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Abstract: We consider the problem of functional principal component
analysis for correlated functional data. In particular, we focus on a sep-
arable covariance structure and consider irregularly and possibly sparsely
observed sample trajectories. By observing that under the sparse measure-
ments setting, the empirical covariance of pre-smoothed sample trajectories
is a highly biased estimator along the diagonal, we propose to modify the
empirical covariance by estimating the diagonal and off-diagonal parts of
the covariance kernel separately. We prove that under a separable covari-
ance structure, this method can consistently estimate the eigenfunctions of
the covariance kernel. We also quantify the role of the correlation in the L2

risk of the estimator, and show that under a weak correlation regime, the
risk achieves the optimal nonparametric rate when the number of measure-
ments per curve is bounded.
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1. Introduction

For various scientific studies, the data consist of measurements corresponding
to one subject or experimental unit being recorded in time or space, which
can often be viewed as functional data (e.g., [10, 26]). If the goal of the anal-
ysis is either data compression, model building or studying covariate effects,
one popular approach is to use the functional principal components (i.e., the
eigenvalues and eigenfunctions of the covariance kernel), for example, in func-
tional linear regression [4, 5, 12, 31–33], functional discriminant analysis [16] and
functional clustering [8, 17, 25, 29]. Common approaches to functional principal
components analysis (henceforth, FPCA) include local polynomial smoothing
of empirical covariances [13, 31, 32], and representing the eigenfunctions in a
known basis of smooth functions [3, 6, 15, 24, 27].
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FPCA has been studied primarily under the assumption that the observed
trajectories are independent realizations from an underlying stochastic process.
In particular, almost all theoretical developments for FPCA make this assump-
tion, e.g., [6, 13, 31, 35] and [23]. However, in practice, FPCA is often ap-
plied to correlated functional data. For instance, [26] describe an application of
FPCA to capture variations in the yearly temperature cycle across several cities
in Canada. Since one expects spatial correlation in the weather pattern, the
observed trajectories are probably correlated. Another scenario for correlated
functional data is when the different subjects are sampled from a population
divided into various strata, for example in genetic studies where the strata could
correspond to different racial groups or families [36]. Correlated functional data
also arise in time-course gene expression studies since it is expected that the ex-
pression profiles of genes involved in the same biological processes are correlated
[28]. Such data have been analyzed by FPCA, e.g., in [30]. Atmospheric studies
also often produce correlated functional data. For example, in a study of atmo-
spheric radiations [14], vertical profiles of atmospheric radiation are recorded
at different times. It is reasonable to assume that, after removing a possible
long term time-trend, the radiation intensity is correlated across time as well as
altitude. These examples illustrate the need for studying the effects of correla-
tion across the sample trajectories on the estimates of the functional principal
components. In this paper, we study the asymptotic behavior of FPCA under
the “separable covariance structure” described below which is often used to
model spatio-temporal processes. Specifically, the theoretical developments are
carried out for a method proposed in Section 2 of this paper, which is based
on the empirical covariance of pre-smoothed sample trajectories, with suitable
modifications along the diagonal. We conjecture that similar asymptotic results
hold for other FPCA procedures for dealing with possibly irregularly observed
functional data, e.g., the PACE method in [31, 32].

We first give a brief overview of the functional data model and the separable
correlation structure. Suppose that we observe n realizations of an L2-stochastic
process {X(t) : t ∈ [0, 1]} at a sequence of points on the interval [0, 1], with
additive measurement noise. That is, the observed data {Yij : 1 ≤ j ≤ mi; 1 ≤
i ≤ n} can be modeled as:

Yij = Xi(Tij) + σεij , (1.1)

where {εij} are i.i.d. with mean 0 and variance 1. Since X(t) is an L2 stochastic
process, by Mercer’s Theorem [1] there exists a positive semi-definite kernel
C(·, ·) such that Cov(X(s), X(t)) = C(s, t) and each Xi(t) has the following a.s.
representation in terms of the eigenfunctions of the kernel C(·, ·):

Xi(t) = µ(t) +

∞∑

ν=1

√
λνψν(t)ξiν , (1.2)

where µ(·) = E(X(·)) is the mean function; λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigen-
values of C(·, ·); ψν(·) are the corresponding orthonormal eigenfunctions, i.e.,
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C(s, t) =
∑

ν λνψν(s)ψν(t); and the random variables {ξiν : ν ≥ 1}, for each
i, are uncorrelated with zero mean and unit variance. Furthermore, we assume
that for each pair (i, j) with 1 ≤ i, j ≤ n,

E(ξiνξjν′ ) = δνν′ρij , (1.3)

for ν, ν′ ≥ 1, and−1 ≤ ρij ≤ 1, with ρii ≡ 1, where δνν′ = 1 if ν = ν′ and 0 if ν 6=
ν′. (1.3) describes a separable covariance structure for the noiseless processes.
That is, the processes {Xi(·)}ni=1 satisfy, Cov(Xi(s), Xj(t)) = ρijC(s, t).

A separable covariance structure assumes that the correlation across the tra-
jectories and across time are independent of each other. An immediate exten-
sion is the coregionalization model for modeling multivariate spatial processes
[2, 11, 34]. Here, the principal component scores {ξiν} are modeled as mean zero
random variables with

E(ξiν , ξjν′) = ρ
(νν′)
ij , (1.4)

where the n× n matrices Rνν′ = ((ρ
(νν′)
ij )) satisfy certain asymptotic identifia-

bility conditions. Note that, the case Rνν′ = δνν′R corresponds to the separable
covariance model described in (1.3). One example of this type of processes is the
weed growth data studied in [2], where the trajectories are weed growth profiles
for different locations in the agricultural field.

We now give a brief description of the estimation procedure proposed in this
paper. Our method is motivated by the setting where the observation times for
each curve are sparse and irregular, even though it can be applied when the ob-
servations are dense and/or on a regular grid. We first pre-smooth each sample
curve by a kernel smoother and then obtain the “empirical covariance kernel”
of the pre-smoothed curves. However, this naive estimator gives a highly biased
estimate along the diagonal of the covariance kernel when the number of mea-
surements per curve is small (see Proposition 2.1). We mitigate this problem
by estimating the diagonal and the off-diagonal parts of the covariance ker-
nel separately, and then merging them together using a smooth weight kernel.
Moreover, we use a linearized kernel smoothing which helps in reducing bias. As
already indicated, the pre-smoothed sample trajectories are poor estimates for
the true trajectories when the measurements are sparse, and so the motivation
of pre-smoothing is not to get good estimates of the trajectories. Rather, pre-
smoothing should be viewed as a mathematical step in the development of the
estimator of the covariance kernel. This allows us to combine the data in a way
that is convenient from both computational and analytical points of view. This
pooling of information across trajectories in the proposed procedure leads to
a consistent estimator of the covariance kernel and its eigenfunctions. The use
of the term “pre-smoothing” or “pre-smoothed sample trajectories” throughout
this paper is for the ease of reference.

Now we summarize the main results of this paper. We obtain explicit expres-
sions for the integrated mean squared error of the covariance kernel and its esti-
mated eigenfunctions under the separable covariance model (Theorems 3.1 and
3.2). The quantification of the role of correlation in the risk behavior for the sep-
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arable covariance model (Theorem 3.2) and the coregionalization model (Theo-
rem 3.4) is seemingly new in the literature. We also derive a lower bound on the
rate of convergence of the first eigenfunction (Theorem 3.3). This lower bound
and the matching upper bound on the rate of convergence for the i.i.d. case
shows that the proposed estimator attains the optimal nonparametric rate when
max1≤i≤nmi is either bounded or increases to infinity slowly with n. This result
parallels a similar result derived in [13] for the local polynomial estimator pro-
posed in [31]. Moreover, we show that if the correlation between sample curves is
“weak” in a suitable sense, then the optimal rate of convergence in the correlated
and i.i.d. cases are the same. The latter is a principal finding of this paper, and
justifies the use of FPCA even when the sample curves are “weakly” correlated.

The rest of the paper is organized as follows. In Section 2, we propose the
estimation procedure. In Section 3, we state the main results about the consis-
tency and rate of convergence of the estimators of the covariance kernel and its
eigenfunctions. In Section 4, we give an outline of the proof of the main results
and discuss their implications. In Section 5, we conduct a simulation study to il-
lustrate the finite sample performance of the proposed estimation procedure and
the effect of correlation. We also compare this method with the PACE method
proposed in [31]. In Section 6, we apply the proposed method to a time-course
gene expression data set. In Section 7, we conclude the paper by a summary.
Technical details are provided in the Appendix.

2. Method

Throughout this paper, we assume for simplicity that the mean curve is known
and has been subtracted from the data. When the mean µ(·) is estimated by
averaging the pre-smoothed sample curves, it can be shown that, subtracting
the estimated mean µ̂(·) from individual pre-smoothed sample curves, results
in no change in the rate of convergence of the estimated eigenfunctions by the
proposed procedure. Moreover, for theoretical analysis, we restrict ourselves to
the setting where in the expansion (1.2) the number of nonzero eigenvalues
λν , is finite, i.e., λM > 0 = λM+1 for some M ≥ 1 (for a brief discussion for
the case of infinite number of nonzero eigenvalues, see Section 3.6). We also
assume that in the observed data model (1.1), the vector of observation times
Ti = {Tij : j = 1, . . . ,mi} are randomly sampled from a continuous distribution
with a density g supported on [0, 1]. We further assume that there are constants
0 < c0 ≤ c1 < ∞ such that c0 ≤ g(·) ≤ c1. Throughout the paper, we assume
that g is known, even though it can be replaced by a kernel density estimator.
It can be shown that under appropriate regularity conditions on g, and under
an optimal choice of bandwidth, the results on the rates of convergence of the
estimators continue to hold (see Remark 3.1 for more discussions).

