δ

) 2
2+δ

,

and thus does not depend on n, ν, ν′, µ, µ′,∆, nor on i, j, s, t.
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The next lemma is a multivariate generalization of Francq and Zaköıan (1998,
Lemma 3). In the proof of Boubacar Mainassara and Francq (2011, Lemma
4) this generalization is used without providing details and, more importantly
without imposing Assumption D9 about the strong mixing of Y . In view of the
derivative terms ∂mεϑ,n in Eq. (2.24) it is not immediately clear how the result
of the lemma can be proved under the mere assumption of strong mixing of the
innovations sequence εϑ0

. We therefore think that a detailed account, properly
generalizing the arguments in the original paper (Francq and Zaköıan, 1998) to
the multidimensional setting, is justified.

Lemma 2.14. Suppose that Assumptions D1 to D3, D8 and D9 hold. Then,
for every ϑ ∈ Θ, the sequence L−1Var∇ϑL (ϑ,yL) of deterministic matrices
converges to a limit I(ϑ) as L→ ∞.

Proof. It is enough to show that, for each ϑ ∈ Θ, and all k, l = 1, . . . , r, the

sequence of real-valued random variables I
(k,l)
ϑ,L , defined by

I
(k,l)
ϑ,L =

1

L

L∑

n=1

L∑

t=1

Cov
(
ℓ
(k)
ϑ,n, ℓ

(l)
ϑ,t

)
, (2.23)

converges to a limit as L tends to infinity, where ℓ
(m)
ϑ,n = ∂mlϑ,n is the partial

derivative of the nth term in expression (2.11) for L (ϑ,yL). It follows from well-
known differentiation rules for matrix functions (see, e. g. Horn and Johnson,
1994, Sections 6.5 and 6.6) that

ℓ
(m)
ϑ,n = tr

[
V −1
ϑ

(
1d − εϑ,nε

T
ϑ,nV

−1
ϑ

)
(∂mVϑ)

]
+ 2

(
∂mεTϑ,n

)
V −1
ϑ

εϑ,n. (2.24)

By the assumed stationarity of the processes εϑ, the covariances in the sum
(2.23) depend only on the difference n− t. For the proof of the lemma it suffices

to show that the sequence c
(k,l)
ϑ,∆ = Cov

(
ℓ
(k)
ϑ,n, ℓ

(l)
n+∆,ϑ

)
, ∆ ∈ Z, is absolutely

summable for all k, l = 1, . . . , r, because then

I
(k,l)
ϑ,L =

1

L

L∑

∆=−L

(L− |∆|) c(k,l)
ϑ,∆ −−−−→

L→∞

∑

∆∈Z

c
(k,l)
ϑ,∆ <∞. (2.25)

In view of the of the symmetry c
(k,l)
ϑ,∆ = c

(k,l)
ϑ,−∆, it is no restriction to assume that

∆ ∈ N. In order to show that
∑

∆

∣∣
c
(k,l)
ϑ,∆

∣∣ is finite, we first use the bilinearity of
Cov(·; ·) to estimate

∣∣∣c(k,l)
ϑ,∆

∣∣∣ 6 4
∣∣Cov

((
∂kε

T
ϑ,n

)
V −1
ϑ

εϑ,n;
(
∂lε

T
ϑ,n+∆

)
V −1
ϑ

εϑ,n+∆

)∣∣

+
∣∣Cov

(
tr
[
V −1
ϑ

εϑ,nε
T
ϑ,nV

−1
ϑ
∂kVϑ

]
; tr
[
V −1
ϑ

εϑ,n+∆ε
T
ϑ,n+∆V

−1
ϑ
∂lVϑ

])∣∣
+ 2

∣∣Cov
(
tr
[
V −1
ϑ

εϑ,nε
T
ϑ,nV

−1
ϑ
∂kVϑ

]
;
(
∂lε

T
ϑ,n+∆

)
V −1
ϑ

εϑ,n+∆

)∣∣
+ 2

∣∣Cov
((
∂kε

T
ϑ,n

)
V −1
ϑ

εϑ,n; tr
[
V −1
ϑ

εϑ,n+∆ε
T
ϑ,n+∆V

−1
ϑ
∂lVϑ

])∣∣ .
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Each of these four terms can be analysed separately. We give details only for
the first one, the arguments for the other three terms being similar. Using the
moving average representations for εϑ, ∂kεϑ and ∂lεϑ, it follows that

∣∣Cov
((
∂kε

T
ϑ,n

)
V −1
ϑ

εϑ,n;
(
∂lε

T
ϑ,n+∆

)
V −1
ϑ

εϑ,n+∆

)∣∣

equals

∞∑

ν,ν′,µ,µ′=0

∣∣∣Cov
(
Y T

n−νc
(k),T
ϑ,ν V −1

ϑ
cϑ,ν′Y n−ν′ ,Y T

n+∆−µc
(l),T
ϑ,µ V −1

ϑ
cϑ,µ′Y n+∆−µ′

)∣∣∣ .

This sum can be split into one part I+ in which at least one of the summation
indices ν, ν′, µ and µ′ exceeds ∆/2, and one part I− in which all summation
indices are less than or equal to ∆/2. Using the fact that, by the Cauchy–Schwarz
inequality,

∣∣∣Cov
(
Y T

n−νc
(k),T
ϑ,ν V −1

ϑ
cϑ,ν′Y n−ν′ ;Y T

n+∆−µc
(l),T
ϑ,µ V −1

ϑ
cϑ,µ′Y n+∆−µ′

)∣∣∣

6
∥∥V −1

ϑ

∥∥2
∥∥∥c(k)

ϑ,ν

∥∥∥ ‖cϑ,ν′‖
∥∥∥c(l)

ϑ,µ′

∥∥∥ ‖cϑ,µ′‖E ‖Y n‖4 ,

it follows from Assumption D8 and the uniform exponential decay of ‖cϑ,ν‖ and∥∥c(m)
ϑ,ν

∥∥ proved in Lemma 2.6, ii) and Lemma 2.11, ii) that there exist constants
C and ρ < 1 such that

I+ =
∞∑

ν,ν′,µ,µ′=0
max{ν,ν′,µ,µ′}>∆/2

∣∣∣Cov
(
Y T

n−νc
(k),T
ϑ,ν V −1

ϑ
cϑ,ν′Y n−ν′ ;

Y T
n+∆−µc

(l),T
ϑ,µ V −1

ϑ
cϑ,µ′Y n+∆−µ′

)∣∣∣
6 Cρ∆/2. (2.26)

For the contribution from all indices smaller than or equal to ∆/2 Lemma 2.13
implies that there exists a constant C such that

I− =

⌊∆/2⌋∑

ν,ν′,µ,µ′=0

∣∣∣Cov
(
Y T

n−νc
(k),T
ϑ,ν V −1

ϑ
cϑ,ν′Y n−ν′ ;

Y T
n+∆−µc

(l),T
ϑ,µ V −1

ϑ
cϑ,µ′Y n+∆−µ′

)∣∣∣

6 C

[
αY

(⌊
∆

2

⌋)]δ/(2+δ)

. (2.27)

It thus follows from Assumption D9 that the sequences
∣∣
c
(k,l)
ϑ,∆

∣∣, ∆ ∈ N, are
summable, and Eq. (2.25) completes the proof of the lemma.

Lemma 2.15. Let L and L̂ be given by Eqs. (2.11) and (2.15). Assume that
Assumptions D1 to D3 and D7 are satisfied. Then the following hold.
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i) For each m = 1, . . . , r, L−1/2 sup
ϑ∈Θ

∣∣∂mL̂ (ϑ,yL)− ∂mL (ϑ,yL)
∣∣ con-

verges to zero in probability, as L→ ∞.

ii) For all k, l = 1, . . . , r, L−1 supϑ∈Θ

∣∣∂2k,lL̂ (ϑ,yL)− ∂2k,lL (ϑ,yL)
∣∣ converges

to zero almost surely, as L→ ∞.

Proof. Similar to the proof of Lemma 2.7.

Lemma 2.16. Under Assumptions D1, D3 and D7 to D9, the random variable

L−1/2∇ϑL̂ (ϑ0,y
L) is asymptotically normally distributed with mean zero and

covariance matrix I(ϑ0).

Proof. Because of Lemma 2.15, i) it is enough to show that L−1/2∇ϑL
(
ϑ0,y

L
)

is asymptotically normally distributed with mean zero and covariance matrix
I(ϑ0). First, we note that

∂iL (ϑ,yL) =

L∑

n=1

{
tr
[
V −1
ϑ

(
1d − εϑ,nε

T
ϑ,nV

−1
ϑ

)
∂iVϑ

]
+ 2

(
∂iε

T
ϑ,n

)
V −1
ϑ

εϑ,n

}
,

(2.28)
which holds for every component i = 1, . . . , r. The facts that Eεϑ0,nε

T
ϑ0,n

equals
Vϑ0

, and that εϑ0,n is orthogonal to the Hilbert space generated by {Y t, t < n},
of which ∂iε

T
ϑ,n is an element, show that E∂iL

(
ϑ0,y

L
)
= 0. Using Lemma 2.6,

ii), expression (2.28) can be rewritten as

∂iL
(
ϑ0,y

L
)
=

L∑

n=1

[
Y (i)
m,n − EY (i)

m,n

]
+

L∑

n=1

[
Z(i)
m,n − EZ(i)

m,n

]
,

where, for every m ∈ N, the processes Y
(i)
m and Z

(i)
m are defined by

Y (i)
m,n = tr

[
V −1
ϑ0

(∂iVϑ0
)
]

+

m∑

ν,ν′=0

{
− tr

[
V −1
ϑ0
cϑ0,νY n−νY

T
n−ν′cTϑ,ν′V −1

ϑ0
(∂iVϑ0

)
]

+2Y T
n−νc

(i),T
ϑ0,ν

V −1
ϑ0
cϑ0,ν′Y n−ν′

}
, (2.29a)

Z(i)
m,n = U (i)

m,n + V (i)
m,n, (2.29b)

and

U (i)
m,n =

∞∑

ν=0

∞∑

ν′=m+1

{
− tr

[
V −1
ϑ0
cϑ0,νY n−νY

T
n−ν′cTϑ,ν′V −1

ϑ0
(∂iVϑ0)

]

+2Y T
n−νc

(i),T
ϑ0,ν

V −1
ϑ0
cϑ0,ν′Y n−ν′

}
,

V (i)
m,n =

∞∑

ν=m+1

m∑

ν′=0

{
− tr

[
V −1
ϑ0
cϑ0,νY n−νY

T
n−ν′cTϑ,ν′V −1

ϑ0
(∂iVϑ0

)
]

+2Y T
n−νc

(i),T
ϑ0,ν

V −1
ϑ0
cϑ0,ν′Y n−ν′

}
.
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It is convenient to also introduce the notations

Ym,n =
(
Y

(1)
m,n · · · Y

(r)
m,n

)T
and Zm,n =

(
Z

(1)
m,n · · · Z

(r)
m,n

)T
.

