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1. Introduction

This paper considers the problem of joint selection of fixed and random effects in
nonparametric additive mixed models. Suppose for the i-th subject we observe
response Yi and covariates Xi1, . . . , XiP and Zi1, . . . , ZiQ. It is assumed that
these measurements are related by the following mixed model:

Yi = µ+

P
∑

p=1

fp(Xip) +

Q
∑

q=1

uqZiq + ǫi, i = 1, . . . , n, (1)

where µ is the mean, fp’s are unknown smooth continuous functions that form
the fixed component of the model, u = (u1, . . . , uQ)

′ are random effects, and
ǫ = (ǫi, . . . , ǫn)

′ are additive errors. For simplicity, write Y = (Y1, . . . , Yn)
′,

and define Z as the matrix with Ziq as its iq-th element, for i = 1, . . . , n and
q = 1, . . . , Q. It is further assumed that u and ǫ follow the normal distribution
and satisfy

E

(

u

ǫ

)

= 0, Cov

(

u

ǫ

)

= σ2

(

G(θ) 0
0 I

)

and

V = Cov(Zu + ǫ) = σ2(ZGZ ′ + I),

where σ2 > 0 and G(θ) is a positive definite matrix with elements known upto
the parameter vector θ; in the sequel we simply write G = G(θ). For identifia-
bility purposes, we assume E[fp(Xip)] = 0 for all i and p. We consider the case
that the Xip’s are random and sampled from some continuous density function.

The concept of fixed and random effects has been successfully applied to
repeated measurement data to study the variations both within and between
replicates of subjects; e.g., see Laird and Ware (1982); Zeger and Liang (1986);
Liang and Zeger (1986); Diggle et al. (2002). These authors mainly consider the
case when the fixed effects are linear, while our approach can be seen as an
extension in which nonparametric fixed effects are allowed. The nonparametric
additive mixed model for repeated measurements data can be written as:

Yik = µ+
P
∑

p=1

fp(Xikp) +

Q
∑

q=1

uiqZikq + ǫik, i = 1, . . . , N, k = 1, . . . , ni, (2)

where Yik is the kth measurement of the ith subject,Xikp and Zikq are covariates
associated with Yik, N is the total number of subjects and ni is the number of
measurements taken from the ith subject. The random effects uiq’s model the
variation among different subjects while the fixed effects fp’s model the variation
between the replicates. Equation (2) can be transformed to (1) by suppressing

the replicate index k, and the total number of observations is
∑N

i=1 ni = n.
Similar formulations of modeling have been discussed for examples in Zhang
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et al. (1998); Lin and Zhang (1999); Wand (2003); Fahrmeir and Lang (2001).
The first three pieces of work consider L2 minimization criteria while the last
considers the problem from a Bayesian perspective.

The problem of fixed and random effects selection has been well studied for
linear mixed models. Chen and Dunson (2003) develop a Bayesian approach
for selecting random effects in linear mixed models, while Kinney and Dunson
(2007) use Bayesian method for selecting both fixed and random effects in linear
and logistic mixed models. Bondell et al. (2010) also study the problem of fixed
and random effects selection in linear mixed models, but with a penalized likeli-
hood approach. Lastly, Pu and Niu (2006) extended the generalized information
criterion for choosing fixed and random effects in linear mixed models.

Given (1) (or (2)), the goal of this article is to identify which of the func-
tions fp’s and which of the random effects uq’s are statistically significant. Our
methodology begins with modeling the fp’s nonparametrically by B-spline ba-
sis expansions. As to be demonstrated in Section 2 below, the use of B-spline
bases can transform (1) into a compact matrix representation. For parameter
estimation, we develop an iterative algorithm that combines the adaptive group
lasso and Newton-Raphson methods. This algorithm is presented in Section 3.
Section 4 derives a Bayesian information criterion to perform simultaneous vari-
able selection for both fixed and random effects. Theoretical properties of our
methodology are studied in Section 5. We illustrate the practical performance
of our approach via both simulation experiments and practical data analysis;
see Sections 6 and 7. Technical details are deferred to the appendix.

2. B-spline modeling of nonparametric fixed effects

Loosely, a spline is a piecewise polynomial that is smoothly connected at its
knots. Denote S(d0, t) as the collection of all spline functions of order d0 with
knots t = (t0, . . . , tτ+1)

′, where t0 ≤ t1 ≤ · · · ≤ tτ+1. There exists m = d0 + τ
B-spline basis functions {φj(·)}mj=1 for S(d0, t). That is, all elements of S(d0, t)
can be expressed as linear combinations of {φj(·)}mj=1. These B-spline basis

functions are normalized in the sense that
∑m

j=1 φj(x) = 1 for all x. They play
an important role in non-parametric additive modeling; e.g., see Stone (1985,
1986). For exact expressions of φj ’s, see de Boor (2001).

Denote tp as the knot vector for fp, and let {φpj(·)}mp

j=1 be the corresponding

basis functions of S(d0, tp). We model fp by f̃p:

f̃p =

mp
∑

k=1

βpkφpk.

To make the model identifiable, we assume
∑n

i=1 f̃p(Xip) = 0, which is a sam-
ple analogue of E[fp(Xip)] = 0. This can be achieved by centering the basis
functions, or equivalently, by assuming that

mp
∑

k=1

n
∑

i=1

φpk(Xip)βpk = 0. (3)



Fixed and random effects selection 813

Hence, the number of effective basis functions is mp. For simplicity, we set
mp = m for all p; the effect of this is minimal as long as m is large enough.

For p = 1, . . . , P , let βp = (βp1, . . . , βpm)′ and β = (µ,β′
1, . . . ,β

′
P )

′. Also,
write Xp as the matrix with its ij-th element as φpj(Xip) for j = 1, . . . ,m and
i = 1, . . . , n, and define X = [1,X1, . . . ,XP ]. The matrix representation of our
spline model for (1) is

Y = Xβ +Zu+ ǫ = µ1+

P
∑

p=1

Xpβp +Zu+ ǫ, (4)

which is a common formulation of mixed models. However, in (4) those columns
ofX that correspond to the basis functions of the same fp are naturally grouped
together, in the sense that this whole group of basis functions should be kept or
killed together during the fixed effects selection process. This concept of group
variables has been considered in Lin and Zhang (2006); Yuan and Lin (2006);
Wang et al. (2007b). We note that (4) can also be expressed as Y ∼ N(Xβ,V ),
with the log-likelihood function given as

l(β,V ) = −1

2
log(|V |)− 1

2
(Y −Xβ)

′
V −1 (Y −Xβ) .

3. Parameter estimation

There are two types of parameters in (4): the fixed component parameters β =
(µ,β′

1, . . . ,β
′
P ) and the random component parameters {G, σ2}. This section

develops a method for estimating these parameters when the complexity of the
model is pre-specified. Automatic choice of model complexity will be discussed
in the next section. The main idea of our estimation method is to iterate the
following two steps until convergence:

1. given a current set of estimates for {G, σ2}, estimate β via the adaptive
group lasso methodology,

2. given a current estimate for β, obtain estimates for {G, σ2} using the
Newton-Raphson method.

3.1. Fixed component estimation using adaptive group lasso

The lasso was introduced by Tibshirani (1996) as a methodology for simulta-
neous variable selection and shrinkage estimation. Later Zou (2006) developed
a variant termed the adaptive lasso which was shown to possess superior the-
oretical properties. The use of lasso for grouped variables, the so-called group
lasso, has been discussed for examples in Yuan and Lin (2006); Meier et al.
(2008); Wei and Huang (2008); Ravikumar et al. (2009). In particular, Huang
et al. (2010); Meier et al. (2009) consider the estimation of additive models using
group lasso. Here we develop an adaptive group lasso procedure for estimating
the fixed component parameters.
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Suppose for now estimates for {G, σ2} and hence V are available. Denote the

estimate as V̂ , and write the likelihood as l(β) = l(β, V̂ ). Firstly the estimate
for µ is µ̂ = Ȳ , the average of all Yi’s. Then our adaptive group lasso estimates
for the remaining parameters in β = (µ,β′

1, . . . ,β
′
P ) are defined as the minimizer

of

S(β) = −l(β) + λ

P
∑

p=1

wp‖βp‖ (5)

with the weights wp given by

wp =

{

(‖β̃p‖−1 − ν)+, if ‖β̃p‖ > 0,
∞, otherwise,

p = 1, . . . , P, (6)

where ‖ ·‖ is the usual Euclidean norm, λ > 0 and ν > 0 are tuning parameters,
and β̃p is an initial estimate for βp. Both λ and ν are pre-specified before the
minimization of (5) is carried out. When λ is zero, the corresponding estimates
will be reduced to the generalized least square estimate. As λ becomes larger,
more βp’s are shrunken to zero. The presence of ν is to ensure the consistency
properties of our estimation method (see Section 5). Methods for choosing λ
and ν will be provided in Section 4 below.

Due to the non-differentiable property of the penalty term, minimization
of (5) is difficult. Different algorithms have been developed for minimizing such
group lasso type likelihoods; e.g., Meier et al. (2008); Yuan and Lin (2006).
For (5), as the B-spline basis functions are not orthogonal and the variance
component V is not diagonal, the shooting algorithm of Yuan and Lin (2006)
is not applicable, but the blockwise co-ordinate gradient descent (BCGD) algo-
rithm of Meier et al. (2008) can be adopted. Below is a brief description of the
BCGD algorithm customized to our settings.

Note that the log-likelihood l(β) is not a quadratic function and the key idea
of BCGD is to combine a quadratic approximation of l(β) with a line search.
First, for any d ∈ RmP+1, define the following approximationM(d) to S(β+d):

M(d) = −
{

l(β) + d′ ∂l(β)

∂β
+

1

2
d′Hd

}

+ λ

P
∑

p=1

wp‖βp + dp‖ ≈ S(β + d),

where H is a diagonal matrix approximating the Hessian of S(β + d). Denote
the diagonal elements of H as (h0, h1em, h2em, . . . , hpem, . . . , hPem), where em
is a row vector of m ones. For p > 0, a possible choice of hp is

hp = min

[

diag

{

∂2l(β)

∂βp∂β′
p

}]

= −max[diag(X ′
pV

−1Xp)].

