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Abstract: An empirical likelihood (EL) estimator was proposed by
Qin and Zhang (2007) for improving the inverse probability weighting esti-
mation in a missing response problem. The authors showed by simulation
studies that the finite sample performance of EL estimator is better than
certain existing estimators and they also showed large sample results for the
estimator. However, the empirical likelihood estimator does not have a uni-
formly smaller asymptotic variance than other existing estimators in gen-
eral. We consider several modifications to the empirical likelihood estimator
and show that the proposed estimator dominates the empirical likelihood
estimator and several other existing estimators in terms of asymptotic effi-
ciencies under missing at random. The proposed estimator also attains the
minimum asymptotic variance among estimators having influence functions
in a certain class and enjoys certain double robustness properties.
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1. Introduction and existing estimators

Suppose we are interested in estimating the mean µ of a random variable Y but
Y is partially observed subject to missingness. Let X be a vector of covariates
that are fully observable and R be an indicator that Y is observed. The observed
data are (ri, riyi, xi) for i = 1, . . . , n and are i.i.d. realizations from (R,RY,X).
Under a missing at random assumption that P (R = 1|Y,X) = P (R = 1|X) =
π0(X), µ can be consistently estimated by the inverse probability weighting
(IPW) estimator

µ̂IPW =
1

n

n
∑

i=1

ri
π0(xi)

yi

For missing data applications the non-missing probability is usually not known
but is being modeled. Suppose P (R = 1|X) = π(X ;β0), where β0 is a finite
dimensional parameter. Based on (r1, x1), . . . , (rn, xn), the parameter β0 can be
estimated by solving a likelihood score equation n−1

∑n
i=1 l̇(xi;β) = 0 where

l̇(x;β) = [1 − π(x;β)]−1[ri − π(x;β)]∂π∂β (x;β), and we denote β̂ to be the so-

lution. We usually replace π0(xi) by the estimated probability π(xi; β̂) in IPW
estimation.
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The IPW estimator is intuitive and easy to implement but is inefficient in
general, because information from X is not fully utilized when Y is not ob-
served. To improve efficiency, an empirical likelihood estimator is proposed by
Qin and Zhang (2007) defined as

µ̂EL =

n
∑

i=1

rip
EL
i yi

where weights pEL
i are defined for complete case observations (i.e. when ri = 1)

and the following empirical log-likelihood function

l =
n
∑

i=1

ri log p
EL
i

is maximized subject to constraints

pEL
i ≥ 0
n
∑

i=1

rip
EL
i = 1

n
∑

i=1

rip
EL
i π(xi; β̂) = θ̂

n
∑

i=1

rip
EL
i a(xi; β̂) = â

where a = (a1, . . . , ap) is a fixed vector function of p < n dimensions, θ̂ = n−1×
∑n

i=1 π(xi; β̂) and â = n−1 ×∑n
i=1 a(xi). Let s(x;β, θ, a) = {1 − θπ−1(x;β),

π−1(x;β)[a(x)−a]T }T and n1 =
∑n

i=1 ri. Solving the constrained maximization
problem, the empirical likelihood weights pEL

i are expressed in terms of a vector

of Lagrange multipliers λ̂EL

pEL
i =

1

n1

θ̂π−1(xi;β)

1 + λ̂T
ELs(xi; β̂, θ̂, â)

(1.1)

and the Lagrange multipliers satisfies a system of estimating equations

n
∑

i=1

ris(xi; β̂, θ̂, â)

1 + λ̂T
ELs(xi; β̂, θ̂, â)

= 0. (1.2)

Information from incomplete observations are utilized implicitly in the construc-
tion of weights pEL

i from the constraints. When Y and a(X) are correlated,
the empirical likelihood estimator usually improves upon the IPW estimator
in terms of estimation efficiency. Although the EL methods works for arbitrary
choice of a(X), Qin and Zhang (2007) showed that optimal efficiency is attained
when the conditional expectation E(Y |X) is a linear combination of a(X). In
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practice, one could model E(Y |X) from the observed data, but the optimal
case cannot be achieved because no model is perfect. We therefore consider the
general case in which E(Y |X) may not be a linear combination of a(X) and a
broader optimality result is shown under the general case. The main contribu-
tion of the paper is to propose a uniform improvement of the existing empirical
likelihood estimator for arbitrary pre-specified a(X).