(2.30)
The rest of the proof proceeds in three steps: in the first we show that, for
each natural number m, the sequence L−1/2

∑
n [Ym,n − EYm,n] is asymptot-

ically normally distributed with asymptotic covariance matrix Im, and that
Im converges to I(ϑ0) as m tends to infinity. We then proceed to prove that
L−1/2

∑
n [Zm,n − EZm,n] goes to zero uniformly in L, as m → ∞, and the

last step is devoted to combining the first two steps to prove the asymptotic
normality of L−1/2∇ϑL

(
ϑ0,y

L
)
.

Step 1 Since Y is stationary, Ym is a stationary process. Moreover, the strong
mixing coefficients αYm

(k) of Ym satisfy αYm
(k) 6 αY (max{0, k − m}) be-

cause Ym,n depends only on the finitely many values Y n−m, . . . ,Y n of Y

(see Bradley, 2007, Remark 1.8 b)). In particular, by Assumption D9, the
strong mixing coefficients of the processes Ym satisfy the summability condition∑

k[αYm
(k)]δ/(2+δ) <∞. Since, by the Cramér–Wold device, weak convergence

of the sequence L−1/2
∑L

n=1 [Ym,n − EYm,n] to a multivariate normal distribu-
tion with mean zero and covariance matrix Σ is equivalent to the condition
that, for every vector u ∈ Rr, the sequence L−1/2uT

∑L
n=1 [Ym,n − EYm,n] con-

verges to a one-dimensional normal distribution with mean zero and variance
uTΣu, we can apply the Central Limit Theorem for univariate strongly mixing
processes (Ibragimov, 1962, Theorem 1.7) to obtain that

1√
L

L∑

n=1

[Ym,n − EYm,n]
d−−−−→

L→∞
N (0r, Im),

where Im =
∑

∆∈Z
Cov (Ym,n;Ym,n+∆). The claim that Im converges to I(ϑ0)

will follow if we can show that

Cov
(
Y (k)
m,n;Y

(l)
m,n+∆

)
−−−−→
m→∞

Cov
(
ℓ
(k)
ϑ0,n

; ℓ
(l)
ϑ0,n+∆

)
, ∀∆ ∈ Z,

and that
∣∣Cov

(
Y

(k)
m,n;Y

(l)
m,n+∆

)∣∣ is dominated by an absolutely summable se-
quence. For the first condition, we note that the bilinearity of Cov(·; ·) implies
that

Cov
(
Y (k)
m,n;Y

(l)
m,n+∆

)
− Cov

(
ℓ
(k)
ϑ0,n

; ℓ
(l)
ϑ0,n+∆

)

= Cov
(
Y (k)
m,n;Y

(l)
m,n+∆ − ℓ

(l)
ϑ0,n+∆

)
+ Cov

(
Y (k)
m,n − ℓ

(k)
ϑ0,n

; ℓ
(l)
ϑ0,n+∆

)
.

These two terms can be treated in a similar manner so we restrict our attention
to the second one. The definitions of Y

(i)
m,n (Eq. (2.29a)) and ℓ

(i)
ϑ,n (Eq. (2.23))
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allow us to compute

Y (k)
m,n − ℓ

(k)
ϑ0,n

=
∑

ν,ν′

max{ν,ν′}>m

[
tr
[
V −1
ϑ0
cϑ0,νY n−νY

T
n−ν′cTϑ,ν′V −1

ϑ0
∂iVϑ0

]

−2Y T
n−νc

(i),T
ϑ0,ν

V −1
ϑ0
cϑ0,ν′Y n−ν′

]
.

As a consequence of the Cauchy–Schwarz inequality, Assumption D8 and the
exponential bounds in Lemma 2.6, i), we therefore obtain that, independent

of n, Var
(
Y

(k)
m,n− ℓ(k)ϑ0,n

)
6 Cρm. The L2-continuity of Cov(·; ·) thus implies that

the sequence Cov
(
Y

(k)
m,n−ℓ(k)ϑ0,n

; ℓ
(l)
ϑ0,n+∆

)
converges to zero as m tends to infinity

at an exponential rate uniformly in ∆. The existence of a summable sequence

dominating
∥∥Cov

(
Y

(k)
m,n;Y

(l)
m,n+∆

)∣∣ is ensured by the arguments given in the proof
of Lemma 2.14, reasoning as in the derivation of Eqs. (2.26) and (2.27).

Step 2 We shall show that there exist positive constants C and ρ < 1, inde-
pendent of L, such that

trVar

(
1√
L

L∑

n=1

Zm,n

)
6 Cρm, Zm,n given in Eq. (2.30). (2.31)

Since trVar
(

1√
L

∑L
n=1 Zm,n

)
is bounded by

2

[
trVar

(
1√
L

L∑

n=1

Um,n

)
+ trVar

(
1√
L

L∑

n=1

Vm,n

)]
,

it suffices to consider the latter two terms. We first observe that

trVar

(
1√
L

L∑

n=1

Um,n

)
=

1

L
tr

L∑

n,n′=1

Cov (Um,n;Um,n′) (2.32)

=
1

L

r∑

k,l=1

L−1∑

∆=−L+1

(L− |∆|) u(k,l)m,∆ 6

r∑

k,l=1

∑

∆∈Z

∣∣∣u(k,l)m,∆

∣∣∣ ,

where

u
(k,l)
m,∆ = Cov

(
U (k)
m,n;U

(l)
m,n+∆

)

=
m∑

ν,µ=0
ν′,µ′=m+1

Cov
(
− tr

[
V −1
ϑ0
cϑ0,νY n−νY

T
n−ν′cTϑ,ν′V −1

ϑ0
∂kVϑ0

]

+Y T
n−νc

(k),T
ϑ0,ν

V −1
ϑ0
cϑ0,ν′Y n−ν′ ;

− tr
[
V −1
ϑ0
cϑ0,µY n+∆−µY

T
n+∆−µ′cTϑ,µ′V −1

ϑ0
∂lVϑ0

]

+Y T
n+∆−µc

(l),T
ϑ0,µ

V −1
ϑ0
cϑ0,µ′Y n+∆−µ′

)
.
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As before, under Assumption D8, the Cauchy–Schwarz inequality and the expo-

nential bounds for ‖cϑ0,ν‖ and
∥∥c(k)

ϑ0,ν

∥∥ imply that
∣∣
u
(k,l)
m,∆

∣∣ < Cρm. By arguments
similar to the ones used in the proof of Lemma 2.13 Davydov’s inequality implies
that, for m < ⌊∆/2⌋,

∣∣∣u(k,l)m,∆

∣∣∣ 6 C
∞∑

ν=0

∞∑

ν′=m+1

⌊∆/2⌋∑

µ,µ′=0

ρν+ν′+µ+µ′

[
αY

(⌊
∆

2

⌋)]δ/(2+δ)

+ C
∞∑

ν,ν′=0

∑

µ,µ′

max{µ,µ′}>⌊∆/2⌋

ρν+ν′+µ+µ′

6 Cρm

{[
αY

(⌊
∆

2

⌋)]δ/(2+δ)

+ ρ∆/2

}
.

It thus follows that, independent of the value of k and l,

∞∑

∆=0

∣∣∣u(k,l)m,∆

∣∣∣ =
2m∑

∆=0

∣∣∣u(k,l)m,∆

∣∣∣+
∞∑

∆=2m+1

∣∣∣u(k,l)m,∆

∣∣∣ 6 Cρm

{
m+

∞∑

∆=0

[αY (∆)]
δ/(2+δ)

}
,

and therefore, by Eq. (2.32), that trVar(L−1/2
∑L

n=1 Um,n) 6 Cρm. In an anal-

ogous way one also can show that trVar(L−1/2
∑L

n=1 Vm,n) 6 Cρm, and thus
the claim (2.31) follows.

Step 3 In step 1 it has been shown that L−1/2
∑

n [Ym,n − EYm,n]
d−−−−→

L→∞
N (0r, Im), and that Im converges to I(ϑ0), as m → ∞. In particular, the
limiting normal random variables with covariances Im converge weakly to a
normal random variable with covariance matrix I(ϑ0). Step 2 together with the
multivariate Chebyshev inequality implies that, for every ǫ > 0,

lim
m→∞

lim sup
L→∞

P

(∥∥∥∥∥
1√
L
∇ϑL

(
ϑ0,y

L
)
− 1√

L

L∑

n=1

[Ym,n − EYm,n]

∥∥∥∥∥ > ǫ

)

6 lim
m→∞

lim sup
L→∞

r

ǫ2
trVar

(
1√
L

L∑

n=1

Zm,n

)
6 lim

m→∞
Cr

ǫ2
ρm = 0.

Proposition 6.3.9 of Brockwell and Davis (1991) thus completes the proof.

A very important step in the proof of asymptotic normality of QML esti-
mators is to establish that the Fisher information matrix J , evaluated at the
true parameter value, is non-singular. We shall now show that Assumption D10
is sufficient to ensure that J−1 exists for linear state space models. For vector
ARMA processes, formulae similar to Eqs. (2.33a) below have been derived in
the literature (see, e. g., Klein, Mélard and Saidi, 2008; Klein and Neudecker,
2000); in fact, the resultant property of the Fisher information matrix of a vec-
tor ARMA process implies that J in this case is non-singular if and only if its



QMLE for strongly mixing SSMs and MCARMA processes 2211

autoregressive and moving average polynomials have no common eigenvalues
(Klein, Mélard and Spreij, 2005). In conjunction with the equivalence of lin-
ear state space and vector ARMA models this provides an alternative way of
checking that J in non-singular. We continue to work with Assumption D10,
however, because it avoids the transformation of the state space model (2.13)
into an equivalent ARMA form.

