
Electronic Journal of Statistics

Vol. 6 (2012) 1040–1058
ISSN: 1935-7524
DOI: 10.1214/12-EJS701

Empirical likelihood inference

for partially time-varying coefficient

errors-in-variables models

Guo-Liang Fan and Hong-Xia Xu

School of Mathematics & Physics, Anhui Polytechnic University, Wuhu 241000,
P. R. China

e-mail: guoliangfan@yahoo.com; hongxiaxu@ahpu.edu.cn

Han-Ying Liang

Department of Mathematics, Tongji University, Shanghai 200092, P. R. China
e-mail: hyliang83@yahoo.com

Abstract: In this paper, the empirical likelihood inferences for partially
time-varying coefficient errors-in-variables model with dependent observa-
tions are investigated. We propose an empirical log-likelihood ratio function
for the regression parameters and show that its limiting distribution is a
mixture of central chi-squared distributions. In order that the Wilks’ phe-
nomenon holds, we construct an adjusted empirical log-likelihood ratio for
the regression parameters. The adjusted empirical log-likelihood is shown
to have a standard chi-squared limiting distribution. Simulations show that
the proposed confidence regions have satisfactory performance.
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1. Introduction

In recent years, there has been increasing interest and activity in the general
area of time-varying models in statistics due to they have many applications in
economics and finance. For example, the market model in finance relates the
return of an individual stock to the return of a market index or another in-
dividual stock and the coefficient usually is said to be beta-coefficient in the
capital assets pricing model (see [28], for example). Also, [29] investigated that
beta-coefficient might vary over time; [1, 20, 25] studied parametric and nonpara-
metric time-varying coefficient models. Recently, [11] introduced the following
partially time-varying coefficient model

Yi = XT
i β + ZT

i α(ti) + εi, ti = i/n, i = 1, . . . , n, (1.1)

where Yi is the response, β = (β1, . . . , βp)
T is a vector of p-dimensional unknown

parameters, α(·) = (α1(·), . . . , αq(·))T is a q-dimensional vector of unspecified
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smooth coefficient functions, Xi = (Xi1, . . . , Xip)
T and Zi = (Zi1, . . . , Ziq)

T

are p-dimensional and q-dimensional random vector respectively and εi is the
random error.

It is obvious that the partially time-varying coefficient model (1.1) covers
many interesting time series models (see [11], for more details). [11] recent ap-
plied the profile least squares approach to estimate the regression parameter
and the nonlinear coefficient function in the model (1.1), and established the
asymptotic normality of the proposed estimators under dependent assumptions,
meanwhile, they also discussed the generalized likelihood ratio test for the model
(1.1). Based on the asymptotic normality of the estimator for β obtained by [11],
one can construct a confidence region for parameter β. However, in many situ-
ations, there exist covariate measurement errors. For example, it has been well
documented that covariates such as blood pressure, urinary sodium chloride
level, and exposure to pollutants are subject to measurement errors, and these
cause difficulties in conducting a statistical analysis that involves them. If the
covariate variable Xi is measured with error and is not directly observable, in-
stead, Xi is observed through ξi = Xi + ηi, where ηi is the measurement error
with mean zero. Specifically, we consider the following partially time-varying
errors-in-variables (EV) model

{
Yi = XT

i β + ZT
i α(ti) + εi,

ξi = Xi + ηi,
i = 1, . . . , n, (1.2)

where ηi is independent and identically distributed (i.i.d.) with mean zero and
covariance matrix Ση, and is independent of (Xi, Zi, εi). In the last 20 years,
a lot of investigative effort has been dedicated to the EV models in the liter-
ature. Many studies were focused on the estimation of the involved parameter
in the models, see [3, 13, 27, 4] for example. Recently, [35] studied the semi-
parametric varying-coefficient partially linear EV model with random ti. When
{ti} is fixed-design, then model (1.2) contains a deterministic time trend func-
tion, which implies that {Yi} in model (1.2) may be nonstationary. In practice,
we often deal with nonstationary components when tackling econometric and
financial issues from a time perspective. For recent development of parametric
and nonparametric statistical inference with nonstationary time series, we refer
to [19, 9] and the references therein.

To the best of our knowledge, little is known about the asymptotic normality
and the construction of empirical likelihood (EL) confidence regions of β for
the partially time-varying EV model (1.2). In order to construct the confidence
regions for the unknown parameter β in the partially time-varying EV model
(1.2), one can use normal approximation-based method or the EL method. But
it is well known that the EL method, which was introduced by [17], has many
advantages over normal approximation-based method. The most appealing fea-
tures of the EL method is that one can construct confidence regions without
estimating the covariance of the estimator and the EL method uses only the data
to determine the shape and orientation of confidence regions. In addition, the
confidence region derived from the limiting normal distribution is predetermined
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to be symmetric which may not be adequate when the underlying distribution
is typically asymmetric. More discussion on advantages of the EL method over
the existing methods can be found in the recent monograph of [18]. Therefore,
the EL method has been used by many authors for various regression models,
which include [21, 30] for partially linear regression model, [36] for semiparamet-
ric varying-coefficient partially linear regression model, [38] for partially linear
single-index model, [12] for partially linear EV model, [6] for partially linear re-
gression model with linear process errors, [7] for heteroscedastic partially linear
regression model, [8, 32] for semiparametric varying-coefficient partially linear
EV model and so on.