We note that the empirical likelihood estimator of Qin and Zhang (2007) is
different from the general empirical likelihood methodologies of Qin and Lawless
(1994) for estimation from overidentified system of estimating equations
and optimally combining estimating equations. Unlike the single-step estima-
tor discussed in Qin and Lawless (1994), the empirical likelihood estimator of
Qin and Zhang (2007) is computed in a two-step manner which would be much
easier to implement. However, two-step estimators may have different
efficiency compare to single-step estimators. Following Qin and Lawless (1994),
Qin, Zhang and Leung (2009) studied a single-step empirical likelihood estima-
tor for missing data problems. Other empirical likelihood estimators has also
been proposed by Wang and Rao (2002) and Wang and Chen (2009), among
others, for missing data problems under different settings. In missing data anal-
ysis, there is often an interest in studying robust estimator that gives consistent
estimates under certain conditions even when the missing data mechanism is
misspecified, a so-called doubly robustness property. The empirical likelihood
estimator of Qin and Zhang (2007) enjoys the double robustness property to-
gether with the proposed modified estimator but double robustness was not
discussed in Qin, Zhang and Leung (2009). We will further discuss this point in
section 5. For the purpose of clarity, we refer empirical likelihood estimator to
the estimator of Qin and Zhang (2007) in the rest of the paper.

The empirical likelihood estimator has nice small sample properties shown in
simulations, but it does not theoretically dominate other existing estimators in
terms of asymptotic efficiency for arbitrary pre-specified a(X). A partial review
of other existing methods can be found in Kang and Schafer (2007). To study
asymptotic efficiencies of estimators, we consider estimators which influence
functions belong to the following class

L =

{

R

π0(X)
[Y −m(X)] + [m(X)− µ] : m(X) is linear in ã(X)

}

.

where ã = (1, a1, . . . , ap, (1 − π0)
−1∂πT /∂β)T . The class L is a large class of

influence functions and contains many important existing estimators. The EL
estimator, together with the survey calibration estimator [Deville and Särndal
(1992)] and the augmented inverse probability weighting estimator [Robins, Rot-
nitzky and Zhao (1994)], all have influence functions in the class L. However,
all of the aforementioned estimators do not attain the minimum variance in
class L and do not strictly dominates one another under missing at random
assumptions and for estimated weights. The main purpose of this paper is to
study modifications of the empirical likelihood estimator that attains the mini-
mum asymptotic variance among class L, and therefore theoretically dominate
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the EL estimator and many other existing estimators when the same amount
of covariate information is used. To motivate our main results, section 2 will
first discuss the optimality of empirical likelihood under the stronger missing
completely at random assumption. In section 3, we will first show that the EL
estimator is suboptimal in general under missing at random with estimated
missing probability. We go on to discuss modifications that improve efficien-
cies and achieve optimality conditions. Section 4 will present simulation studies
comparing the finite performance of estimators. The choice of class L among
other possible classes of influence functions are further discussed in section 5.

2. Optimality of empirical likelihood under missing completely at

random

To better motivate the modifications of the EL estimator under missing at
random assumption, we first investigate the optimality of EL estimator under
the stronger assumption of missing completely at random, i.e. P (R = 1|Y,X) =
π0, a constant independent of Y and X . We assume that π0 is a known constant
in this section. Under this special case, the EL weight is

pEL
i =

1

n1

1

1 + λ̂T
ELs

′(x; â)
(2.1)

where s′(x; a) = {π−1
0 [a(x) − a]T }T and the Lagrange multipliers satisfy the

following system of estimating equations

n
∑

i=1

ris
′(xi; â)

1 + λ̂T
ELs(xi; â)

= 0. (2.2)

Under this special case, we consider estimators which influence functions
belong to the following class

L′ =

{

R

π0
[Y −m(X)] + [m(X)− µ] : m(X) is linear in a′(X)

}

where a′(X) = (1, a(X)T )T .
Before we show that empirical likelihood attains the minimum efficiency

among class L′, we first characterize the conditions for m(X) to achieve mini-
mum efficiency. For an estimator having influence function in class L′, its asymp-
totic variance is

n−1 × V ar

{

R

π0
[Y −m(X)] + [m(X)− µ]

}

= n−1 × V ar

(

E

{

R

π0
[Y −m(X)] + [m(X)− µ]|Y,X

})

