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1. Introduction

Let X1, X2, . . . be independent random variables having common unknown dis-
tribution function (df) F . Let h(x1, . . . , xm) be a real-valued measurable func-
tion symmetric in its m arguments, and let

H(y) = P (h(X1, . . . , Xm) ≤ y), y ∈ ℜ

denote the distribution function of the random variable h(X1, . . . , Xm). Since
the df of the random variable h(X1, . . . , Xm) is rarely known exactly, quantiles

H−1(p) = ξp = inf{x : H(x) ≥ p}, 0 < p < 1

and other features of the df H must be estimated from the data. The natural and
most widely used estimator of the parameter ξp is given by U -quantile H−1

n (p)
where for each n ≥ m and real y

Hn(y) =
1

n(m)

∑

I(h(Xi1 , . . . , Xim) ≤ y)

the sum being taken over the n(m) = n(n−1) · · · (n−m+1)m-tuples (i1, . . . , im)
of distinct elements from {1, 2, . . . , n} Note that when h(x) = x, the empirical
df of U -statistic structure Hn reduces to the usual empirical df and H−1

n (p) be-
comes the usual pth sample quantile of F . For m ≥ 2, a second choice of interest
is h(x1, . . . , xm) = x1+x2+···+xm

m in which case the U -quantile H−1
n (12 ) becomes

the Hodges-Lehman estimator median
(

m−1(Xi1 + · · ·+Xim)
)

. Another inter-
esting example corresponds to h(x1, x2) = |x1 − x2| for which H−1

n (12 ) provides
an estimator for the spread measure H−1(12 ), the median of the distribution of
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|X1 −X2|, where X1 and X2 are independent with common distribution func-
tion F . The U -quantiles estimators have been investigated, among others, by
Serfling [10], Choudhury and Serfling [2], Arcones [1], and Wendler [13]. A clear
disadvantage of H−1

n (p) is its poor performance when H is smooth. Estima-
tion of H−1(p) in smooth models plays a fundamental role in many statistical
applications, especially in data-analytic and functional statistical methods (see
Parzen [8]).

Studies have shown that a smoothed estimator Tn(p) may be preferable to
H−1

n (p). First, smoothing reduces the random variation in the data resulting
in a more efficient estimator. Second, the “noise level” in the data is reduced
by smoothing providing thus an estimator that better displays the interesting
features of the df . Of the several alternative estimators that have been proposed,
we consider the kernel U -quantile estimator

Tn(p) =
1

αn

∫ 1

0

H−1
n (t) k

(

p− t

αn

)

dt (1.1)

where αn is a specified sequence of positive constants (bandwidth) tending to
zero and k(x) is a known kernel function. In the case h(x) = x, this estimator
has been proposed by Parzen [7] and has been studied by Falk [4, 5], Yang [14],
Sheather and Marron [11], and Ralescu [9]. For the general case Tn(p) has been
investigated by Veraverbeke [12] who established its asymptotic normality. Using
the kernel U -quantile estimator brings a clear improvement over the traditional
U -quantile when H is differentiable. The size and order of the improvement is
usually revealed when studying the Edgeworth expansion of Tn(p) since using
one or more terms beyond the normal approximation significantly improves the
accuracy for small to moderate samples.

This paper studies further asymptotic properties of the kernel U -quantile
estimator. In Section 2 we establish a strong Bahadur representation of Tn(p).

In particular, under regularity conditions on (αn), the a.s. rate O(n− 3
4 (logn)

1
4 )

is obtained. In Section 3 we prove an invariance principle (functional CLT) for
kernel U -quantiles, and in Section 4 we derive the asymptotic normality results
for random samples sizes.

2. Asymptotic representation of Tn(p)

To study the strong asymptotic representation of Tn(p), the following assump-
tions are needed:

(A1) H has a bounded second derivative in a neighborhood of ξp, such that
h(ξp) > 0 where h = H ′.

