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Abstract: Many applications in the field of statistics require Markov chain
Monte Carlo methods. Determining appropriate starting values and run
lengths can be both analytically and empirically challenging. A desire to
overcome these problems has led to the development of exact, or perfect,
sampling algorithms which convert a Markov chain into an algorithm that
produces i.i.d. samples from the stationary distribution. Unfortunately, very
few of these algorithms have been developed for the distributions that arise
in statistical applications, which typically have uncountable support. Here
we study an exact sampling algorithm using a geometrically ergodic Markov
chain on a general state space. Our work provides a significant reduction to
the number of input draws necessary for the Bernoulli factory, which enables
exact sampling via a rejection sampling approach. We illustrate the algo-
rithm on a univariate Metropolis-Hastings sampler and a bivariate Gibbs
sampler, which provide a proof of concept and insight into hyper-parameter
selection. Finally, we illustrate the algorithm on a Bayesian version of the
one-way random effects model with data from a styrene exposure study.
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1. Introduction

Suppose we want to explore a probability distribution π defined on X. Further
suppose π is intractable in the sense that direct (i.i.d.) sampling is unavailable.
In this setting, the Markov chain Monte Carlo (MCMC) method can be a use-
ful tool since it is often straightforward to construct and simulate an ergodic
Markov chain that has π as its stationary distribution (Chen et al., 2000; Liu,
2001; Robert and Casella, 1999). The two main drawbacks of MCMC relative to
direct sampling from π are (i) the difficulty in ascertaining how long the Markov
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chain needs to be run before it gets “close” to π (see, e.g., Jones and Hobert,
2001), and (ii) the difficulty in deriving and calculating asymptotically valid
standard errors for the ergodic averages that are used to approximate intractable
expectations under π (see, e.g., Flegal et al., 2008).

A desire to overcome these problems has led to the development of clever
techniques using a Markov chain to create an algorithm that produces i.i.d.
draws from the stationary distribution (e.g., Craiu and Meng, 2011; Green and
Murdoch, 1999; Huber, 2004; Propp and Wilson, 1996; Wilson, 2000). Unfortu-
nately, very few of these so-called perfect sampling algorithms have been devel-
oped for the distributions that arise in realistic statistical applications, which
typically have uncountable support. Asmussen et al. (1992) and Blanchet and
Meng (2005) provide one such algorithm applicable to Markov chains on gen-
eral state spaces. The main assumption necessary is that the chain satisfies a
one-step minorization condition. As we describe later, under this condition the
stationary distribution admits a mixture representation, suggesting the follow-
ing two-step sampling approach: sample the discrete distribution corresponding
to the mixture weights, then sample the selected mixture component.

This approach has never been successfully implemented, however, it has been
used to obtain approximate draws from π, see for example Blanchet and Thomas
(2007), Hobert et al. (2006) and Hobert and Robert (2004). The difficult part
is drawing from the discrete distribution corresponding to the mixture weights,
which is done via a rejection sampling approach. In this paper, we provide so-
lutions to a number of practical problems and illustrate the algorithm on three
examples. This requires overcoming two challenges: (i) obtaining a dominating
proposal distribution and (ii) generating a Bernoulli variate to decide whether
a proposed draw is accepted or not. While (ii) might seem trivial, the chal-
lenge is that we are unable to (exactly) compute the success probability for this
Bernoulli variate.

A solution to (i) requires identification of a bounding (proposal) probabil-
ity mass function for the target mass function. Previously, Blanchet and Meng
(2005) proposed an upper bound on moments associated with the target mass
function. Blanchet and Thomas (2007) used output from a preliminary run of
the Markov chain to construct an approximate upper bound. We provide an
explicit bound for Markov chains satisfying a geometric drift condition using
results from Roberts and Tweedie (1999).

A solution to (ii) will determine whether to accept a proposed draw. The
decision is made by generating a Bernoulli random variable with success prob-
ability that involves the ratio between the target and proposal mass functions.
In our case, the target mass function is unknown, apparently making this step
impossible. However, one can still generate such a Bernoulli variate, using a so-
called Bernoulli factory (Keane and O’Brien, 1994). Briefly, a Bernoulli factory
is an algorithm that outputs a Bernoulli variate with success probability f(p),
from i.i.d. Bernoulli(p) variates, when f is known but p is unknown.

The rejection sampling approach requires a Bernoulli factory algorithm for
f(p) = ap and a ∈ (1,∞). Nacu and Peres (2005) and Latuszynski et al. (2011)
provide an algorithm when a = 2, but their algorithms are computationally
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demanding and scale poorly for a ∈ (1,∞). For example when p ∈ (0, .4),
one requires at least 65, 536 Bernoulli(p) random variables to generate one
Bernoulli(2p) variate. In this paper, we provide an algorithm for any a ∈ (1,∞)
that reduces the computational time substantially. For example when p ∈ (0, .4),
we can obtain a Bernoulli(2p) variate with only 256 Bernoulli(p) random vari-
ables. This is an important reduction because the Bernoulli factory accounts
for much of the computational time in the exact sampling algorithm. Section 3
contains a full description the Bernoulli factory and our modification.

Our solutions to (i) and (ii) yield an exact sampling algorithm for π. The
algorithm is suitable even for intractable distributions on general state spaces:
that is, for distributions that typically arise in statistical applications. This is
an important extension, since very few existing algorithms apply to general
state spaces, but it is limited in the sense that one must be able to establish
a drift and associated minorization condition for the underlying Markov chain.
The current algorithm can be computationally demanding, however we have
successfully implemented it in three examples.

Our first example considers a univariate Metropolis-Hastings sampler for
which we obtain 1000 i.i.d. draws. The second example considers a slightly
more complicated bivariate Gibbs sampler where we again obtain 1000 i.i.d.
draws. These two examples could be considered toy examples in the sense that
i.i.d. observations are available for each. However, they provide insights into the
performance and hyper-parameter selection of the algorithm.

Our final example considers a Bayesian version of the classical one-way ran-
dom effects model that is widely used to analyze data. We illustrate the exact
sampling algorithm, using data from a styrene exposure study, to obtain 20
i.i.d. draws. This is the first successful implementation of an exact sampling
algorithm for a model of this type. Our analysis considers a balanced design
and requires development of a suitable drift condition, which improves upon the
existing drift constants of Tan and Hobert (2009).

These examples give hope for exact sampling algorithms for general state
space Markov chains in more complicated settings. Even if we are unable to
obtain multiple draws in these settings, a single exact draw will alleviate the
need for burn-in entirely.

The rest of this paper is organized as follows. Section 2 provides the mixture
representation of π, details the rejection sampling approach and bounds the
tail probabilities of the proposal distribution. Section 3 introduces the Bernoulli
factory and proposes a new target function that speeds up the algorithm sig-
nificantly. Section 4 gives the full exact sampling algorithm. Sections 5 and 6
implement the algorithm for two toy examples and a Bayesian version of a
one-way random effects model, respectively. Finally, Section 7 discusses our im-
plementation and provides some general recommendations to practitioners.

2. Exact sampling via a mixture distribution

Suppose we want to explore the intractable probability measure π(dx) defined
on the measurable space (X,B(X)). Let P : X × B(X) → [0, 1] be a Markov
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transition function and let X = {Xn}∞n=0 denote the corresponding Markov
chain. Then for x ∈ X and a measurable set A,

P (x,A) = Pr (Xn+1 ∈ A|Xn = x) .

Assume that π is an invariant measure for the chain; i.e., π(A) =
∫

X
P (x,A)π(dx)

for all measurable A. Assume further that X satisfies the usual regularity condi-
tions, which are irreducibility, aperiodicity and positive Harris recurrence. For
definitions, see Meyn and Tweedie (1993) and Roberts and Rosenthal (2004).
Finally, assume we are able to simulate the chain; that is, given Xn = x, we
have the ability to draw from P (x, ·).