For h0, it vanishes after a differentiation operation and hence plays no role in
the actual minimization algorithm. For simplicity, we set h0 = 0.
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Next we consider minimizing M(d) one “block at a time”. More precisely, for
each p > 0, we minimize M(d) with respect to (w.r.t.)

d = (0, 0em, . . . , 0em,dp, 0em, . . . , 0em),

where dp ∈ Rm. Direct algebra shows that

dp =

{

−βp, if ‖Sp‖ < λwp

− 1
hp

{∂l(β)
∂βp

− λwp
Sp

‖Sp‖

}

, otherwise
, (7)

where Sp = ∂l(β)
∂βp

− hpβp. Therefore, given β(t), d
(t)
p is the best direction of

search w.r.t. the pth component for minimizing S(β(t)).

Lastly, we update the minimizer by β(t+1) + a(t)d
(t)
p , where a(t) is the step

length of the search. This step length can be chosen by the Armijo rule: a(t) is
chosen as the largest value that satisfies

S(β(t+1)) ≤ S(β(t)) + c1a
(t)
p ∆(t), (8)

where ∆(t) = −d
(t)
p

′ ∂l(β)
∂β +λ{‖β(t)

p +d
(t)
p ‖−‖β(t)‖} and c1 > 0. The value ∆(t)

is a linear approximation of the improvement in S(·) and we choose c1 = 0.1 as
suggested by Meier et al. (2008). Selecting the step length a(t) in this fashion
ensures a sufficient decrease in the penalized likelihood.

In summary, given a current estimate β̂(t) of β, the BCGD algorithm com-
putes the next iterative estimate β̂(t+1) with the following steps: for p = 1, . . . , P ,

1. evaluates d
(t)
p with (7),

2. finds the largest a(t) that satisfies (8), and

3. set β̂
(t+1)
p = β̂

(t)
p + a

(t)
p d

(t)
p .

This BCGD algorithm converged rapidly in all our numerical work.

3.2. Random component estimation using Newton Raphson

Now we describe the second iterative step of our estimation procedure: assume
an estimate β̂ of β is available and estimate the variance components {G, σ2}.
Setting β = β̂, the log-likelihood becomes

l(β̂,V ) = −1

2
log(|V |)− 1

2

(

Y −Xβ̂
)′

V −1
(

Y −Xβ̂
)

. (9)

The maximum likelihood estimates for {G, σ2} can be obtained by maximiz-
ing (9). A major criticism of these maximum likelihood estimates is their bias
caused by the loss in the degrees of freedom from the estimation of β. To correct
this, Harville (1974) introduced a restricted maximum likelihood approach in
which a correction term − 1

2 log |X ′V −1X| is added to (9). However, empiri-
cal results seem to suggest that there is no major difference between the two
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likelihood approaches. In our work, we use maximum likelihood and the maxi-
mization of (9) is achieved via the Newton-Raphson (NR) algorithm (Lindstrom
and Bates, 1988).

To further simplify our maximization problem, we replace σ2 in (9) with its
maximum likelihood estimate:

σ̂2 =
1

n
r′V ∗−1

r with V ∗ = ZGZ ′ + I and r = Y −Xβ̂.

Then our estimate for G is given as the minimizer of the following negative
profile likelihood function

p(G|β̂) = log(|V ∗|) + n log(r′V ∗−1
r). (10)

Let A = Z ′V ∗−1r(Z ′V ∗−1r)′, B = Z ′V ∗−1Z. Then, as shown in Ap-
pendix A, the gradient and the Hessian matrix for the NR algorithmw.r.t. vec(G)
are, respectively,

∂p(G|β̂)
∂vec(G)

= vecB − 1

σ̂2
vecA

and

∂2p(G|β̂)
∂vec(G)∂vec(G)′

=
∂vec(G′)

∂vec(G)

∂2p(G|β̂)
∂vec(G′)∂vec(G)′

,

where

∂2p(G|β̂)
∂vec(G′)∂vec(G)′

= −B ⊗B − 1

nσ̂4
vec(A)vec(A)′ +

1

σ̂2

(

A⊗B +B ⊗A
)

.

In particular, denote the diagonal elements of G as θ, we have

∂p(G|β̂)
∂θ

=
∂vec(G)

∂θ

∂p(G|β̂)
∂vec(G)

= diag(B)− 1

σ̂2
diag(A) (11)

and

∂2p(G|β̂)
∂θ′∂θ

=
∂vec(G)

∂θ

∂2p(G|β̂)
∂vec(G)∂vec(G)′

(∂vec(G)

∂θ

)′

= −B ⊙B − 1

nσ̂4
(A⊙A) +

2

σ̂2
(A⊙B), (12)

where ⊙ represents the element-wise multiplication. With these expressions, the
standard NR algorithm can be applied to maximize (10) and obtain estimates
for V and G. We note Woodbury’s identity V ∗−1 = I − Z(Z ′Z +G−1)−1Z ′

can be applied to avoid heavy computations.
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3.3. Combining the two algorithms

The above BCGD and NR algorithms can be applied iteratively to obtain esti-
mates for both the fixed and random components parameters β, V and G. The
combined algorithm begins with initial estimates β̂(0) and V̂ (0) for β and V ,
respectively, and iterate, for t = 0, 1, . . ., the following two steps until conver-
gence:

1. Fixed Effects Estimation: Obtain the next iterative estimate β̂(t+1) with
the BCGD Algorithm described in Section 3.1.

2. Random Effects Estimation: Obtain V̂ (t+1) and Ĝ(t+1) by minimizing (10)
with the NR algorithm described in Section 3.2.

Convergence of this combined algorithm can be determined by monitoring the
successive changes of the iterative fitted value of Y . In our implementation we
set the initial estimates as β̂(0) = 0 and V̂ (0) = I.

Denote the final estimates as β̂, V̂ and Ĝ. When the above iteration finishes,
the estimated conditional expectation of u given β = β̂ can be calculated as

û = (Z ′Z + Ĝ−1)−1Z ′(Y −Xβ̂), (13)

while the estimate for E[Y |X,u] is given by Ŷ = Xβ̂ + Zû. Also, Ŷ can be
used as the prediction of Y .

4. Selection of model complexity

This section develops a method for selecting the model complexity of (1). That
is, to select the adaptive group lasso parameters (λ, ν) and to determine which
random effects uq’s should enter the final model. Note that the selection of the
fixed effects fp’s (which is equivalent to βp’s) is achieved by varying the values
of (λ, ν).

4.1. Model selection criterion

We adopt the Bayesian information criterion (BIC) to select the model complex-
ity. To be specific, we define the best fitting model as the one that minimizes
the following objection function:

n log(σ̂2) +
1

σ̂2
‖Y −Xβ̂ −Zû‖2 + df

Ŷ
· log(n), (14)

where df
Ŷ

is the effective degrees of freedom of the fitted model. Computable
expression for df

Ŷ
is given in the next subsection. Notice that the first two

terms in (14) together form the conditional likelihood of Y given β̂ and û (e.g.,
Ruppert et al., 2003).
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4.2. Calculating the degrees of freedom

This subsection derives a computable expression for df
Ŷ

so that (14) can be
used in practice.

For simplicity, suppose for the moment that V is known or can be indepen-
dently estimated. The degrees of freedom of any fitted model df

Ŷ
is calculated

as the sum of the degrees of freedom contributed by the fixed and random effects
parameters. If we denote the degrees of freedom of the fixed and random effects
as, respectively, df

β̂
and dfû, we have df

Ŷ
= df

β̂
+ dfû.

Following Shen and Ye (2002) and Ruppert et al. (2003), we define df
β̂
and

dfû as, respectively,

df
β̂
= E

{

tr
(∂Xβ̂

∂Y

)}

= 1 + E
{

tr
(

P
∑

p=1

∂β̂p

∂Y
X ′

p

)}

, (15)

and

dfû = E
{

tr
(∂Zû

∂Y

)}

= E
[

tr
{

Z(Z ′Z +G−1)−1Z ′
(

I − 1

n
J −

P
∑

p=1

∂β̂p

∂Y
X ′

p

)}]

,

(16)

where J is a matrix of ones. In these expressions the only unknown is
∂β̂p

∂Y , and
it can be calculated as follows.

By the KKT conditions of (5), we have, for p = 1, . . . , P ,

−Xp
′V −1(Y −Xβ̂) + λwp

β̂p

‖β̂p‖
= 0 if β̂p 6= 0,

which gives

∂β̂p

∂Y

{

X ′
pV

−1Xp+
λwp

‖β̂p‖

(

I−
β̂pβ̂

′
p

β̂′
pβ̂p

)}

+
∑

j 6=p

∂β̂j

∂Y
X ′

jV
−1Xp =

(

I− 1

n
J
)

V −1Xp.

The above can be expressed in a more compact manner as follows:

(∂β̂1

∂Y
, . . . ,

∂β̂P

∂Y

)

C =
(

D1, . . . ,DP

)

= D,

where C = X ′V −1X +E, E = diag(E1, . . . ,Ep),

Dp =

{

(I − 1
nJ)V

−1Xp, if β̂p 6= 0

0, if β̂p = 0

and

Ep =







λwp

‖β̂p‖

(

I − β̂pβ̂
′

p

β̂′

pβ̂p

)

, if β̂p 6= 0

0, if β̂p = 0
.
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Therefore we have
[∂β̂1

∂Y
, . . . ,

∂β̂P

∂Y

]

= DC−1.