Lemma 2.17. Assume that Assumptions D1 to D4, D7 and D10 hold. With

probability one, the matrix J = limL→∞ L−1∇2
ϑ
L̂ (ϑ0,y

L) exists and is non-
singular.

Proof. It can be shown as in the proof of Boubacar Mainassara and Francq
(2011, Lemma 4) that J exists and is equal to J = J1 + J2, where

J1 = 2E
[
(∇ϑεϑ0,1)

T V −1
ϑ0

(∇ϑεϑ0,1)
]

(2.33a)

and

J2 =
(
tr
[
V

−1/2
ϑ0

(∂iVϑ0
) V −1

ϑ0
(∂jVϑ0

)V
−1/2
ϑ0

])
ij
. (2.33b)

The matrix J2 is positive semidefinite because it can be written as the prod-

uct J2 =
(
b1 . . . br

)T (
b1 . . . br

)
, where the vector bm is given by(

V
−1/2
ϑ0

⊗ V
−1/2
ϑ0

)
vec (∂mVϑ0

). Since J1 is positive semidefinite as well, prov-
ing that J is non-singular is equivalent to proving that for any non-zero vec-
tor c ∈ Rr, the numbers cTJic, i = 1, 2, are not both zero. Assume, for
the sake of contradiction, that there exists such a vector c = (c1, . . . , cr)

T .
The condition cT J1c implies that, almost surely,

∑r
k=1 ck∂kεϑ0,n = 0d, for all

n ∈ Z. It thus follows that
∑∞

ν=1

∑r
k=1 ck (∂kMϑ0,ν)εϑ0,−ν = 0d, where the

Markov parameters Mϑ,ν are given by Mϑ,ν = −HϑF
ν−1
ϑ

Kϑ, ν > 1. Since
the sequence εϑ0

is uncorrelated with positive definite covariance matrix, it
follows that

∑r
k=1 ck (∂kMϑ0,ν) = 0d, for every ν ∈ N. Using the relation

vec(ABC) =
(
CT ⊗A

)
vecB (Bernstein, 2005, Proposition 7.1.9), we see that

the last display is equivalent to ∇ϑ

([
KT

ϑ0
⊗Hϑ0

]
vecF ν−1

ϑ0

)
c = 0d2 for every

ν ∈ N. The condition cTJ2c = 0 implies that (∇ϑ vecVϑ0) c = 0d2 . By the
definition of ψϑ,j it thus follows that ∇ϑψϑ0,jc = 0(j+2)d2 , for every j ∈ N,
which, by Assumption D10, is equivalent to the contradiction that c = 0r.

Proof of Theorem 2.5. Since the estimate ϑ̂
L
converges almost surely to ϑ0 by

the consistency result proved in Theorem 2.4, and ϑ0 is an element of the

interior of Θ by Assumption D6, the estimate ϑ̂
L
is an element of the interior

of Θ eventually almost surely. The assumed smoothness of the parametrization

(Assumption D7) implies that the extremal property of ϑ̂
L

can be expressed

as the first order condition ∇ϑL̂ (ϑ̂
L
,yL) = 0r. A Taylor expansion of ϑ 7→

∇ϑL̂ (ϑ,yL) around the point ϑ0 shows that there exist parameter vectors
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ϑi ∈ Θ of the form ϑi = ϑ0 + ci(ϑ̂
L − ϑ0), 0 6 ci 6 1, such that

0r = L−1/2∇ϑL̂ (ϑ0,y
L) +

1

L
∇2

ϑ
L̂ (ϑL,yL)L1/2

(
ϑ̂
L − ϑ0

)
, (2.34)

where ∇2
ϑ
L̂ (ϑL,yL) denotes the matrix whose ith row, i = 1, . . . , r, is equal to

the ith row of ∇2
ϑ
L̂ (ϑi,y

L). By Lemma 2.16 the first term on the right hand
side converges weakly to a multivariate normal random variable with mean zero
and covariance matrix I = I(ϑ0). As in Lemma 2.8 one can show that the

sequence ϑ 7→ L−1∇3
ϑ
L̂ (ϑ,yL), L ∈ N, of random functions converges almost

surely uniformly to the continuous function ϑ 7→ ∇3
ϑ
Q(ϑ) taking values in

the space Rr×r×r. Since on the compact space Θ this function is bounded in
the operator norm obtained from identifying Rr×r×r with the space of linear
functions from Rr to Mr(R), that sequence is almost surely uniformly bounded,
and we obtain that
∥∥∥∥
1

L
∇2

ϑ
L̂ (ϑL,yL)− 1

L
∇2

ϑ
L̂ (ϑ0,y

L)

∥∥∥∥ 6 sup
ϑ∈Θ

∥∥∥∥
1

L
∇3

ϑ
L̂ (ϑ,yL)

∥∥∥∥
∥∥∥ϑL − ϑ0

∥∥∥
a. s.−−−−→

L→∞
0,

because, by Theorem 2.4, the second factor almost surely converges to zero as L

tends to infinity. It follows from Lemma 2.17 that L−1∇2
ϑ
L̂ (ϑL,yL) converges

to the matrix J almost surely, and thus from Eq. (2.34) that L1/2
(
ϑ̂
L −ϑ0

) d−→
N
(
0r, J

−1IJ−1
)
, as L → ∞. This shows Eq. (2.17) and completes the proof.

3. Quasi maximum likelihood estimation for multivariate
continuous-time ARMA processes

In this section we pursue the second main topic of the present paper, a detailed
investigation of the asymptotic properties of the QML estimator of discretely
observed multivariate continuous-time autoregressive moving average processes.
We will make use of the equivalence between MCARMA and continuous-time
linear state space models, as well as of the important observation that the state
space structure of a continuous-time process is preserved under equidistant sam-
pling, which allows for the results of the previous section to be applied. The
conditions we need to impose on the parametrization of the models under con-
sideration are therefore closely related to the assumptions made in the discrete-
time case, except that the mixing and ergodicity assumptions D4 and D9 are
automatically satisfied (Marquardt and Stelzer, 2007, Proposition 3.34).

We start the section with a short recapitulation of the definition and basic
properties of Lévy-driven continuous-time ARMA processes and their equiva-
lence to state space models (based mainly on Marquardt and Stelzer (2007);
Schlemm and Stelzer (2012)). Thereafter we work towards being able to apply
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our results on QML estimation for discrete-time state models to QML estima-
tors for MCARMA processes culminating in our main result Theorem 3.16. To
this end we first recall the second-order structure of continuous-time state space
models and provide auxiliary results on the transfer function in Section 3.2.
This is followed in Section 3.3 by recalling that equidistant observations of
an MCARMA process follow a state space model in discrete time, as well as
discussions of the minimality of a state space model and of how to make the
relation between the continuous- and discrete-time state space models injective.
The following Section 3.4 looks at the second-order properties of a discretely
observed MCARMA process and the aliasing effect. Together the results of Sec-
tions 3.2 to 3.4 allow to give accessible identifiability conditions needed to apply
the QML estimation theory developed in Section 2. Finally, Section 3.5 intro-
duces further technical assumptions needed to employ the theory for strongly
mixing state space models and then derives our main result about the consis-
tency and asymptotic normality of the QML estimator for equidistantly sampled
MCARMA processes in Theorem 3.16.

3.1. Lévy-driven multivariate CARMA processes and

continuous-time state space models

A natural source of randomness in the specification of continuous-time stochastic
processes are Lévy processes. For a thorough discussion of these processes we
refer the reader to the monographs Applebaum (2004); Sato (1999).

Definition 3.1. A two-sided R
m-valued Lévy process (L(t))t∈R

is a stochastic
process, defined on a probability space (Ω,F ,P), with stationary, independent
increments, continuous in probability, and satisfying L(0) = 0m almost surely.

The characteristic function of a Lévy process L has the Lévy–Khintchine-
form Eei〈u,L(t)〉 = exp{tψL(u)}, u ∈ Rm, t ∈ R+, where the characteristic
exponent ψL is given by

ψL(u) = i〈γL,u〉 − 1

2
〈u,ΣGu〉+

∫

Rm

[
ei〈u,x〉 − 1− i〈u,x〉I{‖x‖61}

]
νL(dx).

(3.1)
The vector γL ∈ Rm is called the drift, ΣG is a non-negative definite, symmetric
m × m matrix called the Gaussian covariance matrix, and the Lévy measure
νL satisfies the two conditions νL({0m}) = 0 and

∫
Rm min(‖x‖2 , 1)νL(dx) <

∞. For the present purpose it is enough to know that a Lévy process L has
finite kth absolute moments, k > 0, that is E ‖L(t)‖k < ∞, if and only if∫
‖x‖>1

‖x‖k νL(dx) < ∞ (Sato, 1999, Corollary 25.8), and that the covariance

matrix ΣL of L(1), if it exists, is given by ΣG +
∫
‖x‖>1 xx

T νL(dx) (Sato, 1999,

Example 25.11).

Assumption L. The Lévy process L has mean zero and finite second moments,
i. e. γL +

∫
‖x‖>1

xνL(dx) is zero, and the integral
∫
‖x‖>1

‖x‖2 νL(dx) is finite.
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Just like i. i. d. sequences are used in time series analysis to define ARMA
processes, Lévy processes can be used to construct (multivariate) continuous-
time autoregressive moving average processes, called (M)CARMA processes. If
L is a two-sided Lévy process with values in R

m and p > q are integers, the
d-dimensional L-driven MCARMA(p, q) process with autoregressive polynomial

z 7→ P (z) ≔ 1dz
p +A1z

p−1 + · · ·+Ap ∈Md(R[z]) (3.2a)

and moving average polynomial

z 7→ Q(z) ≔ B0z
q +B1z

q−1 + · · ·+Bq ∈Md,m(R[z]) (3.2b)

is defined as the solution to the formal differential equation

P (D)Y (t) = Q(D)DL(t), D ≡ (d/dt).