Most of known papers related to the EL method always assumed that the
data are i.i.d. However, the independence assumption for the data is not always
appropriate in applications, especially for sequentially collected economic data,
which often exhibit evident dependence in the data. Recently, the EL method
with dependent data has attracted increasing attention from statisticians. For
example, [10, 2] studied blockwise EL method with strongly dependent data. [14]
used the EL method to construct confidence intervals of conditional density with
strong dependent data. [15] employed the EL method to construct confidence
intervals for a conditional quantile with left-truncated and strong dependent
data.

In this paper, our aim is to use the EL method to construct confidence re-
gions of β in the partially time-varying coefficient EV model (1.2) with depen-
dent observations. Since the empirical log-likelihood ratio has not a standard
chi-squared limiting distribution, we further define an adjusted empirical log-
likelihood ratio, which has standard chi-squared limiting distribution. Based on
the results, one can construct immediately an approximate confidence region for
the regression parameter.

Throughout we assume that {(Xi, Zi, εi)} is a sequence of stationary α-
mixing random variables. Recall that a sequence {ξk, k ≥ 1} is said to be
α-mixing if the α-mixing coefficient

α(n) :
def
= sup

k≥1
sup{|P (A ∩ B)− P (A)P (B)| : A ∈ F∞

n+k,B ∈ Fk
1 }

converges to zero as n → ∞, where Fb
a = σ{ξi, a ≤ i ≤ b} denotes the σ-algebra

generated by ξa, ξa+1, . . . , ξb. Among various mixing conditions used in the lit-
erature, the α-mixing is reasonably weak and is known to be fulfilled by many
stochastic processes including many time series models. For example, [34] de-
rived the conditions under which a linear process is α-mixing. In fact, under very
mild assumptions linear autoregressive and more generally bilinear time series
models are strongly mixing with mixing coefficients decaying exponentially, i.e.,
α(k) = O(ρk) for some 0 < ρ < 1; see [5], page 99, for more details.

The rest of this paper is organized as follows. Section 2 proposes the empirical
log-likelihood ratio function for β. Assumptions and asymptotic distribution of
the adjusted empirical log-likelihood ratio are given in Section 3. Some simula-
tion studies and a real-data example are conducted in Section 4. Section 5 gives
the proof of the main results.
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2. Empirical likelihood of the parametric components

In this section we present the empirical log-likelihood ratio for the parametric
components in model (1.2). First, we give estimators of the nonparametric com-
ponents αj(·), j = 1, . . . , q. Our basic idea is as follows: suppose β is known,
then the model (1.2) can be reduced to a varying-coefficient regression model
which can be written as

Yi −
p∑

j=1

Xijβj =

q∑

j=1

Zijαj(ti) + εi, 1 ≤ i ≤ n. (2.1)

Note that E(ZT
i )α(ti) = E(Yi − XT

i β) = E(Yi − ξTi β). Hence, the varying
coefficient functions {αj(·), j = 1, . . . , q} in (2.1) can be estimated by a local
linear regression technique. That is, for t in a small neighborhood of t0, one can
approximated αj(t) locally by a linear function

αj(t) ≈ αj(t0) + α′
j(t0)(t− t0) ≡ aj + bj(t− t0), j = 1, . . . , q,

where α′
j(t) = dαj(t)/dt. This leads to the following weighted local least-squares

problem: find {(aj, bj), j = 1, . . . , q} to minimize

n∑

i=1

{(
Yi −

p∑

j=1

ξijβj

)
−

q∑

j=1

[aj + bj(ti − t0)]Zij

}2

Kh(ti − t0), (2.2)

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h := hn is a sequence of
positive numbers tending to zero, called bandwidth.

Set Y = (Y1, . . . , Yn)
T , X = (X1, . . . , Xn)

T , ξ = (ξ1, . . . , ξn)
T , W (t) =

diag(Kh(t1 − t), . . . ,Kh(tn − t)) and

D(t) =




ZT
1

t1−t
h Zτ

1
...

...
ZT
n

tn−t
h Zτ

n


 .

Then the solution to problem (2.2) is given by

(α̂1(t), . . . , α̂q(t), hb̂1(t), . . . , hb̂q(t))
T = [DT (t)W (t)D(t)]−1DT (t)W (t)(Y −ξβ).

Hence we can estimate the coefficient functions {αj(·), j = 1, . . . , q} by

α̂(t) = (α̂1(t), . . . , α̂q(t))
T = (Iq 0q)[D

T (t)W (t)D(t)]−1DT (t)W (t)(Y − ξβ),

where Iq is the q × q identity matrix and 0q is the q × q null matrix.

Let X̃ = (In − S)X , ξ̃ = (In − S)ξ, Ỹ = (In − S)Y and

Hi(β) =
[
ξi −E(ξi|Zi)

][
Yi −E(Yi|Zi)− [ξi −E(ξi|Zi)]

Tβ
]
+Σηβ, i = 1, . . . , n,
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where In is the n× n identity matrix,

S =




(ZT
1 0T )[DT (t1)W (t1)D(t1)]

−1DT (t1)W (t1)
...