We note that X ′V −1X is typically not of full rank, hence C may not be invert-
ible in some cases (e.g., when λ = 0). However, XC−1D′ is invariant w.r.t. the
choice of the pseudo inverse of C. Hence, we can estimate (15) and (16) by

d̂f
β̂
= 1 + tr

(

P
∑

p=1

∂β̂p

∂Y
X ′

p

)

, (17)

and

d̂fû =
{

Z(Z ′Z + Ĝ−1)−1Z ′
(

I − 1

n
J −

P
∑

p=1

∂β̂p

∂Y
X ′

p

)}

, (18)

respectively. And the estimated degrees of freedom for the model equals d̂f
Ŷ

=

d̂f
β̂
+ d̂fû. In practice we replace V by the V̂ obtained using the algorithm

summarized in Section 3.3.

4.3. Practical minimization of (14)

In practice a global minimization of the selection criterion (14) is difficult. Here
we suggest using the following procedure to approximate the minimizer of (14).
This procedure is relatively fast, and produces excellent numerical results in all
our experimental work. The steps are:

1. Initialization: With the full model (i.e., with all fixed and random effects),
apply the ordinary group lasso to obtain initial parameter estimates. That
is, the initial estimates are chosen as the minimizers of (5) with wp = 1
for all p. The tuning parameter of this ordinary group lasso can be chosen
for example by BIC.

2. Fixed Effects Selection: Using the estimates obtained in Step 1 as ini-
tial estimates and weights (6), apply the proposed parameter estimation
method summarized in Section 3.3 to the full model. The adaptive group
lasso parameters λ and ν are chosen by the BIC criterion (14) through a
two-dimensional grid search.

3. Random Effects Selection: Perform the following backward selection strat-
egy to the fitted model obtained in Step 2. First from this model re-
move the random effect that has the smallest coefficient magnitude and
re-calculate its BIC (14) value, denoted as BIC1. If BIC1 is larger than
the BIC value of the model from Step 2, then the model from Step 2 is
taken as the final model. Otherwise, further remove the random effect that
has the second smallest magnitude and re-calculate its corresponding BIC
value; denoted it as BIC2. If BIC2 > BIC1, then the earlier model with
one random effect removed is taken as the final model. Otherwise, repeat
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this process by removing more random effects until there is no decrease in
the BIC values.

One could iterate Steps 2 and 3 above, but our experience suggests that the
improvement, if any, is minimal.

5. Theoretical results

This section establishes the consistency properties of the proposed adaptive
group lasso estimator, as well as the BIC criterion (14).

5.1. Consistency property of adaptive group lasso

Denote A0 ≡ {p : ‖fp‖ = 0, p = 1, . . . , P} and AT ≡ {p : ‖fp‖ > 0, p =
1, . . . , P}. That is, A0 is the set of all non-significant fp’s, while AT is the set
of all significant fp’s. Let M be any matrix in Rm×n. Define the matrix norm
of M as ‖M‖ = (maxx∈Rn,‖x‖=1 x

′M ′Mx)1/2. An important property of this
matrix norm is that, for any x ∈ Rn, ‖Mx‖ ≤ ‖M‖‖x‖. We consider the
following regularity conditions (A.1-7):

(A.1) The number of elements in AT , denoted as |AT |, does not depend on n
and P .

(A.2) For the knots (ti, i = 0, . . . , τ + 1), let hi = ti+1 − ti and h = maxi hi. We
assume that h/mini hi = O(1) and maxi |hi+1 − hi| = o(m−1).

(A.3) Without loss of generality, we assume that the design points Xip ∈ [0, 1].
Moreover, we assume that Xip has a nonzero continuous density function.

(A.4) Let F be the collection of functions satisfying Lipschitz condition:

|f (k)(s)− f (k)(t)| ≤ C|s− t|α, s, t ∈ [0, 1], for some C > 0

where k is non-negative integer, 0 < α ≤ 1 and 0.5 < k + α = d is called
the order of smoothness. For p = 1, . . . , P , fp ∈ F and Efp(Xip) = 0.

(A.5) The initial estimate β̃ of β satisfies the following conditions as n → ∞:

(a) rmax
p∈A0

‖β̃p‖ = Op(1) with r → ∞.

(b) P ( min
p∈AT

‖β̃p‖ > ν−1) → 1 for any ν > 0.

(A.6) As n → ∞:

(a) m → ∞,
m

n1/2
→ 0,

m log(2mP )

n
→ 0.

(b)
n

λrmd+1/2
→ 0,

√

n log(2mP )

λr
→ 0.

(A.7) The norm of the covariance matrix ‖V ‖ is finite.

We need more notation to proceed. For any A ⊂ {1, . . . , P}, denote XA and
βA, respectively, as the design matrix and the subset of β corresponding to the
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model with fixed effects fp’s indexed by A. Then the generalized least squares

estimate of βA based onXA is b̂A = (b̂′A,p, p = 1, . . . , P )′, where (b̂′A,p, p ∈ A)′ =

(X ′
AV

−1XA)
−1X ′

AV
−1Y and (b̂′A,p, p /∈ A)′ = 0. Without loss of generality,

we assume µ = 0.

The following theorem shows that our adaptive group lasso estimate of β
is not only capable of identifying the correct variables, but is also capable of
recovering the predictive performance of the generalized least squares estimate
based on the correct variables. The proof can be found in Appendix C.

Theorem 1 (G known). Under (A.1)-(A.7), as n → ∞,

1. P
(

sign(‖β̂p‖) = sign(‖βp‖), p = 1, . . . , P
)

→ 1.

2. P (β̂ = b̂AT
) → 1.

3.
P
∑

p=1

‖β̂p − βp‖2 = Op

(m2

n

)

+Op

( 1

m2d−1

)

+Op

(m2λ2

n2

)

op(1).

4.

P
∑

p=1

‖f̂p − fp‖2 = Op

(m

n

)

+Op

( 1

m2d

)

+Op

(mλ2

n2

)

op(1).

Corollary 1 (G unknown). Under the conditions of Theorem 1, except that G

is replaced by a consistent estimate Ĝ, Theorem 1 continue to hold.

Proof. The proof is essentially the same as that for Theorem 1 after applying
Slutsky’s theorem: h(Ĝ) → h(G) in probability for any real-value continuous
function h.

5.2. Consistency property of Bayesian information criterion

First assume G is known. Then the maximum likelihood estimate of σ2 based

on model A is σ̂2
A ≡ 1

n
(Y −Xb̂A)

′V ∗−1(Y −Xb̂A). To stress the dependence

of the parameter estimates on (λ, ν), denote β̂λ,ν and ûλ,ν as the adaptive
grouped lasso estimates with weights (6) and tuning parameters (λ, ν). Also let

σ̂2
λ,ν ≡ 1

n
(Y −Xβ̂λ,ν)

′V ∗−1(Y −Xβ̂λ,ν) be the corresponding estimate of σ2.

With this, the Bayesian information criterion (14) can be re-written as:

BIC(λ, ν) = log(σ̂2
λ,ν) +

1

nσ̂2
λ,ν

‖Y −Xβ̂λ,ν −Zûλ,ν‖2 + d̂f
Ŷ
(λ, ν)

log(n)

n
, (19)

where Âλ,ν ≡ {p : ‖β̂λ,ν,p‖ > 0}. We consider the following technical conditions:

(B.1) For any A ∈ A, there exists σ2
A > 0 such that σ̂2

A → σ2
A in probability.

(B.2) For any A with A ∩AT 6= AT , σ
2
A > σ2

AT
.

(B.3) As n → ∞, λ/n → 0.

Appendix C establishes the following theorem.
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Theorem 2 (G known). Under (A.1)-(A.7) and (B.1)-(B.3). Assume that
(A.5) and (A.6) hold for some sequences {λ∗

n} and {ν∗n}. Let

(λ̂, ν̂) = argmin
(λ,ν)

BIC(λ, ν).

Then
P (β̂λ̂,ν̂ = b̂AT

) → 1 as n → ∞.

As similar to Corollary 1, applying Slutsky’s theorem leads to the following
Corollary.

Corollary 2 (G unknown). Under the conditions of Theorem 2, except that G

is replaced by a consistent estimate Ĝ, Theorem 2 continues to hold.

6. Simulations

In this section, we investigate the empirical performance of our proposed method-
ology via numerical experiments. The covariates Xip’s were generated from the
uniform(0, 1) distribution. The test functions (i.e., fixed effects) used in the ex-
periments are listed in Table 1; these functions have been used by Meier et al.
(2009). Note that the functions listed in Table 1 are not centered, while in all
our numerical work, they were, however, all centered.

We tested our method with three different types of models:

Model 1 (categorical variables as mixed-effects):

Yi =f1(Xi1) + f2(Xi2) + f3(Xi3) + f4(Xi4) +

20
∑

p=5

fp(Xip)

+

5
∑

k=1

u1kI(Zi1 = k) +

5
∑

k=1

u2kI(Zi2 = k)

+

3
∑

k=1

u3kI(Zi3 = k) +

3
∑

k=1

u4kI(Zi4 = k) + ǫi,

where uqk’s are i.i.d. N(0, θ2qσ
2) with θ1 = 3, θ2 = 4, and θ3 = θ4 =

0, and ǫi’s are i.i.d. N(0, σ2). The Ziq’s are generated from the discrete
uniform[1,. . . ,5] distribution for q = 1, 2 and discrete uniform[1,2,3] for
q = 3, 4.

