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Abstract: We consider a compound Poisson process with symmetric Ber-
noulli jumps, observed at times i∆ for i = 0, 1, . . . over [0, T ], for different
sizes of ∆ = ∆T relative to T in the limit T → ∞. We quantify the
smooth statistical transition from a microscopic Poissonian regime (when
∆T → 0) to a macroscopic Gaussian regime (when ∆T → ∞). The classical
quadratic variation estimator is efficient for estimating the intensity of the
Poisson process in both microscopic and macroscopic scales but surpris-
ingly, it shows a substantial loss of information in the intermediate scale
∆T → ∆∞ ∈ (0,∞). This loss can be explicitly related to ∆∞. We provide
an estimator that is efficient simultaneously in microscopic, intermediate
and macroscopic regimes. We discuss the implications of these findings be-
yond this idealised framework.
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1. Introduction

1.1. Motivation

Consider a 1-dimensional random process (Xt) defined by

Xt = X0 +

Nt∑

i=1

εi, t ≥ 0, (1)

where the εi ∈ {−1, 1} are independent, identically distributed with

P(εi = −1) = P(εi = 1) =
1

2
,
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and independent of the standard homogeneous Poisson process (Nt) with inten-
sity ϑ ∈ Θ = (0,∞). Suppose we have discrete data over [0, T ] at times i∆. This
means that we observe

X =
(
X0, X∆, . . . , X⌊T∆−1⌋∆

)
, (2)

and we obtain a statistical experiment by taking Pϑ as the law of X defined
by (2) when (Xt) is governed by (1). This toy model is central to several appli-
cation fields, e.g. financial econometrics or traffic networks (see the discussion
in Section 3 and the references therein). Moreover, it already contains several
interesting properties that enlight a tentative concept of statistical inference
across scales. This is the topic of the paper.

On the one hand, if we observe (Xt) microscopically, that is if ∆ = ∆T → 0
as T → ∞, then asymptotically, we can – essentially – locate the jumps of
(Nt) that convey all the relevant information about the parameter ϑ. In that
case, X is “close” to the continuous path (Xt, t ∈ [0, T ]). On the other hand,
if we observe (Xt) macroscopically, that is if ∆T → ∞ under the constraint1

T/∆T → ∞, we have a completely different picture: the diffusive approximation

Xi∆T −X(i−1)∆T
≈

√
ϑ
(
Wi∆T −W(i−1)∆T

)
, (3)

becomes valid, where (Wt) is a standard Wiener process. We elaborate in Ap-
pendix the aproximation (3). Inference on ϑ essentially transfers into a Gaus-
sian variance estimation problem; in that case, the state space rather becomes
R⌊T∆−1⌋+1. Finally if we observe (Xt) in the intermediate scale 0 < lim inf ∆T ≤
lim sup∆T <∞, we observe a process presenting too many jumps to be located
accurately from the data, and too few to verify the Gaussian approximation (3).
Therefore, depending on the scale parameter ∆T , the state space may vary, and
it has an impact on the underlying random scenarios Pϑ, although the interpre-
tation of the parameter of interest ϑ remains the same at all scales. What we
have is rather a family of experiments

ET,∆ = {PT,∆
ϑ , ϑ ∈ Θ}, (4)

where PT,∆
ϑ denotes the law of X given by (2) and these experiments ET,∆ may

exhibit different behaviours at different scales ∆. Heuristically, we would like
to state that in the microscopic scale ∆T → 0, the measure P

T,∆T

ϑ conveys the
same information about ϑ as the law of

(Nt, t ∈ [0, T ]), (5)

that is if the jump times of (Xt) were observed. On the other side, in the

macroscopic scale ∆T → ∞ with T/∆T → ∞, the measure P
T,∆T

ϑ shall convey
the same information about ϑ as the law of

(
0,
√
ϑW∆T , . . . ,

√
ϑW⌊T∆−1

T ⌋∆
)
, (6)

that is if the data were drawn as a Brownian diffusion with variance ϑ.
1This condition ensures that asymptotically infinitely many observations are recorded in

the limit T → ∞.
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The following questions naturally arise:

i) How does the model formulated in (4) interpolate – from a statistical infer-
ence perspective – from microscopic (when ∆ = ∆T → 0) to macroscopic
scales (when ∆ = ∆T → ∞)? In particular, how do intrinsic statistical
information indices (such as the Fisher information) evolve as ∆ = ∆T

varies?
ii) Is there any nontrivial phenomenon that occurs in the intermediate regime

0 < lim inf ∆T ≤ lim sup∆T <∞?

iii) Given i) and ii), if a statistical procedure is optimal on a given scale ∆,
how does it perform on another scale? Is it possible to construct a single
procedure that automatically adapts to each scale ∆, in the sense that it
is efficient simultaneously over different time scales?

1.2. Main results

In this paper, we systematically explore questions i), ii) and iii) in the simplified
context of the experiments ET,∆ built upon the continuous time random walks
model (1) for transparency. Some extensions to non-homogeneous compound
Poisson processes are given, and the generalisation to a more general compound
law is also discussed. As for i), we prove in Theorems 1, 2 and 3 that the
LAN condition (Locally Asymptotic Normality2) holds for all scales ∆. This

means that P
T,∆
ϑ can be approximated – in appropriate sense – by the law of

a Gaussian shift. We derive in particular the Fisher information of ET,∆ and
observe that it smoothly depends on the scale ∆. We shall see that the answer
to ii) is positive. More precisely, we first prove in Theorem 4 that the normalised
quadratic variation estimator

ϑ̂QV
T =

1

T

⌊T∆−1
T ⌋∑

i=1

(
Xi∆T −X(i−1)∆T

)2

is asymptotically efficient – it is asymptotically normal and its asymptotic vari-
ance is equivalent to the inverse of the Fisher information – in both microscopic
and macroscopic regimes. In the microscopic regime, it stems from the fact that
the approximation

ϑ̂QV
T ≈ 1

T

∑

0≤t≤T

(
Xt −Xt−

)2
=
NT

T

becomes valid, as the jumps are ±1, and the efficiency is then a consequence
of NT /T being the maximum likelihood estimator in the approximation experi-
ment (5). In the macroscopic regime, thanks to the diffusive approximation (3)

2Recommended references are the textbooks [9] and [15], but we recall some definitions in
Section 2.2 for sake of completeness.
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we have

ϑ̂QV
T ≈ 1

T

⌊T∆−1
T ⌋∑

i=1

(√
ϑ(Wi∆T −W(i−1)∆T

)
)2
,

which is precisely the maximum likelihood estimator in the macroscopic approx-
imation experiment (6). Surprisingly, ϑ̂QV

T fails to be efficient when

∆T → ∆∞ ∈ (0,∞). (7)

More precisely, we show in Theorem 5 that, although rate optimal, ϑ̂QV
T misses

the optimal variance by a non-negligible factor, depending on ∆∞, that can
reach up to 23%. This phenomenon is due to the fact that in the intermediate
regime (7), the process (Xt) is sampled at a rate which has the same order
as the intensity of its jumps. On the one hand, (Xi∆T − X(i−1)∆T

)2 gives no
accurate information whereas a jump has occured or not during the period
[(i−1)∆T , i∆T ], contrary to the case ∆T → 0. On the other hand, there are not
enough jumps to validate the approximation of Xi∆T −X(i−1)∆T

by a Gaussian
random variable, contrary to the case ∆T → ∞. Finally, we construct in The-
orem 6 a one-step correction of ϑ̂QV

T that provides an estimator efficient in all
scales, giving a positive answer to iii).