The exact sampling algorithm considered here utilizes a mixture represen-
tation for π (Asmussen et al., 1992; Hobert et al., 2006; Hobert and Robert,
2004), however, we must first develop the split chain. The main assumption
necessary is that X satisfies a one-step minorization condition, i.e. there ex-
ists a function s : X → [0, 1] satisfying

∫

X
s(x)π(dx) > 0 and some probability

measure Q(dy) on (X,B(X)) such that,

P (x,A) ≥ s(x)Q(A) for all x ∈ X and A ∈ B(X) . (1)

Given X satisfies the one-step minorization condition at (1), then P can be
decomposed as

P (x, dy) = s(x)Q(dy) + (1− s(x)) R(x, dy) , (2)

where

R(x, dy) =
P (x, dy)− s(x)Q(dy)

1− s(x)
,

and define R(x, dy) = 0 if s(x) = 1. It is helpful to think of (2) as a mixture of
two Markov transition functions with probabilities s(x) and 1− s(x). Equation
(2) shows that it is possible to simulate Xn+1 given Xn = x as follows: Flip a
coin (independently) that comes up heads with probability s(x). If the coin is
a head, take Xn+1 ∼ Q(·); if it’s a tail, take Xn+1 ∼ R(x, ·).

This decomposition has several important applications in MCMC. Indeed, it
can be used to perform regenerative simulation (Hobert et al., 2002; Mykland
et al., 1995) and to derive computable bounds on the convergence rate of X
(Lund and Tweedie, 1996; Roberts and Tweedie, 1999; Rosenthal, 1995, 2002).

Now consider a new Markov chain that actually includes the coin flips men-
tioned above. Let X ′ = {(Xn, δn)}∞n=0 be a Markov chain with state space X×
{0, 1}. If the current state is (Xn, δn) = (x, δ), then the next state, (Xn+1, δn+1),
is drawn as follows. If δ = 1, then Xn+1 ∼ Q(·); while if δ = 0, Xn+1 ∼ R(x, ·).
Then, conditional on Xn+1 = x′, δn+1 ∼ Bernoulli(s(x′)). This chain is called
the split chain. Equation (2) implies that, marginally, the sequence of Xn values
in the split chain has the same overall probability law as the original Markov
chain X (Nummelin, 1984, Chapter 4). Note that, if δn = 1, then the distribu-
tion of (Xn+1, δn+1) does not depend on x.
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Remark 1. We can avoid drawing from Q(·) entirely by changing the order
slightly. Given x is the current state, we can simply generate Xi+1 ∼ P (x, ·) in
the usual manner and then generate δi|Xi, Xi+1 with

Pr (δi = 1|Xi, Xi+1) =
s(Xi)q(Xi+1)

k(Xi+1|Xi)
, (3)

where q(·) and k(·|x) are the densities corresponding to Q(·) and P (Nummelin,
1984, p. 62).

2.1. A mixture representation of π

The reason for introducing the split chain is that it possesses an accessible atom,
X×{1}. Indeed, each time the set X×{1} is entered, the split chain stochastically
restarts itself (because the next Xn has distribution Q). Let N = {1, 2, 3, . . .}
and (X0, δ0) ∈ X× {1}, then define the first return time to the atom as

τ = min
{

n ∈ N : (Xn, δn) ∈ X× {1}
}

.

Our assumptions about P imply that E(τ) < ∞ and hence the sequence {pn}∞n=1

defined by

pn =
Pr(τ ≥ n)

E(τ)

is nonnegative, nonincreasing, and sums to one. Let T denote a discrete random
variable on N with Pr(T = n) = pn; also let Qn be the conditional distribution
of Xn given that the split chain does not return to the atom before time n. Thus
for any n ∈ N and any measurable A, Qn(A) = Pr(Xn ∈ A | τ ≥ n). (Note that
Q1 ≡ Q.) Then π can be written as the following mixture of the Qn values:

π(dx) =

∞
∑

n=1

pn Qn(dx) . (4)

Remark 2. The representation at (4) can be obtained from results in As-
mussen et al. (1992) by applying their methods to the split chain. Alternatively,
Hobert and Robert (2004) obtain the representation when s(x) has the specific
form εIC(x) and Hobert et al. (2006) obtain the representation with the more
general minorization shown here.

The representation at (4) offers an alternative sampling scheme for π. First,
make a random draw from the set {Q1, Q2, Q3, . . . } according to the prob-
abilities p1, p2, p3, . . . and then make an independent random draw from the
chosen Qn.

Sampling algorithm for π:

1. Draw T such that Pr(T = n) = pn for n = 1, 2, 3, . . . , call the result t.
2. Make a draw from Qt(·).



Exact sampling via a Bernoulli factory 15

Drawing from Qn is simple even when n ≥ 2. Indeed, just repeatedly sim-
ulate n iterations of the split chain, and accept Xn the first time that δ1 =
· · · = δn−1 = 0. The challenging part of this recipe is drawing from the set
{Q1, Q2, Q3, . . . }, i.e. simulating a random variable T , since the pn values are
not computable. Hobert et al. (2006) and Hobert and Robert (2004) approxi-
mate the pn values, which yields approximate draws from T and thus π. In this
paper, we obtain exact draws from T that result in exact draws from π.

Remark 3. Let K|T = n be the number of simulations of the split chain
before we get a draw from Qn, conditional on T = n from Step 1 above. Then
K|T = n is geometric with mean E(K|T = n) = 1/P (τ ≥ n). Unfortunately,
Blanchet and Meng (2005) show E(K) = ∞, and justifiably argue (4) should
not be used for multiple replications. This presents a major challenge in the
applicability of our algorithm and others that can be similarly expressed, some
of which are discussed in the next section.

2.2. Rejection sampler for T

There is one case where simulating T is simple (Hobert et al., 2006; Hobert and
Robert, 2004). Suppose that in the minorization condition (1), s(x) ≡ ε > 0 for
all x ∈ X (implying the Markov chain is uniformly ergodic) and consider the
procedure for simulating the split chain with this constant s. In particular, note
that the coin flip determining whether δn is 0 or 1 does not depend on x, and it
follows that the number of steps until the first return to the accessible atom has
a geometric distribution. Indeed, Pr(τ ≥ n) = (1 − ε)n−1. Hence, E(τ) = 1/ε
and

pn = Pr(T = n) =
Pr(τ ≥ n)

E(τ)
= ε(1− ε)n−1 ,

so T also has a geometric distribution. Therefore it is easy to make exact draws
from π.

Hobert and Robert (2004) show this exact sampling algorithm is equivalent
to Murdoch and Green’s (1998) Multigamma Coupler and to Wilson’s (2000)
Read-Once algorithm. It is interesting that (4) can be used to reconstruct perfect
sampling algorithms based on coupling from the past despite the fact that its
derivation involves no backward simulation arguments. Of course, this exact
sampling algorithm will be useless from a practical standpoint if ε is too small.

Unfortunately, in statistical inference problems, the MCMC algorithms are
usually driven by Markov chains that are not uniformly ergodic and, hence,
cannot satisfy (1) with a constant s. Moreover, there is no efficient method to
simulate T where s is non-constant. (When s is non-constant, the distribution
of τ is complex and its mass function is not available in closed form. Hence, the
mass function of T is also unknown, which precludes direct simulation of T .)
Therefore we must resort to indirect methods of simulating T .

Fortunately, simulating τ is trivial—indeed, one can simply run the split
chain and count the number of steps until it returns to X × {1}. Because this
provides an unlimited supply of i.i.d. copies of τ , we can use a rejection sampling
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approach (Asmussen et al., 1992; Blanchet and Meng, 2005) to simulate T from

the i.i.d. sequence τ1, τ2, . . . (where τ1
d
= τ).