Table 1

Test functions used in the simulation, all were centered in the simulation

test function
f1 6x
f2 5(2x− 1)2

f3 4 sin(2πx)/{2 − sin(2πx)}
f4 3{0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx) + 0.4 cos2(2πx) + 0.5 sin3(2πx)}

fp, p ≥ 5 0



Fixed and random effects selection 823

Model 2 (random intercept):

Yik =ui + f1(Xik1) + f2(Xik2) + f3(Xik3) + f4(Xik4)

+
20
∑

p=5

fp(Xikp) + ǫik,

where ui’s are i.i.d. N(0, θ2σ2) with θ = 3 and ǫik’s are i.i.d. N(0, σ2). The
response Yik represents the kth measurement of the ith subject, where
1 ≤ i ≤ N , 1 ≤ k ≤ ni and

∑N
i=1 ni = n. Here N is the total number of

subjects and ni is the number of measurements taken from the ith subject.
Model 3 (random intercepts and trends):

Yik =ai + bi1Xik1 + f3(Xik1) + bi2Xik2 + f4(Xik2)

+

6
∑

p=3

{bipXikp + fp+2(Xikp)}+ ǫik,

where ai ∼ N(0, θ21σ
2), bi1 ∼ N(0, θ22σ

2), bi2 ∼ N(0, θ23σ
2) with θi = i+ 1

and bip = 0 for p ≥ 3, and ǫik’s are i.i.d. N(0, σ2). As above, Yik represents
the kth measurement of the ith subject, where 1 ≤ i ≤ N , 1 ≤ k ≤ ni and
∑N

i=1 ni = n.

We tested the proposed method with different combinations of n, N and
signal-to-noise ratio (SNR, defined as SNR = Var{E(Y |X)} 1

2 /σ). The number
of Monte-Carlo runs tested for each experimental configuration was 200. We use
the following mean squared error (MSE) to measure the estimation accuracy for

the additive components: MSE =
∑P

p=1 ‖fp − f̂p‖2.
For each simulated data set, various estimates were obtained by three different

estimation methods:

• Method I: applying the proposed method to the full data set.
• Method II: applying the ordinary group lasso method to the full data set
(i.e., with both fixed and random effects covariates). No random effects
selection is performed as all the random effects are always included in the
final model. The tuning parameter λ for the group lasso selection is chosen
by BIC. This method is implemented in a similar fashion as the approach
described in Section 3.3, except no random effects selection is done.

• Method III: this method is used here as an “oracle method” for benchmark
comparison, as only the significant variables are considered (i.e., assuming
the true model is known). It iterates between the following two steps: use
generalized least squares to estimate the fixed effects parameters and use
the NR algorithm to estimate the random effects parameters.

For each estimated model, we counted the number of non-zero f̂p, and the
number of non-zero random effects, intercepts and/or trends. We also calculated
the above-defined MSE, and recorded the parameter estimates for the random
components. Lastly, we noted if the estimated model is exactly the same as the
true model, or if it is a superset of the true model. These results are summarized
in Tables 2 to 7.
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Table 2

Simulation results for Model 1. The true numbers of non-zero fp’s and random effects are 4

and 2 respectively

number of number of number of times

SNR = 3 non-zero f̂p MSE random effects true model is
configuration method 4 5 6 7+ mean S.E. 2 3 4 included selected

n = 128
m = 7

I 193 5 2 0 0.3748 0.0067 161 36 3 200 155
II 39 48 40 73 0.6884 0.0136 — — — — —
III 200 0 0 0 0.3753 0.0069 — — — — —

n = 256
m = 8

I 200 0 0 0 0.2467 0.0037 167 30 3 200 167
II 118 52 18 12 0.4284 0.0071 — — — — —
III 200 0 0 0 0.2082 0.0033 — — — — —

n = 512
m = 9

I 200 0 0 0 0.1351 0.0019 186 12 2 200 186
II 156 41 3 0 0.2152 0.0035 — — — — —
III 200 0 0 0 0.1105 0.0014 — — — — —

number of number of number of times

SNR = 4 non-zero f̂p MSE random effects true model is
configuration method 4 5 6 7+ mean S.E. 2 3 4 included selected

n = 128
m = 7

I 200 0 0 0 0.2605 0.0038 161 34 5 200 161
II 58 49 36 57 0.5021 0.009 — — — — —
III 200 0 0 0 0.2461 0.004 — — — — —

n = 256
m = 8

I 200 0 0 0 0.1835 0.0025 170 29 1 200 170
II 123 53 20 4 0.3073 0.0045 — — — — —
III 200 0 0 0 0.1501 0.0019 — — — — —

n = 512
m = 9

I 200 0 0 0 0.0926 0.0011 182 16 2 200 182
II 154 40 4 2 0.1434 0.0018 — — — — —
III 200 0 0 0 0.0747 9e-04 — — — — —

Table 3

Estimates of random components for Model 1

SNR = 3 θ̂1 (θ1 = 3) θ̂2 (θ2 = 4) σ̂ (σ ≈ 1)
configuration method median mean s.e. median mean s.e. median mean s.e.

n = 128
m = 7

I 2.874 2.888 0.071 3.621 3.767 0.092 1.029 1.028 0.006
II 2.579 2.709 0.089 3.271 3.556 0.121 1.131 1.132 0.009
III 2.936 2.983 0.075 3.75 3.89 0.095 0.994 0.996 0.006

n = 256
m = 8

I 2.596 2.623 0.063 3.429 3.523 0.087 1.093 1.093 0.005
II 2.393 2.45 0.06 3.193 3.299 0.084 1.176 1.173 0.005
III 2.684 2.723 0.066 3.558 3.655 0.09 1.053 1.055 0.005

n = 512
m = 9

I 2.597 2.645 0.069 3.361 3.414 0.09 1.101 1.1 0.003
II 2.499 2.55 0.066 3.252 3.295 0.088 1.139 1.138 0.003
III 2.656 2.707 0.07 3.446 3.493 0.092 1.075 1.075 0.003

SNR = 4 θ̂1 (θ1 = 3) θ̂2 (θ2 = 4) σ̂ (σ ≈ 0.8)
configuration method median mean s.e. median mean s.e. median mean s.e.

n = 128
m = 7

I 2.717 2.735 0.07 3.477 3.727 0.122 0.811 0.818 0.005
II 2.423 2.505 0.08 3.101 3.551 0.19 0.911 0.917 0.007
III 2.82 2.835 0.072 3.606 3.764 0.093 0.778 0.789 0.005

n = 256
m = 8

I 2.601 2.631 0.071 3.481 3.61 0.082 0.839 0.84 0.004
II 2.432 2.437 0.066 3.233 3.343 0.075 0.91 0.907 0.004
III 2.689 2.735 0.074 3.627 3.753 0.085 0.808 0.809 0.003

n = 512
m = 9

I 2.537 2.614 0.064 3.257 3.335 0.078 0.837 0.835 0.003
II 2.477 2.53 0.062 3.153 3.225 0.075 0.868 0.863 0.003
III 2.606 2.677 0.066 3.319 3.415 0.08 0.817 0.816 0.002
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Table 4

Simulation results for Model 2. The true number of fp’s is 4, and NI denotes “number of

times the random intercept is selected”

number of number of times

SNR = 3 non-zero f̂p MSE true model is
configuration method 4 5 6 7+ mean S.E. NI included selected

n = 128
m = 7
N = 16

I 195 5 0 0 0.3944 0.0068 200 200 195
II 34 65 46 55 0.7134 0.0138 — — —
III 200 0 0 0 0.4202 0.0077 — — —

n = 256
m = 8
N = 16

I 200 0 0 0 0.2519 0.0041 200 200 200
II 109 66 18 7 0.4376 0.0074 — — —
III 200 0 0 0 0.2166 0.0033 — — —

n = 512
m = 9
N = 16

I 200 0 0 0 0.1344 0.0018 200 200 200
II 168 32 0 0 0.2203 0.0031 — — —
III 200 0 0 0 0.112 0.0016 — — —

n = 256
m = 8
N = 32

I 200 0 0 0 0.2659 0.0036 200 200 200
II 103 65 26 6 0.4744 0.0074 — — —
III 200 0 0 0 0.2341 0.0035 — — —

n = 512
m = 9
N = 32

I 200 0 0 0 0.14 0.002 200 200 200
II 157 37 5 1 0.226 0.0036 — — —
III 200 0 0 0 0.1148 0.0015 — — —

number of number of times

SNR = 4 non-zero f̂p MSE true model is
configuration method 4 5 6 7+ mean S.E. NI included selected

n = 128
m = 7
N = 16

I 197 3 0 0 0.2763 0.0041 200 200 197
II 40 51 42 67 0.5337 0.009 — — —
III 200 0 0 0 0.265 0.0046 — — —

n = 256
m = 8
N = 16

I 200 0 0 0 0.1783 0.0023 200 200 200
II 131 50 17 2 0.3039 0.0046 — — —
III 200 0 0 0 0.1503 0.0018 — — —

n = 512
m = 9
N = 16

I 200 0 0 0 0.0959 0.0012 200 200 200
II 160 36 3 1 0.1484 0.002 — — —
III 200 0 0 0 0.0765 0.001 — — —

n = 256
m = 8
N = 32

I 200 0 0 0 0.1859 0.0026 200 200 200
II 115 52 27 6 0.3191 0.0049 — — —
III 200 0 0 0 0.1578 0.0021 — — —

n = 512
m = 9
N = 32

I 200 0 0 0 0.0945 0.0012 200 200 200
II 171 27 2 0 0.1505 0.0021 — — —
III 200 0 0 0 0.0764 0.001 — — —

The simulation results seem to suggest that our proposed method can often
correctly select the correct significant fixed effects components fp’s. It is also
capable of selecting the significant random effects. The empirical performances
of the proposed method improves as the sample size and/or SNR increase. The
simulation results also show that our method outperforms the ordinary group
lasso in terms of fixed effects selection.