This paper is organised as follows. We first propose in Section 2.1 a canon-
ical framework for different time scales by considering the family of experi-
ments

(
ET,∆T

)
T>0

. The way the scale parameter depends on T defines the
terms microscopic, intermediate and macroscopic scales rigorously. Specialising
to model (1) for transparency, the results about the structure of the correspond-
ing

(
ET,∆T

)
T>0

are stated in Section 2.2. We show in Theorems 1, 2 and 3 that

the LAN (Local Asymptotic Normality) property holds simultaneously over all
scales and provides an explicit expression for the Fisher information. The proof
follows the classical route of [9] and boils down to obtaining accurate approxi-
mations of the distribution

f∆T (ϑ, k) = P
T,∆T

ϑ

(
Xi∆T −X(i−1)∆T

= k
)
, k ∈ Z,

in the limit ∆T → 0 or ∞. Note that f∆T (ϑ, k) does not depend on i since (Xt)
has stationary increments. However explicit, the intricate form of f∆T (ϑ, k) re-
quires asymptotic expansions of modified Bessel functions of the first kind. In
the macroscopic regime however, we were not able to obtain such expansions.
We take another route instead, proving directly the asymptotic equivalence in
the Le Cam sense, a stronger result at the expense of requiring a rate of conver-
gence of ∆T to ∞, presumably superfluous. We show in Theorems 4 and 5 of
Section 2.3 that the quadratic variation estimator ϑ̂QV

T is rate optimal and effi-
cient in both microscopic and macroscopic regimes, but not in the intermediate
scales (7). This negative result is however appended with the construction of an

estimator based on a one-step correction of ϑ̂QV
T that is efficient over all scales

(Theorem 6). Moreover this estimator has the advantage of being computation-
ally implementable, contrary to the theoretical optimal maximum likelihood
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estimator. Section 3 gives some extensions in the case of a non-homogeneous
compound Poisson process (Theorem 7) and addresses the generalisation to
more general compound laws. The comparison to related works on estimating
Lévy processes from discrete data is also discussed. Section 4 is devoted to the
proofs.

2. Statement of the results

2.1. Building up statistical experiments across time scales

Let T > 0 and ∆ > 0 be such that ∆ ≤ T . On a rich enough probability space
(Ω,F ,P), we observe the process (Xt) defined in (1) at frequency ∆−1 over the
period [0, T ]. Thus we observe X defined in (2), and with no loss of generality3,
we take X0 = 0. We obtain a family of statistical experiments

ET,∆ :=
(
Z⌊T∆−1⌋,P(Z⌊T∆−1⌋),

{
P
T,∆
ϑ , ϑ ∈ Θ

})
,

where P
T,∆
ϑ denotes the law of X when (Xt) has the form (1), and Θ ⊆ (0,∞)

is a parameter set with non empty interior. The experiment ET,∆ is dominated
by the counting measure µT on Z⌊∆−1T⌋. Abusing notation slightly, we may4

(and will) identify X with the canonical observation in ET,∆. Since (Xt) has

stationary and independent increments under P
T,∆
ϑ , we obtain the following

expression for the likelihood

dPT,∆
ϑ

dµT
(X) =

⌊T∆−1⌋∏

i=1

f∆(ϑ,Xi∆ −X(i−1)∆),

where we have set, for k ∈ Z,

f∆(ϑ, k) := P
T,∆
ϑ

(
Xi∆ −X(i−1)∆ = k

)
= P

T,∆
ϑ

(
X∆ = k

)
. (8)

We shall repeatedly use the terms microscopic, intermediate and macroscopic
scale (or regime). In order to define these terms precisely, we let ∆ = ∆T depend
on T with 0 < ∆T ≤ T , and we adopt the following terminology.

Definition 1. The sub-family of experiments (ET,∆T )T>0 is said to be

1. On a microscopic scale (or regime) if ∆T → 0 as T → ∞.
2. On an intermediate scale (or regime) if ∆T → ∆∞ as T → ∞, for some

∆∞ ∈ (0,∞).
3. On a macroscopic scale (or regime) if ∆T → ∞ and T/∆T → ∞ as
T → ∞.

3By assuming X0 = 0, the first data point does not give information about the parameter
ϑ. If only asymptotic properties of the statistical model are studied, which is always the case
here, it has no effect.

4By taking for instance Ω = Z⌊T∆
−1
T

⌋.
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2.2. The regularity of (ET,∆T )T>0 across time scales

Let us recall5 that the family of experiments (ET,∆T )T>0 satisfies the Local
Asymptotic Normality (LAN) property at point ϑ ∈ Θ with normalisation
IT,∆T (ϑ) > 0 if, for every v ∈ R such that ϑ + vIT,∆T (ϑ)

1/2 ∈ Θ, the following
decomposition holds

dPT,∆T

ϑ+vIT,∆T
(ϑ)−1/2

dPT,∆T

ϑ

(X) = exp
(
v ξT − 1

2
v2 + rT

)
, (9)

where

ξT → N (0, 1) in distribution under P
T,∆T

ϑ as T → ∞ (10)

and

rT → 0 in probability under P
T,∆T

ϑ as T → ∞. (11)

If (9), (10) and (11) hold, we informally say that (ET,∆T )T>0 is regular with
information IT,∆T (ϑ). This means that locally around ϑ, the law of X can be
approximated by the law of a Gaussian shift experiment, where one observes a
single random variable

Y = ϑ+ IT,∆T (ϑ)
−1/2ξT ,

with ξT being approximately distributed as a standard Gaussian random vari-
able under PT,∆T

ϑ as T → ∞. In particular, IT,∆T (ϑ) is the Fisher information
of the Gaussian shift experiment: the optimal rate of convergence for recovering
ϑ up to constants from X is the same as the one obtained from Y and is given
by IT,∆T (ϑ)

−1/2 provided IT,∆T (ϑ) → ∞ as T → ∞. Note also that if the con-
vergence of the remainder term rT = rT (v) in (11) holds locally uniformly in v,
then IT,∆T (ϑ) can be replaced by any function JT,∆T (ϑ) such that

JT,∆T (ϑ) ∼ IT,∆T (ϑ) as T → ∞

without affecting the LAN property. Hereafter, the symbol ∼ means asymptotic
equivalence up to constants. Our first result states the LAN property for the
experiment

(
ET,∆

)
T>0

on every scale ∆ ∈ (0,∞).

Theorem 1 (The intermediate regime). Assume ∆T → ∆∞ ∈ (0,∞) as T →
∞. Then the family (ET,∆T )T>0 is regular and we have

IT,∆T (ϑ) ∼ IT,∆∞
(ϑ) = T∆∞

(
E
T,∆∞

ϑ

[(
h∆∞

(ϑ,X∆∞
)+(ϑ∆∞)−1|X∆∞

|−1
)2])

,

with

h∆∞
(ϑ, k) =

I|k|+1(ϑ∆∞)

I|k|(ϑ∆∞)
,

5See for instance the textbooks [9] or [15].
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where, for x ∈ R and ν ∈ N,

Iν(x) =
∑

m≥0

(x/2)2m+ν

m!(ν +m)!

denotes the modified Bessel function of the first kind.

Remark 1. By taking ∆T = ∆∞ ∈ (0,∞) constant, we include the case of a
fixed ∆, therefore the same regularity result holds for

(
ET,∆

)
T>0

. An inspection

of the proof of Theorem 1 reveals that the mapping ∆ IT,∆(ϑ) is continuous
over (0,∞).

Our next result shows that formally we can let ∆∞ → 0 in the expression
of IT,∆∞

(ϑ) given by Theorem 1 in the microscopic case. Moreover we obtain a
simplified expression for the information rate.

Theorem 2 (The microscopic case). Assume ∆T → 0 as T → ∞. Then the
family (ET,∆T )T>0 is regular and we have

IT,∆T (ϑ) ∼ IT,0(ϑ) := lim
∆→0

IT,∆(ϑ) =
T

ϑ
.

The macroscopic case is a bit more involved. In that case, we cannot formally
let ∆∞ → ∞ in the expression of IT,∆∞

(ϑ) given by Theorem 1. However we
have the following simplification.

Theorem 3 (The macroscopic case). Assume ∆T → ∞, T/∆T → ∞ as T → ∞
and T/∆

1+ 1
4

T = o
(
(log(T/∆T ))

− 1
4

)
. Then the family (ET,∆T )T>0 is regular and

we have

IT,∆T (ϑ) ∼ IT,∞(ϑ) :=
T∆−1

T

2ϑ2
.