(A2) k is a density kernel with support included in [−c, c], for some c > 0.
(A3) αn = o(ǫn) as n → ∞, where ǫn → 0 in such a way that:

lim infn→∞
nǫ2n
logn

> 0



666 S. Ralescu

The next result provides the Bahadur representation for the kernel U -quantiles.

Theorem 2.1. If assumptions (A1)–(A3) are satisfied, then

Tn(p) = ξp +
p−Hn(ξp)

h(ξp)
+O

(

max

(

αn, ǫ
2
n,

√

ǫn
n

))

a.s. as n → ∞ (2.1)

Proof. For any estimator δn of ξp, set:

R(δn) = δn − ξp −
p−Hn(ξp)

h(ξp)

Let Wn,1 ≤ Wn,2 ≤ · · · ≤ Wn,n(m)
denote the generalized ordered statistics

of the pseudo-sample h(X1, . . . , Xim) taken over n(m) m-tuples (i1, . . . , im) of
distinct elements from {1, 2, . . . , n}. For real r, let ⌈r⌉ denote the smallest integer
greater than or equal to r. Introduce the function k(i, t) = ⌈it⌉ for integer i ≥ 0
and 0 < t < 1.

On account of (A2), for n sufficiently large

Tn(p) ∈
[

H−1
n (p− cαn), H

−1
n (p+ cαn)

]

Also, with kni = k(n(m), p + (−1)icαn), i = 1, 2, in view of (A3), we have by
Theorem 3.1 of Choudhuri and Serfling [2] that:

R(Wn,kni
) = O

(

max

(

αn, ǫ
2
n,

√

ǫn
n

))

a.s. as n → ∞ (2.2)

Since for n sufficiently large:

R(Tn(p)) ∈ [R(Wn,kn1), R(Wn,kn2)] (2.3)

the conclusion (2.1) follows from (2.2) and (2.3).

Remark 2.1. For U -quantiles, Choudhury and Serfling [2], and Dehling, Denker,

and Philipp [3], obtained the rate R(H−1
n (p)) = O(n− 3

4 (logn)
3
4 ) a.s. and n →

∞. Arcones [1] proved the exact order

R(H−1
n (p)) = O(n− 3

4 (log logn)
3
4 ) a. s. as n → ∞

For the Kernel U -quantiles, if αn = o(n− 3
4 (logn)

1
4 )) as n → ∞, Theorem 2.1

gives the a.s. order R(Tn(p)) = O
(

n− 3
4 (logn)

1
4 )
)

.

Remark 2.2. As another illustration of the strong asymptotic representation
(2.1), we deduce the law the iterated logarithm for the Kernel U -quantiles. More
specifically, let v2p = V ar[gp(X1)] > 0 where

gp(X1) = E{I(h(X1, . . . , Xm) ≤ ξp)|X1} − p

Suppose αn = O
(√

ǫn
n

)

and nǫ3n = O(1) as n → ∞. If assumptions (A1) and
(A2) hold, then a.s.

lim sup
n→∞

√
n(Tn(p)− ξp)√
2 log logn

= mvp
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3. The invariance principle for Tn(p)

Here we consider the Donsker type invariance principle for Tn(p). The proof
makes use of Theorem 2.1. Let















Yn(t) = 0 if 0 ≤ t ≤ m−1
n

Yn(t) =
k(Tk(p)−ξp)h(ξp)

mvp
√
n

for t = k
n , k = m, . . . , n

and define Yn(t) by linear interpolation for the other t ∈ [0, 1]

(3.1)

We now prove that, for n → ∞, the random function Yn(·) converges weakly
to a standard Brownian motion W (·) in the space C[0, 1] of all continuous func-
tions on [0, 1] endowed with the uniform topology.