When estimating the variance components (e.g., θ1 and θ2 in Model 1), a
bias pattern seems to exist: the bias increases as n increases. This is not too
surprising, as it is known that the maximum likelihood estimates of the variance
components are biased, as they do not account for the loss in degrees of freedom
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Table 5

Estimates of random components for Model 2

SNR = 3 θ̂ (θ = 3) σ̂ (σ ≈ 1)
configuration method median mean s.e. median mean s.e.

n = 128
m = 7
N = 16

I 3.085 3.171 0.046 1.044 1.036 0.007
II 2.763 2.84 0.044 1.163 1.16 0.008
III 3.169 3.267 0.048 1.007 1.004 0.006

n = 256
m = 8
N = 16

I 2.843 2.828 0.042 1.093 1.099 0.005
II 2.662 2.631 0.039 1.174 1.182 0.005
III 2.943 2.934 0.044 1.054 1.059 0.005

n = 512
m = 9
N = 16

I 2.884 2.891 0.037 1.098 1.095 0.003
II 2.786 2.782 0.036 1.14 1.138 0.003
III 2.955 2.957 0.038 1.073 1.071 0.003

n = 256
m = 8
N = 32

I 2.948 2.98 0.031 1.102 1.098 0.005
II 2.719 2.748 0.028 1.197 1.19 0.005
III 3.076 3.091 0.032 1.063 1.059 0.005

n = 512
m = 9
N = 32

I 2.954 2.961 0.026 1.097 1.097 0.003
II 2.846 2.855 0.026 1.138 1.139 0.004
III 3.026 3.028 0.027 1.071 1.073 0.003

SNR = 4 θ̂ (θ = 3) σ̂ (σ ≈ 0.8)
configuration method median mean s.e. median mean s.e.

n = 128
m = 7
N = 16

I 2.948 3.478 0.179 0.805 0.802 0.005
II 2.603 4.357 0.369 0.918 0.912 0.007
III 3.035 3.074 0.044 0.778 0.777 0.005

n = 256
m = 8
N = 16

I 2.819 2.811 0.039 0.844 0.836 0.004
II 2.576 2.585 0.036 0.913 0.91 0.004
III 2.929 2.926 0.04 0.81 0.804 0.004

n = 512
m = 9
N = 16

I 2.797 2.797 0.039 0.833 0.831 0.003
II 2.666 2.693 0.038 0.864 0.863 0.003
III 2.861 2.864 0.04 0.813 0.811 0.003

n = 256
m = 8
N = 32

I 2.917 2.912 0.029 0.834 0.835 0.004
II 2.701 2.675 0.027 0.909 0.91 0.004
III 3.037 3.025 0.03 0.805 0.803 0.004

n = 512
m = 9
N = 32

I 2.86 2.911 0.027 0.828 0.83 0.003
II 2.726 2.794 0.026 0.864 0.865 0.003
III 2.926 2.98 0.027 0.81 0.811 0.003

when estimating the fixed effects (Harville, 1974). However, for Model 1, we

believe that it is more important to look at the estimates θ̂1σ̂ and θ̂2σ̂ rather
than θ̂1 and θ̂2. If we look at the estimates θ̂1σ̂ and θ̂2σ̂, this bias pattern
disappears.

By comparing the MSEs obtained from the proposed method (I) and the
oracle method (III), one can see that, in terms of prediction power, the proposed
method is not too far behind from the oracle method. As expected, as sample
size increases, the MSE values of the proposed method decrease, which supports
the claim that the spline approximation for the fixed effects components fp’s
is consistent. We also note that the MSE values decrease as SNR increases,
which indicates that the noise level affects the convergence rate of the spline
approximation. In general, the random effects selection based on BIC improves



Fixed and random effects selection 827

Table 6

Simulation results for Model 3. The true numbers of non-zero fp and random trends are

both 2. The notation NI denotes “number of times the random intercept is selected”

number of number of number of times

SNR = 3 non-zero f̂p MSE random trends true model is
configuration method 2 3 4+ mean S.E. NI ≤ 1 2 ≥ 3 included selected

n = 128
m = 7
N = 16

I 200 0 0 0.2676 0.0079 147 66 125 9 128 100
II 106 54 40 0.4079 0.0104 — — — — — —
III 200 0 0 0.2593 0.0086 — — — — — —

n = 256
m = 8
N = 16

I 200 0 0 0.1825 0.0055 190 15 176 9 185 161
II 150 47 3 0.3093 0.0086 — — — — — —
III 200 0 0 0.1773 0.0056 — — — — — —

n = 512
m = 9
N = 16

I 200 0 0 0.2092 0.0068 199 1 191 8 199 179
II 173 24 3 0.2989 0.0076 — — — — — —
III 200 0 0 0.1345 0.0061 — — — — — —

n = 256
m = 8
N = 32

I 200 0 0 0.1732 0.0043 134 74 117 9 126 108
II 155 38 7 0.251 0.0054 — — — — — —
III 200 0 0 0.153 0.0039 — — — — — —

n = 512
m = 9
N = 32

I 200 0 0 0.1254 0.0042 196 4 186 10 196 180
II 169 29 2 0.1865 0.0054 — — — — — —
III 200 0 0 0.0905 0.0032 — — — — — —

number of number of number of times

SNR = 4 non-zero f̂p MSE random trends true model is
configuration method 2 3 4+ mean S.E. NI ≤ 1 2 ≥ 3 included selected

n = 128
m = 7
N = 16

I 200 0 0 0.2049 0.0051 153 77 110 13 120 90
II 120 51 29 0.3013 0.0067 — — — — — —
III 200 0 0 0.1871 0.0047 — — — — — —

n = 256
m = 8
N = 16

I 200 0 0 0.144 0.0037 188 19 171 10 181 154
II 151 44 5 0.2227 0.0054 — — — — — —
III 200 0 0 0.1274 0.0033 — — — — — —

n = 512
m = 9
N = 16

I 200 0 0 0.1369 0.0045 200 0 194 6 200 180
II 149 46 5 0.1917 0.0054 — — — — — —
III 200 0 0 0.088 0.0038 — — — — — —

n = 256
m = 8
N = 32

I 200 0 0 0.1338 0.0026 135 77 116 7 123 108
II 151 40 9 0.1838 0.0038 — — — — — —
III 200 0 0 0.117 0.0022 — — — — — —

n = 512
m = 9
N = 32

I 200 0 0 0.0827 0.0021 198 4 183 13 196 175
II 157 39 4 0.1183 0.003 — — — — — —
III 200 0 0 0.0646 0.0016 — — — — — —

when sample size and/or SNR increase. Lastly, for the repeated measurement
model, when the number of replicates per subject increases, our method results
in a more accurate random effects selection. However, the MSE values for the
fixed effects components do not decrease when the number of replicates per
subject increases, unless the total sample size increases.

In conclusion, our proposed method using BIC model selection is very capable
of recovering the true model, especially when the sample size and/or SNR are
not too small.
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Table 7

Estimates of random components for Model 3

SNR = 3 θ̂1 (θ1 = 2) θ̂2 (θ2 = 3) θ̂3 (θ3 = 4) σ̂ (σ ≈ 1)

configu-

ration method median mean s.e. median mean s.e. median mean s.e. median mean s.e.

n = 128

m = 7

N = 16

I 1.979 2.032 0.028 2.857 2.903 0.046 3.412 3.541 0.054 0.849 0.851 0.007

II 1.83 1.86 0.047 2.899 2.947 0.065 3.568 3.673 0.063 0.821 0.811 0.008

III 1.832 1.851 0.037 2.837 2.85 0.053 3.561 3.665 0.057 0.798 0.799 0.006

n = 256

m = 8

N = 16

I 1.891 1.927 0.027 2.806 2.878 0.045 3.666 3.658 0.058 0.829 0.829 0.004

II 1.969 2.004 0.032 3.026 3.055 0.049 3.612 3.646 0.06 0.839 0.834 0.004

III 1.86 1.866 0.029 2.769 2.818 0.046 3.699 3.705 0.059 0.81 0.809 0.003

n = 512

m = 9

N = 16

I 2.026 2.062 0.03 3.074 3.077 0.05 3.779 3.817 0.052 0.806 0.806 0.002

II 2.136 2.167 0.032 3.234 3.248 0.05 3.819 3.827 0.052 0.807 0.809 0.003

III 1.866 1.869 0.026 2.82 2.789 0.043 3.78 3.803 0.052 0.797 0.797 0.002

n = 256

m = 8

N = 32

I 2.041 2.058 0.019 2.767 2.831 0.032 3.728 3.694 0.045 0.854 0.879 0.008

II 1.851 1.85 0.028 2.792 2.825 0.039 3.778 3.74 0.048 0.829 0.835 0.005

III 1.908 1.912 0.027 2.794 2.837 0.036 3.881 3.88 0.047 0.801 0.806 0.004

n = 512

m = 9

N = 32

I 2.007 2.041 0.021 2.922 2.949 0.03 3.787 3.837 0.037 0.808 0.812 0.003

II 2.055 2.077 0.022 3.017 3.048 0.031 3.786 3.829 0.038 0.806 0.809 0.003

III 1.974 1.99 0.021 2.861 2.89 0.029 3.832 3.875 0.038 0.797 0.8 0.003

SNR = 4 θ̂1 (θ1 = 2) θ̂2 (θ2 = 3) θ̂3 (θ3 = 4) σ̂ (σ ≈ 0.8)

configu-

ration method median mean s.e. median mean s.e. median mean s.e. median mean s.e.