It is often useful to allow for the dimensions of the driving Lévy process L and
the L-driven MCARMA process to be different, which is a slight extension of
the original definition of Marquardt and Stelzer (2007). The results obtained in
that paper remain true if our definition is used. In general, the paths of a Lévy
process are not differentiable, so we interpret the defining differential equation
as being equivalent to the state space representation

dG(t) = AG(t)dt + BdL(t), Y (t) = CG(t), t ∈ R, (3.3)

where A, B, and C are given by

A =




0 1d 0 . . . 0

0 0 1d
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 1d

−Ap −Ap−1 . . . . . . −A1




∈Mpd(R), (3.4a)

B =
(
βT
1 · · · βT

p

)T ∈Mpd,m(R),

βp−j = − I{0,...,q}(j)

[
p−j−1∑

i=1

Aiβp−j−i −Bq−j

]
, (3.4b)

C = (1d, 0, . . . , 0) ∈Md,pd(R). (3.4c)

It follows from representation (3.3) that MCARMA processes are special cases
of linear multivariate continuous-time state space models, and in fact, the class
of linear state space models is equivalent to the class of MCARMA models
(Schlemm and Stelzer, 2012, Corollary 3.4). By considering the class of linear
state space models, one can define representations of MCARMA processes which
are different from Eq. (3.3) and better suited for the purpose of estimation.

Definition 3.2. A continuous-time linear state space model (A,B,C,L) of
dimension N with values in Rd is characterized by an Rm-valued driving Lévy
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processL, a state transition matrixA ∈MN (R), an input matrix B ∈MN,m(R),
and an observation matrix C ∈ Md,N(R). It consists of a state equation of
Ornstein–Uhlenbeck type

dX(t) = AX(t)dt+BdL(t), t ∈ R, (3.5a)

and an observation equation

Y (t) = CX(t), t ∈ R. (3.5b)

The RN -valued process X = (X(t))t∈R
is the state vector process, and Y =

(Y (t))t∈R
the output process.

A solution Y to Eq. (3.5) is called causal if, for all t, Y (t) is independent of
the σ-algebra generated by {L(s) : s > t}. Every solution to Eq. (3.5a) satisfies

X(t) = eA(t−s)X(s) +

∫ t

s

eA(t−u)BdL(u), ∀s, t ∈ R, s < t. (3.6)

The following can be seen as the multivariate extension of Brockwell, Davis
and Yang (2011, Proposition 1) and recalls conditions for the existence of a
stationary causal solution of the state equation (3.5a) for easy reference. We
always work under the following assumption.

Assumption E. The eigenvalues of the matrix A have strictly negative real
parts.

3.2. Second order structure and the transfer function

Proposition 3.1 (Sato and Yamazato (1983, Theorem 5.1)). If Assumptions
E and L hold, then Eq. (3.5a) has a unique strictly stationary, causal solution

X given by X(t) =
∫ t

−∞ eA(t−u)BdL(u). Moreover, X(t) has mean zero and
second-order structure

Var(X(t)) ≕ Γ0 =

∫ ∞

0

eAuBΣLBT eA
Tudu, (3.7a)

Cov (X(t+ h),X(t)) ≕ γY (h) = eAhΓ0, h > 0, (3.7b)

where the variance Γ0 satisfies AΓ0 + Γ0A
T = −BΣLBT .

It is an immediate consequence that the output process Y has mean zero and
autocovariance function R ∋ h 7→ γY (h) given by γY (h) = CeAhΓ0C

T , h > 0,
and that Y itself can be written succinctly as a moving average of the driving
Lévy process as Y (t) =

∫∞
−∞ g(t− u)dL(u), where g(t) = CeAtBI[0,∞)(t). This

representation shows that the behaviour of the process Y depends on the values
of the individual matrices A, B, and C only through the products CeAtB, t ∈ R.
The following lemma relates this analytical statement to an algebraic one about
rational matrices, allowing us to draw a connection to the identifiability theory
of discrete-time state space models.
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Lemma 3.2. Two matrix triplets (A,B,C), (Ã, B̃, C̃) of appropriate dimen-

sions satisfy CeAtB = C̃eÃtB̃ for all t ∈ R if and only if C(z1 − A)−1B =
C̃(z1− Ã)−1B̃ for all z ∈ C.

Proof. If we start at the first equality and replace the matrix exponentials
by their spectral representations (see Lax, 2002, Theorem 17.5), we obtain∫
γ e

ztC(z1−A)−1Bdz =
∫
γ̃ e

ztC̃(z1− Ã)−1B̃dz, where γ is a closed contour
in C winding around each eigenvalue of A exactly once, and likewise for γ̃. Since
we can always assume that γ = γ̃ by taking γ to be R times the unit circle,
R > max{|λ| : λ ∈ σA ∪ σÃ},it follows that, for each t ∈ R, the expression∫
γ
ezt
[
C(z1−A)−1B − C̃(z1− Ã)−1B̃

]
dz vanishes. Since the rational matrix

function ∆(z) = C(z1 − A)−1B − C̃(z1 − Ã)−1B̃ has only poles with mod-
ulus less than R, it has an expansion around infinity, ∆(z) =

∑∞
n=0Anz

−n,
An ∈Md(C), which converges in a region {z ∈ C : |z| > r} containing γ. Using
the fact that this series converges uniformly on the compact set γ and applying
the Residue Theorem from complex analysis, which implies

∫
γ
eztz−ndz = tn/n!,

one sees that
∑∞

n=0
tn

n!An+1 ≡ 0N . Consequently, by the Identity Theorem, An

is the zero matrix for all n > 1, and since ∆(z) → 0 as z → ∞, it follows that
∆(z) ≡ 0d,m.

The rational matrix function H : z 7→ C(z1N −A)−1B is called the transfer
function of the state space model (3.5) and is closely related to the spectral den-
sity fY of the output process Y , which is defined as fY (ω) =

∫
R
e−iωhγY (h)dh

– the Fourier transform of γY . Before we make this relation explicit, we prove
the following lemma.

Lemma 3.3. For any real number v, and matrices A,B,ΣL,Γ0 as in Eq. (3.7a),
it holds that ∫ ∞

−v

eAuBΣLBT eA
Tudu = e−AvΓ0e

−AT v. (3.8)

Proof. We define functions l, r : R →MN (R) by l(v) =
∫∞
−v

eAuBΣLBT eA
Tudu

and r(v) = e−AvΓ0e
−AT v. Both l : v 7→ l(v) and r : v 7→ r(v) are differentiable

functions of v, satisfying

d

dv
l(v) = e−AvBΣLBT e−AT v

and

d

dv
r(v) = −Ae−AvΓ0e

−AT v − e−AvΓ0A
T e−AT v.

Using Proposition 3.1 one sees immediately that (d/dv)l(v) = (d/dv)r(v), for
all v ∈ R. Hence, l and r differ only by an additive constant. Since l(0) equals
r(0) by the definition of Γ0, the constant is zero, and l(v) = r(v) for all real
numbers v.
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Proposition 3.4. Let Y be the output process of the state space model (3.5),
and denote by H : z 7→ C(z1N −A)−1B its transfer function. Then the relation
fY (ω) = (2π)−1H(iω)ΣLH(−iω)T holds for all real ω; in particular, ω 7→ fY (ω)
is a rational matrix function.

Proof. First, we recall (Bernstein, 2005, Proposition 11.2.2) that the Laplace
transform of any matrix A is given by its resolvent, that is, (zI − A)−1 =∫∞
0

e−zueAudu, for any complex number z. We are now ready to compute

1

2π
H(iω)ΣLH(−iω)T =

1

2π
C

[∫ ∞

0

e−iωueAuduBΣLBT

∫ ∞

0

eiωveA
T vdv

]
dhCT .

Introducing the new variable h = u− v, and using Lemma 3.3, this becomes

1

2π
C

[∫ ∞

0

∫ ∞

0

e−iωheAheAvBΣLBT eA
T vdhdv

+

∫ ∞

0

∫ 0

−v

e−iωheAheAvBΣLBT eA
T vdhdv

]
CT

=
1

2π
C

[∫ ∞

0

e−iωheAhΓ0dh+

∫ 0

−∞
e−iωhΓ0e

−AThdh

]
CT .

By Eq. (3.7b) and the fact that the spectral density and the autocovariance
function of a stochastic process are Fourier duals of each other, the last ex-
pression is equal to (2π)−1

∫∞
−∞ e−iωhγY (h)dh = fY (ω), which completes the

proof.

A converse of Proposition 3.4, which will be useful in our later discussion of
identifiability, is the Spectral Factorization Theorem. Its proof can be found in
Rozanov (1967, Theorem 1.10.1).

Theorem 3.5. Every positive definite rational matrix function f ∈ S
+
d (C{ω})

of full rank can be factorized as f(ω) = (2π)−1W (iω)W (−iω)T , where the ra-
tional matrix function z 7→ W (z) ∈ Md,N (R{z}) has full rank and is, for fixed
N , uniquely determined up to an orthogonal transformation W (z) 7→ W (z)O,
for some orthogonal N ×N matrix O.

3.3. Equidistant observations

We now turn to properties of the sampled process Y (h) = (Y (h)
n )n∈Z which

is defined by Y (h)
n = Y (nh) and represents observations of the process Y at

equally spaced points in time. A very fundamental observation is that the linear
state space structure of the continuous-time process is preserved under sampling,
as detailed in the following proposition. Of particular importance is the explicit
formula (3.10) for the spectral density of the sampled process Y (h).

Proposition 3.6 (partly Schlemm and Stelzer (2012, Lemma 5.1)). Assume
that Y is the output process of the state space model (3.5). Then the sampled
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process Y (h) has the state space representation

Xn = eAhXn−1 +N (h)
n , N (h)

n =

∫ nh

(n−1)h

eA(nh−u)BdL(u), Y (h)
n = CX(h)

n .