2.1. Empirical covariance estimator

A popular method in nonparametric function estimation is kernel smoothing. In
principle, one can adopt a similar idea for FPCA by first smoothing individual
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sample curves, and then computing the covariance of the “pre-smoothed” sample
curves, followed by an eigen-analysis of this “empirical covariance kernel”. In the
following, we first describe briefly such an approach, and then show that even
in the case of i.i.d. and noiseless (i.e., σ2 = 0) realizations, the estimator thus
obtained has an intrinsic bias while estimating the diagonal of the covariance
kernel, unless the number of measurements per curve is large.

Let K(x) be a kernel with an adequate degree of smoothness, and satisfying
the following conditions:

B1 (i) supp(K) = [−BK , BK ] for some BK > 0; (ii) K is symmetric about
0; (iii)

∫
K(x)dx = 1; (iv)

∫
xK(x)dx = 0; (v)

∫
K ′(x)dx = 0; (vi)∫

xK ′(x)dx = 1.

We then define the presmoothed sample curves as follows:

X̃i(t) =
1

mi

mi∑

j=1

YijKhn,i
(t− Tij), i = 1, . . . , n, (2.1)

where Kh(x) := h−1K(h−1x) for h > 0 and hn,i is the bandwidth for the i-th
curve. Then the empirical covariance based on the presmoothed curves is simply

C̃(s, t) =
1

g(s)g(t)

1

n

n∑

i=1

X̃i(t)X̃i(s). (2.2)

In the following, we first derive the expectation of C̃(s, t) in order to quan-
tify the bias, when hn,i = hn for all i, under the assumption that C(·, ·) is
twice continuously differentiable. For simplicity of exposition, in the following
proposition we assume that the density of the design points {Tij}mi

j=1, for each

subject, is uniform on [0, 1], i.e., g(t) ≡ 1. Define C(t) = C(t, t) for t ∈ [0, 1],
and K(2)(x) :=

∫
K(x− u)K(−u)du.

Proposition 2.1. Suppose that hn → 0 as n→ ∞. When s 6= t,

E[X̃i(s)X̃i(t)]

=
1

mihn
K(2)

(
s− t

hn

)
(C(t) + σ2) +

1

mi
C

′
(t)

∫
uK(−u)K

(
s− t

hn
− u

)
du

+

(
1− 1

mi

)
C(s, t) +

1

mi
O(hn) +O(h2n). (2.3)

And, if s = t, then

E[X̃i(t)
2] =

1

mihn
K(2)(0)(C(t) + σ2) +

(
1− 1

mi

)
C(t) +

1

mi
O(hn) +O(h2n).

(2.4)

The O(·) terms involve supt∈[0,1] |C
′′
(t)|, sups,t∈[0,1] ‖D2C(s, t)‖ and

∫
u2K(u)du,

where D2 is the Hessian operator.
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Fig 1. Points {Tij : j = 1, . . . , 10}100n=1
are randomly drawn from the interval [0, 1] and the

pairs (Tij , Tij′ ) for 1 ≤ j, j′ ≤ 10 are plotted for each i. The grid has spacing h = 0.02.

By Proposition 2.1, it is easy to see that E[X̃i(s)X̃i(t)] = (1−m−1
i )C(s, t) +

O(h2n) if |s− t| > 2BKhn, since then the first two terms in (2.3) as wells as the
O(hn) term all vanish (see the proof in Appendix B for more details). This shows

that C̃(s, t) should be multiplied by mi/(mi − 1) to get rid of the trivial bias.

However, (2.3) and (2.4) also show that C̃(s, t) is a highly biased estimate of
C(s, t) near the diagonal even after this modification, unless hnmn → ∞ where
mn := min1≤i≤nmi. This is because the first terms in(2.3) and (2.4) are always
positive along the diagonal (i.e., when |s − t| < 2BKhn), which result in an
overestimation. Note that, this is the case even if σ2 = 0, i.e., the observations
are “noiseless”. In fact the degree of overestimation gets big by a scale factor
of hn as soon as |s− t| < 2BKhn. This observation motivates us to modify the
empirical covariance by estimating the diagonal and off diagonal separately.

To help understand the reason for this bias, let us consider the case when
mi’s are bounded and Tij ’s are sampled independently from Uniform[0, 1]. The
number of pairs of the form {(Tij , Tij′) : 1 ≤ j, j′ ≤ mi; i = 1, . . . , n} falling
into a given off-diagonal square of side-length hn is NO(h2n), where N is the
total number of such pairs. In contrast, the number of such pairs falling into
a square of side-length hn along the diagonal is NO(hn). Therefore, in terms
of covariance estimation, the measurements are much denser along the diagonal
and this explains the difference in rates shown by Proposition 2.1. Figure 1 gives
a visual demonstration of this point.

2.2. Modification to empirical covariance kernel

In this section, we propose a modification to deal with the bias in empirical
covariance kernel described in Section 2.1. We propose to remedy the effect of
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unequal scale along the diagonal of the covariance kernel (and the resulting bias)
by estimating the diagonal and the off-diagonal parts separately. We then use a
suitable (smooth) weight kernel to combine those two estimates together.

We also propose to use a linearized version of the kernel smoothing to reduce
the bias while controlling the variance. For this purpose, define Q(s, t) to be
a tensor-product kernel (that is a kernel of the form Q(s, t) = Q(s)Q(t) for
some smooth function Q) with the following properties, together referred to as
condition B2:

(i) Q is supported on [−CQ, CQ], for some CQ > 0, and Q(·) ≥ 0;
(ii) ‖ Q ‖∞<∞, where ‖ Q ‖∞:= sups |Q(s)|;
(iii)

∑
k∈Z

Q(x− k) = 1.

(iv) Q is symmetric about 0.

Property (iii) can be rephrased as saying that integer translates of Q form a
partition of unity. As an example, the B-spline basis functions [7] satisfy all four
properties. Let Qh(s, t) denote the kernel Q(h−1s, h−1t).

Recall that C(t) = C(t, t). Observe that, the conditional expectation of Y 2
ij

given Ti is C(Tij , Tij) + σ2. Thus, C(t) + σ2 can be estimated by a linearized
kernel smoothing of the terms {m−1

i Y 2
ij : j = 1, . . . ,mi; i = 1, . . . , n}. Define a

grid on [0, 1] with spacings hn and denote the grid points by {sl : l = 1, . . . , Ln}
where Ln = cL/hn for an appropriately chosen cL ≈ 1. Then define,

Ĉ∗,hn
(t) =

1

g(t)

1

n

n∑

i=1

Ln∑

l=1

[Si(sl) + (t− sl)S
′
i(sl)]Qhn

(t− sl), (2.5)

where Qh(s) = Q(h−1s), with

Si(s) :=
1

mi

mi∑

j=1

Y 2
ijKhn

(s− Tij). (2.6)

Finally the diagonal C(t) can be estimated by Ĉ(t) := Ĉ∗(t)− σ̂2, where σ̂2 is an
estimator of σ2 (discussed in Section 2.3). Note that, (2.5) is a linearized version
of the conventional kernel smoothing, which can be interpreted as a local linear
smoothing of the empirical variances. A similar principle is applied to construct
an estimator for the off-diagonal part (see (2.7) below). As mentioned earlier,
the linearized estimator helps to reduce bias in the estimate as compared to the
usual kernel smoother.

Let X̃i(t) be the i-th smoothed sample curve as defined in (2.1), and X̃ ′
i(t)

be the derivative of X̃i(t). Then define the estimate of the off-diagonal part as
(with a slight abuse of notation)

C̃hn
(s, t) =

1

g(s)g(t)

1

n

n∑

i=1

w(mi)

Ln∑

l,l′=1

[
(X̃i(sl) + (s− sl)X̃

′
i(sl))

· (X̃i(sl′) + (t− sl′)X̃
′
i(sl′ ))Qhn

(s− sl, t− sl′)
]
. (2.7)
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Here w(mi) = mi/(mi − 1) are weights determined through an asymptotic bias
analysis (Proposition 2.1). Note that, as long as |s− t| ≥ Ahn for some constant
A depending on BK and CQ, in the inner sum in definition (2.7), the terms for
which l = l′ are absent. Therefore, according to our analysis in the previous
section, they do not contribute anything by way of bias.

Now let W (·, ·) be a kernel on the domain [0, 1]2, defined as

W (s, t) :=W (s− t) =

{
0 if |s− t| > 1

2

1 if |s− t| ≤ 1
2

(2.8)

Define Wh̃n
(s, t) = W ((s − t)/h̃n) and W h̃n

(s, t) = 1 −Wh̃n
(s, t), where h̃n =

Ahn for the constant A mentioned in the previous paragraph. We then smooth
the kernels Wh̃n

and W h̃n
by convolving them with a Gaussian kernel with a

small bandwidth τn = o(hn), and denote the resulting kernels still by Wh̃n
and

W h̃n
, respectively. Finally, the proposed estimator of C(s, t) is defined as as

Ĉhn
(s, t) =W h̃n

(s, t)C̃hn
(s, t) +Wh̃n

(s, t) max

{
Ĉhn

(
s+ t

2

)
, h2n

}
. (2.9)

The use of maximum in the second term guarantees that the estimator of the
diagonal is positive and the bias is of the order O(h2n).