(ZT
n 0T )[DT (tn)W (tn)D(tn)]

−1DT (tn)W (tn)




and 0 is the q × 1 null vector.
It is easy to verify that E(Hi(β)) = 0 for i = 1, . . . , n, when β is the true

parameter. Hence, the problem of testing whether β is the true parameter is
equivalent to testing whether E(Hi(β)) = 0 for i = 1, . . . , n. By [17], this can
be done using the EL. However E(Yi|Zi) and E(ξi|Zi) are usually unknown.
Thus we should replace E(Yi|Zi) and E(ξi|Zi) by their estimators ST

i Y and
ST
i ξ, respectively, where Si is the i− th row of the matrix S. We now introduce

the auxiliary random vector

ηi(β) = ξ̃i[Yi − ξTi β − ZT
i α̂(ti)] + Σηβ = ξ̃i(Ỹi − ξ̃Ti β) + Σηβ. (2.3)

Therefore, an empirical log-likelihood ratio function for β is defined as

Ln(β) = −2max
{ n∑

i=1

log(npi) :

n∑

i=1

piηi(β) = 0, pi ≥ 0,

n∑

i=1

pi = 1
}
.

By the Lagrange multiplier method, one can obtain that pi =
1

n[1+λT ηi(β)]
, and

Ln(β) can be represented as

Ln(β) = 2

n∑

i=1

log{1 + λT ηi(β)}, (2.4)

where λ(β) is determined by

1

n

n∑

i=1

ηi(β)

1 + λT ηi(β)
= 0. (2.5)

3. Main results

In order to formulate the main results, we begin this section with making the
following assumptions. These assumptions are quite mild and can be easily
satisfied. They are also assumed in [11]. For convenience, let VZ = E[Z1Z

T
1 ],

VX = E[X1X
T
1 ], VZX = E[Z1X

T
1 ] and A⊗2 = AAT .

(A1) The kernel K(·) is a symmetric and Lipschitz continuous function with a
compact support [−1, 1].

(A2) (i) The matrices VZ and VX are no-singular,E[‖Z1‖2s] < ∞,E[‖X1‖2s] <
∞ and E[‖η1‖2s] < ∞ for some s > 4, where ‖ · ‖ is the L2 norm.

(ii) E[ε1|X1, Z1] = 0, E[|ε1|2s|X1, Z1] < ∞ a.s. and Eε21 = σ2.
(A3) {αj(·), j = 1, . . . , q} have continuous second derivatives.
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(A4) The α-mixing coefficient α(k) and the bandwidth h satisfy that

α(k) = O(k−γ), γ >
19s+ 12

2(s− 4)
, s > 4 and

nh2

log2 n
→ ∞, nh8 → 0.

With the assumptions above, we are ready to establish the main results.

Theorem 3.1. Suppose that (A1)-(A4) hold. For model (1.2), let β0 be the true
value of the parameter β. Then we have

Ln(β0)
d→ w1χ

2
1,1 + · · ·+ wpχ

2
1,p as n → ∞, (3.1)

where χ2
1,i(1 ≤ i ≤ p) are p independent standard chi-square random variables

with 1 degree of freedom, wi(1 ≤ i ≤ p) are eigenvalues of D = Σ−1
1 Σ with

Σ = lim
n→∞

Var
[ 1√

n

n∑

i=1

(Xi − V T
ZXV −1

Z Zi)εi

]
+ (VX − V T

ZXV −1
Z VZX)βT

0 Σηβ0

+ σ2Ση + E{(η1ηT1 − Ση)β0}⊗2 and

Σ1 =E
[
(X1 − V T

ZXV −1
Z Z1)(X1 − V T

ZXV −1
Z Z1)

T ε21
]

+
(
VX − V T

ZXV −1
Z VZX

)
βT
0 Σηβ0 + σ2Ση + E{(η1ηT1 − Ση)β0}⊗2.

Further, D is a consistent estimator of Σ̂−1
1n (β)Σ̂n(β), where

Σ̂n(β) =
1

n

{ n∑

i=1

[
ξ̃i(Ỹi − ξ̃Ti β) + Σηβ

]}⊗2

and

Σ̂1n(β) =
1

n

n∑

i=1

[
ξ̃i(Ỹi − ξ̃Ti β) + Σηβ

]⊗2

.

Remark 3.1. If (Xi, Zi, εi) is a independent sequence and E[ε21|X1, Z1] =
σ2 a.s., then

Σ =
(
VX − V T

ZXV −1
Z VZX

)
{σ2 + βT

0 Σηβ0}+ σ2Ση +E{(η1ηT1 −Ση)β0}⊗2 = Σ1.

So the conclusion of Theorem 3.1 becomes Ln(β0)
d→ χ2

p.

Remark 3.2. Theorem 3.1 can be used to construct the confidence regions
of β0 if the unknown weights wi(1 ≤ i ≤ n) can be estimated (see [22], for

example). For Σ and Σ1, we can take their consistent estimators Σ̂n(β̂I) and

Σ̂1n(β̂I) respectively, where β̂I is the modified profile least square estimator (see
[35]) defined by

β̂I = (ξ̃T ξ̃ − nΣη)
−1ξ̃T Ỹ .