Suppose there exists a function d : N → [0, 1] such that
∑∞

n=1 d(n) = D < ∞
and P (τ ≥ n) ≤ Md(n) where M is a finite, positive constant. Consider a
rejection sampler with candidate mass function d(·)/D. Thus

Pr(T = n)

d(n)/D
=

Pr(τ ≥ n)/E(τ)

d(n)/D
=

D

E(τ)

Pr(τ ≥ n)

d(n)
≤ D

E(τ)
M ,

which justifies the following rejection sampler.

Rejection sampler for simulating T :

1. Draw T ∼ d(·)
D . Call the result n and let a = 1/ [Md(n)].

2. Draw an independent Bernoulli random variable, B, with success proba-
bility aPr(τ ≥ n). If B = 1, accept T = n; if B = 0, return to Step 1.

Unfortunately, the standard method of simulating B (by computing aPr(τ ≥
n) and comparing it to an independent Uniform(0, 1) random variable) is not
available to us because the mass function of τ is unavailable in closed form.
However, we may draw B without knowing the value of Pr(τ ≥ n) using a
supply of i.i.d. copies of τ . This is the basis of our exact sampling approach.

Suppose a ∈ (0, 1] and let p = Pr(τ ≥ n), then there exists a simple solution
to generate B ∼ Bernoulli(ap), which Fill (1998) calls “engineering a coin flip”.
Indeed simulate a single τ and define

W =

{

1 if τ ≥ n

0 if τ < n
,

hence W ∼ Bernoulli(p). If we independently simulate V ∼ Bernoulli(a) as
usual and set B = VW , then

Pr (B = 1) = Pr ([V = 1] ∩ [W = 1]) = Pr (V = 1)Pr (W = 1) = ap .

That is, B ∼ Bernoulli(ap), obtained by simulating a single τ and a single
Bernoulli V .

When a ∈ (1,∞), we will obtain B ∼ Bernoulli(ap) via the Bernoulli factory
described in Section 3. For now assume such a simulation is possible, then what
remains to establish is a computable tail probability bound, i.e. the sequence
d(n) and the constant M .

2.3. Tail probability bound

Blanchet and Meng (2005) bound the moments of τ , however they do not ex-
plicitly determine computable values M and d(n). Fortunately, Pr(τ ≥ n) can
be bounded above by a known constant times a known geometric mass function
if X satisfies a geometric drift and associated one-step minorization conditions.
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We will say a drift condition holds if there exists some function V : X 7→ [1,∞),
some 0 < λ < 1 and some b < ∞, such that

E [V (Xi+1)|Xi = x] ≤ λV (x) + I(x∈C)b for all x ∈ X . (5)

In addition, we require the associated one-step minorization condition as follows;
assume that s(x) is bounded below by ε on C and that

Pr(x,A) ≥ εQ(A) for all x ∈ C, A ∈ B(X) . (6)

Hobert and Robert (2004) provide the following bound on Pr(τ ≥ n) based
results in Roberts and Tweedie (1999). Define A = supx∈C E [V (Xi+1)|Xi = x],
J = (A− ε)/λ, and

β∗ =







λ−1 if J < 1 ,

exp

{

logλ log(1− ε)

log J − log(1− ε)

}

≤ λ−1 if J ≥ 1 .

Then letting φ(β) = log β/ logλ−1, if β ∈ (1, β∗), we have

Pr(τ ≥ n) ≤ β

[

b

ε(1− λ)

]φ(β)
[

1− β(1 − ε)

1− (1− ε) (J/(1 − ε))
φ(β)

]

β−n (7)

= Md(n) ,

where d(n) = β−n and

M = β

[

b

ε(1− λ)

]φ(β)
[

1− β(1 − ε)

1− (1− ε) (J/(1 − ε))
φ(β)

]

.

Note
∑∞

n=1 d(n) =
∑∞

n=1 β
−n = 1

β−1 = D < ∞ since β ∈ (1, β∗). Having estab-

lished the inequality in (7), we next detail how to generate B ∼ Bernoulli(ap)
when a > 1.

3. Bernoulli factory

Given a sequence W = {Wn}n≥1 of i.i.d. Bernoulli(p) random variables, where p
is unknown, a Bernoulli factory is an algorithm that simulates a random variable
B ∼ Bernoulli(f(p)), where f is a known function. For the exact sampling
algorithm, we require a Bernoulli factory where f(p) = ap. This idea arrose in
Asmussen et al. (1992) when proposing an exact sampling algorithm for general
regenerative processes.

Consider f : S 7→ [0, 1], where S ⊂ (0, 1). Keane and O’Brien (1994) show is
it possible to simulate a random variable B ∼ Bernoulli(f(p)) for all p ∈ S if
and only if f is constant, or f is continuous and satisfies, for some n ≥ 1,

min{f(p), 1− f(p)} ≥ min{p, 1− p}n ∀p ∈ S . (8)

While Keane and O’Brien (1994) develop the necessary and sufficient conditions
on f , they do not provide a detailed description of an algorithm. Nacu and Peres



18 J.M. Flegal and R. Herbei

(2005) suggest a constructive algorithm via Bernstein polynomials for fast sim-
ulation, i.e. the number of input Bernoulli(p) variates needed for the algorithm
has exponentially bounded tails. However, we find no practical implementation
since it requires dealing with sets of exponential size. Our approach is based on
the recent work of Latuszynski et al. (2011), which avoids keeping track of large
sets by introducing a single auxiliary random variable.

The general approach, in the formulation of Latuszynski et al. (2011), is to
construct two random approximations to f(p), denoted Un and Ln, which de-
pend on W1,W2, . . . ,Wn and satisfy

1 ≥ Un = Un(W1, . . . ,Wn) ≥ Un+1 ≥ Ln+1 ≥ Ln = Ln(W1, . . . ,Wn) ≥ 0 a.s.
(9)

The random variables Un and Ln approximate f(p) in the sense that E(Un) ց
f(p) and E(Ln) ր f(p) as n → ∞. The decision to continue sampling or output
a zero or a one in the Bernoulli factory is made using an auxiliary Uniform(0, 1)
variable.

Remark 4. The almost sure monotonicity requirement in (9) is typically dif-
ficult to attain and thus Latuszynski et al. (2011) relax it by using super/sub-
martingales instead.

3.1. Modified target function

For the rejection sampling approach to simulating T , we have the ability to
simulate W by setting Wi = I(τi ≥ n) for i ≥ 1. We require a single B ∼
Bernoulli(ap), where a = 1/[Md(n)] is a known constant such that a > 0. The
outcome B determines if we accept or reject the proposed value. For a ∈ (0, 1]
we use the simple solution in Section 2 and for a ∈ (1,∞) we use the Bernoulli
factory.

Unfortunately, the function f(p) = ap on (0, 1/a) does not satisfy (8) and
cannot be simulated via the Bernoulli factory. However, when restricted to
f(p) = min{ap, 1− ω} for ω > 0, such a simulation is possible.

Nacu and Peres (2005) and Latuszynski et al. (2011) provide a detailed al-
gorithm for a = 2 and 0 < ω < 1/4. Their construction requires a minimum
of 65,536 input variables (see Table 1) before the requirement Un ≤ 1 at (9)
is met. This is due to the fact that f(p) = min{2p, 1− ω} is not differentiable
and the Bernstein polynomials can approximate general Lipschitz functions at
a rate of 1/

√
n (see part (i) of Lemma 6 from Nacu and Peres, 2005). However,

when the target function f is twice differentiable, the rate increases to 1/n (see
part (ii) of the same Lemma).