+ n−1 × E

(

V ar

{

R

π0
[Y −m(X)] + [m(X)− µ]|Y,X

})

= n−1 ×
{

V ar(Y ) +
1− π0

π0
E[Y −m(X)]2

}
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Since m(X) = cTa′(X) in class L′, the asymptotic variance of estimators in
class L′ is minimized at

n−1 ×
(

V ar(Y ) +
1− π0

π0
min

c∈Rp+1
E{[Y − cTa′(X)]2}

)

. (2.3)

To characterize the optimal estimator, let m0(X) = cT0 a
′(X) where

c0 = arg min
c∈Rp+1

E{[Y − cTa′(X)]2}

By the definition of c0, the following set of orthogonal conditions are satisfied:

E(a′(X)[Y − cT0 a
′(X)]) = E(a′(X)[Y −m0(X)]) = 0 (2.4)

and the asymptotic variance of R
π0
[Y − m0(X)] + [m0(X) − µ] is minimized

among the class L′. Furthermore, we show the optimality of empirical likelihood
estimator by noting that

µ̂EL − µ =

n
∑

i=1

rip
EL
i yi − µ

=

n
∑

i=1

rip
EL
i (yi −m0(xi)) +

n
∑

i=1

rip
EL
i m0(xi)− µ

=

n
∑

i=1

rip
EL
i (yi −m0(xi)) +

1

n

n
∑

i=1

(m0(xi)− µ)

=
1

n

n
∑

i=1

ri

[

n/n1

(1 + λ̂T
ELs

′(xi; â))
− 1

π0

]

(yi −m0(xi))

+
1

n

n
∑

i=1

{

ri
π0

[yi −m0(xi)] + [m0(xi)− µ]

}

(2.5)

where the second last equality follows from (2.1) and (2.2). Note that the sec-
ond summation in (2.5) corresponds to the optimal estimator in class L′. To
show that the empirical likelihood estimator is optimal within class L′, we need
to show that the first summation in (2.5) is op(n

−1/2). Under mild regular-
ity conditions, we can show by asymptotic properties for estimating equations
[Newey and McFadden (1994)] that

√
n(λ̂EL − 0) converges weakly to a Gaus-

sian distribution. By Taylor series expansion,

1

n

n
∑

i=1

ri
π0

(

1

1 + λ̂T
ELs

′(xi; â)
− 1

)

(yi −m0(xi))

= AEL,MCAR(λ̂EL − 0) +
1− π0

π0
λT |λ=0(â

T − µT
a ) + d

(

n

n1
− 1

π0

)

+ op(n
−1/2)

where µa = E(a(X)), AEL,MCAR = E((a′(X) − (1, µT
a )

T )(Y − m0(X))) and
d = E(Y − m0(X)). Note that AEL,MCAR = 0 and d = 0 follow from the
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orthogonal condition (2.4). Therefore we can conclude that

µ̂EL − µ =
1

n

n
∑

i=1

{

ri
π0

[yi −m0(xi)] + [m0(xi)− µ]

}

+ op(n
−1/2)

and hence µ̂EL is asymptotically equivalent to the minimum variance estimator
in class L′.

3. Modified empirical likelihood under missing at random with

estimated missing probability

In section 2 we showed that empirical likelihood is optimal in which it attains
the minimum asymptotic variance in a class L′ under the missing completely
at random assumption. However, empirical likelihood estimator does not attain
the minimum asymptotic variance in class L under the missing at random as-
sumption. We can see this fact by considering similar arguments as in section 2.
First, an estimator having influence function in class L has asymptotic variance
given by

n−1 × V ar

{

R

π0(X)
[Y −m(X)] + [m(X)− µ]

}

= n−1 × V ar

(

E

{

R

π0(X)
[Y −m(X)] + [m(X)− µ]|Y,X

})

+ n−1 × E

(

V ar

{

R

π0(X)
[Y −m(X)] + [m(X)− µ]|Y,X

})

= n−1 ×
{

V ar(Y ) + E

[

1− π0(X)

π0(X)
(Y −m(X))2

]}

Since m(X) = cT ã(X) in class L, the minimum asymptotic variance in class L
is

n−1 ×
{

V ar(Y ) + min
c∈Rq

E

[

1− π0(X)

π0(X)
(Y − cT ã(X))2

]}

(3.1)

where q is the dimension of ã.
Next, we characterize the minimum variance estimator in class L. Letm0(X) =

cT0 ã(X) where

c0 = arg min
c∈Rq

E

(

1− π0(X)

π0(X)
(Y − cT ã(X))2

)

where q is the dimension of ã. The variance of R
π0(X) [Y −m0(X)]+ [m0(X)−µ]

is the minimum among the class L as in (3.1). Note that the optimal estimator
will have {1− π0(X)}/π0(X) inside the expectation (3.1) whereas (1 − π0)/π0

can be written outside the expectation in (2.3). By the definition of c0, the
following set of orthogonal conditions are satisfied.