(3.9)

The sequence
(
N (h)

n

)
n∈Z

is i. i. d. with mean zero and covariance matrix�Σ
(h) =

∫ h

0
eAuBΣLBT eA

Tudu. Moreover, the spectral density of Y (h), denoted by f
(h)
Y

,
is given by

f
(h)
Y

(ω) = C
(
eiω1N − eAh

)−1
�Σ

(h)
(
e−iω1N − eA

Th
)−1

CT ; (3.10)

in particular, f
(h)
Y

: [−π, π] → S
+
d

(
R{eiω}

)
is a rational matrix function.

Proof. The first part is Schlemm and Stelzer (2012, Lemma 5.1) and expression
(3.10) follows from Hamilton (1994, Eq. (10.4.43)).

In the following we derive conditions for the sampled state space model (3.9)

to be minimal in the sense that the process Y (h) is not the output process of any
state space model of dimension less than N , and for the noise covariance matrix

�Σ(h) to be non-singular. We begin by recalling some well-known notions from
discrete-time realization and control theory. For a detailed account we refer to
Åström (1970); Sontag (1998), which also explain the origin of the terminology.

Definition 3.3. Let H ∈Md,m(R{z}) be a rational matrix function. A matrix
triple (A,B,C) is called an algebraic realization of H of dimension N if H(z) =
C(z1N −A)−1B, where A ∈MN (R), B ∈MN,m(R), and C ∈Md,N(R).

Every rational matrix function has many algebraic realizations of various
dimensions. A particularly convenient class are the ones of minimal dimension,
which have a number of useful properties.

Definition 3.4. LetH ∈Md,m(R{z}) be a rational matrix function. A minimal
realization of H is an algebraic realization of H of dimension smaller than or
equal to the dimension of every other algebraic realization of H . The dimension
of a minimal realization of H is the McMillan degree of H .

Two other important properties of algebraic realizations, which are related
to the notion of minimality and play a key role in the study of identifiability,
are introduced in the following definitions.

Definition 3.5. An algebraic realization (A,B,C) of dimension N is control-
lable if the (m×mN)-controllability matrix C =

[
B AB · · · An−1B

]
has

full rank.

Definition 3.6. An algebraic realization (A,B,C) of dimension N is observable

if the (dN × N)-observability matrix O =
[
CT (CA)T · · · (CAn−1)T

]T
has full rank.
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We will often say that a state space system (3.5) is minimal, controllable
or observable if the corresponding transfer function has this property. In the
context of ARMA processes these concepts have been used to investigate the
non-singularity of the Fisher information matrix (Klein and Spreij, 2006). The
next theorem characterizes minimality in terms of controllability and observ-
ability.

Theorem 3.7 (Hannan and Deistler (1988, Theorem 2.3.3)). A realization
(A,B,C) is minimal if and only if it is both controllable and observable.

Lemma 3.8. For all matrices A ∈ MN(R), B ∈ MN,m(R), Σ ∈ S++
m (R),

and every real number t > 0, the linear subspaces im
[
B,AB, . . . , AN−1B

]
and

im
∫ t

0
eAuBΣBT eA

Tudu are equal.

Proof. The assertion is a straightforward generalization of Bernstein (2005,
Lemma 12.6.2).

Corollary 3.9. If the triple (A,B,C) is minimal of dimension N , and Σ is

positive definite, then the N × N matrix �Σ =
∫ h

0 eAuBΣBT eA
Tudu has full

rank N .

Proof. By Theorem 3.7, minimality of (A,B,C) implies controllability, and by
Lemma 3.8, this is equivalent to�Σ having full rank.

Proposition 3.10. Assume that Y is the d-dimensional output process of the
state space model (3.5) with (A,B,C) being a minimal realization of McMillan

degree N . Then a sufficient condition for the sampled process Y (h) to have the
same McMillan degree, is the Kalman–Bertram criterion

λ− λ′ 6= 2πi

h
k, ∀(λ, λ′) ∈ σ(A)× σ(A), ∀k ∈ Z\{0}. (3.11)

Proof. We will prove the assertion by showing that the N -dimensional state
space representation (3.9) is both controllable and observable, and thus, by
Theorem 3.7, minimal. Observability has been shown in Sontag (1998, Propo-
sition 5.2.11) using the Hautus criterion (Hautus, 1969). The key ingredient in
the proof of controllability is Corollary 3.9, where we showed that the autoco-
variance matrix�Σ(h) of N (h)

n , given in Proposition 3.6, has full rank; this shows
that the representation (3.9) is indeed minimal and completes the proof.

Since, by Hannan and Deistler (1988, Theorem 2.3.4), minimal realizations
are unique up to a change of basis (A,B,C) 7→ (TAT−1, TB,CT−1), for some
non-singular N ×N matrix T , and such a transformation does not change the
eigenvalues of A, the criterion (3.11) does not depend on what particular triple
(A,B,C) one chooses. Uniqueness of the principal logarithm implies the follow-
ing.

Lemma 3.11. Assume that the matrices A,B ∈ MN (R) satisfy ehA = ehB

for some h > 0. If the spectra σA, σB of A,B satisfy | Imλ| < π/h for all
λ ∈ σA ∪ σB , then A = B.
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Lemma 3.12. Assume that A ∈ MN (R) satisfies Assumption E. For every

h > 0, the linear map M : MN (R) → MN (R), M 7→
∫ h

0
eAuMeA

Tudu is
injective.

Proof. If we apply the vectorization operator vec : MN (R) → RN2

and use the
identity (Bernstein, 2005, Proposition 7.1.9) vec(UVW ) = (WT ⊗U) vec(V ) for
matrices U, V and W of appropriate dimensions, we obtain the induced linear
operator

vec ◦M ◦ vec−1 : RN2 → R
N2

, vecM 7→
∫ h

0

eAu ⊗ eAudu vecM.

To prove the claim that the operator M is injective, it is thus sufficient to

show that the matrix A ≔
∫ h

0
eAu ⊗ eAudu ∈MN2(R) is non-singular. We write

A⊕A ≔ A⊗1N+1N⊗A. By Bernstein (2005, Fact 11.14.37),A =
∫ h

0 e(A⊕A)udu
and since σ(A⊕A) = {λ+µ : λ, µ ∈ σ(A)} (Bernstein, 2005, Proposition 7.2.3),
Assumption E implies that all eigenvalues of the matrix A ⊕ A have strictly
negative real parts; in particular, A ⊕ A is invertible. Consequently, it follows
from Bernstein (2005, Fact 11.13.14) that A = (A ⊕ A)−1

[
e(A⊕A)h − 1N2

]
.

Since, for any matrix M , it holds that σ(eM ) = {eλ, λ ∈ σ(M)} (Bernstein,
2005, Proposition 11.2.3), the spectrum of e(A⊕A)h is a subset of the open unit
disk, and it follows that A is invertible.

3.4. Overcoming the aliasing effect

One goal in this paper is the estimation of multivariate CARMA processes or,
equivalently, continuous-time state space models, based on discrete observations.
In this brief section we concentrate on the issue of identifiability, and we derive
sufficient conditions that prevent redundancies from being introduced into an
otherwise properly specified model by the process of sampling, an effect known
as aliasing (Hansen and Sargent, 1983).

For ease of notation we choose to parametrize the state matrix, the input
matrix, and the observation matrix of the state space model (3.5), as well as
the driving Lévy process L; from these one can always obtain an autoregressive
and a moving average polynomial which describe the same process by applying
a left matrix fraction decomposition to the corresponding transfer function. We
hence assume that there is some compact parameter set Θ ⊂ Rr, and that, for
each ϑ ∈ Θ, one is given matrices Aϑ, Bϑ and Cϑ of matching dimensions, as
well as a Lévy process Lϑ. A basic assumption is that we always work with
second-order processes (cf. Assumption L).

Assumption C1. For each ϑ ∈ Θ, it holds that ELϑ = 0m, that E ‖Lϑ(1)‖2
is finite, and that the covariance matrix ΣL

ϑ
= ELϑ(1)Lϑ(1)

T is non-singular.

To ensure that the model corresponding to ϑ describes a stationary output
process we impose the analogue of Assumption E.
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Assumption C2. For each ϑ ∈ Θ, the eigenvalues of Aϑ have strictly negative
real parts.

Next, we restrict the model class to minimal algebraic realizations of a fixed
McMillan degree.

Assumption C3. For all ϑ ∈ Θ, the triple (Aϑ, Bϑ, Cϑ) is minimal with
McMillan degree N .

Since we shall base the inference on a QML approach and thus on second-or-
der properties of the observed process, we require the model class to be identi-
fiable from these available information according to the following definitions.

Definition 3.7. Two stochastic processes, irrespective of whether their index
sets are continuous or discrete, are L2-observationally equivalent if their spectral
densities are the same.

Definition 3.8. A family (Y ϑ,ϑ ∈ Θ) of continuous-time stochastic processes
is identifiable from the spectral density if, for every ϑ1 6= ϑ2, the two processes
Y ϑ1

and Y ϑ2
are not L2-observationally equivalent. It is h-identifiable from the

spectral density, h > 0, if, for every ϑ1 6= ϑ2, the two sampled processes Y
(h)
ϑ1

and Y
(h)
ϑ2

are not L2-observationally equivalent.

Assumption C4. The collection of output processes K(Θ) ≔ (Y ϑ,ϑ ∈ Θ)
corresponding to the state space models (Aϑ, Bϑ, Cϑ,Lϑ) is identifiable from
the spectral density.

Since we shall use only discrete, h-spaced observations of Y , it would seem
more natural to impose the stronger requirement that K(Θ) be h-identifiable.
We will see, however, that this is implied by the previous assumptions if we
additionally assume that the following holds.

Assumption C5. For all ϑ ∈ Θ, the spectrum of the matrix Aϑ is a subset of
{z ∈ C : −π/h < Im z < π/h}.
Theorem 3.13 (Identifiability). Assume that Θ ⊃ ϑ 7→

(
Aϑ, Bϑ, Cϑ,Σ

L

ϑ

)

is a parametrization of continuous-time state space models satisfying Assump-
tions C1 to C5. Then the corresponding collection of output processes K(Θ) is
h-identifiable from the spectral density.