Theorem 3.1. Let Yn(t) be given by (3.1). If assumptions (A1)–(A3) of Sec-

tion 2 hold, and if αn = o(n− 1
2 ) as n → ∞, then as n → ∞

Yn(·) =⇒ W (·) (3.2)

Proof. Define the associated process {Y ∗
n (t)}0≤t≤1 by































Y ∗
n (t) = 0 if 0 ≤ t ≤ m−1

n

Y ∗
n (

k
n ) =

k(p−Hk(ξp))

mvp
√
n

for k = m, . . . , n

and for t ∈ [k−1
n , k

n ] with k = m, . . . , n

Y ∗
n (t) = Y ∗

n (
k−1
n ) + n(t− k−1

n )[Y ∗
n (

k
n )− Y ∗

n (
k−1
n )]

(3.3)

Since for fixed y, Hn(y) is a U -statistic, by the functional central limit theo-
rem for U -statistics (Miller and Sen [6]) it follows that:

Y ∗
n (t) =⇒ W (·) on (C[0, 1], ρ) (3.4)

where ρ is the sup-norm in C[0, 1].
Therefore, to conclude the proof it suffices to show that for n → ∞,

ρ(Yn, Y
∗
n )

P→ 0 (3.5)

From Theorem 2.1, we have for k ≥ m

Yn

(

k

n

)

=
k(p−Hk(ξp))

mvp
√
n

+
kRkh(ξp)

mvp
√
n

(3.6)

where Rk = O(max(αk, ǫ
2
k,
√

ǫk
k )) a.s. as k → ∞ for any sequence ǫn satisfying

assumption (A3). Now, if
√
nαn → 0, by taking ǫn = n− 1

2+α with 0 < α < 1
2 ,

it is readily seen that αn

ǫn
→ 0,

nǫ2n
logn → ∞,

√
nǫ2n → 0 and so

√
kRk → 0 a.s. as

k → ∞.
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From (3.6), ρ(Yn, Y
∗
n ) = (maxm≤k≤n k|Rk|)h(ξp)/mvp

√
n. For each n0 with

m ≤ n0 ≤ n:
1√
n

max
m≤k≤n

k|Rk| ≤ I(n0, n) + II(n0) (3.7)

where

I(n0, n) =
n0√
n

max
m≤k≤n0

|Rk| and II(n0) = max
k≥n0

√
k|Rk|

First note that for n0 fixed,

lim
n→∞

I(n0, n) = 0 a.s. (3.8)

Also, since
√
nRn → 0 a.s. as n → ∞, it follows that

II(n0)
P→ 0 as n0 → ∞ (3.9)

Combining (3.7)–(3.9) we conclude that (3.5) holds and the proof is complete.

Remark 3.1. From Theorem 3.1 it is clear that the form of the asymptotic
variance used by Veraverbeke (1987) is incorrect. In fact, our result shows that
as n → ∞ √

n(Tn(p)− ξp)

mvp/h(ξp)

D→ N (0, 1)

Remark 3.2. Theorem 3.1 will be used to prove the result presented in the
next section. Further applications of the weak convergence

Yn(·) =⇒ W (·)

may be obtained as follows:

(a) Consider a sequence {rk}k≥1 of positive real numbers such that

limk→∞ k−
1
2 rk = r, 0 < r < ∞. Let Nk denote the first time n such

that
√
n (Tn(p)− ξp) exceeds or reaches rk. Let Gk(x) = P{Nk ≤ x}.

Then, if xk > 0 is a sequence that tends to infinity in such a way that
limk→∞ k−1xk = c > 0, then on account of Theorem 3.1,

lim
k→∞

Gk(xk) =

√

2

π

∫ ∞

th(ξp)
√
c/vp

e−
s2

2 ds

(b) Under the assumptions of Theorem 3.1, the invariance principle implies
that for x > 0:

lim
n→∞

P

{

max
m≤k≤n

k (Tk(p)− ξp)h(ξp)

mvp
√
n

> x

}

= 2(1− Φ(x))

where Φ denotes the distribution function of the N(0, 1) random variable.
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4. Asymptotic normality for randomly indexed sequences of random
variables

In many applied models statistical inference is based on a counting random
sequence {Nk}k≥1 of nonnegative integer valued random variables. For exam-
ple, n might be the number of observations obtained within a fixed period of
time. Applications connected to studies of randomly indexed samples appear
often in queueing problems, insurance and liability applications. The situation
is equally important in connection with stopping times arising in sequential tag-
ging. Typically, in a sequential point or interval estimation problem, the sample
size is not pre-determined and is itself an integer-valued random variable. For
such stochastic sample sizes, the usual asymptotic normality results may require
extra regularity conditions and a direct proof might be too involved.