This suggests the number of Bernoulli(p) input variates required may decrease
significantly by using a twice differentiable f . With this in mind, we propose
extending ap smoothly from

[

0, 1−ω
a

]

to [0, 1]. Fix δ < ω and consider the
following function

F :

[

0, 1− 1− ω

a

]

→ [0, δ) F (p) = δ

∫ ap/δ

0

e−t2dt ,
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which is bounded by δ and twice differentiable, with F ′(p) = a exp{−a2p2/δ2}
and F ′′(p) = −2pa3

δ2 exp{−a2p2/δ2} ≤ 0. Standard calculus also gives |F ′′(p)| ≤
a2

√
2

δ
√
e
. (F is related to the Gauss error function (erf), though it can be simply

calculated from a standard normal distribution function.)
Then define our target function f as

f(p) =















ap if p ∈
[

0,
1− ω

a

)

(1− ω) + F

(

p− 1− ω

a

)

if p ∈
[

1− ω

a
, 1

] . (10)

In other words, we have extended ap such that f defined at (10) is twice differen-

tiable with |f ′′| ≤ C ≡ a2
√
2

δ
√
e
. Define a(n, k) = f(k/n) and b(n, k) = a(n, k) +

C/(2n) using f at (10), then we can state Algorithm 4 of Latuszynski et al.
(2011) with our modification.

Algorithm I.

1. Simulate G0 ∼ Uniform(0, 1).
2. Compute m = min{m ∈ N : b(2m, 2m) ≤ 1}. Set n = 2m, L̃n

2
= 0 and

Ũn
2
= 1.

3. Compute Hn =
∑n

i=1 Wi, Ln = a(n,Hn) and Un = b(n,Hn).
4. Compute

L∗
n =

Hn
∑

i=0

(

n− n
2

Hn − i

)(n
2

i

)

(

n

Hn

) a
(n

2
, i
)

and U∗
n =

Hn
∑

i=0

(

n− n
2

Hn − i

)(n
2

i

)

(

n

Hn

) b
(n

2
, i
)

.

5. Compute

L̃n = L̃n
2
+

Ln − L∗
n

U∗
n − L∗

n

(

Ũn
2
− L̃n

2

)

and Ũn = Ũn
2
− U∗

n − Un

U∗
n − L∗

n

(

Ũn
2
− L̃n

2

)

.

6. If G0 ≤ L̃n set B = 1; if G0 ≥ Ũn set B = 0.
7. If L̃n < G0 < Ũn, set n = 2n, return to step 3.
8. Output B.

Theorem 1. Suppose a, δ and ω are constants such that 0 < a < ∞ and

0 < δ < ω < 1. Further suppose f(p) as defined at (10), ap ∈ [0, 1−ω] and W =
{Wn}n≥1 are i.i.d. Bernoulli(p). Then Algorithm I outputs B ∼ Bernoulli(ap).
Moreover the probability that it needs N > n iterations equals a2/nδ

√
2e.

Proof. See Appendix A.

Remark 5. Note that the probability Algorithm I needs N > n iterations
is independent of the unknown value of p. Hence the number of Bernoulli(p)
variates required will also be independent of p.



20 J.M. Flegal and R. Herbei

Table 1
Comparison of count of input Bernoulli(p) variates to implement the Bernoulli factory.

a 2 (N&P) 2 5 10 20
Minimum 65536 256 2048 8192 32768

Mean Count 65536 562.9 2439.8 10373 43771
S.D. Count 0 21046 7287.6 54836 3.908e5

Algorithm I provides a constructive algorithm for a ∈ (1,∞) and reduces the
number of input variables by a factor of over 100, which we demonstrate in the
following example. This is a critical improvement since the Bernoulli factory ac-
counts for most of the computational demands of the exact sampling algorithm.

3.2. Bernoulli factory example

Consider generating 10,000 Bernoulli(ap) variates for various values of a while
setting p = 0.01, ω = 1/5 and δ = 1/6. Table 1 displays the minimum num-
ber of Bernoulli(p) variates required, along with the observed mean and stan-
dard deviation for the count of Bernoulli(p) variates used to generate 10,000
Bernoulli(ap) variates. We can see for a = 2 the minimum and observed mean
have been reduced substantially when comparing our target function with the
Nacu and Peres (2005) target (N&P). The reduction in observed input
Bernoulli(p) variates represents a 120 times reduction in computational time.
The N&P implementation always stops the simulation at the minimum, and
hence the standard deviation of the count is 0. Table 1 also shows the input
variates required increases as a increases. Simulations for other p values (not
shown) provide very similar results.

4. Exact sampling algorithm

The Bernoulli factory algorithm, Theorem 1, requires ap < 1 − ω. To this end,
let κ > 1 such that 1/κ < 1− ω and from (7)

Pr(τ ≥ n) ≤ Md(n) < Md(n)κ .

Then letting a = 1/ [Md(n)κ] we have aPr(τ ≥ n) ≤ 1/κ < 1− ω < 1 for all n.
The following algorithm results in exact draws from π.

Exact sampling algorithm for π:

1. Draw T ∗ ∼ Geometric (1− 1/β), i.e. Pr (T ∗ = k) = (1/β)
k−1

(1− 1/β)
for k = 1, 2, . . . , and call the result n. Set a = 1/ [Md(n)κ].

2. If a ≤ 1, draw a single τ random variable. Let W = I(τ ≥ n) and inde-
pendently draw V ∼ Bernoulli (a). Set B = VW .

3. If a > 1, use the Bernoulli factory to obtain B, a single Bernoulli random
variable with success probability p = aPr(τ ≥ n).

4. If B = 1, accept T ∗ = n; if B = 0, return to Step 1.
5. Make a draw from Qn(·).
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The algorithm requires selection of ε, C, λ, and κ from a range of possible
values (depending on the drift and minorization). Further, β ∈ (1, β∗) must
be selected depending on the previously selected parameters. Each selection
impacts the algorithm performance and we suggest investigation of different
settings for a given example. Our examples in Sections 5 and 6 discuss hyper-
parameter selection and provide further recommendations.

5. Toy examples

This section contains two toy examples in the sense that we can obtain i.i.d.
samples for each, hence there is no practical reason for considering MCMC
algorithms. The purpose is to gain insights into the exact sampler and study its
performance.

5.1. Metropolis-Hastings example

This section illustrates the exact sampling algorithm for a Metropolis-Hastings
sampler. Suppose that X = [0,∞) and π(dx) = fX(x) dx where fX(x) =
e−x I(x ≥ 0). Consider the function V (x) = ecx for some c > 0 and sup-
pose we use a Metropolis sampler with a symmetric proposal density g(·|x),
which is supported on [x− γ, x+ γ], γ > 0. Then, for x > γ,

E[V (Xi+1)|Xi =x] =

∫ x

x−γ

V (y)g(y|x)dy +
∫ x+γ

x

V (y)g(y|x)dy f(y)
f(x)

+

∫ x+γ

x

V (x)g(y|x)dy
(

1− f(y)

f(x)

)

=

∫ x+γ

x

(

V (2x− y)+V (y)
f(y)

f(x)
+V (x)

(

1− f(y)

f(x)

))

g(y|x)dy

= V (x)

∫ x+γ

x

(

e−c(y−x)+ e(c−1)(y−x)+1− e−(y−x)
)

g(y|x)dy.