Proof. We will show that for every ϑ1,ϑ2 ∈ Θ, ϑ1 6= ϑ2, the sampled output

processes Y
(h)
ϑ1

and Y
(h)
ϑ2

(h) are not L2-observationally equivalent. Suppose, for
the sake of contradiction, that the spectral densities of the sampled output pro-
cesses were the same. Then the Spectral Factorization Theorem (Theorem 3.5)
would imply that there exists an orthogonal N ×N matrix O such that

Cϑ1
(eiω1N − eAϑ1

h)�Σ
(h),1/2
ϑ1

O = Cϑ2
(eiω1N − eAϑ2

h)�Σ
(h),1/2
ϑ2

, −π 6 ω 6 π,

where�Σ
(h),1/2
ϑi

are the unique positive definite matrix square roots of the matri-

ces
∫ h

0 eAϑi
uBϑi

ΣL

ϑi
BT

ϑi
eA

T
ϑi

udu, defined by spectral calculus. This means that
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the two triples
(
eAϑ1

h,�Σ
(h),1/2
ϑ1

O,Cϑ1

)
and

(
eAϑ2

h,�Σ
(h),1/2
ϑ2

, Cϑ2

)

are algebraic realizations of the same rational matrix function. Since Assump-
tion C5 clearly implies the Kalman–Bertram criterion (3.11), it follows from
Proposition 3.10 in conjunction with Assumption C3 that these realizations are
minimal, and hence from Hannan and Deistler (1988, Theorem 2.3.4) that there
exists an invertible matrix T ∈MN(R) satisfying

eAϑ1
h = T−1eAϑ2

hT, �Σ
(h),1/2
ϑ1

O = T−1
�Σ

(h),1/2
ϑ2

, Cϑ1
= Cϑ2

T. (3.12)

It follows from the power series representation of the matrix exponential that
T−1eAϑ2

hT equals eT
−1Aϑ2

Th. Under Assumption C5, the first equation in con-
junction with Lemma 3.11 therefore implies that Aϑ1

= T−1Aϑ2
T . Using this,

the second of the three equations (3.12) gives

�Σ
(h)
ϑ1

=

∫ h

0

eAϑ1
u
(
T−1Bϑ2

)
ΣL

ϑ2

(
T−1Bϑ2

)T
eA

T
ϑ1

udu,

which, by Lemma 3.12, implies that (T−1Bϑ2
)ΣL

ϑ2
(T−1Bϑ2

)T = Bϑ1
ΣL

ϑ1
BT

ϑ1
.

Together with the last of the equations (3.12) and Proposition 3.6 it follows
that fϑ1

= fϑ2
, which contradicts Assumption C4 that Y ϑ1

and Y ϑ2
are not

L2-observationally equivalent.

3.5. Asymptotic properties of the QML estimator

In this section we apply the theory that we developed in Section 2 for the QML
estimation of general discrete-time linear state space models to the estimation of
continuous-time linear state space models or, equivalently, multivariate CARMA
processes. We have already seen that a discretely observed MCARMA process
can be represented by a discrete-time state space model and that, thus, a para-
metric family of MCARMA processes induces a parametric family of discrete-
time state space models. Eqs. (3.9) show that sampling with spacing h maps the
continuous-time state space models (Aϑ, Bϑ, Cϑ,Lϑ)ϑ∈Θ to the discrete-time
state space models

(
eAϑh, Cϑ,N

(h)
ϑ
,0
)
ϑ∈Θ

, N
(h)
ϑ,n =

∫ nh

(n−1)h

eAϑuBϑdLϑ(u). (3.13)

which are not in the innovations form (1.2). The QML estimator ϑ̂
L,(h)

is defined
by Eq. (2.15), applied to the state space model (3.13), that is

ϑ̂
L,(h)

= argmin
ϑ∈Θ L̂

(h)(ϑ,yL,(h)), (3.14a)

L̂
(h)(ϑ,yL,(h)) =

L∑

n=1

[
d log 2π + log det V

(h)
ϑ

+ ε̂
(h),T
ϑ,n V

(h),−1
ϑ

ε̂
(h)
ϑ,n

]
, (3.14b)
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where ε̂
(h)
ϑ

are the pseudo-innovations of the observed process Y (h) = Y
(h)
ϑ0

,

which are computed from the sample yL,(h) = (Y
(h)
1 , . . . ,Y

(h)
L ) via the recursion

X̂ϑ,n =
(
eAϑh −K

(h)
ϑ
Cϑ

)
X̂ϑ,n−1 +K

(h)
ϑ

Y
(h)
n−1, ε̂

(h)
ϑ,n = Y (h)

n − CϑX̂ϑ,n.

The initial value X̂ϑ,1 = X̂ϑ,i may be chosen in the same ways as in the discrete-

time case. The steady-state Kalman gain matrices K
(h)
ϑ

and pseudo-covariances

V
(h)
ϑ

are computed as functions of the unique positive definite solution Ω
(h)
ϑ

to
the discrete-time algebraic Riccati equation

Ω
(h)
ϑ

= eAϑhΩ
(h)
ϑ

eA
T
ϑ
h +�Σ

(h)
ϑ

−
[
eAϑhΩ

(h)
ϑ
CT

ϑ

] [
CϑΩ

(h)
ϑ
CT

ϑ

]−1 [
eAϑhΩ

(h)
ϑ
CT

ϑ

]T
,

namely

K
(h)
ϑ

=
[
eAϑhΩ

(h)
ϑ
CT

ϑ

] [
CϑΩ

(h)
ϑ
CT

ϑ

]−1

, V
(h)
ϑ

= CϑΩ
(h)
ϑ
CT

ϑ
.

In order to obtain the asymptotic normality of the QML estimator for mul-
tivariate CARMA processes, it is therefore only necessary to make sure that
Assumptions D1 to D10 hold for the model (3.13). The discussion of identifi-
ability in the previous section allows us to specify accessible conditions on the
parametrization of the continuous-time model under which the QML estimator
is strongly consistent. In addition to the identifiability assumptions C3 to C5,
we impose the following conditions.

Assumption C6. The parameter space Θ is a compact subset of Rr.

Assumption C7. The functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, and ϑ 7→ ΣL

ϑ
are

continuous. Moreover, for each ϑ ∈ Θ, the matrix Cϑ has full rank.

Lemma 3.14. If Assumptions C1 to C3, C6 and C7 are satisfied, then the

family
(
eAϑh, Cϑ,N

(h)
ϑ
,0
)
ϑ∈Θ

of discrete-time state space models satisfies As-
sumptions D1 to D4.

Proof. Assumption D1 is clear. Assumption D2 follows from the observation that

the functions A 7→ eA and (A,B,Σ) 7→
∫ h

0
eAuBΣBT eA

Tudu are continuous. By
Assumptions C2, C6 and C7, and the fact that the eigenvalues of a matrix are
continuous functions of its entries, it follows that there exists a positive real
number ǫ such that, for each ϑ ∈ Θ, the eigenvalues of Aϑ have real parts less
than or equal to −ǫ. The observation that the eigenvalues of eA are given by the
exponentials of the eigenvalues of A thus shows that Assumption D3, i) holds
with ρ ≔ e−ǫh < 1. Assumption C1 that the matrices ΣL

ϑ
are non-singular and

the minimality assumption C3 imply by Corollary 3.9 that the noise covariance

matrices�Σ
(h)
ϑ

= EN
(h)
ϑ,nN

(h),T
ϑ,n are non-singular, and thus Assumption D3, ii)

holds. Further, by Proposition 2.1, the matrices Ωϑ are non-singular, and so are,
because the matrices Cϑ are assumed to be of full rank, the matrices Vϑ; this
means that Assumption D3, iii) is satisfied. Assumption D4 is a consequence
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of Proposition 3.6, which states that the noise sequences Nϑ are i. i. d. and in
particular ergodic; their second moments are finite because of Assumption C1.

In order to be able to show that the QML estimator ϑ̂
L,(h)

is asymptotically
normally distributed, we impose the following conditions in addition to the ones
described so far.

Assumption C8. The true parameter value ϑ0 is an element of the interior
of Θ.

Assumption C9. The functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, and ϑ 7→ ΣL

ϑ
are

three times continuously differentiable.

Assumption C10. There exists a positive number δ such that E ‖Lϑ0
(1)‖4+δ

<
∞.

Lemma 3.15. Assumptions C8 to C10 imply that Assumptions D6 to D8 hold
for the model (3.13).

Proof. Assumption D6 is clear. Assumption D7 follows from the fact that the

functions A 7→ eA and (A,B,Σ) 7→
∫ h

0
eAuBΣBT eA

Tudu are not only continu-
ous, but infinitely often differentiable. For Assumption D8 we need to show that
the random variables N ≔ Nϑ0,1 have bounded (4 + δ)th absolute moments.
It follows from Rajput and Rosiński (1989, Theorem 2.7) that N is infinitely
divisible with characteristic triplet (γ,Σ, ν), and that

∫

‖x‖>1

‖x‖4+δ ν(dx) 6

∫ 1

0

∥∥∥eAϑ0
(h−s)Bϑ0

∥∥∥
4+δ

ds

∫

‖x‖>1

‖x‖4+δ νLϑ0 (dx).

The first factor on the right side is finite by Assumptions C6 and C9, the second
by Assumption C10 and the equivalence of finiteness of the αth absolute moment
of an infinitely divisible distribution and finiteness of the αth absolute moments
of the corresponding Lévy measure restricted to the exterior of the unit ball
(Sato, 1999, Corollary 25.8). The same corollary shows that E ‖N‖4+δ

< ∞
and thus Assumption D8.

Our final assumption is the analogue of Assumption D10. It will ensure that

the Fisher information matrix of the QML estimator ϑ̂
L,(h)

is non-singular by
imposing a non-degeneracy condition on the parametrization of the model.