The condition T/∆
1+ 1

4

T = o
(
(log(T/∆T ))

− 1
4

)
is technical but quite stringent;

it is satisfied for example if ∆T = T β with 4
5 < β < 1 and stems from our

method of proof, see Section 4.3. It is presumably superfluous, but we do not
know how to relax it.

2.3. The distortion of information across time scales

On each scale ∆ > 0, let us introduce the empirical quadratic variation estimator

ϑ̂QV
T,∆ =

1

T

⌊T∆−1⌋∑

i=1

(Xi∆ −X(i−1)∆)
2

that mimics the behaviour of the maximum likelihood estimator in both macro-
scopic and microscopic regimes (see Section 1). More precisely, we have the
following asymptotic normality result.
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Theorem 4. Let ∆ = ∆T > 0 be such that T/∆T → ∞ as T → ∞. We have

ϑ̂QV
T,∆T

= ϑ+
(
IT,0(ϑ)

−1 + IT,∞(ϑ)−1
)1/2

ξT ,

where ξT → N (0, 1) in distribution under P
T,∆
ϑ , and IT,0(ϑ) and IT,∞(ϑ) are

the information of the microscopic and macroscopic experiments given in The-
orems 2 and 3 respectively.

On a microscopic scale ∆T → 0, we have

IT,∞(ϑ)−1

IT,0(ϑ)−1
→ 0 as T → ∞.

On a macroscopic scale ∆T → ∞ with T/∆T → ∞, we have on the contrary

IT,0(ϑ)
−1

IT,∞(ϑ)−1
→ 0 as T → ∞.

As a consequence, we readily see that ϑ̂QV
T,∆T

is asymptotically normal and that

its asymptotic variance is equivalent to IT,0(ϑ)
−1 on a microscopic scale and to

IT,∞(ϑ)−1 on a macroscopic scale. At a heuristical level, this phenomenon can
be explained directly by the form of the empirical quadratic variation estimator,
as we already did in Section 1. At intermediate scales however, this is no longer
true.

Theorem 5 (Loss of efficiency in the intermediate regime). Assume that

0 < lim inf ∆T ≤ lim sup∆T ≤ 1

4ϑ
. (12)

Then

lim inf
T→∞

IT,0(ϑ)
−1 + IT,∞(ϑ)−1

IT,∆T (ϑ)
−1

> 1,

where IT,∆T (ϑ) is defined in Theorem 1.

Remark 2. For technical reasons, we are unable to prove that Theorem 5 re-
mains valid beyond the restriction lim sup∆T ≤ 1/(4ϑ). Numerical simulations
suggest however that Theorem 5 is valid whenever lim sup∆T <∞, see Figure 1.

Let us denote by

RT

(
ϑ̂QV
T,∆T

, ϑ
)
= E

T,∆T

ϑ

[(
ϑ̂QV
T,∆T

− ϑ
)2]

the squared error loss of the quadratic variation estimator. By Theorems 1, 2
and 3, the family

(
ET,∆T

)
T>0

is regular in all regimes and we may apply the

classical minimax lower bound of Hajek, see for instance Theorem 12.1 in [9]:
we have, for any ϑ0 ∈ Θ and δ > 0 such that [ϑ0 − δ, ϑ0 + δ] ⊂ Θ

lim inf
T→∞

sup
|ϑ−ϑ0|≤δ

IT,∆T (ϑ)RT

(
ϑ̂QV
T,∆T

, ϑ
)
≥ 1. (13)



2012 C. Duval and M. Hoffmann

−3 −2 −1 0 1 2

1

1.1

1.2

Log
10

(x)

D
ef

ic
ie

nc
y 

ra
tio

Fig 1. Deficiency ratio through scales (x-axis x = ϑ∆, logarithmic scale). Ratio between

the information IT,∆T
(ϑ) and the inverse of the variance of ϑ̂QV

T,∆T
. The maximum is 1.2297

and is attained at x = 0.600.

On the one hand, Theorem 4 suggests6 that the lower bound (13) can be achieved
in microscopic and macroscopic regimes. On the other hand, Theorem 5 shows
that inequality (13) is strict in the intermediate case, whenever the restriction
(12) is satisfied, thus revealing a loss of efficiency in this sense. Define

ϕ(ϑ,∆) = E
T,∆
ϑ

[(
h∆(ϑ,X∆) + (ϑ∆)−1|X∆| − 1

)2]
,

where h∆(ϑ, k) is defined in Theorem 1. An inspection of the proof of Theorem 5
shows that ϕ(ϑ,∆) = ψ(ϑ∆), for some univariate function ψ, and that

IT,0(ϑ)
−1 + IT,∞(ϑ)−1

IT,∆(ϑ)−1
= ψ(ϑ∆)

(
2(ϑ∆)2 + ϑ∆

)
.

The maximal loss of information is obtained for

∆⋆(ϑ) ∼ ϑ−1argmaxx>0ψ(x)
(
2x2 + x

)

as T → ∞. Numerical simulations show that the maximum loss of efficiency is
close to 23%.

Since
(
ET,∆

)
T>0

is regular for every ∆ > 0, an asymptotically normal estima-

tor with asymptotic variance equivalent to IT,∆(ϑ)
−1 is given by the maximum

likelihood estimator. However due to the absence of a closed-form for the likeli-
hood ratio that involves the intricate function f∆(ϑ, k) defined in (8) (see also

Section 4.1.1), it seems easier to start from ϑ̂QV
T,∆ which is already rate-optimal by

6This is actually true as the uniform integrability of ϑ̂QV
T,∆T

under P
T,∆
ϑ , locally uniformly

in ϑ, can easily be obtained. We leave the details to the reader.
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Fig 2. Information deficiency through scales (ϑ = 1, x-axis ∆, logarithmic scale).

Information IT,∆T
(solid black). Inverse of the variance of ϑ̂QV

T,∆T
, theoretical (solid grey)

and empirical (star green). The inverse of the empirical variance of ϑ̂OS
T,∆T

(dotted blue) is

close to the optimal IT,∆T
on all scales. The empirical variances were computed using 104

Monte-Carlo simulations from T/∆ = 105 data, i.e. with the same number of data through
scales.

Theorem 4 and correct it by a classical one-step iteration based on the Newton-
Rhapson method, see for instance the textbook [15] pp. 71–75. To that end,
define

ϑ̂OS
T,∆ = ϑ̂QV

T −
∑⌊T∆−1

T ⌋
i=1 ∂ϑ log f∆

(
ϑ̂QV
T,∆, Xi∆ −X(i−1)∆

)

∑⌊T∆−1
T ⌋

i=1 ∂2ϑ log f∆
(
ϑ̂QV
T,∆, Xi∆ −X(i−1)∆

) . (14)

Theorem 6. In all three regimes (microscopic, intermediate and macroscopic),
we have

I
1/2
T,∆T

(
ϑ̂OS
T,∆T

− ϑ
)
−→ N (0, 1) in P

T,∆T

ϑ -distribution as T → ∞.

Proof. In essence the regularity of f∆
(
ϑ̂QV
T,∆, Xi∆ − X(i−1)∆

)
enables to apply

Theorem 5.45 of Van der Vaart [15].

Theorem 6 expresses the fact that ϑ̂OS
T,∆T

automatically adapts to IT,∆T and
is therefore optimal across scales.

3. Discussion

The compound Poisson process (Xt) with Bernoulli symmetric jumps defined
in (1) is the simplest model of a continuous time symmetric random walk on a
lattice that diffuses to a Brownian motion on a macroscopic scale. The intensity
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ϑ of the Poisson arrivals on a microscopic scale is transferred into the variance
ϑ of the Brownian motion on a macroscopic scale:

( 1√
T
XtT , t ∈ [0, 1]

)
−→

(√
ϑWt, t ∈ [0, 1]

)
(15)

in distribution as T → ∞, where (Wt) is a standard Brownian motion (see
Appendix). The statistical inference program we have developed across time
scales on the toy model given by (Xt) can be useful in several applied fields. For
instance, in financial econometrics, (Xt) may be viewed as a toy model for a
price process (last traded price, mid-price or bets bid/ask price) observed at the
level of the order book, see e.g. [2] or [10]. The parameter ϑ can be interpreted
as a trading intensity on microscopic scales that transfers into a macroscopic
volatility in the diffusion regimes. Our results convey the message that if a
practitioner samples (Xt) at high frequency at the same rate as price changes,

which is customary in practice, then the realised volatility estimator ϑ̂QV
T,∆T

is not efficient, and a modified estimator like ϑ̂OS
T,∆T

should be used instead.
However, this framework is a bit too simple and needs to be generalised in order
to be more realistic in practice. Two directions can be explored in a relatively
straightforward manner:

i) The extension to a non-homogeneous intensity Poisson process.
ii) The extension to an arbitrary compound law on a discrete lattice.