Selecting g to be the uniform density g(y|x) = 1
2γ Iy∈[x−γ,x+γ], we get

E[V (Xi+1)|Xi = x] = V (x)
1

2γ

∫ γ

0

(

e−cz + e(c−1)z + 1− e−z
)

dz . (11)

When x ∈ [0, γ],

E[V (Xi+1)|Xi = x] =

∫ x

0

V (y)g(y|x)dy +

∫ x+γ

x

V (y)g(y|x)dy f(y)
f(x)

+

∫ x+γ

x

V (x)g(y|x)dy
(

1− f(y)

f(x)

)

=

∫ x

0

ecy
1

2γ
dy +

ecx

2γ

∫ x+1

x

e(c−1)(y−x)dy

+
ecx

2γ

∫ x+1

x

(

1− e−(y−x)
)

dy . (12)
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When combined, (11) and (12) obtain a drift condition for the Metropolis-
Hastings sampler considered. However, the selection of the constants c and γ
is crucial to obtaining a reasonable computation time. The constants β and
M , which are described in Section 2.3, also depend on c and γ. Based on our
example in Section 3, our strategy is to maximize β, which in turn results in
small values for a = 1/[Md(n)κ]. Figure 1(a) displays a contour map of β∗ for
c < 0.3 and γ < 10. Based on this plot, we select c = 0.028 and γ = 4, resulting
in β = 1.0243 (as seen below). Evaluating the integrals in (11) and (12) gives
the drift condition

E[V (Xi+1)|Xi = x] ≤ λV (x) + I(x∈C)b

where λ = 0.977, b = 0.1 and the small set C = [0, 4]. The interval [0, γ] is
indeed a small set, since, when x ∈ [0, γ],

P (x, dy) ≥ g(y|x)dymin

{

1,
f(y)

f(x)

}

=
1

2γ
Iy∈[0,x+γ]dymin

{

1,
f(y)

f(x)

}

≥ 1

2γ
Iy∈[0,γ]e

−ydy

=
1− e−γ

2γ

(

1

1− e−γ
e−yIy∈[0,γ]dy

)

.

This establishes the necessary minorization condition P (x, dy) ≥ s(x)Q(dy)
where

Q(dy) = q(y)dy =
1

1− e−γ
e−yIy∈[0,γ]dy and s(x) =

1− e−γ

2γ
Ix∈[0,γ] .

The remaining numerical elements required for the geometric probability bound
are: A = supx∈C E[V (Xi+1|Xi = x]) = 1.09197 and J = (A− ε)/λ = 0.99283 <
1. Then β = 1/λ = 1.0243. Finally, the Bernoulli factory hyper-parameters are
κ = 5/4 and δ = 1/6 resulting in ω = 0.2.

Following Mykland et al. (1995), we can now simulate the split chain as fol-

lows: (1) drawXn+1 from g(·|Xn) and accept it with probability min
{

1, f(Xn+1)
f(Xn)

}

;

(2) if the candidate in step (1) is rejected, set δn = 0, otherwise, generate δn as
a Bernoulli variate with success probability given by

Pr(δn = 1) =
s(Xn)q(Xn+1)

g(Xn+1|Xn)min
{

1, f(Xn+1)
f(Xn)

} .

Using the exact sampling algorithm, we generated 1000 i.i.d. Exp(1) random
variates. Figure 1(b) shows a Q-Q plot of the observed draws versus the the-
oretical quantiles of the Exp(1) distribution. During our simulations none of
the proposed T ∗ values which required the use of the Bernoulli factory were
accepted. This is due to the fact that our Metropolis-Hastings sampler regener-
ates very fast, roughly in about 20 moves. Thus for large T ∗, when the Bernoulli
factory is necessary, the probability Pr(τ > T ∗) is negligible and the Bernoulli
factory outputs a zero. Improvements via modified drift and minorization or
hyper-parameter selection may improve this situation.
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Fig 1. Plots for Metropolis-Hastings example.

5.2. Gibbs example

Suppose Yi|µ, θ ∼ N(µ, θ) independently for i = 1, . . . ,m where m ≥ 3 and
assume the standard invariant prior ν(µ, θ) ∝ θ−1/2. The resulting posterior
density is

π(µ, θ|y) ∝ θ−(m+1)/2 exp
{

−m

2θ
(s2 + (ȳ − µ)2)

}

(13)

where s2 is the usual biased sample variance. It is easy to see the full conditional
densities, f(µ|θ, y) and f(θ|µ, y), are given by µ|θ, y ∼ N(ȳ, θ/m) and θ|µ, y ∼
IG((m− 1)/2,m

[

s2 + (ȳ − µ)2
]

/2), hence a Gibbs sampler is appropriate. (We

say W ∼ IG(α, β) if its density is proportional to w−(α+1)e−β/wI(w > 0).) We
consider the Gibbs sampler that updates θ then µ; that is, letting x′ = (θ′, µ′)
denote the current state and x = (θ, µ) denote the future state, the transition
looks like (θ′, µ′) → (θ, µ′) → (θ, µ). This Markov chain then has state space
X = R

+ × R and transition density

k(θ, µ|θ′, µ′) = f(θ|µ′, y)f(µ|θ, y) . (14)

Appendix B provides a drift and minorization condition using a small set in the
form

C =
{

(θ, µ) ∈ R
+ × R : V (µ, θ) ≤ d

}

,

where V (θ, µ) = 1 + (µ− ȳ)2.
Suppose ȳ = 1, s2 = 4, and m = 11. We set λ = 0.5 and d = b/(λ −

(m − 3)−1) = 11/3 resulting in ε = 0.5750034 and β∗ = 1.3958. Given the
allowable range β ∈ (1, β∗), we select β = 1.35, which turns out to be extremely
important for implementation. Selection of β very close to β∗ or close to 1
seems to cause problems for the Bernoulli factory because of large constant
multipliers a = 1/ [Md(n)κ] given typical proposed T ∗ = n (which depend on
β). Experimentation has shown us values somewhat close to β∗ seem to provide
the best results. Finally, the Bernoulli factory hyper-parameters are κ = 5/4
and δ = 1/6 resulting in ω = 0.2.
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Table 2
Summary constants for Gibbs sampler example with β = 1.35. The row min refers to the

minimum number of observed τs to implement the Bernoulli factory and p(n) = P (T ∗ = n).

n 1 2 3 4 5 6 7 8 9 10
p(n) 0.259 0.192 0.142 0.105 0.078 0.058 0.043 0.032 0.023 0.017
a 0.08 0.11 0.14 0.19 0.26 0.35 0.47 0.64 0.86 1.16

min - - - - - - - - - 128
n 11 12 13 14 15 16 17 18 19 20

p(n) 0.013 0.010 0.007 0.005 0.004 0.003 0.002 0.002 0.001 0.001
a 1.57 2.12 2.87 3.87 5.22 7.05 9.52 12.85 17.35 23.42

min 128 256 512 1024 2048 4096 8192 8192 16384 32768

Table 2 summarizes the resulting constants given the hyper-parameter choices.
Notice the Bernoulli factory will be necessary for proposed values greater than
or equal to 10, that is with probability 0.067. The constants for values greater
than 20 are not listed. However, these values are of interest since the minimum
number of observed τ values becomes extremely large. While values in this range
are uncommon, P (T ∗ > 20) ≈ 0.002, they occur with enough frequency to slow
down the algorithm substantially.

The exact sampling algorithm was used to generate 1000 exact draws from
the posterior density at (13). Generating the 1000 draws required approximately
35 hours of computational time, about 2 minutes per draw. A total of 27,665 T ∗

values were proposed of which 69 (0.25%) were greater than 20. Implementing
the Bernoulli factory required 1.52e9 τ values, or 1.52e6 τ values per exact draw.
However, most of the computational time, and necessary τ values, were used
for a small number of proposed T ∗ values. Similar to the Metropolis-Hastings
example, none of the accepted T ∗ values were from the Bernoulli factory.

The largest proposed T ∗ value was 37 with a ≈ 3848 requiring 1.07e9 τ val-
ues (of which 0 were ≥ 37) to implement the Bernoulli factory. This value alone
accounted for about 70% of the total number of τ values, and hence about 70%
of the total computational time. It should be noted that the largest accepted T ∗

value was 9, so proposals unlikely to be accepted account for most of the compu-
tational demands. Removing only the largest proposal, the remaining 999 draws
required approximately 10 hours of computation, or about 35 seconds per draw.

Alternatively for this example, we can sequentially sample from (13) to obtain
i.i.d. draws (Flegal et al., 2008). Figure 2 compares the 1000 exact draws to 1000
i.i.d. draws from a sequential sampler using a Q-Q plot for both µ and θ. We can
see from these plots that the exact sampling algorithm is indeed working well.