Assumption C11. There exists a positive index j0 such that the
[
(j0 + 2)d2

]
×

r matrix (∇ϑψ̃ϑ,j0)ϑ=ϑ0 has rank r, where ψ̃ϑ,j is given by



[
1j0+1 ⊗K

(h),T
ϑ

⊗ Cϑ

] [ (
vec e1Nh

)T (
vec eAϑh

)T · · ·
(
vec eA

j

ϑ
h
)T ]T

vecVϑ


.
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Theorem 3.16 (Consistency and asymptotic normality of ϑ̂
L,(h)

). Assume
that (Aϑ, Bϑ, Cϑ,Lϑ)ϑ∈Θ is a parametric family of continuous-time state space

models, and denote by yL,(h) = (Y
(h)
ϑ0.1

, . . . ,Y
(h)
ϑ0.L

) a sample of length L from the
discretely observed output process corresponding to the parameter value ϑ0 ∈ Θ.
Under Assumptions C1 to C7 the QML estimator

ϑ̂
L,(h)

= argminϑ∈Θ L̂ (ϑ,yL,(h)) (3.15)

is strongly consistent, i. e.

ϑ̂
L,(h) a. s.−−−−→

L→∞
ϑ0. (3.16)

If, moreover, Assumptions C8 to C11 hold, then ϑ̂
L,(h)

is asymptotically nor-
mally distributed, i. e.

√
L
(
ϑ̂
L,(h) − ϑ0

)
d−−−−→

L→∞
N (0,Ξ), (3.17)

where the asymptotic covariance matrix Ξ = J−1IJ−1 is given by

I = lim
L→∞

L−1
Var

(
∇ϑL

(
ϑ0,y

L
))
, J = lim

L→∞
L−1∇2

ϑL
(
ϑ0,y

L
)
. (3.18)

Proof. Strong consistency of ϑ̂
L,(h)

is a consequence of Theorem 2.4 if we can
show that the parametric family

(
eAϑh, Cϑ,Nϑ,0

)
ϑ∈Θ

of discrete-time state
space models satisfies Assumptions D1 to D5. The first four of these are shown
to hold in Lemma 3.14. For the last one, we observe that, by Lemma 2.3, As-
sumption D5 is equivalent to the family of state space models (3.13) being
identifiable from the spectral density. Under Assumptions C3 to C5 this is guar-
anteed by Theorem 3.13.

In order to prove Eq. (3.17), we shall apply Theorem 2.5 and therefore need to
verify Assumptions D6 to D10 for the state space models

(
eAϑh, Cϑ,Nϑ,0

)
ϑ∈Θ

.
The first three hold by Lemma 3.15, the last one as a reformulation of Assump-
tion C11. Assumption D9, that the strong mixing coefficients α of a sampled
multivariate CARMA process satisfy

∑
m[α(m)]δ/(2+δ) < ∞, follows from As-

sumption C1 and Marquardt and Stelzer (2007, Proposition 3.34), where it was
shown that MCARMA processes with a finite logarithmic moment are exponen-
tially strongly mixing.

4. Practical applicability

In this section we complement the theoretical results of Sections 2 and 3 by com-
menting on their applicability in practical situations. Canonical parametriza-
tions are a classical subject of research about discrete-time dynamical systems,
and most of the results apply also to the continuous-time case; without going
into detail we present the basic notions and results about these parametriza-
tions. The assertions of Theorem 3.16 are confirmed by a simulation study for
a bivariate non-Gaussian CARMA process. Finally, we estimate the parameters
of a CARMA model for a bivariate time series from economics using our QML
approach.
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4.1. Canonical parametrizations

We present parametrizations of multivariate CARMA processes that satisfy the
identifiability conditions C3 and C4, as well as the smoothness conditions C7
and C9; if, in addition, the parameter space Θ is restricted so that Assump-
tions C2, C5, C6 and C8 hold, and the driving Lévy process satisfies Assump-
tion C1, the canonically parametrized MCARMA model can be estimated con-
sistently. In order for this estimate to be asymptotically normally distributed,
one must additionally impose Assumption C10 on the Lévy process and check
that Assumption C11 holds – a condition which we are unable to verify ana-
lytically for the general model; for explicit parametrizations, however, it can be
checked numerically with moderate computational effort. The parametrizations
are well-known from the discrete-time setting; detailed descriptions with proofs
can be found in Hannan and Deistler (1988) or, from a slightly different per-
spective, in the control theory literature (Gevers, 1986, and references therein).
We begin with a canonical decomposition for rational matrix functions.

Theorem 4.1 (Bernstein (2005, Theorem 4.7.5)). Let H ∈ Md,m(R{z}) be a
rational matrix function of rank r. There exist matrices S1 ∈ Md(R[z]) and
S2 ∈Mm(R[z]) with constant determinant, such that H = S1MS2, where

M =

[
diag {ǫi/ψi}ri=1 0r,m−r

0d−r,r 0d−r,m−r

]
∈Md,m(R{z}), (4.1)

and ǫ1, . . . ǫr, ψ1, . . . , ψr ∈ R[z] are monic polynomials uniquely determined by
H satisfying the following conditions: for each i = 1, . . . , r, the polynomials ǫi
and ψi have no common roots, and for each i = 1, . . . , r − 1, the polynomial
ǫi (ψi+1) divides the polynomial ǫi+1 (ψi). The triple (S1,M, S2) is called the
Smith–McMillan decomposition of H.

The degrees νi of the denominator polynomials ψi in the Smith–McMillan
decomposition of a rational matrix function H are called the Kronecker indices
of H , and they define the vector ν = (ν1, . . . , νd) ∈ Nd, where we set νk = 0 for

k = r + 1, . . . , d. They satisfy the important relation
∑d

i=1 νi = δM (H), where
δM (H) denotes the McMillan degree of H , i. e. the smallest possible dimension
of an algebraic realization of H , see Definition 3.4. For 1 6 i, j 6 d, we also
define the integers νij = min{νi+I{i>j}, νj}, and if the Kronecker indices of the
transfer function of an MCARMA process Y are ν, we call Y an MCARMAν

process.

Theorem 4.2 (Echelon state space realization, Guidorzi (1975, Section 3)).
For natural numbers d and m, let H ∈ Md,m(R{z}) be a rational matrix func-
tion with Kronecker indices ν = (ν1, . . . , νd). Then a unique minimal algebraic
realization (A,B,C) of H of dimension N = δM (H) is given by the following
structure.

(i) The matrix A = (Aij)i,j=1,...,d ∈ MN(R) is a block matrix with blocks
Aij ∈Mνi,νj (R) given by



QMLE for strongly mixing SSMs and MCARMA processes 2227

Aij =




0 · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · 0

αij,1 · · · αij,νij 0 · · · 0


+ δi,j




0
1νi−1...

0
0 · · · 0


 ,

(4.2a)
(ii) B = (bij) ∈MN,m(R) unrestricted,
(iii) if νi > 0, i = 1, . . . , d, then

C =




1 0 . . . 0
... 0 0 . . . 0

...
...

0(d−1),νd

0(d−1),ν1

... 1 0 . . . 0
...

...
... 0(d−2),ν2

...
... 1 0 . . . 0


 .

(4.2b)

If νi = 0, the elements of the ith row of C are also freely varying, but we
concentrate here on the case where all Kronecker indices νi are positive. To
compute ν as well as the coefficients αij,k and bij for a given rational matrix
function H , several numerically stable and efficient algorithms are available in
the literature (see, e. g., Rózsa and Sinha, 1975, and the references therein). The
orthogonal invariance inherent in spectral factorization (see Theorem 3.5) im-
plies that this parametrization alone does not ensure identifiability. One remedy
is to restrict the parametrization to transfer functions H satisfying H(0) = H0,
for a non-singular matrix H0. To see how one must constrain the parameters
αij,k, bij in order to ensure this normalization, we work in terms of left matrix
fraction descriptions.

Theorem 4.3 (Echelon MCARMA realization, Guidorzi (1975, Section 3)). For
positive integers d and m, let H ∈ Md,m(R{z}) be a rational matrix function
with Kronecker indices ν = (ν1, . . . , νd). Assume that (A,B,C) is a realiza-
tion of H, parametrized as in Eqs. (4.2). Then a unique left matrix fraction
description P−1Q of H is given by P (z) = [pij(z)], Q(z) = [qij(z)], where

pij(z) = δi,jz
νi −

νij∑

k=1

αij,kz
k−1, qij(z) =

νi∑

k=1

κν1+···+νi−1+k,jz
k−1, (4.3)

and the coefficient κi,j is the (i, j)th entry of the matrix K = TB, where the
matrix T = (Tij)i,j=1,...,d ∈MN (R) is a block matrix with blocks Tij ∈Mνi,νj (R)
given by



−αij,2 . . . −αij,νij 0 . . . 0
... . .

. ...

−αij,νij

...

0
...

...
...

0 . . . . . . . . . . . . 0




+ δi,j




0 0 . . . . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

... . .
. ...