One important feature of the proposed estimator is that, in (2.5) and (2.7),
the function g is explicitly utilized to adjust for the sampling variability, whereas
in local linear smoothing, e.g. in [31], g is implicitly utilized, and is essentially es-
timated by using the same bandwidth for estimating the covariance. In practice,
we replace g in (2.5) and (2.7) by an estimator ĝ using an optimal bandwidth,
which is different from the bandwidth used to estimate the covariance kernel.
This is likely to result in a slightly less variable estimator of the covariance
kernel especially when the measurements per curve are sparse. Similarly as in
(2.7), where the sample trajectories are pre-smoothed and the density of the ob-
servation times are estimated separately, such an approach may be adopted, as
an alternative to the local polynomial regression method, to estimate moments
of the processes other than the mean and the covariance. For example, this can
be used in functional linear regression.

2.3. Estimation of σ2

Here we briefly outline a method for estimating the error variance σ2. The
method is similar to the approach taken in [32], and hence we omit the details.

First, for a given bandwidth hn, we estimate the function C(s, t) for |s− t| >
Ahn, for some A depending on BK and CK , using (2.7). Then, as in [32], we
estimate the diagonal {C(t) : t ∈ [0, 1]}, using an oblique linear interpolation,
by

Ĉ0,hn
(t) =

∫ A2

A1

1

2

(
C̃hn

(t− uhn, t+ uhn) + C̃hn
(t+ uhn, t− uhn)

)
dG̃(u),

(2.10)
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for some probability distribution function G̃ supported on [A1, A2] where A1 >

A. On the other hand, we estimate the curve {C(t) + σ2 : t ∈ [0, 1]} by Ĉ∗,hn
(t)

defined in (2.5). Now, we estimate σ2 by

σ̂2 =
1

T1 − T0

∫ T1

T0

(
Ĉ∗,hn

(t)− Ĉ0,hn
(t)
)
dt, (2.11)

where 0 < T0 < T1 < 1. It can be shown that (Corollary 3.1 in Section 3) the
estimator σ̂2 thus obtained is consistent for an appropriate choice of hn.

3. Asymptotic properties

In this section, we present the asymptotic properties of the proposed estimator.
Our main interest is in the estimation accuracy of the covariance kernel and
its eigenfunctions. The statements of the results and the associated regularity
conditions are given below. In Sections 3.1 to 3.3, we assume that the data follow
the separable covariance model (1.3). In Section 3.4, we discuss the connection
between the “dense” design and the purely functional data case. in Section 3.5,
we present results under co-regionalization model for the covariance. Finally, in
Section 3.6, we briefly discuss the situation for infinite dimensional processes.
Throughout, we assume that the data follow the model (1.1) where Xi(·) are
Gaussian processes with mean 0 and the noise εij are also Gaussian.

3.1. Asymptotics under the separable covariance model

We first state the following assumptions on g, the density of the design points;
C, the covariance kernel; and {ψk}Mk=1, the eigenfunctions.

A1 g is twice continuously differentiable and the second derivative is Hölder(α),
for some α ∈ (0, 1). Also, the same holds for the covariance kernel C.

A2 There are constants 0 < c0 ≤ c1 <∞ such that c0 ≤ g(·) ≤ c1.
A3 maxk{‖ ψk ‖∞, ‖ ψ′

k ‖∞, ‖ ψ′′
k ‖∞} is bounded.

A4 In the definition (2.9), h̃n = Ahn for some constant A ≥ 4(BK + CQ).

We also assume that the kernels K(·) and Q(·) satisfy conditions B1 and B2,
respectively. We need to make further assumptions about the covariance kernel
C and the correlations among the sample curves. Let R denote an n×n matrix
with (i, j)-th entry ρij . Assume:

C1 λ1 > λ2 > · · · > λM > 0 and λM+1 = · · · = 0. That is, the nonzero
eigenvalues are all distinct and the covariance kernel is of finite dimension.

C2 max1≤ν≤M (λν − λν+1)
−1 is bounded above.

C3 ‖ R ‖≤ κn for some κn > 0 where ‖ · ‖ denotes the operator norm.

Note that,C3 imposes a stability condition on the correlation matrixR. In other
words, the sample curves are “weakly correlated” as ‖ R ‖ is bounded by κn.
Define mn := min1≤i≤nmi and mn := max1≤i≤nmi. We further assume that

C4 mn/mn is bounded above as n→ ∞.
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We now give the bias and variance of the proposed estimator of the covariance
kernel C(·, ·).
Theorem 3.1. Suppose that conditions A1-A4, B1-B2 and C4 hold. Assume

that σ2 is known and Ĉ(·) = Ĉ∗(·) − σ2 where Ĉ∗(·) is defined through (2.5).

Then, with hn = o(1) and nh2n → ∞, the estimator Ĉ satisfies:

E[Ĉ(s, t)] = C(s, t) +O(h2n), (3.1)

V ar[Ĉ(s, t)] = O

(
1

n

)
+O

(
max

{
1

nh2nm
2
n

,
1

nhnmn

})

+


 1

n2

n∑

i6=j

ρ2ij


O(1), (3.2)

where the O(·) terms are uniform in s, t ∈ [0, 1].

As can be seen from Corollary 3.2 (Section 3.2) there is no change in the bounds
even if σ2 is replaced by σ̂2 defined in (2.11).

Next, we state the result about the asymptotic behavior of the estimated
eigenfunctions. Let the loss function for ψν be the modified L2-loss :

L(ψ̂ν , ψν) :=‖ ψ̂ν − sign(〈ψ̂ν , ψν〉)ψν ‖22, (3.3)

where ‖ · ‖2 denotes the L2 norm, and 〈ψ̂ν , ψν〉 =
∫ 1

0
ψ̂ν(x)ψν (x)dx. For The-

orem 3.2, we only need to assume that the estimator σ̂2 of σ2 satisfies E(σ̂2 −
σ2)2 = o(1). See Corollary 3.1 for the asymptotic behavior of σ̂2.

Theorem 3.2. Suppose that conditions A1-A4, B1-B2 and C1-C4 hold. Let
hn be such that

mnhn = o(1), m2
n = o(nh2n/ logn), and κn(logn)

1/2n−1/2(mnhn)
−1 = o(1)

(3.4)

as n→ ∞. Then the estimator ψ̂ν , which is the eigenfunction corresponding to
the ν-th largest eigenvalue of Ĉ, satisfies: for any arbitrary but fixed ǫ > 0,

sup
(C,g)∈Θ

EL(ψ̂ν , ψν) (3.5)

≤ (1 + ǫ)
1

n


 ∑

1≤k 6=ν≤M

λkλν
(λk − λν)2


 (3.6)

+(1 + ǫ)


 1

n2

n∑

i6=j

ρ2ij




 ∑

1≤k 6=ν≤M

λkλν
(λk − λν)2

+O(hn)


 (3.7)

+O(h4n) +O

(
1

nhnmn

)
, (3.8)

where Θ denotes the class of covariance-density pairs (C, g) satisfying the con-
ditions A1-A3 and C1-C3.
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Remark 3.1. In Theorem 3.1, we have assumed that g is known. However, if a
kernel-based estimate of g is used instead, then under assumptions A1 and A2,
it is straightforward to show that, if an optimal bandwidth is used to estimate
g, then the rates of convergence of the resulting eigenfunction estimators, in
terms of convergence in probability, are the same as those in Theorem 3.1. This
follows from the fact that, under the stated assumptions, we have ‖ ĝ − g ‖22=
OP ((nmn)

−4/5) and ‖ ĝ − g ‖2∞= OP (logn(nm)−4/5). These together imply

that the contribution of the estimated g in the L2-risk of ψ̂ν is no bigger than
the best rate of convergence under the “g known” case, which can be formally
shown by a simple perturbation argument.

3.2. Asymptotics of σ2

We can obtain the rate of convergence of the estimator σ̂2 defined in (2.11) from
Theorem 3.1, as illustrated in the following corollary.

Corollary 3.1. Suppose that conditions A1-A4, B1-B2 and C4 hold. Then,
with hn = o(1) and nh2n → ∞,

E(σ̂2 − σ2)2 = O

(
1

n

)
+O

(
max

{
1

nh2nm
2
n

,
1

nhnmn

})

+

(
1

n2

n∑

i6=j

ρ2ij

)
O(1) +O(h4n), (3.9)

where the O(·) terms are uniform in s, t ∈ [0, 1].

Using Corollary 3.1 and Theorem 3.1, we get a bound on the variance of the
proposed estimator of the covariance kernel when σ2 is estimated by σ̂2.

Corollary 3.2. Suppose that conditions A1-A4, B1-B2 and C4 hold. Then,
with hn = o(1) and nh2n → ∞,

V ar[Ĉ(s, t)] = O

(
1

n

)
+O

(
max

{
1

nh2nm
2
n

,
1

nhnmn

})

+

(
1

n2

n∑

i6=j

ρ2ij

)
O(1) +O(h4n), (3.10)

where the O(·) terms are uniform in s, t ∈ [0, 1].