6. Bayesian random effects model

This section considers a Bayesian version of the one-way random effects model
given by

Yij = φi + ζij , i = 1, . . . , q, j = 1, . . . ,mi

where the random effects φi are i.i.d. N(µ, σ2
φ) and independently the errors ζij

are i.i.d. N(0, σ2
e). Thus (µ, σ

2
φ, σ

2
e) is the unknown parameter.
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(a) Q-Q plot for µ.

0 10 20 30 40

0
1

0
2

0
3

0
4

0

Exact Sampler Quantiles

S
e

q
u

e
n

ti
a

l 
S

a
m

p
le

r 
Q

u
a

n
ti
le

s

(b) Q-Q plot for θ.

Fig 2. Q-Q plots comparing 1000 exact draws to 1000 i.i.d. draws from a sequential sampler.

Bayesian analysis using this model requires specifying a prior distribution,
for which we consider the family of inverse gamma priors

π(µ, σ2
φ, σ

2
e) ∝ (σ2

φ)
−(α1+1)e−β2/σ

2
φ(σ2

e)
−(α2+1)e−β2/σ

2
e

where α1, α2, β1 and β2 are hyper-parameters. If we let y = {yij} and φ = {φi}
denote the vectors of observed data and random effects respectively, then the
posterior density is as follows

π
(

φ, µ, σ2
φ, σ

2
e

)

∝ f
(

y|φ, µ, σ2
φ, σ

2
e

)

f
(

φ|µ, σ2
φ, σ

2
e

)

π(µ, σ2
φ, σ

2
e) , (15)

where

f
(

y|φ, µ, σ2
φ, σ

2
e

)

=

q
∏

i=1

mi
∏

j=1

(

2πσ2
e

)− 1
2 exp

{

− 1

2σ2
e

(yij − φi)
2

}

and

f
(

φ|µ, σ2
φ, σ

2
e

)

=

q
∏

i=1

(

2πσ2
φ

)− 1
2 exp

{

− 1

2σ2
φ

(φi − µ)
2

}

.

For ease of exposition, we will suppress the dependency on the data y and define
the usual summary statistics: ȳi = m−1

i

∑

j yij ,M =
∑

imi, ȳ = M−1
∑

i

∑

j yij ,

SST =
∑

i mi (ȳi − ȳ)
2
and SSE =

∑

i

∑

j (yij − ȳi)
2
.

We consider a block Gibbs sampler that updates θ = (σ2
φ, σ

2
e) then ξ = (µ, φ),

that is (θ′, ξ′) → (θ, ξ′) → (θ, ξ). The necessary full conditionals can be obtained
via manipulation of (15). That is, f(θ|ξ′) is the product of two inverse gammas
such that

σ2
φ|ξ′ ∼ IG

(

q

2
+ α1,

w1(ξ
′)

2
+ β1

)
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and

σ2
e |ξ′ ∼ IG

(

M

2
+ α2,

w2(ξ
′) + SSE

2
+ β2

)

where w1(ξ) =
∑q

i=1(φi − µ)2 and w2(ξ) =
∑

mi(φi − ȳi)
2. Further, f(ξ|θ)

is multivariate normal density whose parameters are given in Tan and Hobert
(2009). This Markov chain then has state space X = R

q+1 × R
2
+ and transition

density

k(ξ, θ| ξ′, θ′) = f(θ|ξ′)f(ξ|θ) = f(σ2
φ|ξ′)f(σ2

e |ξ′)f(ξ|θ) .

Implementation of the exact sampling algorithm requires a drift and as-
sociated minorization condition as at (5) and (6). Hobert and Geyer (1998),
Jones and Hobert (2001, 2004) and Tan and Hobert (2009) analyze variations
of the proposed block Gibbs sampler, however none obtain sufficient constants
for a practical implementation of our algorithm. To this end, the following theo-
rem improves upon the drift constants of Tan and Hobert (2009) for a balanced
design while using a simplified version of their drift function.

Theorem 2. Let mi = m for all i = 1, . . . , q and let ∆2 = 1 − 1/[q(m +
1)] + max{q(m+ 1)/m2 , 1/m}. Further let V : Rq+1 × R

2
+ → [1,∞) such that

V (ξ, θ) = K + δ1w1(ξ) + δ2w2(ξ) where K ≥ 1, δ1 > 0 and δ2 > 0 and define

λ∗ = max

{

1

q + 2α1 − 2
,
δ1∆2/δ2 + q + 1

M + 2α2 − 2

}

.

Then there exists K ≥ 1, δ1 > 0 and δ2 > 0 such that λ∗ < 1 and (5) holds.

That is, for any λ ∈ (λ∗, 1),

E(V (ξ, θ)|ξ′, θ′) ≤ λV (ξ′, θ′) + b1(ξ′,θ′)∈C (16)

where

b = K(1− λ) +
2δ1β1

q + 2α1 − 2
+

(δ1∆2 + δ2(q + 1))(SSE + 2β2)

M + 2α2 − 2

+ (δ1 +mδ2)

q
∑

i=1

(ȳi − ȳ)2

and

C = {(ξ, θ) ∈ R
q+1 × R

2
+ : V (ξ, θ) ≤ d}

where d = b/(λ− λ∗).

Proof. See Appendix C.

The drift condition still holds if we increase the small set to

C = {(ξ, θ) ∈ R
q+1 × R

2
+ : K + δ1w1(ξ) ≤ d,K + δ2w2(ξ) ≤ d} ,

for which Appendix C provides the associated minorization condition.
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6.1. Styrene exposure dataset

We will implement the exact sampling algorithm using the styrene exposure
dataset from Lyles et al. (1997) analyzed previously by Jones and Hobert (2001)
and Tan and Hobert (2009). The data, summarized in Table 3, is from a bal-
anced design such that mi = m = 3 for i = 1, . . . , q, q = 13, and M = mq = 39.

We consider prior hyper-parameter values α1 = α2 = 0.1 and β1 = β2 = 10.
The drift function at (16) requires specification of drift parameters K = 50,
∆2 = 6.7585, δ1 = 1, and δ2 = 1 which results in λ∗ = 0.5580. We then choose
λ = 0.97, b = 37.88927 and d = 91.96992, resulting in ε = 0.01269784.

Using these settings β∗ = 1.000092 and we choose β = 1.000083 resulting in
M = 10.19413. We again used Bernoulli factory hyper-parameters of κ = 5/4
and δ = 1/6 resulting in ω = 0.2. In this case, the Bernoulli factory is necessary
for proposals greater than 30,706, approximately 8% of proposed values. It is
extremely likely the output from the Bernoulli factory will be zero since a sample
of 1000 i.i.d. τ values yielded only a maximum of 1278.

The exact sampling algorithm was run until we obtained a 20 i.i.d. draws
from the posterior at (15) which took 31,887 proposed T ∗ values and 2.61e8 τ
values for the Bernoulli factory. The accepted T ∗ values and i.i.d. θ values are
listed in Table 4. Notice the maximum accepted T ∗ was 287, which is well below

Table 3
Styrene exposure data summary statistics.

Worker 1 2 3 4 5 6 7
ȳi 3.302 4.587 5.052 5.089 4.498 5.186 4.915

Worker 8 9 10 11 12 13
ȳi 4.876 5.262 5.009 5.602 4.336 4.813

ȳ = 4.089, SST = 11.430, SSE = 14.711

Table 4
List of 20 i.i.d. θ draws from the posterior at (15) with the accepted T ∗ values.

Draw T ∗ σ2

φ
σ2
e

1 145 2.477 1.2624
2 18 1.234 1.7698
3 286 3.058 1.8791
4 40 2.607 1.2079
5 76 2.177 2.0603
6 287 6.513 1.2870
7 39 5.961 1.5295
8 103 1.642 1.2093
9 194 2.150 1.8129
10 195 2.112 1.4871
11 101 1.101 1.7166
12 2 1.659 1.0805
13 5 5.544 1.2856
14 9 1.505 1.6600
15 1 2.105 1.4137
16 150 2.681 0.7317
17 63 3.131 1.1506
18 64 3.514 1.8245
19 52 2.119 1.1743
20 62 3.571 1.5009
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our observed maximum of 1278 from 1000 i.i.d. τ values. Hence, drawing from
Qn was easy and almost all of the simulation time was used for the Bernoulli
factory. Obtaining the 20 i.i.d. draws required 24 days of computational time
utilizing six processors in parallel (equating to 144 days on a single processor).