n = 128

m = 7

N = 16

I 1.839 1.938 0.031 2.689 2.745 0.043 3.363 3.459 0.058 0.661 0.669 0.006

II 1.709 1.706 0.05 2.564 2.595 0.06 3.367 3.441 0.073 0.659 0.655 0.007

III 1.773 1.795 0.038 2.616 2.606 0.052 3.532 3.601 0.062 0.621 0.622 0.004

n = 256

m = 8

N = 16

I 1.815 1.83 0.026 2.712 2.766 0.044 3.545 3.545 0.049 0.638 0.644 0.003

II 1.839 1.865 0.031 2.88 2.895 0.048 3.506 3.534 0.05 0.648 0.649 0.003

III 1.784 1.781 0.028 2.69 2.71 0.045 3.618 3.63 0.049 0.623 0.625 0.002

n = 512

m = 9

N = 16

I 2.039 2.064 0.029 3.09 3.086 0.045 3.754 3.731 0.049 0.615 0.613 0.002

II 2.166 2.195 0.03 3.303 3.274 0.046 3.796 3.749 0.049 0.615 0.615 0.002

III 1.871 1.874 0.027 2.796 2.784 0.04 3.75 3.721 0.05 0.609 0.607 0.002

n = 256

m = 8

N = 32

I 1.969 1.991 0.018 2.746 2.768 0.031 3.446 3.503 0.039 0.664 0.682 0.006

II 1.825 1.831 0.026 2.748 2.76 0.038 3.471 3.57 0.041 0.642 0.645 0.004

III 1.901 1.888 0.024 2.78 2.783 0.036 3.647 3.712 0.039 0.62 0.622 0.003

n = 512

m = 9

N = 32

I 1.926 1.946 0.019 2.888 2.917 0.03 3.653 3.754 0.037 0.616 0.617 0.002

II 1.977 1.992 0.02 2.995 2.999 0.032 3.665 3.745 0.037 0.616 0.616 0.002

III 1.9 1.902 0.018 2.806 2.848 0.03 3.721 3.796 0.037 0.609 0.609 0.002

7. Real data sets

7.1. Prostate cancer data

This data set has been studied by Tibshirani (1996). It examines the correlation
between the level of prostate specific antigen and a number of clinical measures
in men who were about to receive a radical prostatectomy. Table 8 lists the
variables in this data set. The full model is

lpsa =µ+ f1(lcavol) + f2(lweight) + f3(age) + f4(lbph) + f5(gleason)

+ f6(pgg45) + I(svi = 0)u0 + I(svi = 1)u1 + ǫ,

where µ is the overall mean, fp are the additive components, u0, u1 ∼ N(0, θ2σ2)
are the random effects corresponding to variable svi, and ǫ is N(0, σ2) random
error. In this model, we mapped the domains of all continuous predictors into
[0, 1].
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Table 8

Variables of the Prostate Cancer Data Set

Variable Name Description Type
lpsa log of prostate specific antigen Continuous
lcavol log cancer volume Continuous
lweight log prostate weight Continuous

age age Continuous
lbph log of benign prostatic hyperplasia amount Continuous
lcp log of capsular penetration Continuous

gleason gleason score Continuous
pgg45 Gleason score 4 or 5 Continuous
svi seminal vesicle invasion Binary

The analysis by Tibshirani (1996) concludes that variables lcavol, lweight
and svi are important in predicting the level of prostate specific antigen. Our
proposed method gives similar results: we confirm that lcavol and lweight are
related to lpsa, the binary predictor svi is significant, and all the remaining
variables are insignificant. Plots of the estimated fixed effects fp’s and fitted
values can be found in Figure 1.

7.2. Depression data

It is of interest to examine the degree to which the effects of time-varying drug
plasma levels on the change in depression levels over time. In this study each pa-
tient was treated for 4 weeks with imipramine. Blood samples were drawn twice
per week, 15 hours after the last drug intake, and imipramine and desipramine
concentrations were measured. Using this data set, Reisby et al. (1977) examine
the relationship amongst imipramine (imi), desipramine (dmi) and clinical re-
sponse in 66 depressed inpatients (37 endogenous and 29 non-endogenous). The
variables of this data set is summarized in Table 9.

The full model is

hamdik =µ+ ui + f1(weekik) + f2(weekik × endogi) + f3(imiik)

+ f4(imiik × endogi) + f5(dmiik) + f6(dmiik × endogi) + ǫik,

where i = 1, . . . , 66, k = 1, . . . , 4, µ is the overall mean, fp’s are the additive
components, ui ∼ N(0, θ2σ2)’s are the random effects corresponding to different
inpatients and ǫik’s are i.i.d. N(0, σ2) errors. Note that we introduced a ran-
dom intercept ui for each subject, and interaction terms of endog with other
continuous predictors. We have also mapped the domains of all the continuous
predictors into [0, 1].

With this data set, we demonstrate that our proposed method can handle
repeated measurement data. The variation among different patients can be ex-
plained by a random intercept term. Variable id represents an important char-
acteristics of repeated measurement data and is kept in our model. And the
group lasso procedure can help to choose the additive components.

Hedeker and Gibbons (2006) have also investigated this data set using linear
mixed model and we obtained similar conclusions: larger dmi values lead to
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Fig 1. Top: estimated fixed effects fp’s of the Prostate Cancer Data Set. Bottom: fitted values

verses response.

Table 9

Variables of the Depression Data Set

Variable Name Description Type
id subject number Discrete (1 to 66)
hamd Hamilton Depression Scores Continuous
endog endogenous (=1) or non-endogenous (=0) Binary
week week Continuous
imi imipramine drug-plasma levels (µg/l) Continuous
dmi desipramine drug-plasma levels (µg/l) Continuous
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Fig 2. Top two rows: estimated functions of the depression data set. Bottom left: fitted values

verses response. Bottom right: histogram for the predicted ui.

greater improvement in depression (i.e., more negative hamd scores), while the
drug imi is not significantly related to the hamd scores. Plots of estimated fixed
effects fp’s, histograms of the estimated ui’s, together with fitted values can be
found in Figure 2.

8. Summary

In this paper we studied the problem of variable selection in the context of non-
parametric additive mixed modeling. The mixed modeling framework provides
a method to jointly handle additive fixed effects as well as random effects. The
additive fixed effects component is approximated by truncated series expansions
with B-spline bases, with consistency properties of the spline approximation es-
tablished. We have considered fitting the nonparametric fixed components with
the adaptive group lasso methodology. This adaptive group lasso procedure
yields sparse estimates for the coefficients corresponding to the B-spline bases.
An model selection criterion derived from BIC, which is proven to be consis-
tent, is presented for selecting the tuning parameters (λ and ν) of the adaptive
group lasso procedure. Empirical results show that the new methodology is very
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efficient in fitting high dimensional data with sparse solution, especially for the
case of repeated measurement model with a number of continuous covariates.
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Appendix

Appendix A: Derivation of (11) and (12)

This appendix derives (11) and (12). In below ⊗ denotes the Kronecker product
operator and vecX denotes the vector obtained by stacking the columns of the
matrix X. We begin by calculating

∂r′V ∗−1r

∂vecG
=

∂vecV ∗

∂vecG

∂r′V ∗−1r

∂vecV ∗

= −Z ′V ∗−1
r ⊗Z ′V ∗−1′

r

= −vec(Z ′V ∗−1′
rr′V ∗−1′

Z),

∂2r′V ∗−1r

∂vec(G′)∂vec(G)′
= (Z ′ ⊗Z ′)

{

(V ∗−1′
r ⊗ V ∗−1

Z)(r′V ∗−1′
Z ⊗ I)

+ (V ∗−1′
Z ⊗ V ∗−1

r)(I ⊗ r′V ∗−1
Z)

}

= Z ′V ∗−1′
rr′V ∗−1′

Z ⊗Z ′V ∗−1
Z

+Z ′V ∗−1′
Z ⊗Z ′V ∗−1

rr′V ∗−1
Z,

∂ log(|V ∗|)
∂vecG

= (Z ′ ⊗Z ′)vec(V ∗−1′) = vec(Z ′V ∗−1′
Z)

and

∂2 log(|V ∗|)
∂vec(G′)∂vec(G)′

= −(Z ′ ⊗Z ′)(V ∗−1′
Z ⊗ V ∗−1

Z)

= −Z ′V ∗−1′
Z ⊗Z ′V ∗−1

Z.

Let A = Z ′V ∗−1r(Z ′V ∗−1r)′ and B = Z ′V ∗−1Z. Since G is symmetric, the
gradient and Hessian matrix w.r.t. vecG are

∂p(G|β̂)
∂vec(G)

= vec(Z ′V ∗−1′
Z)− n

r′V ∗−1r
vec(Z ′V ∗−1′

rr′V ∗−1′
Z)

= vecB − 1

σ̂2
vecA
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and

∂2p(G|β̂)
∂vec(G)∂vec(G)′

=
∂vec(G′)

∂vec(G)

∂2p(G|β̂)
∂vec(G′)∂vec(G)′

,

where

∂2p(G|β̂)
∂vec(G′)∂vec(G)′

=−Z ′V ∗−1′
Z ⊗Z ′V ∗−1

Z

− n

(r′V ∗−1r)2
vec(Z ′V ∗−1′

rr′V ∗−1′
Z)vec(Z ′V ∗−1′

rr′V ∗−1′
Z)′

+
n

r′V ∗−1r

(

Z ′V ∗−1′
rr′V ∗−1′

Z ⊗Z ′V ∗−1
Z

+Z ′V ∗−1′
Z ⊗Z ′V ∗−1

rr′V ∗−1
Z
)

=−B ⊗B − 1

nσ̂4
vec(A)vec(A)′ +

1

σ̂2

(

A⊗B +B ⊗A
)

.

With the above (11) and (12) can be obtained.

Appendix B: Lemmas

This appendix presents a few lemmas which will be required for proofing our
major theoretical results.

Lemma 1. Under (A.3) and (A.4), for every fp ∈ F , there exists f̃p ∈ S(d, tp) s.t.

1

n

n
∑

i=1

{

f̃p(Xip)− fp(Xip)
}2

= Op(m
−d).

Proof. See lemma 1 of Huang et al. (2010).

Lemma 2. Let w = (wp
β̂′

p

‖β̂p‖
, p ∈ AT )

′. Under (A.1) and (A.5)(b) we have

‖w‖ = op(1).

Proof.