3.3. Rates of convergence

One implication of Theorems 3.1 and 3.2 is that, if the correlation between
sample curves is “weak” in a suitable sense, then the best upper bound on the
L2 risk for the correlated and i.i.d. cases are the same. Comparing with the i.i.d.
case, we immediately see that, in order for this to hold for the eigenfunctions,
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under the conditions of Theorem 3.2, we need

1

n2

∑

i6=j

ρ2ij = o

(
1

nhn,emn

)
, (3.11)

where hn,e stands for the optimal bandwidth for estimating eigenfunctions for
the i.i.d. case. Moreover by Corollary 3.2, for the covariance kernel, it is sufficient
that,

1

n2

∑

i6=j

ρ2ij = o

(
max

{
1

nhn,cmn

,
1

nh2n,cm
2
n

})
, (3.12)

where hn,c stands for the optimal bandwidth for estimating the covariance kernel

for the i.i.d. case. Specifically, hn,c = (nm2
n)

−1/6
(by Corollary 3.2 and under the

setting mnhn,c = o(1)), and hn,e = (nmn)
−1/5

(by Theorem 3.2). Observe that,
the optimal bandwidth for estimating the covariance and its eigenfunctions are
different for the scenarios considered under Theorems 3.1 and 3.2. Specifically,
(3.4) implies in particular that mn = o((n/ logn)1/4), which essentially implies
a regime of “sparse” observations.

As an example, (3.11) is satisfied if R has the first order autoregressive struc-
ture, i.e., ρij = ρ|i−j| for some ρ ∈ (−1, 1). This will not hold if R has the
intra-class correlation structure, i.e., if ρij = ρ for all i 6= j.

We now claim that, the proposed estimator of the eigenfunctions achieves the
optimal nonparametric rate when the trajectories are “weakly” correlated, in
the sense that (3.11) holds, and mn is either bounded or increases slowly with n,
as implied by (3.4). This claim follows from Theorem 3.2 and the following result
(Theorem 3.3) which gives a lower bound on the rate of convergence of the first
eigenfunction under the i.i.d. setting, when either mn is bounded or approaches
infinity sufficiently slowly. This bound is a refinement over an analogous result
(Theorem 2) in [13] in the sense that, for the latter, the number of measurements
per curve was assumed to be bounded. It can be shown, by essentially using the
same arguments, that as long as the covariance kernel C is of finite rank, and
the distance between successive eigenvalues of C is bounded from below, the
same asymptotic lower bound holds for estimators of any eigenfunction.

Theorem 3.3. Let C denote the class of covariance kernels C(·, ·) on [0, 1]2

with rank ≥ 1, and nonzero eigenvalues {λj}j≥1 satisfying k0 ≥ λ1 > λ2 ≥ 0
with λ1 − λ2 ≥ k1, and the first eigenfunction ψ1 being twice differentiable
and satisfying ‖ ψ′′

1 ‖∞≤ k2, for some constants k0, k1, k2 > 0. Also, let G
denote the class of continuous densities g on [0, 1] such that c1 ≤ g ≤ c2 for
some 0 < c1 ≤ 1 ≤ c2 < ∞. Also suppose that the number of measurements
mi’s satisfy mn ≤ mi ≤ mn, for mn ≥ mn ≥ 4, such that mn/mn ≤ k3
for some k3 < ∞, and mn = o(n2/3). Let D denote the space of such designs

D = {mi}ni=1. Then for sufficiently large n, for any estimator ψ̂1 with l2 norm
one, the following holds:

sup
D∈D

sup
g∈G

sup
C∈C

E ‖ ψ̂1 − ψ1 ‖22≥ k4(nmn)
−4/5. (3.13)

Proof of Theorem 3.3 is given in Appendix G of [22].
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3.4. Connection between the dense design and the purely functional

data case

We can regard the terms given by (3.6) and (3.7) as the parametric components
of the risk, and the term in (3.8) as the nonparametric component, since the
latter depends on the bandwidth hn while the former do not (up to the leading
order). Moreover, the term O(h4n) in (3.8) can be seen as the integrated squared

bias of ψ̂ν , while O(1/(nhnmn)) is the nonparametric component of the inte-

grated variance of ψ̂ν . As shown in Section 3.3, if we take hn ∼ n−1/5, then for
bounded mn, we get the optimal nonparametric rate if (3.11) also holds (note
that hn,e ∼ n−1/5).

In contrast, we can consider the case when mn ≫ n1/4 logn which may be
referred to as the “dense” design. This setting is clearly different from the one
described by (3.4), referred to as the “sparse” design. Even though a detailed
analysis of this setting is beyond the scope of this paper, here we discuss the key
aspects of the asymptotic behavior of the L2-risk of the eigenfunction estima-
tor under the “dense” design. It can be shown that, with appropriate choice of
the bandwidth, the risks of the estimated eigenfunctions have a parametric rate
of convergence. The main technical difference from the derivations under the
“sparse” design is that a modification to the proof of Proposition 4.2 is needed
in order to obtain an analogous result on the fluctuation of the estimated covari-
ance kernel from its expectation. Specifically, suppose that mn ≫ n1/4 logn and
κn = o(

√
n/ logn). If hn is chosen such that hn = o(n−1/4) andmnhn ≫

√
logn,

then the rate of convergence of the estimated eigenfunctions coincides with that
of the “purely functional” setting, i.e., when the individual sample curves are ob-
served completely and without noise [9]. Indeed, the difference from the “sparse”
case lies only in the maximal fluctuation of the estimated covariance kernel
from its expectation. Here, we continue to have that the asymptotic integrated
squared bias for the estimated eigenfunctions is O(h4n) and the nonparamet-
ric component of the integrated variance is O((nhnmn)

−1). However, now both
these terms are o(n−1) since hn = o(n−1/4) and mnhn ≫

√
logn. Hence, both

are negligible compared to the parametric component of the asymptotic vari-
ance which is of the order O(max{n−1, n−2

∑
i6=j ρ

2
ij}). This phenomenon is also

indicated in [13] when the trajectories are i.i.d. In other words, asymptotically
there is no difference between the risk of the estimated eigenfunctions from
densely sampled, noisy data, and that from data measured on the continuum
and without noise. Thus, for the “sparse” design, smoothing is effectively per-
formed only on the covariance kernel, whereas for the “dense” design, smoothing
has the effect of denoising individual curves as well.

3.5. Asymptotics under functional coregionalization model

The above asymptotic analysis can be carried out for the more general class
of models, the “functional coregionalization models”. Here, we only present a
result on the asymptotic risk of estimated eigenfunctions when the principal
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component scores follow (1.4). For simplicity of exposition, we assume that

ρ
(νν′)
ij = δνν′ρ

(ν)
ij for 1 ≤ ν, ν′ ≤ M and i, j = 1, . . . , n with ρ

(ν)
ii = 1 for all

i, ν. In other words, the principal component scores (ξiν)
n
i=1 are uncorrelated

for different ν. Under this setting, we have

Cov(Xi(s), Xj(t)) =
M∑

ν=1

λνρ
(ν)
ij ψν(s)ψν(t), s, t ∈ [0, 1].

Under an asymptotic identifiability condition (C6), we obtain the following gen-
eralization (Theorem 3.4) of Theorem 3.2. This result follows essentially by using
the same arguments in proving Theorems 3.1 and 3.2. It has an analog when
the data are correlated high-dimensional random vectors instead of correlated
functional data [9].

Define Rν = ((ρ
(ν)
ij )), ν = 1, . . . ,M . We introduce conditions on Rν .

C5 max1≤ν≤M ‖ Rν ‖≤ κn for some κn > 0.
C6 max1≤ν≤M

1
n2 tr [(Rν − In)

2] → 0 as n→ ∞.

Note that, C5 is an analog of C3. Also, C6 provides the asymptotic identifia-
bility of the eigenfunctions {ψν}Mν=1 of the kernel C(s, t) =

∑M
ν=1 λνψν(s)ψν(t).

This is because, C6 implies in particular that | 1n tr (Rν)− 1| → 0 as n→ ∞ for
all ν, and therefore,

1

n

n∑

i=1

Cov(Xi(s), Xi(t)) =

M∑

ν=1

λν

(
1

n

n∑

i=1

ρ
(ν)
ii

)
ψν(s)ψν(t) →

M∑

ν=1

λνψν(s)ψν(t)

as n→ ∞.