7. Discussion

This paper describes an exact sampling algorithm using a geometrically ergodic
Markov chain on a general state space. The algorithm is applicable for any
Markov chain where one can establish a drift and associated minorization with
computable constants. The limitation of the method is that the simulation time
may be prohibitive.

Blanchet and Thomas (2007) implement an approximate version using the
Bayesian probit regression example from van Dyk and Meng (2001) with regen-
eration settings provided by Roy and Hobert (2007). This example is ill-suited
using the proposed algorithm because of computational limitations related to
the Bernoulli factory and in obtaining a practical ε. Specifically, we found (in
simpler examples) obtaining a single draw from π sometimes required millions of
i.i.d. τ variates. Unfortunately, even using non-constant s(x), the probit exam-
ple requires about 14,000 Markov chain draws per τ (Flegal and Jones, 2010).
Hence obtaining a single draw from π would require an obscene number of
draws from X . Implementation for more complicated Markov chains, such as
this, likely requires further improvements, or a lot of patience.

Careful analysis of the Markov chain sampler is necessary to find useful drift
and minorization constants. Most research establishing drift and minorization is
undertaken to prove geometric ergodicity, in which case the obtained constants
are of secondary importance. However, performance of the exact sampling algo-
rithm is heavily dependent on these constants. Improving them may be enough
to obtain exact samples in many settings.

Alternatively, the speed of the overall algorithm would improve if one could
find a bound using non-constant s(x) or a sharper bound with ε. The current
bound at (7) could potentially be modified upon by only considering specific
models, or specific classes of models.

Finally, one could obtain further improvements to the Bernoulli factory since
it requires most of the necessary τ variates. Our work has already obtained
a 100 times reduction in computational time. However there may be further
improvements available for the Bernstein polynomial coefficients, modifications
to Algorithm 4 of Latuszynski et al. (2011) or an entirely different method to
estimate f . Hyper-parameter settings also impact performance and could be
investigated further.
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comments and helpful discussions, which resulted in many improvements.

Appendix A: Proof of Theorem 1

Proof. By construction f is a smooth function f : [0, 1] → [0, 1 − ε] for some
0 < ε < ω − δ. Proposition 3.1 of Latuszynski et al. (2011) and Lemma 6 of
Nacu and Peres (2005) prove existence of an algorithm that simulates f(p) if

(i) f has second derivative f ′′ which is continuous and
(ii) the coefficients a and b satisfy

a(2n, k)

(

2n

k

)

≥
k
∑

i=0

a(n, i)

(

n

i

)(

n

k − i

)

, (17)

b(2n, k)

(

2n

k

)

≤
k
∑

i=0

b(n, i)

(

n

i

)(

n

k − i

)

. (18)

Condition (i) is clearly satisfied by construction, so it remains to check con-
dition (ii). Since the coefficients a and b are defined through f , inequalities (17)
and (18) will be checked using the properties of f .

Recall b(n, k) = a(n, k) + C/(2n), the inequalities (17) and (18) above can
be re-expressed (Nacu and Peres, 2005) as

a(2n, k) ≥ E(a(n,X)) and b(2n, k) ≤ E(b(n,X)),

where X is a hypergeometric random variable, with parameters (2n, k, n). Using
the definition of a, and the fact that f is concave, the first inequality is a
direct application of Jensen’s inequality. The second part is a straight forward
application of Lemma 6 from Nacu and Peres (2005) and the properties of the
hypergeometric distribution.

Finally, the probability the algorithm needs N > n follows directly from
definitions of the coefficients a and b and Theorem 2.5 of Latuszynski et al.
(2011).

Appendix B: Toy Gibbs drift and minorization

B.1. Drift condition

Let X = {Xn}n≥0 be the Markov chain corresponding to the Gibbs transition
kernel given in (14). Recall X = R

+ × R, x′ = (θ′, µ′) denotes the current state
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and x = (θ, µ) denotes the future state. Jones and Hobert (2001) establish a mi-
norization and Rosenthal (1995)–type drift condition form ≥ 5, and hence prove
the associated Markov chain is geometrically ergodic. Using their argument we
show a Roberts-and-Tweedie-type drift condition at (5) (Roberts and Tweedie,

1999, 2001) holds using the function V (x) = V (θ, µ) = 1+(µ− ȳ)
2
. Conditional

independence (based on the update order, see Jones and Hobert, 2001) yields

E [V (Xi+1)|Xi = x′] = E [V (θ, µ)|θ′, µ′]

= E [V (θ, µ)|µ′]

= E {E [V (θ, µ)|θ] |µ′} .

Since µ|θ, y ∼ N(ȳ, θ/m), the inner expectation is

E [V (θ, µ)|θ] = E
[(

1 + (µ− ȳ)
2
)

|θ
]

= 1 + Var (µ|θ) = 1 +
θ

m
.

Then since θ|µ′, y ∼ IG((m− 1)/2,m
[

s2 + (ȳ − µ′)2
]

/2),

E [θ|µ′] =
m
[

s2 + (ȳ − µ′)2
]

m− 3
,

and hence

E [V (Xi+1)|Xi = x′] =
1 + (µ′ − ȳ)

2

m− 3
+

s2 +m− 4

m− 3
. (19)

Let λ ∈
(

(m− 3)−1, 1
)

, b =
(

s2 +m− 4
)

/(m− 3), d ≥ b/
(

λ− (m− 3)−1
)

and

C =
{

(θ, µ) ∈ R
+ × R : V (µ, θ) ≤ d

}

,

then the drift condition at (5) is satisfied, that is

E [V (Xi+1)|Xi = x′] ≤ λV (x′) + I(x′∈C)b for all x′ ∈ X .

It is easy to see from (19) that

A = sup
x′∈C

E [V (Xi+1)|Xi = x] =
supx′∈C V (x′)

m− 3
+ b =

d

m− 3
+ b .

B.2. Minorization condition

Now we establish the associated minorization condition at (6) using a similar
argument to Jones and Hobert (2001). Let Cµ = {µ ∈ R : 1 + (µ − ȳ)2 ≤ d},
then for any µ′ ∈ Cµ

k(θ, µ|θ′, µ′) = f(θ|µ′)f(µ|θ) ≥ f(µ|θ) inf
µ∈Cµ

f(θ|µ) .
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Recall f(θ|µ) is an IG density, thus g(θ) := infµ∈Cµ f(θ|µ) can be written in
closed form (Jones and Hobert, 2004; Rosenthal, 1996; Tan and Hobert, 2009),

inf
µ∈Cµ

f(θ|µ) =







IG
(

m−1
2 , m(s2+d−1)

2 ; θ
)

if θ < θ∗

IG
(

m−1
2 , ms2

2 ; θ
)

if θ ≥ θ∗

where θ∗ = m(d − 1)
[

(m− 1) log
(

1 + d−1
s2

)]−1
and IG(α, β;x) is the inverse

gamma density evaluated at x. If we further define

ε =

∫

R×R+

f(µ|θ) inf
µ∈Cµ

f(θ|µ)dµ dθ =

∫

R+

inf
µ∈Cµ

f(θ|µ)dθ

and density q(θ, µ) = ε−1g(θ)f(µ|θ), then

k(θ, µ|θ′, µ′) ≥ εq(θ, µ) .

Letting Q(·) be the probability measure associated with the density q, then the
minorization condition from (6) holds, that is for any set A and any (θ′, µ′) ∈ C

P (x,A) ≥ εQ(A) for all A ∈ B(X) .