However, Ση may be unknown in practice and must be estimated. The usual
method of doing so is by partial replication as mentioned by [13]. That is,
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suppose there are ki replicate measurements of ξi, and ξ̄i is their mean, so that
we observe ξij = Xi + ηij , j = 1, 2 . . . , ki. Then a consistent estimator for Ση is

Σ̂η =

∑n
i=1

∑ki

j=1(ξij − ξ̄i)(ξij − ξ̄i)
T

∑n
i=1(ki − 1)

.

Then we get the consistent estimator of D, i.e. D̂n = Σ̂−1
1n (β̂I)Σ̂n(β̂I). When

Ση is estimated by the partial replication, Ση should be substituted by Σ̂η

and the estimator of β, i.e. β̂I has to be modified too to accommodate the
replicates. See [13] for details. Therefore the consistent estimators ŵi,n of wi

are the eigenvalues of D̂n. Let cα,n be the 1 − α quantile of the conditional
distribution of ŵ1,nχ

2
1,1 + · · · + ŵp,nχ

2
1,p given the data (Xi, Zi, ti, Yi) for i =

1, . . . , n. In practice, one can get cα,n through Monte Carlo simulation. Then
the confidence region with asymptotically correct coverage probability 1−α can
be defined as Cα(β) = {β ∈ Rp : Ln(β) ≤ cα,n}.

Although Theorem 3.1 gives the confidence regions for β0, it increases the
burden of computing, this can be seen clearly from Remark 3.2. To attack this
difficulty, we present an adjusted EL function which has an asymptotic standard
chi-squared distribution. Let

Sn(β) =
( n∑

i=1

ηi(β)
)( n∑

i=1

ηi(β)
)T

.

Based on the idea of [24], the adjusted EL function can be defined as L̂n,ad(β) =

Rn(β)Ln(β), whereRn(β) = tr[Σ̂−1
n (β)Sn(β)]/tr[Σ̂

−1
1n (β)Sn(β)], Σ̂n(β) and Σ̂1n(β)

are defined in Theorem 3.1. The adjusted EL function has the following Wilks’
phenomenon.

Theorem 3.2. Under the conditions of (A1)-(A4), for model (1.2), if β0 is the
true value of the parameter, then

L̂n,ad(β0)
d→ χ2

p as n → ∞,

where χ2
p is a chi-square distributed with p degrees of freedom.

As a conclusion of Theorem 3.2, the confidence region for the parameter
vector β can be constructed. For any 0 < α < 1, let cα be the 1− α quantile of
chi-square distribution such that P (χ2

p > cα) = α, then

Ĉα,ad(β) = {β ∈ Rp : L̂n,ad(β) ≤ cα}

constitutes a confidence region for β0 with asymptotically correct coverage prob-
ability 1− α. If Ση is unknown, we can use its estimator Σ̂η to replace it.

Remark 3.3. When (Xi, Zi, εi) is an independent sequence, by the proof of

Lemmas 5.4-5.5, one can easily get Σ̂n(β)−Σ̂1n(β)
p→ 0, which implies Rn(β)

p→
1. Thus, the adjusted EL asymptotically reduces to the EL for the partially
time-varying coefficient EV model (1.2) with the absence of α-mixing.
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4. Simulation study

In this section, some simulated examples and a real data example are provided
to demonstrate the performance of the EL method in the paper.

4.1. Simulated examples

We first carry out some simulations to show the finite sample performance of
the proposed EL confidence region of β0.

Firstly, consider the following partially time-varying coefficient EV model:

{
Yi = XT

i β0 + ZT
i α(ti) + εi,

ξi = Xi + ηi,
i = 1, . . . , n, (4.1)

where β0 = (β1, β2)
T = (

√
2,
√
3)T /2, ti = i/n, α1(t) = sin(2πt), α2(t) =

(1 − e−2t)2/3, the measurement error ηi ∼ N(0,Ση) with Ση = 0.22I2, 0.4
2I2

and 0.62I2 respectively, I2 is 2× 2 identity matrix, εi, Xi and Zi are generated
by the AR(1) model as follows,

εi = 0.5εi−1 + ̺i, ̺i
i.i.d∼ N(0, 0.252),

Xi,1 = 0.6Xi−1,1 + ui,1, Xi,2 = 0.4Xi−1,2 + ui,2,

Zi,1 = 0.8Zi−1,1 + ei,1, Zi,2 = 0.2Zi−1,2 + ei,2,

where ui = (ui,1, ui,2)
T i.i.d∼ N((0, 0)T , diag(1, 1)) and ei = (ei,1, ei,2)

T i.i.d∼
N((0, 0)T , diag(1, 1)). It is easy to verify that {Xi, Zi, εi} is stationary and α-
mixing.

For the weight function, we use the Gaussian kernelK(t) = exp(−t2/2)/
√
2π.