Extension to the non-homogeneous case

Theorems 1, 2 and 3 extend to the non-homogeneous case, when one allows the
intensity of the jumps to depend on time. In this setting, the counting process
(Nt) defined in (1) is defined on [0, T ] and has intensity

ΛT

(
t, ϑ) =

∫ t

0

λ(ϑ, s
T )ds, for t ∈ [0, T ]

where
λ : ϑ× [0, 1] → (0,∞)

is the nonvanishing (integrable) intensity function, so that the process
(
Nt − ΛT (t, ϑ), t ∈ [0, T ]

)

is a martingale. The homogenous case is recovered by setting λ(ϑ, t) = ϑ for
every t ∈ [0, 1]. In this context, the macroscopic approximation (15) becomes

( 1√
T
XtT , t ∈ [0, 1]

)
−→

(∫ t

0

√
λ(ϑ, s) dWs, t ∈ [0, 1]

)

in distribution as T → ∞. We state – without proof – an extension of The-
orems 1, 2 and 3 for the associated family of experiments

(
ET,∆T

)
T>0

across
scales.
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Assumption 1. We have that ϑ  λ(ϑ, t) is continuously differentiable for
almost all t ∈ [0, 1] and moreover supϑ∈Θ,t∈[0,1] λ(ϑ, t) <∞.

Theorem 7. We have Theorems 1, 2 and 3 with the following generalisation

1. In the microscopic case ∆T → 0,

IT,0(ϑ) = T

∫ 1

0

(
∂ϑ logλ(ϑ, s)

)2
λ(ϑ, s)ds.

2. In the intermediate regime ∆T → ∆∞ ∈ (0,∞),

IT (ϑ) = T∆∞

∫ 1

0

(
∂ϑ logλ(ϑ, s)

)2
λ(ϑ, s)2H(ϑ, s)ds,

with

H(ϑ, s) = E
T,∆∞

ϑ

[(
h∆∞

(ϑ, s,X∆∞
) +

(
λ(ϑ, s)∆∞

)−1|X∆∞
| − 1

)2]
,

and

h∆∞
(ϑ, s, k) =

I|k|+1(λ(ϑ, s)∆∞)

I|k|(λ(ϑ, s)∆∞)
.

3. In the macroscopic case ∆T → ∞ with T/∆T → ∞ and T/∆
1+ 1

4

T =

o((log(T/∆T ))
− 1

4 ),

IT (ϑ) =
T∆−1

T

2

∫ 1

0

(
∂ϑ logλ(ϑ, s)

)2
ds.

The proof of Theorem 7 relies on the approximation

∫ i∆T

(i−1)∆T

λ(ϑ, s)ds = ∆Tλ
(
ϑ,

i− 1

T∆−1
T

)
+∆T rT ,

for i = 1, . . . , ⌊T∆−1
T ⌋, where rT → 0 as T → ∞ in all three regimes. Assump-

tion 1 ensures that the convergence of the remainder is uniform in i and ϑ. This
reduction enables us to transfer the problem of proving Theorems 1, 2 and 3
when substituting independent identically distributed random variables by inde-
pendent non-equally distributed ones. This is not essentially more difficult, and
the regularity of λ enables us to piece together the local information given by
each increment Xi∆T −X(i−1)∆T

in order to obtain the formulae of Theorem 7.
An analogous program as in Section 2.3 for the distortion of information

could presumably be carried over, with appropriate modifications. For instance,
one can show that

ϑ̂QV
T,∆T

=

⌊T∆−1
T ⌋∑

i=1

(
Xi∆T −X(i−1)∆T

)2 −→
∫ 1

0

λ(ϑ, s)ds as T → ∞
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in P
T,∆T

ϑ -probability, in all three regimes. Then, in order to estimate ϑ efficiently,
one should rather consider a contrast estimator that maximises

ϑ̃ UT,∆T (ϑ̃) =

⌊T∆−1
T ⌋∑

i=1

g∆T

(
λ(ϑ̃, i∆T ), Xi∆T −X(i−1)∆T

)

for a suitable function gT,∆T , and make further assumptions on existence of a

unique maximum for the limit – whenever it exists – of UT,∆T under PT,∆T

ϑ as
T → ∞. We do not pursue this here.

Extension to more general compound laws

The situation is a bit more delicate when one tries to generalise Theorems 1, 2
and 3 to an arbitrary compound law (ζ(ϑ, k), k ∈ Z), for every ϑ ∈ Θ, with

0 ≤ ζ(ϑ, k) ≤ 1, for k ∈ Z and
∑

k∈Z

ζ(ϑ, k) = 1,

(and ζ(ϑ, 0) = 0 for obvious identifiability conditions). We then observe a process
(Xt) of the form (1), except that the jumps (εi) are now distributed according
to

P(εi = k) = ζ(ϑ, k), k ∈ Z.

In order to keep up with the preceding case, we normalise the compound law,
imposing ∑

k∈Z

k ζ(ϑ, k) = 0 and
∑

k∈Z

k2ζ(k, ϑ) = 1. (16)

First, in the microscopic case, we approximately observe over the period [0, T ]
a random number of jumps, namely NT which is of order ϑT . Second, con-
ditionally on NT , the size of the jumps form a sequence of independent and
identically distributed random variables with law ζ(ϑ, k). On the other side, in
the macroscopic limit, the effect of the size of the jumps is only tracked through
their second moment, which is normalised to 1 by (16). Therefore it gives no
additional information about ϑ. The situation is rather different from the case
of symmetric Bernoulli jumps: here, the extraneous information about ϑ lies in
the effect of the jumps, which are recovered in the microscopic regime and lost
in the macroscopic one. There is however one way to reconcile with our initial
setting, assuming that the compound law ζ(k) does not depend on ϑ and is
known for simplicity. Then, for k ∈ Z, we have

f∆(ϑ, k) = P
T,∆
ϑ

(
Xi∆ −X(i−1)∆ = k

)
=

∑

m∈Z

ζ⋆m(k)
e−ϑ∆

m!
(ϑ∆)m,

where ζ⋆m(k) is the probability that a random walk with law ζ(k) started at 0
reaches k in m steps exactly. Therefore

f∆(ϑ, k) = e−ϑ∆Gk(ϑ∆), with Gk(x) =
∑

m∈Z

ζ⋆m(k)
xm

m!
. (17)
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In the symmetric Bernoulli case, we have Gk(x) = I|k|(x), where Iν(x) is the
modified Bessel function of the first kind. Anticipating the proof of Theorems 1, 2
and 3, analogous results could presumably be obtained for an arbitrary com-
pound law ζ(k) satisfying (16), provided accurate asymptotic expansions of
Gk(x) are available in the viscinity of 0 and ∞. The same subsequent results
about the distortion of information that are developed in Section 2.3 would pre-
sumably follow, with the same estimators ϑ̂QV

T,∆T
and ϑ̂OS

T,∆T
, and the appropriate

changes for f∆(ϑ, k) in (14).

Relation to other works

Concerning the estimation of the law of the jumps, say ζ, we have an inverse
problem. One tries to recover ζ from the observations of a compound Poisson
process, the link between ζ and the law of the process being given by (17). In the
setting of positive compound laws, Buchmann and Grübel [5, 6] succeed to invert
that relation and give an estimator of ζ in the discrete and continuous case. That
method which consists in inverting (17) is called decompounding. It was gener-
alised by Bøgsted and Pitts [4] to renewal reward processes when the law of the
holding times is known, inrestriction to the case of having positive jumps only.