E

(

1−π0(X)

π0(X)
ãT (X)(Y − cT0 ã(X))

)

=E

(

1−π0(X)

π0(X)
ãT (X)(Y −m0(X))

)

=0.

(3.2)
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We then show that, unlike under the special case of missing completely at ran-
dom, the empirical likelihood estimator do not achieve minimum variance among
class L under missing at random. We note that

µ̂EL − µ =

n
∑

i=1

rip
EL
i yi − µ

=
n
∑

i=1

rip
EL
i (yi −m0(xi)) +

n
∑

i=1

rip
EL
i m0(xi)− µ

=

n
∑

i=1

rip
EL
i (yi −m0(xi)) +

1

n

n
∑

i=1

(m0(xi)− µ)

=
1

n

n
∑

i=1

ri

[

nθ̂/n1

π(xi; β̂)(1 + λ̂T
ELs(xi; β̂, â, b̂))

− 1

π0(xi)

]

(yi −m0(xi))

+
1

n

n
∑

i=1

{

ri
π0(xi)

[yi −m0(xi)] + [m0(xi)− µ]

}

(3.3)

As shown in Qin and Zhang (2007),
√
n(λ̂EL−0) converges weakly to Gaussian

distributions. By Taylor Series expansions,

1

n

n
∑

i=1

ri

[

nθ̂/n1

π(xi; β̂)(1 + λ̂T
ELs(xi; β̂, â))

− 1

π0(xi)

]

(yi −m0(xi))

= AEL(λ̂
EL − 0) +B(β̂ − β0) + cλT |λ=0(â

T − µT
a )

T + d(θ̂ − θ0) + op(n
−1/2)
(3.4)

whereAEL =−E(π−1
0 (X)(a′′(X)−µa′′)T (Y−m0(X))), a′′(X)= {π(X), a(X)T}T ,

µa′′ = E(a′′(X)), B = −E(π−1
0 (X)∂π

T

∂β (Y − m0(X))), c = E(1−π0(X)
π0(X) ),µa =

E(a(X)) and d = E(π0(X))−1E(Y −m0(X)). Unlike the case of missing com-
pletely at random, there is no direct relationship between AEL and the orthog-
onal conditions (3.2), and the matrix is generally nonzero.

Note that even when the missing probability is known,AEL is non-zero in gen-
eral and therefore the empirical likelihood estimator is still suboptimal among
class L.

Our aim is to construct an estimator attaining the minimum asymptotic vari-
ance (3.1). When the missing probability is estimated, we employ the following
three strategies in constructing the optimal estimator: (1) We need to modify
both the empirical likelihood weights and the estimating equations for finding
Lagrange multipliers so that the corresponding matrix AMEL defined later is a
zero matrix. (2) We need to augment our number of constraints to ensure that
∑n

i=1 rip
MEL
i m0(xi) = 1

n

∑n
i=1 m0(xi). (3) We want to remove the influence

from the estimate θ̂ by removing it entirely in the estimation. To achieve these
goals, we consider the following modifications. First, we start from point (3).

Since θ̂ is a consistent estimator for P (R = 1), in the modification we replace
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θ̂/n1 in (1.1) by 1/n. Next, we replace s(xi; β̂, θ̂, â) by an augmented version

s∗(xi; β̂, â, b̂), where

s∗(x;β, a, b) =
1− π(x;β)

π(x;β)
×
(

1, [a(x)− a]T ,

[

1

1− π(x;β)

∂π

∂β
(x;β) − b

]T
)T

and b̂ =
∑n

i=1(1 − π(xi; β̂))
−1∂π(xi; β̂)/∂β. The modified empirical likelihood

estimator is defined as

µ̂MEL =
n
∑

i=1

rip
MEL
i yi

where the modified empirical likelihood (MEL) weights are

pMEL
i =

1

n

π−1(xi; β̂)