Our next results establishes the asymptotic normality of TNk
(p) for random

sample sizes.

Theorem 4.1. Let {Nk}k≥1 be a sequence of non-negative integer-valued ran-
dom variables, and {nk}k≥1 a sequence of positive integers tending to ∞, such
that

Nk

nk

P→ 1 as k → ∞ (4.1)

Then, under the conditions of Theorem 3.1, we have

√

Nk (TNk
(p)− ξp)

D→ N

(

0,

[

mvp
h(ξp)

]2
)

(4.2)

Proof. Since
√
nk (Tnk

(p)− ξp) converges in distribution to a normal random
variable with mean 0 and standard deviation

mvp
h(ξp)

, it suffices to show that:

√
nk[TNk

(p)− Tnk
(p)]

P→ 0 as k → ∞ (4.3)

To this end, let 0 < δ < 1
2 . Note that on

∣

∣

Nk

nk
− 1
∣

∣ ≤ δ we have Nk < 2nk,
∣

∣

1
Nk

− 1
nk

∣

∣ ≤ δ and the following estimate obtains:

√
nk |TNk

(p)− Tnk
(p)| ≤ aδ

∣

∣

∣

∣

Y2nk

(

1

2

)∣

∣

∣

∣

+ a

∣

∣

∣

∣

Y2nk

(

Nk

2nk

)

− Y2nk

(

1

2

)∣

∣

∣

∣

(4.4)

with a =
2−

1
2 mvp

h(ξp)
.

For ǫ > 0, we have the bound

P {√nk |TNk
(p)− Tnk

(p)| ≥ ǫ} ≤ D1k +D2k (4.5)
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where

D1k = P

{∣

∣

∣

∣

Nk

nk
− 1

∣

∣

∣

∣

> δ

}

and

D2k = P

{√
nk |TNk

(p)− Tnk
(p)| ≥ ǫ,

∣

∣

∣

∣

Nk

nk
− 1

∣

∣

∣

∣

≤ δ

}

By assumption D1k can be made arbitrarily small for sufficiently large k. To
treat D2k, in view of (4.4) we have:

D2k ≤ P

{∣

∣

∣

∣

Y2nk

(

1

2

)∣

∣

∣

∣

≥ ǫ

2aδ

}

+ P

{

sup
|t−s|≤δ

|Y2nk
(t)− Y2nk

(s)| ≥ ǫ

2a

}

(4.6)

Since Y2nk
(12 )

D→ N(0, 2), as k → ∞, there exists δ > 0 such that the first term
on the right hand side of (4.6) is less than or equal to ǫ

3 for sufficiently large
k. On the other hand, from Theorem 3.1, by the tightness property of Y2nk

(t),
there exists δ > 0 such that for all k sufficiently large, the second term of the
right hand side of (4.6) is less than or equal to ǫ

3 .
Therefore, there exists δ > 0, and k0 ≥ 1, such that for all k ≥ k0,

D1k ≤ ǫ

3
and D2k ≤ 2ǫ

3

From these estimates and (4.5) we obtain (4.3). This completes the proof of
the theorem.

Remark 4.1. Theorem 4.1 may be used to study the sequential fixed-width con-
fidence intervals for ξp = H−1(p) with given required accuracy. More precisely,
by appropriately selecting the window-width, we can obtain random intervals
In constructed from Tn(p) with length(In) → 0 with probability 1, as n → ∞
such that for d > 0, if the random variable Nd is defined to be the first n ≥ 1
for which length(In) ≤ 2d, given 0 < α < 1

2 , we have:

(i) limd→0 P {ξp ∈ INd
} = 1− 2α and

(ii) Nd ≈ cd−
5
2 w. p. 1 as d → 0

Details are omitted.
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