The compound Poisson process is a pure jump Lévy process that can be stud-
ied accordingly. Using the Lévy-Khintchine formula, it is possible to estimate
nonparametrically its Lévy measure which is given by the product ϑ× ζ in that
case. This strategy is exploited by van Es et al. [16] for a known intensity. This
estimation procedure does not restrict to compound Poisson processes and it
includes the case of pure jump Lévy processes in general. Nonparametric esti-
mation of the Lévy measure from high frequency data (that corresponds to our
microscopic case ∆T → 0) is thoroughly studied in Comte and Genon-Catalot
[7] as well as in the intermediate regime (with ∆T = ∆∞ fixed) in [8]. In that
latter case, we also have the results of Neumann and Reiß [13].

4. Proofs

4.1. Preparation

4.1.1. Some estimates for f∆(ϑ, k)

We have, for k ∈ Z:

f∆(ϑ, k) = P
T,∆
ϑ

(
X∆ = k

)
=

∑

m≥0

φm(k)
e−ϑ∆

m!
(ϑ∆)m

where φm(k) is the probability that a symmetric random walk in Z started from
0 has value k after m steps exactly:

φm(k) =





0 if |k| > m or |k| −m is odd

2−m

(
m

1
2 (m+ |k|)

)
otherwise.
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Let us introduce the modified Bessel function of the first kind7

Iν(x) =
∑

m≥0

(x/2)2m+ν

m!Γ(ν +m+ 1)
,

for every x, ν ∈ R, and where

Γ(x) =

∫ +∞

0

tx−1e−tdt

denotes the Gamma function. Straightforward computations show that

f∆(ϑ, k) = exp(−ϑ∆) I|k|
(
ϑ∆

)
. (18)

See for instance [14], p. 21 Example 4.7. We gather some technically useful
properties of the function Iν(x) that we will repeatedly use in the sequel.

Lemma 1. 1. For every x ∈ R \ {0} and ν ∈ R, we have

∂x Iν(x) = Iν+1(x) +
ν

x
Iν(x). (19)

2. For every µ > ν > − 1
2 and x > 0, we have

Iµ(x) < Iν(x). (20)

Proof. Property 1 can be found in the textbook of Watson [17] and readily
follows from the fact that x  Iν(x) is analytical with an infinite radius of
convergence. Property 2 is less obvious and follows from Nasell [12].

4.1.2. The Fisher information of ET,∆

For i = 1, . . . , ⌊T∆−1⌋, let ET,∆
i denote the experiment generated by the obser-

vation of the incerement Xi∆−X(i−1)∆. Since (Xt) has independent stationary
increments, we have, for k ∈ Z

P
T,∆
ϑ

(
Xi∆ −X(i−1)∆ = k

)
= P

T,∆
ϑ

(
X∆ = k

)
= f∆(ϑ, k).

Using that X0 = 0, it follows that

ET,∆ =

⌊T∆−1⌋⊗

i=1

ET,∆
i (21)

as a product of independent observations given by the incrementsXi∆−X(i−1)∆,

each experiment ET,∆
i being dominated by the counting measure on Z with

7The function x Iν(x) can also be defined as the solution to the differential equation

x2
d2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0.
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density f∆(ϑ, k) given by (18) that does not depend on i. Moreover, ET,∆
i has

(possibly infinite) Fisher information given by

I∆(ϑ) = E
T,∆T

ϑ

[(
∂ϑ log f∆(ϑ,X∆)

)2]
=

∑

k∈Z

(
∂ϑf∆(ϑ, k)

)2

f∆(ϑ, k)
≤ ∞

which does not depend on i. We study the regularity of ET,∆ in the classical
sense of Ibragimov and Hasminskii (see [9] p. 65).

Definition 2. The experiment ET,∆
i is regular (in the sense of Ibragimov and

Hasminskii) if

i) The mapping ϑ f∆(ϑ, k) is continuous on Θ for every k ∈ Z.
ii) The Fisher information is finite: I∆(ϑ) < +∞ for every ϑ ∈ Θ.
iii) The mapping ϑ ∂ϑ

(
f∆(ϑ, ·)1/2

)
is continuous in ℓ2(Z).

Lemma 2. The experiments ET,∆
i are regular.

Proof. For every k ∈ Z, f∆(ϑ, k) = exp(−ϑ∆)I|k|(ϑ∆), therefore i) is readily
satisfied since ϑ ∈ Θ ⊂ (0,∞) and ∆ > 0. We also have f∆(ϑ, k) > 0 for every
k ∈ Z, then I∆(ϑ) is well defined, but possibly infinite. In order to prove ii), we
write

∂ϑ log f∆(ϑ,X∆) = ∂ϑ log
(
e−ϑ∆I|X∆|(ϑ∆)

)
= −∆+

∂ϑI|X∆|(ϑ∆)

I|X∆|(ϑ∆)

= ∆
(
h∆(ϑ,X∆) + (ϑ∆)−1|X∆| − 1

)
, (22)

where we have set, for every k ∈ Z,

h∆(ϑ, k) =
I|k|+1(ϑ∆)

I|k|(ϑ∆)

and used Property (19). It follows that

I∆(ϑ) = ∆2 E
T,∆
ϑ

[(
h∆(ϑ,X∆) + (ϑ∆)−1|X∆| − 1

)2]
. (23)

Moreover the function |X∆| I|X∆|(ϑ∆) is decreasing (see (20)), thus

0 ≤ h∆(ϑ,X∆) ≤ 1 (24)

and since X∆ has all moments under PT,∆
ϑ , we obtain ii). We proceed similarly

for iii). First, for any ϑ ∈ Θ and ε such that ϑ+ ε ∈ Θ, we have

∂ϑ
(
f∆(ϑ+ ε, k)1/2

)
− ∂ϑ

(
f∆(ϑ, k)

1/2
)
= ε ∂2ϑ

(
f∆(ϑε, k)

1/2
)

for some ϑε ∈ [ϑ, ϑ+ ε]. Second, we write

∂ϑ
(
f∆(ϑε, k)

1/2
)
= f∆(ϑε, k)

1/2 1
2∂ϑ log f∆(ϑε, k),
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and, differentiating a second time, we obtain that ∂2ϑ
(
f∆(ϑε, k)

1/2
)
equals

f∆(ϑε, k)
1/2

((
1
2∂ϑ log f∆(ϑε, k)

)2
+ 1

2∂
2
ϑ log f∆(ϑε, k)

)
.

Therefore, taking square and summing in k, we derive

∑

k∈Z

(
∂ϑ

(
f∆(ϑ+ ε, k)1/2

)
− ∂ϑ

(
f∆(ϑ, k)

1/2
))2

= ε2 ET,∆
ϑε

[((
1
2∂ϑ log f∆(ϑε, X∆)

)2
+ 1

2∂
2
ϑ log f∆(ϑε, X∆)

)2]
. (25)

From ii), we have

∂ϑ log f∆(ϑ,X∆) = ∆
(
h∆(ϑ,X∆) + (ϑ∆)−1|X∆| − 1

)
, (26)

and this last quantity has moments of all orders under PT,∆
ϑ , locally uniformly

in ϑ. Likewise, using (26) and (19), it is easily seen that

∂2ϑ log f∆(ϑ,X∆) = ∆2 I|X∆|+2(ϑ∆)

I|X∆|(ϑ∆)
+∆ϑ−1h∆(ϑ,X∆)

− ∆2h∆(ϑ,X∆)
2 − ϑ−2|X∆|.

Thus ∂2ϑ log f∆(ϑ,X∆) has moments of all orders under PT,∆T

ϑ locally uniformly
in ϑ, thanks to (20) and (24). The same property carries over to the term within
the expectation in (25) and we thus obtain iii) by letting ε→ 0.

By the factorisation (21), we infer that ET,∆ has Fisher information

IT,∆(ϑ) = ⌊T∆−1
T ⌋I∆(ϑ) = ⌊T∆−1⌋

∑

k∈Z

(
∂ϑf∆(ϑ, k)

)2

f∆(ϑ, k)

which is finite thanks to ii) of Lemma 2.