The “leave-one-subject-out” cross-validation bandwidth hCV is obtained by
minimizing

CV (h) =
1

n

n∑

i=1

(
Yi − ξTi β̂[i] − ZT

i α̂[i](ti)
)2
,

where β̂[i] and α̂[i](·) are estimators of β and α(·) respectively, which are com-
puted with all of the measurements but not the ith subject. The sample sizes
n are chosen to be 100 and 150 respectively. The coverage probabilities and the
average lengths of the confidence intervals for individual βi(i = 1, 2) are calcu-
lated based on 1000 replications with the nominal level 1 − α = 0.90 and 0.95
for three cases Ση = 0.22I2, 0.4

2I2 and 0.62I2. Some representative coverage
probabilities and average lengths of confidence intervals are reported in Table 1.

Secondly, we generate εi, Xi and Zi by the MA(1) model,

εi = ̺i − 0.5̺i−1, ̺i
i.i.d∼ N(0, 0.22),

Xi,1 = ui,1 − 0.2ui−1,1, Xi,2 = ui,2 − 0.5ui−1,2,

Zi,j = ei,j − 0.5ei−1,j, j =, 1, 2.
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Table 1

Coverage probabilities (CP) and average lengths (AL) of the confidence intervals with
β0 = (

√

2,
√

3)T /2

Ση Parameters n
1− α = 0.90 1− α = 0.95

CP AL CP AL

0.22I2 β1 100 0.886 0.1268 0.934 0.1764
150 0.888 0.1103 0.942 0.1471

β2 100 0.877 0.1795 0.932 0.2513
150 0.886 0.1604 0.948 0.2109

0.42I2 β1 100 0.881 0.1609 0.923 0.2061
150 0.885 0.1411 0.932 0.1712

β2 100 0.874 0.2490 0.930 0.3208
150 0.884 0.2191 0.946 0.2705

0.62I2 β1 100 0.860 0.2088 0.910 0.2572
150 0.883 0.1746 0.936 0.2153

β2 100 0.836 0.3921 0.918 0.4543
150 0.874 0.3116 0.934 0.3547

β
1
 (n=400)

β 2

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

β
1
 (n=600)

β 2

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Fig 1. The confidence regions of β0 = (β1, β2)T = (1,
√

2)T /3 with Ση = 0.22I2 for 1− α =
0.90 (solid curve) and 1− α = 0.95 (dashed curve).

β0 = (1,
√
2)T /3 and the other variables are taken as the same as that of model

(4.1). In this example, we consider the confidence region of (β1, β2) with nominal
confidence level 1 − α = 0.90 and 0.95 for n = 400 and 600 respectively. The
simulation results for the plots are presented in Figures 1-3 for Ση = 0.22I2,
0.42I2 and 0.62I2, respectively.

Table 1 and Figures 1-3 indicate the following four simulation results.

(1) From Table 1, in the three different choice of the measurement error, the
coverage probabilities tend to nominal level 1−α and the average lengths
decrease as the sample size n increases both for 1 − α = 0.90 and 0.95
cases.

(2) For the same sample size n and nominal level 1 − α, Table 1 presents a
comparison for the three cases of the measurement error covariance Ση =
0.22I2, 0.4

2I2 and 0.62I2. It is obvious to see that the first choice gives the
best performance while the third choice offers the worst. Furthermore, the
coverage probabilities of the confidence intervals tend to decrease and the
average lengths increase as Ση gets larger.
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β
1
 (n=400)

β 2

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

β
1
 (n=600)

β 2

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Fig 2. The confidence regions of β0 = (β1, β2)T = (1,
√

2)T /3 with Ση = 0.42I2 for 1 − α =
0.90 (solid curve) and 1− α = 0.95 (dashed curve).

β
1
 (n=400)

β 2

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

β
1
 (n=600)

β 2

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Fig 3. The confidence regions of β0 = (β1, β2)T = (1,
√

2)T /3 with Ση = 0.62I2 for 1 − α =
0.90 (solid curve) and 1− α = 0.95 (dashed curve).

(3) In Figures 1-3, the confidence regions become narrower as n increases
for three different choices of Ση. It is also interesting to note that the
confidence regions of β0 with 1 − α = 0.95 are wider than the case of
1− α = 0.90 for three cases of Ση.

(4) In Figures 1-3, for the same sample size n and nominal level 1 − α, it
is easy to see that the confidence regions in the case Ση = 0.22I2 are
the narrowest and the confidence regions in the case Ση = 0.62I2 are the
widest. That is, Ση = 0.22I2 gives the best performance while Ση = 0.62I2
offers the worst.

4.2. An application of the proposed method

We next study an Sydney CPI data set, which ia available from The Australian
Bureau of Statistics (www.abs.gov.au). We use three quarterly CPI data series
in Sydney: ‘All groups’, ‘Food and non-alcoholic beverages’ and ‘Bread and
cereal products’ during the period 1981 to 2010. The data series are plotted in
Figure 4.