...
0 1 . . . 0 0
1 0 . . . . . . 0 0




.
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Table 1

Canonical state space realizations (A,B, C) of normalized (H(0) = −12) rational transfer
functions in M2(R{z}) with different Kronecker indices ν; the number of parameters, n(ν),

includes three parameters for a covariance matrix ΣL

ν n(ν) A B C

(1, 1) 7

(

ϑ1 ϑ2

ϑ3 ϑ4

) (

ϑ1 ϑ2

ϑ3 ϑ4

) (

1 0
0 1

)

(1, 2) 10





ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5









ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7





(

1 0 0
0 1 0

)

(2, 1) 11





0 1 0
ϑ1 ϑ2 ϑ3

ϑ4 ϑ5 ϑ6









ϑ7 ϑ8

ϑ1 + ϑ2ϑ7 ϑ3 + ϑ2ϑ8

ϑ4 + ϑ5ϑ7 ϑ6 + ϑ5ϑ8





(

1 0 0
0 0 1

)

(2, 2) 15









0 1 0 0
ϑ1 ϑ2 ϑ3 ϑ4

0 0 0 1
ϑ5 ϑ6 ϑ7 ϑ8

















ϑ9 ϑ10

ϑ1 + ϑ4ϑ11 + ϑ2ϑ9 ϑ3 + ϑ2ϑ10 + ϑ4ϑ12

ϑ11 ϑ12

ϑ5 + ϑ8ϑ11 + ϑ6ϑ9 ϑ7 + ϑ6ϑ10 + ϑ8ϑ12









(

1 0 0 0
0 0 1 0

)

Table 2

Canonical MCARMA realizations (P,Q) with order (p, q) of normalized (H(0) = −12)
rational transfer functions in M2(R{z}) with different Kronecker indices ν; the number of

parameters, n(ν), includes three parameters for a covariance matrix ΣL

ν n(ν) P (z) Q(z) (p, q)

(1, 1) 7

(

z − ϑ1 −ϑ2

−ϑ3 z − ϑ4

) (

ϑ1 ϑ2

ϑ3 ϑ4

)

(1, 0)

(1, 2) 10

(

z − ϑ1 −ϑ2

−ϑ3 z2 − ϑ4z − ϑ5

) (

ϑ1 ϑ2

ϑ6z + ϑ3 ϑ7z + ϑ5

)

(2, 1)

(2, 1) 11

(

z2 − ϑ1z − ϑ2 −ϑ3

−ϑ4z − ϑ5 z − ϑ6

) (

ϑ7z + ϑ2 ϑ8z + ϑ3

ϑ5 ϑ6

)

(2, 1)

(2, 2) 15

(

z2 − ϑ1z − ϑ2 −ϑ3z − ϑ4

−ϑ5z − ϑ6 z2 − ϑ7z − ϑ8

) (

ϑ9z + ϑ2 ϑ10z + ϑ4

ϑ11z + ϑ6 ϑ12z + ϑ8

)

(2, 1)

The orders p, q of the polynomials P,Q satisfy p = max{ν1, . . . , νd} and
q 6 p − 1. Using this parametrization, there are different ways to impose
the normalization H(0) = H0 ∈ Md,m(R). One first observes that the spe-
cial structure of the polynomials P and Q implies that H(0) = P (0)−1Q(0) =
−(αij,1)

−1
ij (κν1+···+νi−1+1,j)ij . The state space parametrization (A,B,C) given

by Eqs. (4.2) therefore satisfies H(0) = −CA−1B = H0 if one makes the coeffi-
cients αij,1 functionally dependent on the free parameters αij,m, m = 1, . . . νij
and bij by setting αij,1 = −[(κν1+···+νk−1+1,l)klH

∼1
0 ]ij , where κij are the entries

of the matrix K appearing in Theorem 4.3 and H∼1
0 is a right inverse of H0.

Another possibility, which has the advantage of preserving the multi-companion
structure of the matrix A, is to keep the αij,1 as free parameters, and to restrict
some of the entries of the matrix B instead. Since | detK| = 1 and the matrix T
is thus invertible, the coefficients bij can be written as B = T−1K. Replacing the
(ν1+· · ·+νi−1+1, j)th entry ofK by the (i, j)th entry of the matrix−(αkl,1)klH0

makes some of the bij functionally dependent on the entries of the matrix A,
and results in a state space representation with prescribed Kronecker indices
and satisfying H(0) = H0. This latter method has also the advantage that it
does not require the matrix H0 to possess a right inverse. In the special case
that d = m and H0 = −1d, it suffices to set κν1+···+νi−1+1,j = αij,1. Examples
of normalized low-order canonical parametrizations are given in Tables 1 and 2.
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4.2. A simulation study

We present a simulation study for a bivariate CARMA process with Kronecker
indices (1, 2), i. e. CARMA indices (p, q) = (2, 1). As the driving Lévy process
we chose a zero-mean normal-inverse Gaussian (NIG) process (L(t))t∈R. Such
processes have been found to be useful in the modelling of stock returns and
stochastic volatility, as well as turbulence data (see, e. g., Barndorff-Nielsen,
1997; Rydberg, 1997). The distribution of the increments L(t) − L(t − 1) of a
bivariate normal-inverse Gaussian Lévy process is characterized by the density

fNIG(x;µ, α,β, δ,∆) =
δ exp(δκ)

2π

exp(〈βx〉)
exp(αg(x))

1 + αg(x)

g(x)3
, x ∈ R

2,

where

g(x) =
√
δ2 + 〈x− µ,∆(x− µ〉, κ2 = α2 − 〈β,∆β〉 > 0,

and µ ∈ R2 is a location parameter, α > 0 is a shape parameter, β ∈ R2 is a
symmetry parameter, δ > 0 is a scale parameter and ∆ ∈ M+

2 (R), det∆ = 1,
determines the dependence between the two components of (L(t))t∈R. For our
simulation study we chose parameters

δ = 1, α = 3, β = (1, 1)T , ∆ =

(
5/4 −1/2
−1/2 1

)
, µ = − 1

2
√
31

(3, 2)T ,

(4.4)
resulting in a skewed distribution with mean zero and covariance

ΣL ≈
(

0.4751 −0.1622
−0.1622 0.3708

)
.

A sample of 350 independent replicates of the bivariate CARMA1,2 process
(Y (t))t∈R driven by a normal-inverse Gaussian Lévy process (L(t))t∈R with
parameters given in Eq. (4.4) were simulated on the equidistant time grid
0, 0.01, . . . , 2000 by applying an Euler scheme to the stochastic differential equa-
tion (3.5) making use of the canonical parametrization given in Table 1. For the
simulation, the initial value X(0) = 03 and parameters

ϑ1:7 = (−1,−2, 1,−2,−3, 1, 2)

was used. Each realization was sampled at integer times (h = 1), and QML
estimates of ϑ1, . . . , ϑ7 as well as (ϑ8, ϑ9, ϑ10) ≔ vechΣL were computed by
numerical maximization of the quasi log-likelihood function using a differential
evolution optimization routine (Price, Storn and Lampinen, 2005) in conjunc-
tion with a subspace trust-region method. In Table 3 the sample means and
sampled standard deviations of the estimates are reported. Moreover, the stan-
dard deviations were estimated using the square roots of the diagonal entries
of the asymptotic covariance matrix (2.19) with s(L) = ⌊L/ logL⌋1/3, and the
estimates are also displayed in Table 3. One sees that the bias, the difference
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Table 3

QML estimates for the parameters of a bivariate NIG-driven CARMA1,2 process observed
at integer times over the time horizon [0, 2000]. The second column reports the empirical
mean of the estimators as obtained from 350 independent paths; the third and fourth

columns contain the resulting bias and the sample standard deviation of the estimators,
respectively, while the last column reports the average of the expected standard deviations of

the estimators as obtained from the asymptotic normality result Theorem 3.16

parameter sample mean bias sample std. dev. mean est. std. dev.
ϑ1 -1.0001 0.0001 0.0354 0.0381
ϑ2 -2.0078 0.0078 0.0479 0.0539
ϑ3 1.0051 -0.0051 0.1276 0.1321
ϑ4 -2.0068 0.0068 0.1009 0.1202
ϑ5 -2.9988 -0.0012 0.1587 0.1820
ϑ6 1.0255 -0.0255 0.1285 0.1382
ϑ7 2.0023 -0.0023 0.0987 0.1061
ϑ8 0.4723 -0.0028 0.0457 0.0517
ϑ9 -0.1654 0.0032 0.0306 0.0346
ϑ10 0.3732 0.0024 0.0286 0.0378

between the sample mean and the true parameter value, is very small in accor-
dance with the asymptotic consistency of the estimator. Moreover, the estimated
standard deviation is always slightly larger than the sample standard deviation,
yet close enough to provide a useful approximation for, e. g., the construction
of confidence regions. In order not to underestimate the uncertainty in the es-
timate, such a conservative approximation to the true standard deviations is
desirable in practice. Overall, the estimation procedure performs very well in
the simulation study.
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driving Lévy process of multivariate CARMA processes from discrete obser-
vations. J. Multivariate Anal. to appear.

Brown, B. M. and Hewitt, J. I. (1975). Asymptotic likelihood theory for
diffusion processes. J. Appl. Probab. 12 228–238. MR0375693 (51 ##11884)

Cont, R. (2001). Empirical properties of asset returns: stylized facts and sta-
tistical issues. Quant. Financ. 1 223–236.

Davydov, Y. A. (1968). Convergence of Distributions Generated by Stationary
Stochastic Processes. Theory Probab. Appl. 13 691–696.

Doob, J. L. (1944). The elementary Gaussian processes. Ann. Math. Statistics
15 229–282. MR0010931

Durrett, R. (2010). Probability: theory and examples, Fourth ed. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, Cambridge. MR2722836 (2011e:60001)

Fasen, V. (2012). Limit Theory for High Frequency Sampled MCARMA
Models. Submitted for publication. available at: http://www.math.ethz.ch/

~vfasen/

Fasen, V. and Fuchs, F. (2012). On the Limit Behavior of the Periodogram
of High-Frequency Sampled Stable CARMA Processes. Stochastic Process.
Appl. to appear.

Fasen, V. and Fuchs, F. (2012). Spectral Estimates for High-Frequency Sam-
pled CARMA Processes. Submitted for publication. available at: http://www.
math.ethz.ch/~vfasen/

Feigin, P. D. (1976). Maximum likelihood estimation for continuous-
time stochastic processes. Adv. Appl. Probab. 8 712–736.
MR0426342 (54 ##14285)

http://www.ams.org/mathscinet-getitem?mr=2123424
http://www.ams.org/mathscinet-getitem?mr=MR2325294
http://www.ams.org/mathscinet-getitem?mr=MR1820952
http://www.ams.org/mathscinet-getitem?mr=MR1093459
https://www.tu-braunschweig.de/stochastik/team/kreiss/forschung/publications
https://www.tu-braunschweig.de/stochastik/team/kreiss/forschung/publications
http://www.ams.org/mathscinet-getitem?mr=0375693
http://www.ams.org/mathscinet-getitem?mr=MR0010931
http://www.ams.org/mathscinet-getitem?mr=2722836
http://www.math.ethz.ch/~vfasen/
http://www.math.ethz.ch/~vfasen/
http://www.math.ethz.ch/~vfasen/
http://www.math.ethz.ch/~vfasen/
http://www.ams.org/mathscinet-getitem?mr=0426342


2232 E. Schlemm and R. Stelzer

Ferguson, T. S. (1996). A course in large sample theory. Texts in Statistical
Science Series. Chapman & Hall, London. MR1699953 (2000g:62001)
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