Theorem 3.4. Suppose that conditions A1-A4, B1-B2, C1-C2 and C4-C6

hold. Let hn satisfy (3.4). Then the estimator ψ̂ν , which is the eigenfunction

corresponding to the ν-th largest eigenvalue of Ĉ, satisfies: for any arbitrary but
fixed ǫ > 0,

sup
(C,g)∈Θ

EL(ψ̂ν , ψν)

≤ (1 + ǫ)
1

n


 ∑

1≤k 6=ν≤M

λkλν
(λk − λν)2




+(1 + ǫ)


 ∑

1≤k 6=ν≤M

(
1

n2
tr (RkRν − In)

)(
λkλν

(λk − λν)2
+O(hn)

)


+O(h4n) +O

(
1

nhnmn

)
, (3.14)

where Θ denotes the class of covariance-density pairs (C, g) satisfying the con-
ditions A1-A3, C1-C2 and C5-C6.
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3.6. Infinite dimensional covariance kernel

Our theoretical analysis assumes that only a finite number of eigenvalues of
the covariance kernel are nonzero. There are two issues while extending the
results to the setting where the number of nonzero eigenvalues is infinite. The
first one relates to the model for correlation across the trajectories. Notice that
“functional coregionalization” model discussed in Section 3.5 assumes a different
correlation structure among the trajectories for each principal component score
(or eigenvalue). In this case, unless fairly elaborate structural assumptions are
made about these component-specific correlation matrices, it is not feasible to
establish the rates of convergence results. Thus, we only focus on the case when
the covariance structure is “separable”, i.e., satisfying equation (1.3). The second
issue relates to the regularity of the covariance kernel of the trajectories. In order
to establish consistency of the leading eigenfunctions, we require a certain rate of
decay of the eigenvalues and a certain degree of regularity of the eigenfunctions.
Specifically, we assume that ψk is twice continuously differentiable for all k, and

∞∑

k=1

kβλk ‖ ψk ‖2∞<∞ for some β > 1, (3.15)

where ‖ ψk ‖∞= sups∈[0,1] |ψk(s)|. (3.15) is a mild condition. For example, if

ψk(t) =
√
2 cos(2kπt) for k even and ψk(t) =

√
2 sin(2kπt) for k odd, then under

the assumption that C(s, t) is twice continuously differentiable,
∑∞

k=1 k
2λk ‖

ψk ‖2∞=
∑∞

k=1 k
2λk <∞.

We present the following result about the rate of convergence of the estimated
eigenfunctions when the covariance structure of the principal component scores
is separable and the covariance kernel C is twice continuously differentiable and
satisfies (3.15).

Theorem 3.5. Assume that the observations satisfy (1.1) and (1.2) with the
separable correlation structure (1.3) and with µ ≡ 0, σ = 1. Suppose that the
covariance-density pair (C, g) satisfies conditions A1, A2, A4, B1, B2, C3 and
C4, that the eigenvalues of C are all distinct and the set {(λk, ψk) : k = 1, 2, . . .}
of eigenvalue-eigenfunction pairs satisfy (3.15), and that the kernel C is twice
continuously differentiable with bounded second derivative. Moreover, assume
that the bandwidth hn satisfies (3.4). Let ν be any fixed index. Then, for some
constant c > 1 (not depending on C and g),

EL(ψ̂ν , ψν) ≤ c
1

n

(
∞∑

k 6=ν

λkλν
(λk − λν)2

)

+c

(
1

n2

n∑

i6=j

ρ2ij

)(
∞∑

k 6=ν

λkλν
(λk − λν)2

+O(hn)

)

+O(h4n) +O

(
1

nhnmn

)
,

where ψ̂ν denotes the eigenfunction corresponding to the ν-th largest eigenvalue
of Ĉ, the estimated covariance kernel defined in (2.9).
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The proof of Theorem 3.5 follows a similar line of arguments as that of Theo-
rem 3.1. In order to handle the possibility of infinite number of nonzero eigenval-
ues for the covariance kernel C, we extend our method of proof through a trun-
cation technique. In essence, nowM represents the number of “significant eigen-
values”, and we letM grow with n at an appropriate rate, so that the projection
of C(s, t) onto the span of {ψk : k > M} is negligible. The details are omitted.

4. Outline of the Proof of Theorems 3.1 and 3.2

In this section, we briefly describe the main ideas leading to the proofs of The-
orems 3.1 and 3.2, which require repeated computation of mixed moments of
correlated Gaussian random variables. The details are given in the appendices.
The basic idea in the computation of the moments is to treat the diagonal and
the off-diagonal parts of Ĉ(·, ·) separately. The proof of Theorem 3.2 heavily
relies on an application of Lemma A.1, which leads to a first order expansion of
the eigenfunctions of the estimated covariance kernel around the corresponding
eigenfunctions of the true covariance kernel, and provides a bound on the ap-
proximation error. In view of this lemma, the key quantity in the derivation of
asymptotic risk is the computation of E ‖ HνĈψν ‖22 (Proposition 4.1), where
the operator Hν is defined in (4.1). Once we obtain an expression for this (as
given in Section 4.1), we use a probabilistic bound on the operator norm of the
difference between estimated and true covariance kernels (Proposition 4.2), to
complete the proof.

Since the covariance kernel and its estimate are continuous functions, we
shall treat Hν as an operator on C([0, 1]) and extensively use the following
representation of its kernel:

Hν(x, y) := Hν(x, y)−
1

λν
δ(x, y), with

Hν(x, y) =
∑

1≤k 6=ν≤M

λk
λν(λk − λν)

ψk(x)ψk(y) +
1

λν
ψν(x)ψν (y), (4.1)

where δ(x, y) denotes the Dirac’s δ operator, i.e.,
∫
δ(x, y)f(y)dy = f(x) for all

f ∈ C([0, 1]). Note that we treat Hν interchangeably as an integral operator on
C([0, 1]) and its kernel. Thus, Hν operates on f ∈ C([0, 1]) as

(Hνf)(x) =

∫ 1

0

Hν(x, y)f(y)dy =

∫ 1

0

Hν(x, y)f(y)dy −
1

λν
f(x), x ∈ [0, 1].

The key properties of the kernel Hν(·) that we repeatedly use (and which are
valid due to the orthonormality of the functions ψ1, . . . , ψM ) are

(Hνψν)(x) = 0

(Hνψk)(x) =
1

λk − λν
ψk(x), for k 6= ν

and (Hνf)(x) = − 1

λν
f(x)

for f ∈ C([0, 1]) such that
∫ 1

0 f(x)ψk(x)dx = 0 for all k = 1, . . . ,M .
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We use the operatorHν to produce a first order expansion of ψ̂ν around ψν by
a perturbation analysis of the estimated covariance kernel treated as an integral
operator. Lemma A.1 in Appendix A indicates the role of Hν in this analysis.
Note that, we have the following correspondence with the objects in Lemma A.1:
A ≡ C, B ≡ Ĉ − C, Hr(A) ≡ Hν , pr(A) ≡ ψν and pr(A + B) ≡ ψ̂ν . The main
advantage of this expansion and the form of the bound on the remainder term
is that they reduce the problem of bounding the L2-risk of ψ̂ν essentially to that
of computing E ‖ HνĈψν ‖22, i.e., the expected value of the squared integral of
the first term on the RHS of (A.1). This is because, by virtue of Lemma A.1, we

have L(ψ̂ν , ψν) ≤‖ HνĈψν ‖22 (1 + cǫ) for some constant c > 0 if ‖ Ĉ − C ‖< ǫ
for any ǫ > 0 suitably small.

4.1. Asymptotic risk for estimating ψν

The key results in this section are Propositions 4.1 and 4.2, which are proved in
the Appendix C.

Proposition 4.1. Under the assumptions of Theorem 3.2, we have

E ‖ HνĈψν ‖22

≤ (1 + ǫ)
1

n


 ∑

1≤k 6=ν≤M

λkλν
(λk − λν)2




+(1 + ǫ)


 1

n2

n∑

i6=j

ρ2ij




 ∑

1≤k 6=ν≤M

λkλν
(λk − λν)2

+O(hn)




+O(h4n) +O

(
1

nhnmn

)
(4.2)

for any arbitrary but fixed ǫ > 0.

Here we briefly describe the main idea of the proof. For convenience of exposi-

tion, throughout we replace max{Ĉ( s+t
2 ), h2n} in the definition (2.9) by Ĉ( s+t

2 ).
Also, for convenience, we consider the unsmoothed version (2.8) of the kernel

W , and take h̃n = Ahn, where A ≥ 4(BK + CQ). The purpose is to separate
the contributions from the diagonal and off-diagonal parts of the estimator. The
main decompositions that facilitate the computations are given by (4.1), and
(C.1) and (C.2) in Appendix C. As indicated in the previous subsection, (4.1)
is used in isolating the contributions of the terms involving the eigenfunctions
{ψk} in the expansion of ψ̂ν around ψν , and (C.2) reduces bounding the term

E ‖ HνĈψν ‖22 to that of bounding E ‖ HνC̃cψν ‖22, where C̃c(s, t) is simply

replacing σ̂2 by σ2 in the definition of Ĉ(s, t) (see (C.1)). The crucial computa-
tional advantage is that, now the bounds can be obtained simply by analyzing
the bias and covariances of the kernel C̃c(s, t). Note also that, if σ

2 is assumed to
be known, then the decomposition (C.2) is not required, and we can get rid of the
multiplicative factor (1 + ǫ) in the expression (3.5) for the risk in Theorem 3.2.
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4.2. Norm bound on Ĉ − EĈ

To complete the proof of Theorem 3.2, we need to find a probabilistic bound
for ‖ Ĉ − EĈ ‖, where ‖ · ‖ denotes the operator norm. We first find a bound

on the supremum norm ‖ Ĉ − EĈ ‖∞:= supx,y∈[0,1] |Ĉ(x, y) − EĈ(x, y)|. We

then use the fact that, ‖ Ĉ − EĈ ‖≤‖ Ĉ − EĈ ‖F , where ‖ · ‖F denotes the

Hilbert-Schmidt norm, and ‖ Ĉ−EĈ ‖F≤‖ Ĉ−EĈ ‖∞. Note that, by piecewise

differentiability of the estimate Ĉ, in order to provide exponential bounds for
the variation of ‖ Ĉ −EĈ ‖∞, it is enough to derive exponential bounds for the

fluctuations of |Ĉ(s, t) − E[Ĉ(s, t)]| for a finite (but polynomially growing with
n) number of points (s, t) ∈ [0, 1]. In the following proposition, without loss of
generality, we assume that g ≡ 1.