Let yk, Zk1 and Zk2 denote all-groups CPI variable, food and non-alcoholic
beverages CPI variable and bread and cereal products CPI variable at time
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Fig 4. (a) All groups CPI series; (b) Food and non-alcoholic beverages CPI series; (c) Bread
and cereal products CPI series.
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Fig 5. The confidence regions of β with 1− α = 0.90 (solid curve) and 1− α = 0.95 (dashed
curve).

k, respectively. Denote Zk = (Zk1, Zk2)
T and Xk = (yk−1, yk−2)

T , where Xk

stands for the lagged variables of the all-groups CPI variable yk. In this example
it is assumed that Xk is measured with additive error and Zk is error free,
i.e., we cannot observe Xk but we can observe ξk with ξk = Xk + ηk, where
ξk = (Yk−1, Yk−2)

T and Yk is the observed value of all-groups index. We now
use the following partially time-varying coefficient EV model to fit the data,

{
Yk = XT

k β + ZT
k α(tk) + εk,

ξk = Xk + ηk,
k = 1, . . . , 120. (4.2)

In order to identify the model, we assume Ση = 0.12I2. The plots of confidence
regions for β with 1−α = 0.90 and 0.95 are put in Figure 5. From Remark 3.2,
the modified profile least square estimator of β is β̂I = (0.9208,−0.0769)T . It
can be seen from Figure 5 that the EL confidence regions of β perform well and
this may indicate the influence of government regulation. For example, if the
CPI in the previous quarter increases too quickly, the government will usually
take some measures to stabilize prices.
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5. Proofs of main results

For the convenience, let M = (M1, . . . ,Mn)
T =

(
αT (t1)Z1, . . . , α

T (tn)Zn

)T
,

M̃ = (I−S)M , ε = (ε1, . . . , εn)
T , η = (η1, . . . , ηn)

T , ε̃ = (I−S)ε, η̃ = (I−S)η,
cn = {logn/(nh)}1/2 + h2 and C denote positive constant whose value may
vary at each occurrence. Before proving the main theorems, we give a series of
lemmas.

Lemma 5.1. ([11], Lemma A.2) Assume that conditions (A1)-(A4) are sat-
isfied. Then

sup
t∈(0,1)

∣∣∣ 1
n
DT (t)W (t)D(t) − VZ ⊗ Λ1

∣∣∣ = Op

(( logn
nh

)1/2
)

and

sup
t∈(0,1)

∣∣∣ 1
n
DT (t)W (t)X − VZX ⊗ Ω1

∣∣∣ = Op

(( logn
nh

)1/2
)
,

where Λ1 =
(

µ0 0
0 µ2

)

,Ω1 =
(

µ0

0

)

, µk =
∫
tkK(t)dt and ⊗ is the Kronecker

product.

Lemma 5.2. ([35], Lemma A.2) Let D1, . . . , Dn be i.i.d. random variables.
If E|Di|s is bounded for s > 1, then max1≤i≤n |Di| = o(n1/s) a.s..

Lemma 5.3. Under the assumptions of (A1)-(A4), we have

max
1≤l≤n

‖Ul‖ = Op(n
1/2s) and max

1≤l≤n
‖Ũl‖ = Op(n

1/2s), where Ul = Xl, Zl.

Proof. Here we prove only the case Ul = Xl, the proof of the other case is
analogous. According to Markov inequality and (A1), for all n ≥ 1, we have

P
(

max
1≤l≤n

‖Xl‖ > c0n
1/2s

)
≤ 1

c2s0 n

n∑

l=1

E‖Xl‖2s ≤
C

c2s0
→ 0, as c0 → ∞,

which yields that max1≤l≤n ‖Xl‖ = Op(n
1/2s).

As to max1≤l≤n ‖X̃l‖ = Op(n
1/2s), from Lemma 5.1, we have

max
1≤i≤n

‖X̃i‖ = max
1≤i≤n

∥∥∥Xi − (ZT
i 0T )[DT (ti)W (ti)D(ti)]

−1DT (ti)W (ti)X
∥∥∥

= max
1≤i≤n

∥∥∥Xi − V T
ZXV −1

Z Zi{1 +Op(cn)}
∥∥∥ = Op(n

1/2s). (5.1)

This completes the proof.

Lemma 5.4. Suppose that conditions (A1)-(A4) hold. Then we have

1√
n

n∑

i=1

ηi(β0)
d→ N(0,Σ),

where Σ is defined in Theorem 3.1.
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Proof. From (2.3) and a simple calculation yields

1√
n

n∑

i=1

ηi(β0) =
1√
n

n∑

i=1

{
X̃iε̃i − X̃iη̃

T
i β0 + X̃iM̃i + η̃iε̃i

− η̃iη̃
T
i β0 + η̃iM̃i +Σηβ0

}
. (5.2)

First, we establish that

1√
n

n∑

i=1

X̃iε̃i =
1√
n

n∑

i=1

[
Xi − V T

ZXV −1
Z Zi

]
εi + op(1). (5.3)

From the proof of Theorem 3.3 in [11], we have

sup
t∈(0,1)

eTl,2q[D
T (t)W (t)D(t)]−1DT (t)W (t)ε = Op

(( logn
nh

)1/2)
,

where el,2q is the 2q-dimensional vector with 1 in the l-th position and 0 else-
where. Then by Lemma 5.1 and equation (5.1), one can derive that

1√
n

n∑

i=1

X̃iε̃i

=
1√
n

n∑

i=1

[
Xi − V T

ZXV −1
Z Zi +Op(cn)‖Zi‖

]
·
[
εi + Op

(( logn
nh

)1/2)
ZT
i

]