1 + λ̂T
MELs

∗(xi; β̂, â, b̂)
(3.5)

and the pseudo Lagrange multiplier λ̂MEL are obtained by solving

n
∑

i=1

ri(1− π(xi; β̂))
−1s∗(x; β̂, â, b̂)

1 + λ̂T
MELs

∗(xi; β̂, â, b̂)
= e (3.6)

where e = (1, 0, . . . , 0)T . Plugging (3.5) into (3.6) gives
∑n

i=1 rip
MEL
i = 1 and

∑n
i=1 rip

MEL
i a(xi) = â, which corresponds to the constraints in empirical like-

lihood estimation. In addition, we have
∑n

i=1 rip
MEL
i (1− π(xi; β̂))

−1∂π(xi; β̂)/

∂β = b̂. Unlike (1.1) and (1.2), (3.5) and (3.6) are not implied by constrained
maximization problems. The reason is similar to the fact that not all estimating
functions are derivative of log-likelihood functions.

We now show that the construction of modified empirical likelihood estimator
mentioned above attains minimum asymptotic variance among class L. Again,
we note that

µ̂MEL − µ =

n
∑

i=1

rip
MEL
i yi − µ

=

n
∑

i=1

rip
MEL
i (yi −m0(xi)) +

n
∑

i=1

rip
MEL
i m0(xi)− µ

=

n
∑

i=1

rip
MEL
i (yi −m0(xi)) +

1

n

n
∑

i=1

(m0(xi)− µ)

=
1

n

n
∑

i=1

ri

[

1

π(xi; β̂)(1 + λ̂T
MELs

∗(xi; β̂, â, b̂))
− 1

π0(xi)

]

(yi −m0(xi))

+
1

n

n
∑

i=1

{

ri
π0(xi)

[yi −m0(xi)] + [m0(xi)− µ]

}

(3.7)
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where the second last equality follows from (3.5), (3.6) and the definition of
s∗. Under mild regularity conditions [Newey and McFadden (1994)], it can be

shown that
√
n(λ̂MEL − 0) and

√
n(β̂− β) converges weakly to Gaussian distri-

butions. Also by Taylor Series expansions,

1

n

n
∑

i=1

ri

[

1

π(xi; β̂)(1 + λ̂T
MELs

∗(xi; β̂, â, b̂))
− 1

π0(xi)

]

(yi −m0(xi))

= AMEL(λ̂MEL − 0) +B(β̂ − β) + cλT |λ=0(â
T − µT

a , b̂
T − µT

b )
T + op(n

−1/2)
(3.8)

where AMEL = −E(1−π0(X)
π0(X) (ã(X) − µã)

T (Y −m0(X))), µã = E(ã(X)), B =

−E( 1
π0(X)

∂πT

∂β (Y −m0(X))), c = E(1−π0(X)
π0(X) ), µa = E(a(X)) and µb = E((1 −

π0(X))−1 ∂π(X;β0)
∂β ). For modified empirical likelihood, matricesAMEL and B are

both 0 following the orthogonal conditions (3.2). Therefore, it follows from (3.7)
and (3.8) that the influence function of µ̂MEL is R

π0(X) [Y −m0(X)]+[m0(X)−µ]

which attains the minimum variance among the class L.
For the special case where E(Y |X) = b0+bT1 a(X) for some b0 and b1, E[(Y −

E(Y |X))2|X ] is minimized at each X and therefore m0(X) = E(Y |X). In this
case, the modified empirical likelihood estimator attains the semiparametric
efficiency bound. Also, empirical likelihood attains the same semiparametric
efficiency bound under correct specification of the outcome regression model.
However, for arbitrary pre-specified a(X), the modified empirical likelihood has
a smaller asymptotic variance than empirical likelihood and other estimators
having influence functions in class L in general.