Proposition 4.2. Suppose that conditions A1-A4, B1-B2 and C1-C4 hold,
and let hn satisfy (3.4). Then, given η > 0, there is a cη > 0 such that for every
fixed s, t ∈ (0, 1),

P

(
|Ĉ(s, t)− E(Ĉ(s, t))| > cηκn

√
logn

nm2
nh

2
n

)
≤ n−η. (4.3)

By Lemma A.1 and the fact that ‖ ψ̂ν ‖2=‖ ψν ‖2= 1,

EL(ψ̂ν , ψν) ≤ E ‖ HνĈψν ‖22 (1 + δn,η)

+2P

(
‖ Ĉ − E(Ĉ) ‖> c′ηκn

√
logn

nm2
nh

2
n

)

for some η > 0, c′η > 0 and δn,η → 0 appropriately chosen. Then the proof of
Theorem 3.2 follows by using Propositions 4.1 and 4.2.

5. Simulation

We carry out a simulation study in which the true trajectories follow the
model (1.1):

Xi(t) =

3∑

ν=1

√
λνξiνψν(t), t ∈ [0, 1], (5.1)

where λν = ν−0.6, i.e., λ1 = 1, λ2 ≈ 0.66 and λ3 ≈ 0.52; ψν(t) =
√
2 sin(νπt); ξiν

are i.i.d. N(0, 1) and Cov(ξiν , ξjν′) = δνν′ρ|i−j| where, by convention, 00 = 1.
We consider three different values of ρ: 0, 0.5 and 0.9. The observations are
generated by the model (1.2):

Yij = Xi(Tij) + σεij , j = 1, . . . ,mi; i = 1, . . . , n

where mi’s are i.i.d. {10, . . . , 20}, Tij ’s are i.i.d. Uniform(0, 1) and εij ’s are
i.i.d. N(0, 1). Throughout this section, n = 250 and σ = 0.4. The choice of
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the eigenfunctions is motivated by the real data application where the observed
trajectories are nearly periodic (see Section 6).

We use the following “bi-weight” kernel for pre-smoothing the sample curves

K(x) =
15

16
(1− x2)21(|x| ≤ 1). (5.2)

We estimate the mean function µ(·) and the density g(·) of the (pooled) sampling
points using a local linear regression estimator and a kernel density estimator,
respectively, where the bandwidths are chosen by cross-validation. We subtract
the estimated mean from the observations to get the centered observations Ŷij =
Yij − µ̂(Tij) which are used as inputs for the proposed procedure. We estimate
the noise variance σ2 using the method described in Section 2.3. We also choose
T0 = 0.2 and T1 = 0.8 in (2.10).

We propose to use cross-validation to choose the following criterion for deter-
mination of the optimal bandwidth h as well as the number of nonzero eigenval-
ues. We randomly select 20% of the sample trajectories as “test data”, denoted
by T , and set them aside. We then estimate the covariance kernel from the rest
of the data using a bandwidth h̃ and denote the corresponding noise variance,
eigenvalues and eigenfunctions by σ̃2, λ̃ν and ψ̃ν , ν = 1, 2, . . ., respectively. Then,
for each M̃ ≥ 1, we compute the following cross-validated negative pseudo-log-
likelihood (pretending that the sample trajectories are independent Gaussians,
also referred to as the empirical Kullback-Leibler loss):

CV(h̃, M̃) =
1

2

∑

i∈T

ŶT
i Σ̃

−1
i Ŷi +

1

2

∑

i∈T

log |Σ̃i| (5.3)

where Ŷi = (Ŷi1, . . . , Ŷimi
)T and

Σ̃i =

M̃∑

ν=1

λ̃νψ̃iνψ̃
T

iν + σ̃2Imi

where ψ̃iν = (ψ̃ν(Ti1), . . . , ψ̃ν(Timi
))T . We choose the combination (ĥ, M̂) that

minimizes the cross-validation score (5.3). Finally, the estimates λ̂ν and ψ̂ν ,

ν = 1, . . . , M̂ are computed from the complete data set using the bandwidth ĥ.
For comparison, we carry out the PACE procedure in [31] based on local

polynomial smoothing of the empirical covariances, where the bandwidths are
selected by leave-one-curve-out cross-validation.

We report the estimation errors for the eigenfunctions and eigenvalues, av-
eraged over 50 independent replicates, in Tables 1 and 2, respectively. The re-
sults show that for both estimation procedures, compared to the i.i.d. case (i.e.,
ρ = 0), the estimation accuracy only mildly deteriorates when the correlation
is moderate (i.e., ρ = 0.5). However, when the correlation is high (i.e., ρ = 0.9),
the performance deteriorates considerably. Also, for all ρ, the proposed method
performs better than PACE in terms of estimating the eigenfunctions. PACE is
better for estimating the first eigenvalues while the two methods perform similar
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Table 1

Estimation errors for the eigenfunctions: the errors are measured by the integrated squared
deviations (ISE) from the truth

Kernel smoothing PACE
ψ1 ψ2 ψ3 ψ1 ψ2 ψ3

mean(ISE) 0.0418 0.1285 0.1263 0.0768 0.2234 0.2010
ρ = 0 median(ISE) 0.0322 0.0643 0.0591 0.0559 0.1349 0.0877

s.d.(ISE) 0.0406 0.2170 0.2133 0.0761 0.2500 0.2384
mean(ISE) 0.0486 0.1308 0.1315 0.0817 0.2772 0.2601

ρ = 0.5 median(ISE) 0.0337 0.0681 0.0731 0.0599 0.1795 0.1487
s.d.(ISE) 0.0421 0.1762 0.1708 0.0769 0.3604 0.3585
mean(ISE) 0.2975 0.5095 0.3953 0.3478 0.6136 0.5017

ρ = 0.9 median(ISE) 0.1401 0.3097 0.2171 0.1567 0.4409 0.3060
s.d.(ISE) 0.4031 0.4982 0.4564 0.4467 0.5426 0.5109

Table 2

Estimation errors for the eigenvalues: the errors are measured by the squared deviations
(SE) from the truth

Kernel smoothing PACE
ψ1 ψ2 ψ3 ψ1 ψ2 ψ3

mean(SE) 0.0223 0.0054 0.0043 0.0110 0.0046 0.0053
ρ = 0 median(SE) 0.0113 0.0035 0.0025 0.0051 0.0030 0.0039

s.d.(SE) 0.0277 0.0067 0.0063 0.0173 0.0048 0.0057
mean(SE) 0.0273 0.0057 0.0057 0.0171 0.0067 0.0088

ρ = 0.5 median(SE) 0.0149 0.0025 0.0032 0.0084 0.0038 0.0070
s.d.(SE) 0.0333 0.0066 0.0073 0.0238 0.0081 0.0094
mean(SE) 0.0718 0.0250 0.0298 0.0574 0.0275 0.0350

ρ = 0.9 median(SE) 0.0353 0.0158 0.0212 0.0300 0.0180 0.0317
s.d.(SE) 0.1107 0.0321 0.0247 0.0731 0.0278 0.0259

in estimating the other two eigenvalues. Finally, the model selection criterion
(5.3) selects the true model dimension M(= 3) in 90%, 88% and 92% replicates
for ρ = 0, 0.5 and 0.9, respectively.

6. Application

We apply the proposed procedure to a time course gene expression data that
measure the expression profiles of cell-cycle regulated genes [28]. The experiment
is concerned with a collection of yeast cells whose cycles were synchronized ac-
cording to the α-factor. There are 6178 genes in total, and the expression level of
each gene was, measured every 7 minutes between 0 and 119 minutes, covering
two cell cycles. This data set has been analyzed by a number of researchers, in-
cluding [30] who use it as an illustration of their method for functional principal
component analysis. In this paper, we focus on the “G1 cluster” which, after
the elimination of genes with very little or no measurements, consists of 297
genes. It is expected that, the expression profiles of these genes are correlated.
Among these 297 genes, 74 genes have one or more observations are missing.
The expression trajectories for all 297 genes, and the mean function estimated
by local linear regression are plotted in Figure 2.

We apply the proposed method and find four significant principal compo-
nents. These four eigenfunctions are plotted in Figure 3. To check the prediction
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Fig 2. Gene expression profiles for the 297 genes in the ‘G1 cluster’ of the yeast cell cycle
data (purple trajectories), together with the estimated mean function (solid black line).
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Fig 3. Four leading eigenfunctions for the “G1 cluster” of the yeast cell cycle data. First:
‘—’ (black), second: ‘- -’ (red), third: ‘· · · ’ (green), fourth: ‘− · −’ (blue).
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performance, we fitted the expression profiles for these genes by

X̂i(t) = µ̂(t) +

M̂∑

ν=1

√
λ̂ν ξ̂iν ψ̂ν(t).