Lemma 3. For every ϑ ∈ Θ, we have

IT,∆(ϑ) = ⌊T∆−1⌋∆2
(
E
T,∆
ϑ

[(
h∆(ϑ,X∆) + (ϑ∆)−1|X∆| − 1

)2])
, (27)

Moreover in the microscopic and intermediate regimes, we have

IT,∆T (ϑ)

IT,∆T (ϑ)
→ 1 as T → ∞. (28)

Proof. In the course of the proof of Lemma 2, we have seen by (23) that

I∆(ϑ) = ∆2 E
T,∆
ϑ

[(
h∆(ϑ,X∆) + (ϑ∆)−1|X∆| − 1

)2]
.
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It follows that

IT,∆(ϑ) = ⌊T∆−1⌋∆2 E
T,∆
ϑ

[(
h∆(ϑ,X∆) + (ϑ∆)−1|X∆| − 1

)2]

= ⌊T∆−1⌋∆2
(
E
T,∆
ϑ

[(
h∆(ϑ,X∆) + (ϑ∆)−1|X∆|

)2]

+ 1− 2ET,∆
ϑ

[
h∆(ϑ,X∆) + (ϑ∆)−1|X∆|

])
.

Since ET,∆
i is regular by Lemma 2, we have E

T,∆
ϑ

[
∂ϑ log f∆(ϑ,X∆)

]
= 0. Com-

bining this with the equality

∂ϑ log f∆(ϑ,X∆) = ∆
(
h∆(ϑ,X∆) + (ϑ∆)−1|X∆| − 1

)

that we obtained in (22), we derive

E
T,∆
ϑ

[
h∆(ϑ,X∆) + (ϑ∆)−1|X∆|

]
= 1,

and (27) follows. Expanding (27) further, we obtain the useful representation

IT,∆(ϑ) = ⌊T∆−1⌋
(
∆2 E

T,∆
ϑ

[
h∆(ϑ,X∆)

2
]

+
2∆

ϑ
E
T,∆
ϑ

[
|X∆|h∆(ϑ,X∆)

]
+

∆

ϑ
−∆2

)
. (29)

Let us now assume that ∆ = ∆T → 0. We will need the following asymptotic
expansion of the function Iν(x) near 0.
Lemma 4. We have, for ν ∈ N,

Iν(x) =
1

2νν!
xν

(
1 + xrν(x)

)
, (30)

where x rν(x) is continuous and satisfies supν≥0 rν(x) → 0 when x→ 0.

Proof of Lemma 4. We have an expression of Iν(x) as a power series, thus its
Taylor expansion in a neighborhood of 0 is given by

Iν(x) =
(x
2

)ν 1

ν!

(
1 + xrν(x)

)
,

where

rν(x) =
x

4

∑

m≥0

ν!

(m+ 1)!(m+ 1 + ν)!

(x
2

)2m

≤ x
∑

m≥0

1

m!

(x
2

)2m

= xex
2/4.

Then x rν(x) is continuous and satisfies supν≥0 rν(x) → 0 when x→ 0.

By Lemma 4, a simple Taylor expansion shows that

h∆T (ϑ,X∆) =
I|X∆|+1(ϑ∆T )

I|X∆T
|(ϑ∆T )

=
2∆T

ϑ

1

|X∆|+ 1
+∆T r

′
T (ϑ,X∆)
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where |r′T (ϑ,X∆)| ≤ c(ϑ), for some deterministic locally bounded c(ϑ). Plugging
this last expression in (29), we obtain

IT (ϑ) =
T

ϑ
+ T∆T r

′′
T (ϑ),

with r′′T having the same property as rT , whence (28) in the microscopic case.

In the intermediate case, since ∆  E
T,∆
ϑ

[(
h∆(ϑ,X∆) + (ϑ∆)−1|X∆| − 1

)2]

is continuous on (0,∞), we readily obtain the result using that ⌊T∆−1
T ⌋∆2

T is
equivalent to T∆T as T → ∞. The proof of Lemma 3 is complete.

4.2. Proof of Theorems 1 and 2

A technically convenient consequence of Lemma 3 in the microscopic and macro-
scopic cases is that it suffices to prove Theorems 1 and 2 with IT,∆T (ϑ) instead
of IT,∆T (ϑ), provided the convergence (11) is valid locally uniformly. As ET,∆T

is the product of ET,∆T

i generated by the Xi∆T −X(i−1)∆T
that form indepen-

dent and identically distributed random variables under PT,∆T

ϑ with distribution
depending on T , we are in the framework of Theorem 3.1’ p. 128 in Ibragimov
and Hasminskii [9]. It turns out that the LAN property is a consequence of the
following two conditions:

i) For every ϑ0 ∈ Θ and h such that ϑ0 + h ∈ Θ, we have

⌊T∆−1
T ⌋

IT,∆T (ϑ0)
2

sup
|ϑ−ϑ0|≤ h

IT,∆T
(ϑ0)1/2

∑

k∈Z

∣∣∂2ϑ
(
f∆T (ϑ, k)

1/2
)∣∣2 → 0

as T → ∞.
ii) For every h > 0 and ϑ ∈ Θ, we have

⌊T∆−1
T ⌋

IT,∆T (ϑ)
E
T,∆T

ϑ

[(
∂ϑ log f∆T (ϑ,X∆T )

)2
1{|∂ϑ log f∆T

(ϑ,X∆)|≥hIT,∆T
(ϑ)1/2}

]
→ 0

as T → ∞.

Remark 3. Actually, as stated in Theorem 3.1 (and its asymptotic parameter
dependent version Theorem 3.1’ since the density f∆T (ϑ, k) of our observations
depends on T ) pp. 124–128 of the book by Ibargimov and Hasminskii [9], the
LAN property at ϑ0 is implied by the following two conditions8:

For all h such that9 ϑ+ h ∈ Θ, we have

sup
u≤h

⌊T∆−1
T ⌋

IT,∆T (ϑ0)

∑

k∈Z

∣∣∂ϑ
(
f∆T (ϑ0+u IT,∆T (ϑ0)

−1/2, k)
)1/2−∂ϑ

(
f∆T (ϑ0, k)

)1/2∣∣2→0

(3.1)
as T → ∞.

8with the labelling of their book for the conditions but with our notation for the statistical
model and the fact that the dominating measure is the counting measure on Z

9remember that Θ ⊂ (0,∞)
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For every h > 0 and ϑ ∈ Θ, we have

⌊T∆−1
T ⌋

IT,∆T (ϑ)
E
T,∆T

ϑ

[(
∂ϑ log f∆T (ϑ,X∆T )

)2
1{|∂ϑ log f∆T

(ϑ,X∆)|≥hIT,∆T
(ϑ)1/2}

]
→ 0

(3.2)
as T → ∞. Moreover, as explained in Remark 3.2 pp. 128–129 in [9], Condition
(3.1) is actually implied by the sufficient condition

1

IT,∆T (ϑ0)
2

sup
|ϑ−ϑ0|≤ h

IT,∆T
(ϑ0)1/2

⌊T∆−1
T ⌋∑

j=1

∑

k∈Z

∣∣∂2ϑ
(
f∆T ,j(ϑ, k)

)1/2∣∣2 → 0 (3.1′)

as T → ∞ for independent nonhomogeneous observations with density f∆T ,j(ϑ, k).
In our case we have f∆T ,j(ϑ, k) = f∆T (ϑ, k) for all j hence Condition (3.1′) of
[9] in Remark 3.2 is exactly our condition i). Condition (3.2) is exactly our
condition ii) above.

In the same way as for the proof of ii) in Lemma 2, we have

∂2ϑ
(
f∆T (ϑ, k)

)1/2
= 1

2f∆T (ϑ, k)
1/2

(
1
2

(
−∆T + |k|ϑ−1 +∆Th∆T (ϑ, k)

)2

− |k|ϑ−2 +∆2
T

(I|k|+2(ϑ∆T )

I|k|(ϑ∆T )
− h∆T (ϑ, k)

2
)
+

∆

ϑ
h∆T (ϑ, k)

)

= 1
2f∆T (ϑ, k)

1/2H∆T (ϑ, k), say.