The modified empirical likelihood estimator also possesses a double robust-
ness property as for the empirical likelihood estimator. Suppose E(Y |X) =
b0 + bT1 a(X) = m0(X) but the missing data model π(x;β) is misspecified. The

estimates β̂, λ̂MEL and b̂ converges in probability to some constants β∗, λ∗

[White (1982), Hall and Inoue (2003)] and µ∗
b and λ∗ is usually non-zero. From

(3.7) we note that

µ̂MEL =
1

n

n
∑

i=1

ri

π(xi; β̂)(1 + λ̂T
MELs

∗(xi; β̂, â, β̂))
(yi −m0(xi)) +

1

N

N
∑

i=1

m0(xi)

p→ E

(

π0(X)

π(X ;β∗)(1 + λ∗T s∗(X ;β∗, µa, µ∗
b))

(E(Y |X)−m0(X))

)

+ E(E(Y |X))

= 0 + µ = µ

That is, the modified empirical likelihood estimator is consistent when the out-
come regression model is correctly specified even when the missing data model
is misspecified.
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4. Simulations

In this section we present simulation studies to evaluate the finite sample per-
formance of the modified empirical likelihood estimator, together with the EL
estimator and two other existing estimators: a survey calibration (CAL) esti-
mator and an augmented inverse probability weighting (AIPW) estimator. The
empirical likelihood calibration estimator of Chen, Sitter and Wu (2002) is de-
fined as

µ̂CAL =
n
∑

i=1

rip
CAL
i yi

where the calibration weights pCAL
i are expressed in terms of a vector of La-

grange multipliers λ̂CAL

pCAL
i =

π−1(xi; β̂)[
∑n

i=1 riπ
−1(xi; β̂)]

−1

1 + λ̂T
CAL[a(xi)− â]

and the Lagrange multipliers satisfies

n
∑

i=1

riπ
−1(xi; β̂)[a(xi)− â]

1 + λ̂T
CAL[a(xi)− a]

= 0.

The calibration estimator and the EL estimator is very similar but not identical
and they have different asymptotic variance in general.

We also compare the proposed estimator with the augmented inverse prob-
ability weighting (AIPW) estimator proposed in the literature to improve effi-
ciency of IPW estimation [Robins, Rotnitzky and Zhao (1994)]. To implement
the AIPW estimator, a regression model is fitted using the complete case sub-
sample, treating Y as outcome and a(X) as covariates. We let m̂(X) to be the
prediction from the fitted model. An AIPW estimator is defined as

µ̂AIPW =
1

n

n
∑

i=1

{

ri

π(xi; β̂)
yi +

[

ri − π(xi; β̂)

π(xi; β̂)

]

m̂(xi)

}

The first simulation study followed the scenario in Kang and Schafer (2007)
for estimating a population mean. The scenario was carefully designed so that
the assumed outcome regression and missing data models are nearly correct
under misspecification, but the AIPW estimator can be severely biased. Sam-
ple sizes for each simulated data set was 200, 500 or 1000, and 1000 Monte
Carlo datasets were generated. For each observation, a random vector Z =
(Z1, Z2, Z3, Z4) was generated from a standard multivariate normal distribu-
tion, and transformations X1 = exp(Z1/2), X2 = Z2/(1 + exp(Z1)), X3 =
(Z1Z3/25 + 0.6)3 and X4 = (Z2 + Z4 + 20)2 were defined. The outcome of
interest Y was generated from a normal distribution with mean 210+ 27.4Z1 +
13.7Z2+13.7Z3+13.7Z4 and unit variance, and Y was observed with probability
exp(η0(Z))/(1+exp(η0(Z))) where η0(Z) = −Z1+0.5Z2− 0.25Z3− 0.1Z4. The
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Table 1

Comparisons among estimators under the Kang and Schafer scenario with four possible
combinations of correct and misspecified missing data and outcome regression models, (a)
both correct, (b) correct missing data model and incorrect outcome regression, (c) incorrect
missing data model but correct outcome regression and (d) both incorrect. RMSE represents

the square root of sampling mean squared error. RE represents the relative efficiency
compared to the modified empirical likelihood estimator

n=200 n=500 n=1000
n Bias RMSE RE Bias RMSE RE Bias RMSE RE

(a) µ̂AIPW 0.02 2.50 1.00 0.03 1.62 1.02 0.01 1.13 1.00
µ̂EL 0.02 2.50 1.00 0.03 1.62 1.01 0.01 1.13 1.00
µ̂CAL 0.02 2.50 1.00 0.03 1.62 1.01 0.01 1.13 1.00
µ̂MEL 0.02 2.50 1.00 0.03 1.61 1.00 0.01 1.13 1.00