‖w‖2 =
∑

p∈AT

w2
p =

∑

p∈AT

(‖β̃p‖−1 − ν)2+ ≤ |AT | max
p∈AT

(‖β̃p‖−1 − ν)2+ = op(1).

Lemma 3. For p = 1, . . . , P, j = 1, . . . ,m, let apj = [φpj(Xip)]
n
i=1 and e ∼

N(0,V ), then

‖apj‖ = Op

(
√

n

m

)

, a′
pjV

−1e = Op

(
√

n

m

)

and ‖X ′
pV

−1e‖ = Op(
√
n).
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Proof. By properties of B-splines, there exist c1 and c2 s.t.

‖apj‖∞ ≤ ‖[φpj(Xip)]
n
i=1‖∞ ≤ c1 and E[φ2

pj(Xip)] ≤
c2
m
.

Then,

φ2
pj(Xip)− Eφ2

pj(Xip) ≤ 2c21 and Var
[

φ2
pj(Xip)

]

≤ 4c41
c2
m
. (20)

By law of large number,

1

n
‖apj‖2 =

1

n

n
∑

i=1

φ2
pj(Xip) = Op

( 1

m

)

.

Therefore,

a′
pjV

−1e = Op

(
√

n

m

)

and ‖X ′
pV

−1e‖ ≤
√
m max

1≤j≤m
a′
pjV

−1e = Op(
√
n).

The proof completes.

Lemma 4. Let XA be the design matrix corresponding to A. If |A| is bounded,
then

‖XA‖ = Op

(
√

n

m

)

, and ‖(X ′
AV

−1XA)
−1‖ = Op

(m

n

)

.

Proof. The result holds under (A.2) and (A.3). Please referring lemma 3 of
Huang et al. (2010) and lemma 6.2 of Zhou et al. (1998) for details.

Lemma 5. For p = 1, . . . , P, j = 1, . . . ,m, let apj = [φpj(Xip)]
n
i=1. Then

E
[

max
pj

‖apj‖
]

= Op

(
√

n

m

)

.

Proof. By equation (20) and lemma A.1 of Van De Geer (2008),

E
[

max
pj

∣

∣

∣

1

n

n
∑

i=1

{φ2
pj(Xip)− Eφ2

pj(Xip)}
∣

∣

∣

]

≤
√

8c41c2 log(2mP )

mn
+ 2c21

log(2mP )

n
.

Also,

E
[ 1

n
max
pj

‖apj‖2
]

= E
[

max
pj

∣

∣

∣

1

n

n
∑

i=1

{φ2
pj(Xip)}

∣

∣

∣

]

≤E
[

max
pj

∣

∣

∣

1

n

n
∑

i=1

{φ2
pj(Xip)− Eφ2

pj(Xip)}
∣

∣

∣

]

+max
pj

Eφ2
pj(Xip)

and

E
[

max
pj

‖apj‖
]

≤
√

E
[

max
pj

‖apj‖2
]

≤
{

√

8c41c2n log(2mP )

m
+ 2c21 log(2mP ) +

c2n

m

}1/2

.



Fixed and random effects selection 835

Particularly, under (A.6)(a), we have m log(2mP )
n → 0, so E[maxpj ‖apj‖] =

Op(
√

n
m). Therefore, the result follows.

Lemma 6. Let e ∼ N(0,V ), for any A ⊂ {1, . . . , P}

E(max
p∈A

‖X ′
pV

−1e‖) = Op(
√

n log(2mP ))

Proof. For p = 1, . . . , P, j = 1, . . . ,m, let apj = [φpj(Xip)]
n
i=1. Condition on

apj, by lemma 2.2.1 and 2.2.2 of Van der Vaart and Wellner (1996),

E( max
1≤p≤P,1≤j≤m

a′
pjV

−1e|apj) ≤ C1

√

log(2mP ) ·max
pj

‖apjV
−1/2‖,

for some C1 > 0. Therefore, for some C2 > 0,

E( max
1≤p≤P,1≤j≤m

a′
pjV

−1e) ≤ C1

√

log(2mP ) · E
[

max
pj

‖apj‖
]

· ‖V −1/2‖

≤ C2

√

n log(2mP )

m
.

Moreover,

E(max
p∈A

‖X ′
pV

−1e‖) ≤
√
m · E( max

1≤p≤P,1≤j≤m
a′
pjV

−1e) ≤ C2

√

n log(2mP ).

It completes the proof.

Appendix C: Proofs of theorems

Proof of theorem 1. The proof follows that main arguments of Theorem 3 of
Huang et al. (2010), but with some modified technical details. Recall the nec-

essary and sufficient conditions for β̂ = (β̂′
1, . . . , β̂

′
P )

′ to be the solution of (5)
are

{

−Xp
′V −1(Y −Xβ̂) + λwp

β̂p

‖β̂p‖
= 0, if β̂p 6= 0;

‖Xp
′V −1(Y −Xβ̂)‖ ≤ λwp, if β̂p = 0.

(21)

Let w = (wp
β̂′

p

‖β̂p‖
, p ∈ AT )

′. Define

γ̂AT
= (γ̂′

AT ,p, p ∈ AT )
′ = (X ′

AT
V −1XAT

)−1(X ′
AT

V −1Y − λw).

If
{

‖γ̂AT ,p‖ > 0, ∀p ∈ AT ;

‖Xp
′V −1(Y −XAT

γ̂AT
)‖ ≤ λwp, ∀p ∈ A0,

then β̂ = (γ̂′
AT

,0′)′ satisfies (21), Xβ̂ = XAT
γ̂AT

and sign(‖β̂p‖) = sign(‖βp‖)
for p = 1, . . . , P . Therefore, sign(‖β̂p‖) = sign(‖βp‖) for p = 1, . . . , P if

{

‖βp‖ − ‖γ̂AT ,p‖ < ‖βp‖, ∀p ∈ AT ;

‖Xp
′V −1(Y −XAT

γ̂AT
)‖ ≤ λwp, ∀p ∈ A0.
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Now

P (sign(‖β̂p‖) 6= sign(‖βp‖), ∃p)
≤P (‖γ̂AT ,p − βp‖ ≥ ‖βp‖, ∃p ∈ AT )

+ P (‖Xp
′V −1(Y −XAT

γ̂AT
)‖ > λwp, ∃p ∈ A0). (22)

Next we show that the right hand side of (22) tends to zero, by using claim 1
and claim 2 below.
Claim 1:

P (‖γ̂AT ,p − βp‖ ≥ ‖βp‖, ∃p ∈ AT ) → 0. (23)

Let Tp = [Tp1,Tp2, . . . ,Tp|AT |], where Tpj =

{

I, p = j;

0, p 6= j.

And let CA = X ′
AV

−1XA, e = Zu+ ǫ, δ = [δi]
n
i=1, where δi =

∑P
p=1 f(Xip)−

X(i)β and X(i) is the ith row of X. We have

γ̂AT ,p − βp = TpC
−1
AT

{

X ′
AT

V −1(e+ δ)− λw
}

.

By the triangle inequality,

‖γ̂AT ,p − βp‖ ≤ ‖TpC
−1
AT

X ′
AT

V −1e‖+ ‖TpC
−1
AT

X ′
AT

V −1δ‖+ λ‖TpC
−1
AT

w‖.

By lemma 4, ‖C−1
AT

‖ = Op(m/n) and ‖XAT
‖ = Op(

√

n/m). In addition, by
lemma 3, the first term

‖TpC
−1
AT

X ′
AT

V −1e‖ ≤ ‖C−1
AT

‖ · ‖X ′
AT

V −1e‖ = Op(m/
√
n) = op(1).

By lemma 1, the second term

‖TpC
−1
AT

X ′
AT

V −1δ‖ ≤ ‖C−1
AT

‖ · ‖X ′
AT

V −1‖ · ‖δ‖ = Op(m
−d+1/2) = op(1).

By lemma 2, the third term

λ‖TpC
−1
AT

w‖ ≤ λ‖C−1
AT

‖ · ‖w‖ = Op(λm/n)op(1) = op(1).

With probability tending to one, ‖γ̂AT ,p−βp‖ = op(1). Thus, claim 1 is proved.
Claim 2:

P (‖Xp
′V −1(Y −XAT

γ̂AT
)‖ > λwp, ∃p ∈ A0) → 0. (24)

Let H = I −XAT
C−1

AT
X ′

AT
V −1. We have ‖H‖ = Op(1) and

1

λwp
X ′

pV
−1(Y −XAT

γ̂AT
) =

1

λwp
X ′

pV
−1(He+Hδ + λXAT

C−1
AT

w).

The second term

1

λwp
‖X ′

pV
−1Hδ‖ ≤ 1

λwp
‖X ′

pV
−1‖ · ‖H‖ · ‖δ‖ = Op(

n

λrmd+1/2
) = op(1).
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The third term

1

wp
‖X ′

pV
−1XAT

C−1
AT

w‖ ≤ 1

wp
‖X ′

pV
−1XAT

C−1
AT

‖·‖w‖ = Op(r
−1)op(1) = op(1).

By lemma 6,

P (‖Xp
′V −1(Y −XAT

γ̂AT
)‖ > λwp, ∃p ∈ A0)

→P (
1

λwp
‖X ′

pV
−1He‖ > 1, ∃p ∈ A0)

=P (max
p∈A0

1

λwp
‖X ′

pV
−1He‖ > 1)

≤E
[

max
p∈A0

1

λwp
‖X ′

pV
−1He‖

]

= Op

(

√

n log(2mP )

λr

)

= op(1).

Thus, claim 2 is proved. This together with claim 1 proves that

P
(

sign(‖β̂p‖) = sign(‖βp‖), p = 1, . . . , P
)

→ 1.

Proof of part 2 of theorem 1. Define the event

F ≡
⋂

p∈A0

{‖X ′
pV

−1(Y −Xb̂AT
)‖ ≤ λwp} ∩

{

min
p∈AT

‖β̃p‖ ≥ ν−1
}

.