Here, the principal components scores are estimated by the best linear unbiased

predictor, i.e., ξ̂iν =

√
λ̂νψ̂

T

iνΣ̂
−1
i Ŷi, where Ŷi = (Yij − µ̂(Tij))

mi

j=1 and Σ̂i =
∑M̂

ν=1 λ̂νψ̂iνψ̂
T

iν+ σ̂
2Imi

with ψ̂iν = (ψ̂ν(Tij))
mi

j=1. The fitted trajectories of four
genes along with their observed expression levels are depicted in Figure 4. As
can be seen from this figure, the fitted trajectories are able to capture the main
features of the observed expression profiles.
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Fig 4. True (dots) and predicted (solid lines) expression profiles for four genes in the “G1
cluster” of the yeast cell cycle data.
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7. Summary

In this paper, we study FPCA for correlated functional data. In particular, we
propose and analyze an estimator for the covariance kernel which is based on
merging two separate estimators: (i) the estimator of the off-diagonal part based
on computing linearized empirical covariances of pre-smoothed sample curves;
(ii) the estimator of the diagonal part based on linearized kernel smoothing of
the empirical variances. This estimator is motivated by the observation that the
empirical covariance kernel of the pre-smoothed sample curves is a highly biased
estimator along the diagonal under the sparse measurements setting. Asymp-
totic risk behavior of the proposed estimator is studied under the assumption
that the covariance of the noiseless processes is separable (Section 3.1) or fol-
lows a functional coregionalization model (section 3.5). Exact quantification of
the correlation effect on the asymptotic risk for the eigenfunctions is obtained
(Theorems 3.2 and 3.4). It is also shown that the L2-risk for the eigenfunctions
achieves the optimal rate when the correlation is weak and the number of mea-
surements per curve is bounded. We also conduct simulation studies to illustrate
the effect of correlation on the proposed method. As expected, for moderate lev-
els of correlation, there is little degradation in the performance of the estimators
compared to the i.i.d. case. However, when the correlation is strong, there is a
considerable degradation.

Appendix A

Perturbation of eigen-structure

The following lemma about the perturbation of the eigenfunctions of an integral
operator of Hilbert-Schmidt class is a modified version of a similar result in [21].
Several variants of this lemma appear in the literature (see, e.g., [4, 19]), and
most of them implicitly use the approach taken in [18]. In the following we use
‖ A ‖ to denote the operator norm of an integral operator A, i.e., the largest
singular value of A, acting on L2([0, 1]).

Lemma A.1. Let A and B be two integral operators acting on L2([0, 1]) with
symmetric, continuous, bounded kernels on [0, 1], and let A be of finite rank. Let
the unique nonzero eigenvalues of operator A be denoted by λ1(A), λ2(A), · · · ,
λm(A). For any r ≥ 1, if λr(A) is of multiplicity 1, then denote the eigenfunction
associated with the r-th eigenvalue by pr(A). Use analogous notations for the
eigenvalues and eigenfunctions of the operator A+B. Then

pr(A+B)− sign〈pr(A+B), pr(A)〉pr(A) = −Hr(A)Bpr(A) +Rr (A.1)

where

Hr(A) :=
∑

1≤s6=r≤m

1

λs(A)− λr(A)
PEs

(A)− 1

λr(A)

(
δ −

∑

1≤s≤m

PEs
(A)

)
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where PEs
(A) denotes the orthogonal projection operator onto the eigen-subspace

Es corresponding to eigenvalue λs(A) (possibly multi-dimensional) and δ denotes
the Dirac’s delta function. Define ∆r

∆r :=
‖ B ‖

min{min1≤s6=r≤m |λs(A)− λr(A)|, |λr(A)|}
.

Then, the residual term Rr in (A.1) can be bounded as

‖ Rr ‖ ≤ min

{
10∆2

r, ∆r ‖ Hr(A)Bpr(A) ‖

·
(

2(1 + 2∆r)

1− 2∆r(1 + 2∆r)
+

1

(1− 2∆r(1 + 2∆r))2

)}

where the second bound holds only if ∆r < (
√
5− 1)/4.

Deviations of quadratic forms

In the following, suppose that Φ : Z → R
n×n is a measurable function. Let Z

be a random variable taking values in Z. Let C(κ,A,B) := {z ∈ Z :‖ Φ(z) ‖≤
κA and tr (Φ(z)(Φ(z))T ) ≤ κ2B2} for constants κ,A,B > 0.

Lemma A.2. Suppose that X and Y are i.i.d. Nn(0, I) and are independent of
Z. Then for all L such that LκA < 1/

√
2 and for all 0 < t < Lκ2B2(1+L2κ2A2),

P(|XTΦ(Z)Y | > t, Z ∈ C(κ,A,B))

≤ 2 exp

(
− t2

2κ2B2(1 + L2κ2A2)

)

≤ 2 exp

(
− t2

3κ2B2

)
.

Lemma A.3. Suppose that X is distributed as Nn(0, I) and is independent
of Z. Assume that Φ(z) = (Φ(z))T for all z ∈ Z. Then for all L such that
LκA < 1/4 and for all 0 < t < 2Lκ2B2(1 + 4LκA),

P(|XTΦ(Z)X − tr (Φ(Z))| > t, Z ∈ C(κ,A,B))

≤ 2 exp

(
− t2

4κ2B2(1 + 4LκA)

)

≤ 2 exp

(
− t2

8κ2B2

)
.

Proof of Lemma A.2. Let us denote the eigenvalues of Φ(z)Φ(z)T by a1 ≥ · · · ≥
an ≥ 0. Then, aj ’s are functions of z, but we do not make this explicit for
notational simplicity. Note that, for z ∈ C(κ, a, b), we have

‖ a ‖∞:= max
1≤j≤n

aj ≤ κ2A2 and

n∑

j=1

aj ≤ κ2B2. (A.2)
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By Chebyshev’s inequality, for any λ > 0, t > 0, and for all z ∈ Z we have

P(XTΦ(z)Y > t) ≤ e−λt
E

(
eλX

TΦ(z)Y
)
= e−λt

E

(
e

λ2

2
XTΦ(z)(Φ(z))T X

)
, (A.3)

where the second equality follows from the fact that Y ∼ N(0, In) and is inde-
pendent of X . Now suppose that λ < L with L satisfying LκA < 1/

√
2, and

z ∈ C(κ,A,B). Then, using the fact that X has i.i.d. N(0, 1) coordinates, we
can express the RHS of (A.3) as

exp

(
−λt− 1

2

n∑

j=1

log(1− λ2aj)

)

= exp

(
−λt+ λ2

2

n∑

j=1

aj +
1

2

∞∑

k=2

1

k
λ2k

n∑

j=1

akj

)

≤ exp


−λt+ 1

2

(
λ2

n∑

j=1

aj

)(
1 +

1

2
λ2 ‖ a ‖∞

∞∑

k=2

λ2(k−2) ‖ a ‖k−2
∞

)


≤ exp

(
−λt+ λ2

2
κ2B2(1 + L2κ2A2)

)
(A.4)

by (A.2) and the fact that L2κ2A2 < 1/2. Treating the last term as a function
of λ, we notice that it is maximized at

λ∗(t) =
t

κ2B2(1 + L2κ2A2)
.

Notice that, for all t ∈ (0, Lκ2B2(1 + L2κ2A2)) we have λ∗(t) < L. This shows
that for all t ∈ (0, Lκ2B2(1 + L2κ2A2)), we have

exp

(
−λt− 1

2

n∑

j=1

log(1− λ2aj)

)

≤ exp

(
−λ∗(t)t+

1

2
(λ∗(t))

2κ2B2(1 + L2κ2A2)

)

= exp

(
− t2

2κ2B2(1 + L2κ2A2)

)
≤ exp

(
− t2

3κ2B2

)
. (A.5)

Thus, we conclude the proof of Lemma A.2 by combining (A.3), (A.4) and (A.5),
and using symmetry, and the independence of (X,Y ) and Z.

Proof of Lemma A.3. Let us denote the eigenvalues of Φ(z) = Φ(z)T by b1 ≥
· · · ≥ bn. For z ∈ C(κ,A,B), we have,

‖ b ‖∞:= max
1≤j≤n

|bj| ≤ κA and

n∑

j=1

b2j ≤ κ2B2. (A.6)
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By Chebyshev’s inequality, for any λ > 0, t > 0, and for all z ∈ Z we have

P(XTΦ(z)X − tr (Φ(z)) > t) ≤ e−λ(t+tr (Φ(z)))
E

(
eλX

TΦ(z)X
)
. (A.7)

Suppose that λ < L with L satisfying LκA < 1/
√
2, and z ∈ C(κ,A,B). Then,

using the fact that X has i.i.d. N(0, 1) coordinates, we can express the RHS of
(A.7) as

exp


−λ

(
t+

n∑

j=1

bj

)
− 1

2

n∑

j=1

log(1− 2λbj)




= exp


−λ

(
t+

n∑

j=1

bj

)
+ λ

n∑

j=1

bj + λ2
n∑

j=1

b2j +
1

2

∞∑

k=3

1

k
(2λ)k

n∑

j=1

bkj




≤ exp


−λt+

(
λ2

n∑

j=1

b2j

)(
1 +

∞∑

k=3

2

k
(2L)k−2 ‖ b ‖k−2

∞

)


≤ exp
(
−λt+ λ2κ2B2(1 + 4LκA)

)
(A.8)

by (A.6) and the fact that 2LκA ≤ 1/2. Treating the last term as a function of
λ, we notice that it is maximized at

λ∗(t) =
t

2κ2B2(1 + 4LκA)
.