(b) µ̂AIPW 0.28 3.77 2.07 0.12 2.74 2.76 0.06 1.65 2.02
µ̂EL 0.49 2.90 1.23 0.30 1.78 1.16 0.19 1.22 1.11
µ̂CAL 0.28 3.14 1.44 0.16 1.94 1.38 0.10 1.35 1.35
µ̂MEL 0.21 2.62 1.00 0.16 1.65 1.00 0.11 1.16 1.00

(c) µ̂AIPW 0.01 2.55 1.04 0.11 2.36 2.12 −0.01 1.25 1.22
µ̂EL 0.02 2.50 .100 0.03 1.62 1.00 0.01 1.13 1.00
µ̂CAL 0.01 2.49 0.99 0.03 1.61 0.99 0.01 1.13 1.00
µ̂MEL 0.03 2.50 1.00 0.03 1.62 1.00 0.01 1.13 1.00

(d) µ̂AIPW −8.00 41.07 >100 −39.66 898.58 >100 −13.38 73.39 >100
µ̂EL −1.71 3.52 1.01 −2.06 2.81 1.72 −2.15 2.52 2.15
µ̂CAL −2.73 4.82 1.89 −3.53 4.62 4.66 −4.16 5.05 8.62
µ̂MEL −1.07 3.51 1.00 −1.06 2.14 1.00 −1.18 1.72 1.00

correctly specified outcome and missing data models were regressionmodels with
Z as covariates, whereas we treatedX to be the covariates in misspecified models
instead of Z. Kang and Schafer (2007) showed that the missspecified models are
nearly correctly specified. In each case we considered four possible combinations
of correct and misspecified missing data and outcome regression models: (a)
both correct; (b) correct missing data model and incorrect outcome regression;
(c) incorrect missing data model but correct outcome regression and (d) both
incorrect. For correctly specified outcome model, a(Z) = (Z1, Z2, Z3, Z4) and
a(X) = (X1, X2, X3, X4) for misspecified outcome model. We compared the per-
formances of the augmented inverse probability weighted estimator µ̂AIPW , the
empirical likelihood estimator µ̂EL, the survey calibration estimator µ̂CAL and
the modified empirical likelihood estimator µ̂MEL. Relative efficiency (RE) is de-
fined as the ratio of mean squared error of an estimator to the mean squared error
of the modified empirical likelihood estimator. The results are shown in Table 1.

Simulation results showed that EL, CAL, AIPW and MEL estimators all had
relatively small bias when either the missing data model or the outcome regres-
sion model was correctly specified. When both models were correctly specified,
all estimators had very similar performances because all of them were semi-
parametric locally efficient. When only one of the two models were correctly
specified, the empirical likelihood, calibration and modified empirical likelihood
estimators were more efficient than the AIPW estimator. When both models
were misspecified, the AIPW estimator had a considerable bias and variability
but the other empirical likelihood based estimators showed much better per-
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Table 2

Comparisons among estimators under the Qin and Zhang scenario with four possible
combinations of correct and misspecified missing data and outcome regression models, (a)
both correct, (b) correct missing data model and incorrect outcome regression, (c) incorrect
missing data model but correct outcome regression and (d) both incorrect. RMSE represents

the square root of sampling mean squared error. RE represents the relative efficiency
compared to the modified empirical likelihood estimator

n=200 n=500 n=1000
Bias RMSE RE Bias RMSE RE Bias RMSE RE

(a) µ̂AIPW −0.01 0.31 1.00 <0.01 0.20 1.08 <0.01 0.14 1.02
µ̂EL −0.01 0.31 1.00 <0.01 0.19 1.00 <0.01 0.14 1.00
µ̂CAL −0.01 0.31 1.00 <0.01 0.19 1.00 <0.01 0.14 1.00
µ̂MEL −0.02 0.31 1.00 <0.01 0.19 1.00 <0.01 0.14 1.00

(b) µ̂AIPW <0.01 0.39 1.53 0.01 0.25 1.76 <0.01 0.17 1.61
µ̂EL −0.02 0.37 1.41 0.01 0.23 1.43 −0.01 0.17 1.53
µ̂CAL −0.01 0.38 1.49 0.01 0.23 1.50 −0.01 0.17 1.59
µ̂MEL −0.01 0.31 1.00 <0.01 0.19 1.00 <0.01 0.14 1.00