Therefore, taking squares and summing in k, i) is proved if we show that

⌊T∆−1
T ⌋

IT,∆T (ϑ0)
2

sup
|ϑ−ϑ0|≤ h

IT,∆T
(ϑ0)1/2

E
T,∆T

ϑ

[
H∆T (ϑ,X∆T )

2
]
→ 0 (31)

as T → ∞. Using (20), we have

0 ≤ h∆T (ϑ, k) ≤ 1 and 0 ≤ I|k|+2(ϑ∆T )

I|k|(ϑ∆T )
≤ 1,

hence H∆(ϑ,X∆T )
2 is less than

c(ϑ)
(
∆4

T +∆T (1 + ∆2
T )|X∆T |+ (1 +∆2

T )X
2
∆T

+ (1 +∆T )
∣∣X∆T

∣∣3 +X4
∆T

)

for a locally bounded c(ϑ), which in turn is less than

c′(ϑ,∆T )
(
∆T +∆4

T +X2
∆T

+X4
∆T

)
, (32)

for some c′(ϑ,∆T ) locally bounded on Θ × [0,∞). Since (Xt) is a compound

Poisson process under PT,∆T

ϑ with intensity ϑ and jumps in {−1,+1} with equal
probability, the characteristic function of X∆T is explicitly given by

E
T,∆T

ϑ

[
eiuX∆T

]
= exp

(
− ϑ∆T (1 − cosu)

)
, u ∈ R,
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from which we obtain

E
T,∆T

ϑ [X4
∆] = ϑ∆T (1 + 3ϑ∆T ). (33)

Integrating (32), we derive

E
T,∆T

ϑ

[
H∆T (ϑ,X∆T )

2
]
≤ c′′(ϑ,∆T )∆T ,

where c′′ has the same property as c′. Since IT,∆T (ϑ0) is of order T as T → ∞
in both microscopic and intermediate scales, we obtain (31) and i) follows.

It remains to prove ii). From the explicit representation

∂ϑ log f∆T (ϑ, k) = ∆T

(
− 1 + h∆T (ϑ, k)

)
+ |k|ϑ−1 (34)

and the fact that 0 ≤ h∆T (ϑ, k) ≤ 1, we have
∣∣∂ϑ log f∆T (ϑ, k)

∣∣ ≤ ∆T + |k|ϑ−1,

from which we readily obtain

E
T,∆T

ϑ

[(
∂ϑ log f∆T (ϑ,X∆T )

)2] ≤ c′′′(ϑ,∆T ),

where c′′′ has the same property as c′. Since IT,∆T (ϑ) → ∞ as T → ∞, we
obtain ii) in both microscopic and intermediate scales. The proof of Theorems 1
and 2 is complete.

4.3. Proof of Theorem 3

The strategy of the proof is quite different from that of Theorems 1 and 2, for
we were not able to obtain asymptotic expansions for Iν(x) in a viscinity of
x = ∞ with appropriate bounds on the stochastic remainders.

Consider instead the experiment QT,∆T = {QT,∆T

ϑ , ϑ ∈ Θ} generated by the
observation of ⌊T∆−1

T ⌋ independent centred Gaussian random variables with
variance ϑ∆T , for ∆T → ∞ satisfying the rate restriction

T/∆
1+ 1

4

T = o((log(T/∆T ))
− 1

4 ) (35)

We plan to prove that under the restriction (35), the experiments ET,∆T and
QT,∆T are asymptotically equivalent as T → ∞. Theorem 3 then follows from
the Le Cam theory, see for instance [11]. To that end, we map each increment
Xi∆T −X(i−1)∆T

in ET,∆T with

Y ∆T

i = Xi∆T −X(i−1)∆T
+ Ui

where the Ui are independent random variables uniformly distributed on [− 1
2 ,

1
2 ].

Let us denote by ẼT,∆T = {P̃T,∆T

ϑ , ϑ ∈ Θ} the experiment generated by the

Y ∆T

i . Since the increments Xi∆ − X(i−1)∆T
take values in Z, we have a one-

to-one correspondence between Y ∆T

i and the increment Xi∆T −X(i−1)∆T
and
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therefore the experiments ET,∆T and ẼT,∆T are equivalent. Moreover, ẼT,∆T and

QT,∆T live on the same state space R⌊T∆−1
T ⌋ and have smooth densities with

respect to the Lebesgue measure. The proof of Theorem 3 is therefore implied
by the following bound

‖P̃T,∆T

ϑ −Q
T,∆T

ϑ ‖TV → 0 as T → ∞,

locally uniformly in ϑ and where ‖ · ‖TV denotes the variational norm. This
bound is implied in turn by the bound

‖L(Y ∆T
1 )−N (0, ϑ∆T )‖TV = o

(
(T/∆T )

−1
)

(36)

locally uniformly in ϑ, since each experiment is the ⌊(T/∆T )
−1⌋-fold product

independent and identically distributed random variables10. Let us further de-
note by pϑ,∆T and qϑ,∆T the densities of Y ∆T

1 and the Gaussian law N (0, ϑ∆T )
respectively. We have

‖L(Y ∆T
1 )−N (0, ϑ∆T )‖TV =

∫

R

|pϑ,∆T (x)− qϑ,∆T (x)|dx

≤ I + II + III,

where, applying sucessively the triangle inequality and Cauchy-Schwarz, for any
η > 0,

I =
√
2η

( ∫

R

(
pϑ,∆T (x)− qϑ,∆T (x)

)2
dx

)1/2
,

II = P
∆T

ϑ

(
|X∆T + U1| ≥ η

)
,

III =

∫

|x|≥η

qϑ,∆T (x)dx.

Set η = ηT = κ
√
∆T log(T/∆T ). We claim that for κ2 > 2ϑ, the terms I, II

and III are o
(
(T/∆−1

T )
)
hence (36) and the result, for an appropriate choice of

κ so that the convergence can hold locally uniformly in ϑ. Since qϑ,∆T (x) is the
density of the Gaussian law N (0, ϑ∆T ), we readily obtain

III ≤ 2 exp
(
− η2T

2ϑ∆T

)
= (T/∆T )

−κ2/(2ϑ) = o
(
(T/∆−1

T )
)

using κ2 > 2ϑ. For the term II, we observe that since |U1| ≤ 1/2, we have

P
∆T

ϑ

(
|X∆T + U1| ≥ ηT

)
≤ P

∆T

ϑ

(∣∣
N∆T∑

i=1

εi
∣∣ ≥ ηT − 1

2

)
,

10For instance, by using the bound

‖P⊗n − Q⊗n‖TV ≤
√
2
(
1−

(
1− 1

2
‖P− Q‖TV

)n)1/2
.
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where the εi ∈ {−1, 1} are independent and symmetric. By Hoeffding inequality,
this term is further bounded by

2ET,∆T

ϑ

[
exp

(
− (ηT−1/2)2

2N∆T

)]
≤ 2

(
exp

(
− (ηT−1/2)2

2κ′∆T

)
+ P

T,∆T

ϑ

(
N∆T ≥ κ′∆T

))

for every κ′ > 0. If κ′ < κ2/2, one readily checks that

exp
(
− (ηT−1/2)2

2κ′∆T

)
= o

(
(T/∆T )

−1
)
.