It is straightforward to check that b̂AT
satisfies (21) on F . Therefore,

P
(

β̂ 6= b̂AT

)

= P (‖X ′
pV

−1(Y −Xb̂AT
)‖

> λwp, ∃p ∈ A0) + P
(

min
p∈AT

‖β̃p‖ < ν−1
)

. (25)

By a similar argument as claim 2, put w = 0, we can show that the first term
goes to zero as n → ∞. This together with (A.5b) implies that the righthand
side of (25) goes to zero as n → ∞. This completes the proof of part 2.

Proof of parts 3 and 4 of theorem 1. Since β̂ is the minimizer of the quantity
1
2 (Y −Xβ)

′
V −1 (Y −Xβ) + λ

∑P
p=1 wp‖βp‖, we have

1

2

∥

∥

∥
V −1/2(Y −Xβ̂)

∥

∥

∥

2

+λ

P
∑

p=1

wp‖β̂p‖ ≤ 1

2

∥

∥

∥
V −1/2(Y −Xβ)

∥

∥

∥

2

+λ

P
∑

p=1

wp‖βp‖.

Therefore,

1

2

∥

∥

∥
V −1/2(Y −Xβ̂)

∥

∥

∥

2

− 1

2

∥

∥

∥
V −1/2(Y −Xβ)

∥

∥

∥

2

≤ λ

P
∑

p=1

wp(‖βp‖ − ‖β̂p‖).
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Since ‖βp‖ = 0 for p ∈ A0, the left hand side

λ
P
∑

p=1

wp(‖βp‖ − ‖β̂p‖) ≤λ
∑

p∈AT

wp(‖βp‖ − ‖β̂p‖)

≤λ
(

∑

p∈AT

w2
p

)1/2( ∑

p∈AT

‖βp − β̂p‖2
)1/2

≤λ
(

∑

p∈AT

w2
p

)1/2

‖β̂ − β‖.

Recall that Y − Xβ = e + δ. On the other side, let η = V −1/2(e + δ), ξ =

V −1/2X(β̂ − β),

V −1/2(Y −Xβ̂) = η − ξ

and
‖V −1/2(Y −Xβ̂)‖2 = ‖η‖2 − 2η′ξ + ‖ξ‖2.

Therefore,

‖ξ‖2 ≤ 2λ
(

∑

p∈AT

w2
p

)1/2

‖β̂ − β‖+ 2η′ξ. (26)

Let A1 = {p : ‖βp‖ > 0 or ‖β̂p‖ > 0}, P = V −1/2XA1
C−1

A1
X ′

A1
V −1/2, Pξ = ξ.

By Cauchy-Schwartz inequality and completing square,

2|η′ξ| = 2|η′Pξ| ≤ 2‖Pη‖ · ‖ξ‖ ≤ 2‖Pη‖2 + 1

2
‖ξ‖2.

Then,

‖ξ‖2 ≤ 4λ
(

∑

p∈AT

w2
p

)1/2

‖β̂ − β‖+ 4‖Pη‖2.

There exists C > 0, s.t. ‖ξ‖2 ≥ C n
m‖β̂ − β‖2. By Completing square,

nC

m
‖β̂ − β‖2 ≤4m

nC
λ2

(

∑

p∈AT

w2
p

)

+
nC

2m
‖β̂ − β‖2 + 4‖Pη‖2

≤8m

nC
λ2

(

∑

p∈AT

w2
p

)

+ 8‖Pη‖2

‖β̂ − β‖2 ≤ 8m2

n2C2
λ2

(

∑

p∈AT

w2
p

)

+
8m

nC
‖Pη‖2.

By lemma 2,
∑

p∈AT
w2

p = op(1). Since
√

|A1| = Op(1), by similar arguments in
claim 1,

‖Pη‖2 ≤ ‖PV −1/2e‖2 + ‖PV −1/2δ‖2 = Op(m) +Op(m
−2d).
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So,

P
∑

p=1

‖β̂p − βp‖2 = ‖β̂ − β‖2 = Op

(m2

n

)

+Op

( 1

m2d−1

)

+Op

(m2λ2

n2

)

op(1).

By spline properties, there exist constants c1 and c2 > 0,

c1m
−1‖β̂p − βp‖2 ≤ ‖f̂p − f‖2 ≤ c2m

−1‖β̂p − βp‖2.

Therefore,

P
∑

p=1

‖f̂p − fp‖2 = Op

(m

n

)

+Op

( 1

m2d

)

+Op

(m2λ2

n2

)

op(1).

Proof of theorem 2. We adopt the idea ofWang et al. (2007a). Let Ω− ≡ {(λ, ν) :
Âλ,ν ∩ AT 6= AT } and Ω+ ≡ {(λ, ν) : Âλ,ν ) AT }. It is enough to show that as
n → ∞, the following hold:

P
(

BIC(λ∗
n, ν

∗
n) = log(σ̂2

AT
) +

1

nσ̂2
AT

‖Y −Xb̂AT
−ZûAT

‖2+d̂fAT

log(n)

n

)

→ 1,

(27)

P
(

inf
(λ,ν)∈Ω−

BIC(λ, ν) > BIC(λ∗
n, ν

∗
n)
)

→ 1,

(28)

P
(

inf
(λ,ν)∈Ω+

BIC(λ, ν) > BIC(λ∗
n, ν

∗
n)
)

→ 1,

(29)

where d̂fAT
is the degrees of freedom of ŶAT

= Xb̂AT
+ZûAT

.

For (27), it follows from theorem 1 that P
(

β̂λ∗

n,ν
∗

n
= b̂AT

)

→ 1, as n → ∞.
By (27), (B.1) and (B.2) with (λ, ν) ∈ Ω−, we have as n → ∞,

BIC(λ∗
n, ν

∗
n)

= log(σ̂2
Âλ∗,ν∗

) +
(Y −Xβ̂λ∗,ν∗ )′V ∗−2(Y −Xβ̂λ∗

n,ν∗

n
)

(Y −Xβ̂λ∗

n,ν∗

n
)′V ∗−1(Y −Xβ̂λ∗

n,ν∗

n
)
+ op(1)

≥ log(σ̂2
Âλ∗,ν∗

) +
(Y −Xβ̂λ∗

n,ν∗

n
)′V ∗−1/2(I−Z(Z′Z+G−1)−1Z′)V ∗−1/2(Y −Xβ̂λ∗

n,ν∗

n
)

(Y −Xβ̂λ∗

n,ν∗

n
)′V ∗−1(Y −Xβ̂λ∗

n,ν∗

n
)

+ op(1)

→ log(σ2
AT

) + 1 + op(1)
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and

BIC(λ, ν)

= log(σ̂2
λ,ν) +

1

nσ̂2
λ,ν

(Y −Xβ̂λ,ν −Zûλ,ν)
′(Y −Xβ̂λ,ν −Zûλ,ν) + op(1)

≥ log(σ̂2
Âλ,ν

) +
(Y −Xβ̂λ,ν)

′V ∗−2(Y −Xβ̂λ,ν)

(Y −Xβ̂λ,ν)′V ∗−1(Y −Xβ̂λ,ν)
+ op(1)

≥ log(σ̂2
Âλ,ν

) +
(Y −Xβ̂λ,ν)

′V ∗−1/2(I−Z(Z′Z+G−1)−1Z′)V ∗−1/2(Y −Xβ̂λ,ν)

(Y −Xβ̂λ,ν)′V ∗−1(Y −Xβ̂λ,ν)

+ op(1)

→ min
A:A∩AT 6=AT

log(σ2
A) + 1 > log(σ2

AT
) + 1,

which imply (28). It remains to show (29). Under (B.3),
{

d̂f
Ŷ
(λ, ν) − d̂f

Ŷ
(λ∗

n, ν
∗
n)
}

−
{

d̂fÂλ,ν
− d̂fAT

}

→ 0 in probability,

Therefore, as n → ∞,

n
(

BIC(λ, ν) − BIC(λ∗
n, ν

∗
n)
)

=n log
( σ̂2

λ,ν

σ̂2
λ∗

n,ν∗

n

)

+
σ̂2
AT

‖Y −Xβ̂λ,ν −Zûλ,ν‖2

σ̂2
λ,ν‖Y −Xb̂AT

−ZûAT
‖2

+
{

d̂f
Ŷ
(G, λ, ν)− d̂f

Ŷ
(G, λ∗

n, ν
∗
n)
}

log(n)

→σ̂−2
AT

n(σ̂2
λ,ν − σ̂2

AT
) + op(1) + 1 +

{

d̂fÂλ,ν
− d̂fAT

}

log(n).

It follows that

inf
(λ,ν)∈Ω+

n
(

BIC(λ, ν) − BIC(λ∗
n, ν

∗
n)
)

≥σ̂−2
AT

min
A:A)AT

n(σ̂2
A − σ̂2

AT
) + 1

+ (d̂fÂλ,ν
− d̂fAT

) log(n) + op(1). (30)

Note that n(σ̂2
AT

− σ̂2
A) = Op(1) follows non-central chi-square distribution. By

(17) and (18),

d̂fA = tr
[

{I −Z(Z ′Z +G−1)−1Z ′}V −1HA +Z(Z ′Z +G−1)−1Z ′
]

and

d̂fÂλ,ν
− d̂fAT

= tr
[

{I −Z(Z ′Z +G−1)−1Z ′}V −1{HÂλ,ν
−HAT

}
]

,

where HA = XA(X
′
AV

−1XA)
−1X ′

A.
It can be shown that I −Z(Z ′Z +G−1)−1Z ′ and HÂλ,ν

−HAT
are strictly

positive definite, therefore d̂fÂλ,ν
− d̂fAT

> 0 for (λ, ν) ∈ Ω+. The righthand side

of (30) diverges to +∞ as n → ∞, and hence (29) is satisfied. This completes
the proof.
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