=
1√
n

n∑

i=1

[
Xi − V T

ZXV −1
Z Zi

]
εi +Op

(( log n
nh

)1/2
+
√
ncn

( logn
nh

)1/2)

=
1√
n

n∑

i=1

[
Xi − V T

ZXV −1
Z Zi

]
εi + op(1). (5.4)

Similar to the proof of (5.4), from (A.21) in [11], Lemma 5.1 and equation (5.1),
it is easily to prove that

1√
n

n∑

i=1

X̃iη̃
T
i =

1√
n

n∑

i=1

[
Xi − V T

ZXV −1
Z Zi

]
ηTi + op(1),

1√
n

n∑

i=1

η̃iε̃i =
1√
n

n∑

i=1

ηiεi + op(1),
1√
n

n∑

i=1

η̃iη̃
T
i =

1√
n

n∑

i=1

ηiη
T
i + op(1),

1√
n

n∑

i=1

X̃iM̃i = op(1) and
1√
n

n∑

i=1

η̃iM̃i = op(1).

Therefore, we obtain that

1√
n

n∑

i=1

ηi(β0)

=
1√
n

n∑

i=1

{[
Xi − V T

ZXV −1
Z Zi

]
(εi − ηTi β0) + ηiεi + (Ση − ηiη

T
i )β0

}
+ op(1)
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:=
1√
n

n∑

i=1

Hi(β0) + op(1). (5.5)

Note that ηi is i.i.d. with mean zero and is independent of (Xi, Zi, εi), which
together with (A2), yields that limn→∞ Var

(
1√
n

∑n
i=1 Hi(β0)

)
= Σ. Then, ap-

plying Theorem 3.2.1 in [16] and noting that {Hi(β0), i ≥ 1} is α-mixing with
mixing coefficient α(k), we have

1√
n

n∑

i=1

Hi(β0)
d→ N(0,Σ),

which, combined with (5.5), completes the proof of Lemma 5.4.

Lemma 5.5. Suppose that Assumptions (A1)-(A4) hold. Then we have

1

n

n∑

i=1

ηi(β0)η
T
i (β0)

p→ Σ1,

where Σ1 is defined in Theorem 3.1.

Proof. From the definition of ηi(β0), according to (A.21) in [11], Lemmas 5.1-5.3
and (5.2), similar to the proof of (5.3), we can derive

1

n

n∑

i=1

ηi(β0)η
T
i (β0)

=
1

n

n∑

i=1

{
X̃i(ε̃i − η̃Ti β0) + (X̃i + η̃i)M̃i + η̃iε̃i + (Ση − η̃iη̃

T
i )β0

}⊗2

=
1

n

n∑

i=1

X̃iX̃
T
i (ε̃i − η̃Ti β0)

2 +
1

n

n∑

i=1

η̃iη̃
T
i ε̃

2
i +

1

n

n∑

i=1

{
(Ση − η̃iη̃

T
i )β0

}⊗2
+ op(1)

:= I1n + I2n + I3n + op(1). (5.6)

For I1n, analogously to the proof of Lemma 5.4, from (5.3) and Lemma 5.3, it
follows that

I1n =
1

n

n∑

i=1

[
Xi − V T

ZXV −1
Z Zi +Op(cn)‖Zi‖

]

·
[
Xi − V T

ZXV −1
Z Zi +Op(cn)‖Zi‖

]T
·
[
εi − ηTi β0 +Op

(( logn
nh

)1/2)‖Zi‖
]2

=
1

n

n∑

i=1

[Xi − V T
ZXV −1

Z Zi][Xi − V T
ZXV −1

Z Zi]
T {ε2i + (ηTi β0)

2}+ op(1). (5.7)

Not that
{
[Xi−V T

ZXV −1
Z Zi][Xi−V T

ZXV −1
Z Zi]

T (ε2i+(ηTi β0)
2), i ≥ 1

}
is α-mixing.

Then according to the strong law of large numbers for α-mixing sequence (see
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Remark 8.2.3. in [16]), one can verify easily that

1

n

n∑

i=1

[
Xi − V T

ZXV −1
Z Zi

][
Xi − V T

ZXV −1
Z Zi

]T {ε2i + (ηTi β0)
2}

a.s.−−→ 1

n

n∑

i=1

E
{[

Xi − V T
ZXV −1

Z Zi

][
Xi − V T

ZXV −1
Z Zi

]T {ε2i + (ηTi β0)
2}
}

= E
[
(Xi − V T

ZXV −1
Z Zi)(Xi − V T

ZXV −1
Z Zi)

T ε2i
]

+ E
[
(Xi − V T

ZXV −1
Z Zi)(Xi − V T

ZXV −1
Z Zi)

T
]
βT
0 Σηβ0,

which, combining with (5.7), proves that I1n
p−→ E

[
(Xi − V T

ZXV −1
Z Zi)(Xi −

V T
ZXV −1

Z Zi)
T ε2i

]
+ E

[
(Xi − V T

ZXV −1
Z Zi)(Xi − V T

ZXV −1
Z Zi)

T
]
βT
0 Σηβ0.