Moreover, if κ′ > ϑ, we have, by Chernov inequality,

P
T,∆T

ϑ

(
N∆T − ϑ∆T ≥ (κ′ − ϑ)∆T

)
≤ exp

(
−∆T (κ

′ log(κ′/ϑ)− (κ′ − ϑ)
))

and this term is also o
(
(T/∆T )

−1
)
. Thus II and III have the right order and

it remains to bound the main term I. By Plancherel equality we obtain the
following explicit expression:

∫

R

(
pϑ,∆T (x)− qϑ,∆T (x)

)2
dx = (2π)−1

∫

R

(p̂ϑ,∆T (ξ)− q̂ϑ,∆T (ξ))
2dξ

= (2π)−1

∫

R

(
e−ϑ∆T (1−cos ξ) sin

ξ
2

ξ
2

− e−
1
2ϑ∆T ξ2

)2

dξ

= (2π)−1

∫

R

(
e
−ϑ∆T

(
1−cos(

ξ√
∆T

)
)
sin( ξ

2
√
∆T

)

ξ
2
√
∆T

− e−
1
2ϑξ

2
)2 dξ√

∆T

≤ IV + V + V I,

with

IV = (2π)−1

∫

|ξ|≤ρ
√
∆T

(
e
−ϑ∆T

(
1−cos(

ξ√
∆T

)
)
sin( ξ

2
√
∆T

)

ξ
2
√
∆T

− e−
1
2ϑξ

2
)2 dξ√

∆T

,

V = 2(2π)−1

∫

|ξ|≥ρ
√
∆T

e
−2ϑ∆T

(
1−cos(

ξ√
∆T

)
)( sin( ξ

2
√
∆T

)

ξ
2
√
∆T

)2 dξ√
∆T

,

V I = 2(2π)−1

∫

|ξ|≥ρ
√
∆T

e−ϑξ2 dξ√
∆T

,

for any ρ ≥ 0. By a first order expansion, we have that IV is less than

∫

|ξ|≤ρ
√
∆T

e−ϑξ2
((ξ4α( ξ√

∆T
)

∆T
+
ξ6α( ξ√

∆T
)

∆2
T

)
e

ξ4α

(
ξ√
∆T

)
∆T +

ξ2α( ξ√
∆T

)

∆T

)2 dξ√
∆T

for some bounded function ξ  α(ξ). Set α⋆ = supx |α(x)|. We thus obtain that
IV is less than a constant times

∫

|ξ|≤ρ
√
∆T

ξ8

∆2
T

(α⋆)2e−(ϑ−2ρα⋆)ξ2 dξ√
∆T

.
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If we pick ρ such that ϑ > 2ρα, the term IV is of order ∆
−5/2
T . For the term

V =

∫

|ξ|>ρ

e−2ϑ∆T (1−cos ξ)
( sin( ξ2 )

ξ
2

)2

dξ,

noting that (sinx)2 =
(
1 − cos(2x)

)
/2, we bound the 2π-periodic, even and

continuous function ξ  e−2ϑ∆T (1−cos ξ)(1−cos ξ) by its supremum (4eϑ∆T )
−1.

The integrability of ξ−2 away from 0 enables to conclude that V is of order
∆−1

T . Finally, by Gaussian approximation, we readily obtain that V I is of order

∆−1/2e−ρ2ϑ∆T .
In conclusion, we have that

∫
R

(
pϑ,∆T (x) − qϑ,∆T (x)

)2
dx is dominated by

the term V and is thus of order ∆−1
T . It follows that I is of order η

1/2
T ∆

−1/2
T

and the choice ηT = κ
√
∆T log(T/∆T ) implies I = o

(
(T/∆T )

−1
)
thanks to the

restriction condition T/∆
1+ 1

4

T = o((log(T/∆T ))
− 1

4 ). The proof of Theorem 3 is
complete.

4.4. Proof of Theorem 4

Set

ξi,T =

(
Xi∆T −X(i−1)∆T

)2 − ϑ∆T
(
⌊T∆−1

T ⌋ϑ∆T (1 + 2 ϑ∆T )
)1/2 .

Under PT,∆T

ϑ , the variables ξi,T are independent, identically distributed, and we
have

E
T,∆T

ϑ

[
ξi,T

]
= 0 and

⌊T∆−1
T ⌋∑

i=1

Var
[
ξi,T

]
= 1

by (33). Moreover, for every δ > 0,

⌊T∆−1
T ⌋∑

i=1

E
T,∆T

ϑ

[∣∣ξi,T
∣∣21{|ξi,T |≥δ}

]
→ 0 as T → ∞,

therefore, by the central limit theorem UT =
∑⌊T∆−1

T ⌋
i=1 ξi,T → N (0, 1) in distri-

bution under P
T,∆T

ϑ as T → ∞ in all three regimes (microscopic, intermediate
and macroscopic). We thus obtain the following representation

ϑ̂QV
T,∆T

= T−1∆T ⌊T∆−1
T ⌋ϑ+ T−1

(
⌊T∆−1

T ⌋∆Tϑ(1 + 2ϑ∆T )
)1/2

UT

and the result follows from T−1∆T ⌊T∆−1
T ⌋ ∼ 1 and

T−2⌊T∆−1
T ⌋∆Tϑ(1 + 2ϑ∆T ) ∼ IT,0(ϑ)

−1 + IT,∞(ϑ)−1

as T → ∞ in all three regimes.
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4.5. Proof of Theorem 5

By (28) of Lemma 3, it suffices to prove

lim inf
T→∞

IT,∆T (ϑ)
(
IT,0(ϑ)

−1 + IT,∞(ϑ)−1
)
> 1. (37)

Up to taking a subsequence, we may assume that ∆T → ∆ ∈ (0, 1/(4ϑ)] as
T → ∞. Using (29) and Theorem 4, for every ϑ ∈ Θ, we have

IT,∆T (ϑ)
(
IT,0(ϑ)

−1 + IT,∞(ϑ)−1
)

∼
(
ϑ∆E

T,∆
ϑ

[
h∆(ϑ,X∆)

2
]
+ 2ET,∆

ϑ

[
|X∆|h∆(ϑ,X∆)

]
+ 1− ϑ∆

)
(2ϑ∆+ 1)

=: M(ϑ∆) as T → ∞,

whereM is a univariate function since PT,∆
ϑ has density f∆(ϑ, k) = e−ϑ∆I|k|(ϑ∆)

with respect to the counting measure on Z. Therefore, Theorem 5 is equivalent
to proving that

M(x) > 1 for every x ∈
(
0, 14

]
. (38)

Using (19) of Lemma 1 we have

∂xM(ϑ∆)

=1− 4ϑ∆+ (1 + 4ϑ∆)ET,∆
ϑ

[
h∆(ϑ,X∆)

2
]
+ 4ET,∆

ϑ

[
|X∆|h∆(ϑ,X∆)

]

+ 2(1 + 2ϑ∆)ET,∆
ϑ

[(
|X∆|+ ϑ∆h∆(ϑ,X∆)

)
∂ϑhx(ϑ,X∆)

]

where

∂ϑh∆(ϑ, k) =
I|k|+2(ϑ∆)

I|k|(ϑ∆)
+

1

ϑ∆
h∆(ϑ, k)− h∆(ϑ, k)

2

is positive (see Theorem 1 of Baricz [1]) and h(ϑ, k) is in [0, 1] according to (20)
of Lemma 1. We derive

∂xM(x) ≥ 1− 4x ≥ 0 for x ∈
(
0, 14

]
,

hence (38). Since M(x) → 1 as x→ 0, the conclusion follows.

Appendix

Proposition 1. Suppose that εi are independent and identically distributed,
with P(εi = −1) = P(εi = 1) = 1

2 , and independent of the homogeneous Poisson
process (Nt) with intensity ϑ ∈ Θ = (0,∞). Let

X∆ =

N∆∑

i=1

εi.

Then
∆−1/2X∆ −→ N (0, ϑ)

in distribution, as ∆ → ∞.
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Proof. By Skorokhod representation for weak convergence (see for instance
Billingsley [3]) we have

(
∆−1/2

⌊∆·⌋∑

i=1

εi,
N∆

∆

)
−→ (W,ϑ)

in distribution as ∆ → ∞, on D
(
[0,∞)

)
× [0,∞), where D

(
[0,∞)

)
is the Sko-

rokhod space of càdlàg functions on [0,∞) and W is s standard Brownian mo-
tion. The statement is now trivial.
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estimation for pure jump Lévy processes. Annales de l’I.H.P., Probability
and Statistics 46, 595–617. MR2682259

[9] Ibragimov, I.A. and Hasminskii, R.Z (1981). Statistical Estimation.
Asymptotic Theory. Springer-Verlag. MR0620321

[10] Masoliver, J., Montero, M., Perelló, J. and Weiss, G.H. (2008).
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