(c) µ̂AIPW −0.01 0.31 1.00 <0.01 0.20 1.08 <0.01 0.14 1.02
µ̂EL −0.01 0.31 .100 <0.01 0.19 1.00 <0.01 0.14 1.00
µ̂CAL −0.01 0.31 1.00 <0.01 0.19 1.00 <0.01 0.14 1.00
µ̂MEL −0.01 0.31 1.00 <0.01 0.19 1.00 −0.01 0.14 1.00

(d) µ̂AIPW 0.08 0.38 1.47 0.10 0.27 1.95 0.10 0.20 2.12
µ̂EL 0.05 0.35 1.27 0.09 0.23 1.50 0.08 0.18 1.66
µ̂CAL 0.07 0.38 1.49 0.10 0.25 1.76 0.10 0.19 2.00
µ̂MEL <0.01 0.31 1.00 0.01 0.19 1.00 0.01 0.14 1.00

formance. When the outcome regression model was misspecified, the modified
empirical likelihood estimators had smaller bias and variability compared to the
empirical likelihood and calibration estimators, which were consistent with the
theoretical results. In this simulation study, the modified empirical likelihood
estimator performed consistently better than other estimators.

The second simulation study was an adaptation of the scenario in
Qin and Zhang (2007). Sample sizes for each simulated data set was 200, 500
or 1000, and 1000 Monte Carlo datasets were generated. For each observation,
a standard normal random variable X was generated. Conditional on X = x, Y
is distributed from a normal distribution with mean 2 + 3x2 and variance x2.
The non-missing indicator R follows a generalized linear model with a logit or
a complementary log-log link:

logitP (R = 1|X) = 1 + 0.5X

or

log(− log(1 − P (R = 1|X))) = 1 + 0.5X

In both cases, we assumed a logistic working model for R, so that the working
model is misspecified under the complementary log-log model. We considered
a(X) = X2 and a(X) = X , and the latter corresponded to a misspecified work-
ing regression model. The simulation results are shown in Table 2. Under this
scenario, we had very similar conclusions as in Table 1. In particular, the mod-
ified empirical likelihood estimator performed consistently better than other
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estimators, including the empirical likelihood estimator. The improvement in
efficiency was greater when the working outcome regression model was misspec-
ified.

5. Discussions

Empirical likelihood has gained increasing attention in missing data analysis
since it has a good small sample performance and is also easy to compute. In
this paper we studied modifications of empirical likelihood estimator that attain
uniform improvement in asymptotic efficiency. Results from simulation studies
were consistent with the theoretical results that the modifications improve effi-
ciencies.

We consider the class of influence functions L noting that certain impor-
tant existing estimators are within that class, including the empirical likelihood
estimator of Qin and Zhang (2007). A different empirical likelihood estimator
has been proposed by Qin, Zhang and Leung (2009) that minimizes asymptotic
variance in the following class of influence functions

L′′ =

{

a

[

R

π0(X)
Y − µ

]

+ b

[

R− π0(X)

π(X)
g(X)

]

+ cT
∂π

∂β

R− π0(X)

π0(X)(1− π0(X))
: a, b ∈ R, c ∈ R

l

}

.

where l is the dimension of β and g(X) is a fixed function. The function g(X)
plays a similar role as m(X) in L, however, we allow m(X) to be any linear
combination of ã in the class L but g(X) is fixed in advance. Another major
difference is that estimators in the class L′′ may not be doubly robust when a
and b are not identical. However, estimators having influence functions in class
L enjoy double robustness properties in general. Since double robustness offer
protection against misspecification of missing data model and can be useful in
practice, we therefore keep our attention to the class L.

The method of Qin, Zhang and Leung (2009) was designed for general es-
timating functions. A reviewer suggested us to extend the modified empirical
likelihood estimation to the general case. Let U(Y,X ;β) be an unbiased esti-
mating function. Consider the class of influence function

Q =

{

R

π0(X)
U(Y,X ;β0) +

R− π0(X)

π0(X)
m(X) : m(X) is linear in ã(X)

}

where β0 is the true value of β. Since pMEL
i can be computed once ã(X) is

specified, it seems reasonable to solve the weighted estimating equation

n
∑

i=1

rip
MEL
i U(yi, xi;β) = 0

to obtain an estimate of β. Statistical properties of the weighted estimating
equation will be studied in the future.
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