Similarly, we can derive that

I2n
p−→ σ2Ση and I3n

p−→ E[(η1η
T
1 − Ση)β0]

⊗2.

Therefore, 1
n

∑n
i=1 ηi(β0)η

T
i (β0)

p→ Σ1. So the proof of Lemma 5.5 is completed.

Lemma 5.6. Suppose that Assumptions (A1)-(A5) hold. Then

max
1≤i≤n

‖ηi(β0)‖ = op(n
1/2), (5.8)

λ = Op(n
−1/2). (5.9)

Proof. From (5.2), we have

max
1≤i≤n

‖ηi(β0)‖ ≤ max
1≤i≤n

‖X̃i‖ · max
1≤i≤n

‖ε̃i + M̃i − η̃Ti β0‖

+ max
1≤i≤n

‖η̃i‖ · max
1≤i≤n

‖ε̃i + M̃i‖+ C max
1≤i≤n

‖η̃iη̃Ti − Ση‖.

Similar to the proof of (5.1), from Lemmas 5.1-5.3 and (A2), one can derive that

max
1≤i≤n

‖X̃i‖ = Op(n
1/(2s)), max

1≤i≤n
‖η̃i‖ = Op(n

1/(2s)),

max
1≤i≤n

‖ε̃i + M̃i − η̃Ti β0‖ = Op(n
1/(2s)) and max

1≤i≤n
‖η̃iη̃Ti − Ση‖ = op(n

1/s).

Therefore, (5.8) holds. Similarly to the arguments as in [17], from equation (2.5)
and Lemmas 5.4-5.5, we can verify easily (5.9).

Proof of Theorem 3.1. Applying the Taylor expansion to (2.4) and Lemmas 5.4-
5.6, we obtain that

Ln(β0) = 2

n∑

i=1

{λT ηi(β0)− [λT ηi(β0)]
2/2}+ op(1).
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From (2.5), we have

0 =
1

n

n∑

i=1

ηi(β0)

1 + λT ηi(β0)

=
1

n

n∑

i=1

ηi(β0)−
1

n

n∑

i=1

ηi(β0)Zni(β0)
Tλ+

1

n

n∑

i=1

ηi(β0)[λ
T ηi(β0)]

2

1 + λT ηi(β0)
.

Using Lemmas 5.4-5.6, we find
∥∥∥∥
1

n

n∑

i=1

ηi(β0)[λ
T ηi(β0)]

2

1 + λT ηi(β0)

∥∥∥∥ ≤ 1

n

n∑

i=1

‖ηi(β0)‖3‖λ‖2
|1 + λT ηi(β0)|

≤ ‖λ‖2 max
1≤i≤n

‖ηi(β0)‖
1

n

n∑

i=1

‖ηi(β0)‖2 = Op(n
−1)op(n

1/2)Op(1) = op(n
−1/2).

Then
∑n

i=1[λ
T ηi(β0)]

2 =
∑n

i=1 λ
T ηi(β0) + op(1), and

λ =
[ n∑

i=1

ηi(β0)η
T
i (β0)

]−1 n∑

i=1

ηi(β0) + op(n
−1/2).

Thus

Ln(β0) =
( 1√

n

n∑

i=1

ηi(β0)
)T( 1

n

n∑

i=1

ηi(β0)η
T
i (β0)

)−1( 1√
n

n∑

i=1

ηi(β0)
)
+ op(1).

From Lemma 5.5, we obtain that

Ln(β0) =
(
Σ−1/2 1√

n

n∑

i=1

ηi(β0)
)T

Σ1/2Σ−1
1 Σ1/2

(
Λ−1/2 1√

n

n∑

i=1

Zni(β0)
)
+op(1).

Let w1, . . . , wp be the eigenvalues of Σ−1
1 Σ and Σ̃ = diag(w1, . . . , wp). Note that

Σ−1
1 Σ and Σ1/2Σ−1

1 Σ1/2 have the same eigenvalues. Then there exists orthogonal

matrix Q such that QT Σ̃Q = Σ1/2Σ−1
1 Σ1/2. Hence

Ln(β0) =
(
QΣ−1/2 1√

n

n∑

i=1

ηi(β0)
)T

Σ̃
(
QΣ−1/2 1√

n

n∑

i=1

ηi(β0)
)
+ op(1).

Notice that Q is orthogonal matrix, which combing with Lemma 5.4, yields (3.1).
By Lemmas 5.1-5.3, the proof of Lemmas 5.4-5.5, it is easy to finish the proof

of the consistency of Σ̂n(β) and Σ̂1n(β).

Proof of Theorem 3.2. By [24], the distribution of p(
∑p

i=1 wiχ
2
1,i)/

∑p
i=1 wi can

be approximated by the standard χ2
p distribution (also see [31], Page 474). Note

that Rn is a consistent estimator of p/
∑p

i=1 wi. This together with Theorem 3.1,

implies that the asymptotic distribution of p · Ln(β)/tr[Σ
−1
1 Σ̂n(β)] can be ap-

proximated by χ2
p. Therefore, from Theorem 3.1, we have

L̂n,ad(β0) = RnLn(β0)
d→ χ2

p.

This completes the proof of Theorem 3.2.
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