Notice the minorization condition holds for any d > 0.
Simulating the split chain requires evaluation of (3),

Pr (δ′ = 1|µ′, θ′, µ, θ) =
ε q(θ, µ)

k (µ, θ|µ′, θ′)

=
ε ε−1 g(θ) f(µ|θ)
f (θ|µ′) f (µ|θ)

=
g(θ)

f (θ|µ′)

=

[

m(s2+I{θ<θ∗}(d−1))

2

](m−1)/2

[

m(s2+(ȳ−µ′)2)
2

](m−1)/2

·
θ−(m−1)/2−1

Γ((m−1)/2) exp
{

−
[

m(s2+I{θ<θ∗}(d−1))

2θ

]}

θ−(m−1)/2−1

Γ((m−1)/2) exp
{

−
[

m(s2+(ȳ−µ′)2)
2θ

]}

=

[

s2 + I{θ<θ∗}(d− 1)

s2 + (ȳ − µ′)2

](m−1)/2

· exp
{

−mI{θ<θ∗}(d− 1)

2θ
+

m(ȳ − µ′)2

2θ

}

.

Notice that Pr (δ′|µ′, θ′, µ, θ) is free of ε, θ′, and µ.
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Appendix C: One-way random effects drift and minorization

C.1. Proof of Theorem 2

Proof. Notice

E(V (ξ, θ)|ξ′, θ′) = E{E(V (ξ, θ)|θ)|ξ′, θ′} (20)

where the inner expectation becomes

E(V (ξ, θ)|θ) = K + δ1E(w1(ξ)|θ) + δ2E(w2(ξ)|θ) .

Note that

E(w1(ξ)|θ) = E
[

q
∑

i=1

(φi − µ)2|θ
]

=

q
∑

i=1

{

Var(φi − µ|θ) +
(

E(φi − µ|θ)
)2
}

.

For general designs (balanced or unbalanced) Tan and Hobert (2009) prove

q
∑

i=1

Var(φi − µ|θ) ≤ ∆1σ
2
φ +∆2σ

2
e

where,

∆1 = min







q

(

q
∑

i=1

mi

mi + 1

)−1

,
q ·max{m1, . . . ,mq}

M







and

∆2 =

q
∑

i=1

1

mi
−

q
∑

i=1

1

M(1 +mi)
+ max







q

(

q
∑

i=1

mi

mi + 1

)−1

,
q

M







.

Simplifying ∆1 and ∆2 under the balanced design, we obtain ∆1 = 1 and
∆2 = 1− 1/[q(m+ 1)] + max{q(m+ 1)/m2 , 1/m}.

From the full conditionals (Tan and Hobert, 2009)

E(φi − µ|θ) =
mσ2

φ

σ2
e +mσ2

φ

(ȳk − ȳ) ,

then it follows that (with ∆1 = 1)

E(w1(ξ)|θ) ≤ σ2
φ +∆2σ

2
e +

(

mσ2
φ

σ2
e +mσ2

φ

)2 q
∑

i=1

(ȳi − ȳ)2

≤ σ2
φ +∆2σ

2
e +

q
∑

i=1

(ȳi − ȳ)2 .
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Similarly,

E(w2(ξ)|θ) ≤ (q + 1)σ2
e +m

q
∑

i=1

(ȳi − ȳ)2

To complete the calculation in (20), recall σ2
φ|ξ′ and σ2

e |ξ′, thus

E(σ2
φ|ξ′) =

w1(ξ
′) + 2β1

q + 2α1 − 2

and

E(σ2
e |ξ′) =

w2(ξ
′) + SSE + 2β2

M + 2α2 − 2
.

It follows that

E(V (ξ, θ)|ξ′, θ′) ≤ K +
1

q + 2α1 − 2

(

δ1w1(ξ
′)
)

+
δ1∆2/δ2 + q + 1

M + 2α2 − 2

(

δ2w2(ξ
′)
)

+
2δ1β1

q + 2α1 − 2
+

(δ1∆2 + δ2(q + 1))(SSE + 2β2)

M + 2α2 − 2
+

+ (δ1 +mδ2)

q
∑

i=1

(ȳi − ȳ)2 . (21)

Note there exists δ1 > 0 and δ2 > 0 such that λ∗ < 1, hence the drift condition
at (5) is satisfied.

For the exact sampling algorithm, we can see from (21) and the definitions
of C and b that

A = sup
x′∈C

E [V (Xi+1)|Xi = x] ≤ (d−K)

q + 2α1 − 2
+
δ1∆2/δ2 + q + 1

M + 2α2 − 2
(d−K)+b+λ∗ .

C.2. Minorization condition

Next we show the associated minorization condition holds. The argument will
be similar to the toy Gibbs example from Appendix B. Let Cξ = {ξ ∈ R

q+1 :
1 + δ1w1(ξ) ≤ d, 1 + δ2w2(ξ) ≤ d}, then the associated minorization condition
holds if we can find an ε and q(ξ, θ) such that for any ξ′ ∈ Cξ

k(ξ, θ| ξ′, θ′) = f(σ2
φ|ξ′)f(σ2

e |ξ′)f(ξ|θ)
≥ f(ξ|θ) inf

ξ∈Cξ

f(σ2
φ|ξ) inf

ξ∈Cξ

f(σ2
e |ξ)

= f(ξ|θ)g1(σ2
φ)g2(σ

2
e)

= εq(ξ, θ) . (22)

The two infimums can be found analytically as before:

g1(σ
2
φ) = inf

ξ∈Cξ

f(σ2
φ|ξ) =







IG
(

q
2 + α1,

d−K
2δ1

+ β1;σ
2
φ

)

if σ2
φ ≤ σ∗

φ

IG
(

q
2 + α1, β1;σ

2
φ

)

if σ2
φ > σ∗

φ
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and

g2(σ
2
e) = inf

ξ∈Cξ

f(σ2
e |ξ) =







IG
(

M
2 + α2,

(d−K)/δ2+SSE
2 + β2

)

if σ2
e ≤ σ∗

e

IG
(

M
2 + α2,

SSE
2 + β2

)

if σ2
e > σ∗

e

.

The points σ∗
φ and σ∗

e are the intersection points of the two inverse gamma
densities determined by

σ∗ =
b1 − b2

a(log b1 − log b2)

where a, b1 and b2 are the parameters of the two inverse gamma distributions.
We can define

ε =

∫

Rq+1×R
2
+

f(ξ|θ)g(θ)dξdθ =

∫

R
2
+

g(θ)dθ

=

∫

R+

g1(σ
2
φ)dσ

2
φ

∫

R+

g2(σ
2
e)dσ

2
e

and density q(ξ, θ) = ε−1g1(σ
2
φ)g2(σ

2
e)f(ξ|θ), then (22) holds. Since this mi-

norization condition holds for any d > 0, this establishes the associated mi-
norization condition.

Simulating the split chain requires evaluation of (3) similar to the calculation
in Appendix B,

Pr (δ′|ξ′, θ′, ξ, θ) = ε q(θ, ξ)

k (ξ, θ|ξ′, θ′)

=
g1(σ

2
φ)

f(σ2
φ|ξ′)

g2(σ
2
e)

f(σ2
e |ξ′)

=

[

I{σ2
φ<σ∗

φ}(d−K)/δ1 + 2β1

w1(ξ′) + 2β1

]

q
2+α1

· exp
{

−
I{σ2

φ<σ∗
φ}(d−K)/δ1

2σ2
φ

+
w1(ξ

′)

2σ2
φ

}

·
[

I{σ2
e<σ∗

e}(d−K)/δ2 + SSE + 2β2

w2(ξ′) + SSE + 2β2

]

M
2 +α2

· exp
{

−
I{σ2

e<σ∗
e}(d−K)/δ2

2σ2
e

+
w2(ξ

′)

2σ2
e

}

.
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