Since for all t ∈ (0, 2Lκ2B2(1 + 4LκA)) we have λ∗(t) < L, it implies that for
all t ∈ (0, 2Lκ2B2(1 + 4LκA)), we have

exp


−λ

(
t+

n∑

j=1

bj

)
− 1

2

n∑

j=1

log(1− 2λbj)




≤ exp
(
−λ∗(t)t+ λ∗(t)κ

2B2(1 + 4LκA)
)

= exp

(
− t2

4κ2B2(1 + 4LκA)

)
≤ exp

(
− t2

8κ2B2

)
. (A.9)

Combining (A.7), (A.8) and (A.9) we get a bound for P(XTΦ(z)X−tr (Φ(z)) >
t) of the form given by the second line of (A.9). The proof of Lemma A.3 is com-
pleted by following analogous steps to get an identical bound for P(XTΦ(z)X−
tr (Φ(z)) < −t).

Computation of conditional mixed moments

In order to calculate the bias and variance of the proposed estimator, we need
to compute the conditional expectations E(Yi1j1Yi1j′1Yi2j2Yi2j′2 |Ti1 ,Ti2 ) for var-
ious choices of i1, i2, j1, j

′
1, j2, j

′
2. We shall use the following well-known result,

which is a special case of Wick formula ([20], p. 129), for computation of mixed
moments of a Gaussian random vector.
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Lemma A.4. If W1,W2,W3 and W4 are jointly Gaussian with mean zero and
covariance matrix Σ, then

E(W1W2W3W4) = Σ12Σ34 +Σ13Σ24 +Σ14Σ23. (A.10)

We shall use the formula to compute the above mixed moments with the
observation that Cov(Xi1j1 , Xi2j2 |Ti1 ,Ti2) = ρi1i2C(Ti1j1 , Ti2j2). The details of
this computation in various generic cases are given in Appendix F of [22].

Appendix B

In the following, we shall often write h and h̃ to denote hn and h̃n, respectively,
and we shall drop the subscript hn from the covariance estimates. For example,
Ĉ will be used to denote Ĉhn

.

Proof of Proposition 2.1

By elementary calculations, and supposing that mi ≥ 2 for each 1 ≤ i ≤ n, we
have

E[X̃i(s)X̃i(t)]

=
1

m2
i

mi∑

j,j′=1

E

[
YijYij′

1

h2n
K

(
s− Tij
hn

)
K

(
s− Tij′

hn

)]

=
mi

m2
i

1

h2n

∫
(C(u, u) + σ2)K

(
s− u

hn

)
K

(
t− u

hn

)
du+

mi(mi − 1)

m2
i

1

h2n

∫ ∫
C(u, v)K

(
s− u

hn

)
K

(
t− u

hn

)
dudv

=
1

mi

1

hn

∫
(C(t+ hnu, t+ hnu) + σ2)K(−u)K

(
s− t

hn
− u

)
du

+
mi − 1

mi

∫ ∫
C(s+ hnu, t+ hnv)K(−u)K(−v)dudv

=
1

mihn

[
(C(t) + σ2)

∫
K(−u)K

(
s− t

hn
− u

)
du

+hnC
′
(t)

∫
uK(−u)K

(
s− t

hn
− u

)
du+O(h2n)

]

+

(
1− 1

mi

)
C(s, t)

∫ ∫
K(−u)K(−v)dudv

+

(
1− 1

mi

)
hn

∫ ∫
[Cs(s, t)u+ Ct(s, t)v]K(−u)K(−v)dudv +O(h2n),

(B.1)

where the last step is by Taylor series expansions. Now, noticing that K is
symmetric about 0,

∫
K(x)dx = 1 and

∫
xK(x)dx = 0, (2.3) and (2.4) follow

from (B.1) after simplifications.
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Asymptotic pointwise bias (3.1)

We first compute the expected value of the estimate described by (2.9). For

simplicity of notations, we express X̃i(sl) + (s − sl)X̃
′
i(sl) by X̃i,l(s). Observe

that

X̃i,l(s) =
1

mi

mi∑

j=1

Yij
1

hn

[
K

(
sl − Tij
hn

)
+
s− sl
hn

K ′

(
sl − Tij
hn

)]

Let the support of kernel K(·) be denoted by [−BK , BK ]. Then, for each fixed
j = 1, . . . ,mi, and i = 1, . . . , n,

E

[
Y 2
ij

{(
K

(
sl − Tij
hn

)
+
s− sl
hn

K ′

(
sl − Tij
hn

))

·
(
K

(
sl′ − Tij
hn

)
+
s− sl′

hn
K ′

(
sl′ − Tij
hn

)))}

=

∫
[C(u, u) + σ2]g2(u)

[(
K

(
sl − u

hn

)
+
s− sl
hn

K ′

(
sl − u

hn

))

·
(
K

(
sl′ − u

hn

)
+
t− sl′

hn
K ′

(
sl′ − u

hn

))]
du, (B.2)

which is 0, if |sl−sl′ | > 2BKhn, since this implies that K( sl−u
hn

)K( sl′−u
hn

) = 0 for
all u ∈ R. If |sl − sl′ | ≤ 2BKhn, there is nonzero contribution of the term (B.2)

in E[X̃i,l(s)X̃i,l′(t)]Qhn
(s−sl)Qhn

(t−sl′) only if |s− t| ≤ 2(BK+CQ)hn, where

supp(Q) = [−CQ, CQ]. Thus, if A > 4(BK + CQ), then for |s− t| > Ahn/2, we
have

w(mi)E(X̃i,l(s)X̃i,l′(t))

=
1

h2n

∫ ∫
C(u, v)g(u)g(v)

[(
K

(
sl − u

hn

)
+
s− sl
hn

K ′

(
sl − u

hn

))

(
K

(
sl′ − v

hn

)
+
t− sl′

hn
K ′

(
sl′ − v

hn

))]
dudv

=

∫ ∫
C(sl + xh, sl′ + yhn)g(sl + xhn)g(sl′ + yhn)

·
[(
K(x) +

s− sl
hn

K ′(−x)
)(

K(y) +
t− sl′

hn
K ′(−y)

)]
dxdy. (B.3)

We assume that the conditions in Section 3 hold. Then using the representa-
tion (B.3), and the calculations done in Appendix F of [22], we get an expression
for the asymptotic bias in estimating C(s, t) as a function of the bandwidth hn.
These results are summarized in the following lemmas, where Cs, Css and Ct,
Ctt denote the first and second partial derivatives of C(s, t) with respect to s
and t, respectively.
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Lemma B.1 (Expectation of C̃(s, t)). Let K2 =
∫
x2K(x)dx,

Qhn
(s) =

Ln∑

l=1

Qhn
(s− sl), and Q

(2)
hn

(s) =

Ln∑

l=1

(
s− sl
hn

)2

Qhn
(s− sl).

Then, for |s− t| > 2Ahn,

EC̃(s, t) = C(s, t)Qhn
(s)Qhn

(t)

+
h2n
2
C(s, t)

[
g′′(s)

g(s)
(K2Qhn

(s)−Q
(2)
hn

(s))Qhn
(t)

+
g′′(t)

g(t)
(K2Qhn

(t)−Q
(2)
hn

(t))Qhn
(s)

]

+h2nCs
g′(s)

g(s)
(K2Qhn

(s)−Q
(2)
hn

(s))Qhn
(t)

+h2nCt
g′(t)

g(t)
(K2Qhn

(t)−Q
(2)
hn

(t))Qhn
(s)

+
h2n
2

1

g(s)g(t)

[
Css(K2Qhn

(s)−Q
(2)
hn

(s))Qhn
(t)

+Ctt(K2Qhn
(t)−Q

(2)
hn

(t))Qhn
(s)
]

+O(h2+α
n ). (B.4)

Note that because of property (iii) of the kernel Q, and the fact that sl =
(l+a)hn for l = 1, . . . , Ln, for some constant a ∈ [−3, 3], we have for s ∈ (c, 1−c),
for some c ∈ (0, 1),

Qhn
(s) =

Ln∑

l=1

Q

(
s

hn
− a− l

)
= 1.

Therefore, we can choose Ln and the sequence of points {sl}Ln

l=1 so that Ln ≈
h−1
n , and Qh(s) ≡ 1 for all s ∈ [0, 1]. That is, from Lemma B.1, we have

EC̃(s, t) = C(s, t) +O(h2n).

Lemma B.2 (Expectation of Ĉ∗(t)). Let C
′
(t) and C

′′
(t) denote the first and

second derivative of the function C(t) := C(t, t). Then, uniformly in t,

EĈ∗(t) = (C(t) + σ2)Qhn
(t)

+
h2n
2
(C(t) + σ2)

(
g′′(t)

g(t)

)
(K2Qhn

(t)−Q
(2)
hn

(t))

+h2nC
′
(t)

(
g′(t)

g(t)

)
(K2Qhn

(t)−Q
(2)
hn

(t))

+
h2n
2

C
′′
(t)

g(t)
(K2Qhn

(t)−Q
(2)
hn

(t)) +O(h2+α
n ). (B.5)
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Proof of Lemma B.2 follows along the lines of Lemma B.1. Furthermore, if
an estimator σ̂2 is such that Eσ̂2 = σ2 + O(h2n), then it follows from Lemma

B.2 that the estimator Ĉ(t) := Ĉ∗(t)− σ̂2 satisfies

EĈ(t) = C(t) +O(h2n), (B.6)

uniformly on t ∈ [0, 1], since Qhn
(t) ≡ 1 on t ∈ [0, 1]. Next, since C(s, t) =

C(t, s) and C(s, t) is smooth, it follows that Cs − Ct ≡ 0. Consequently, using
a Taylor series expansion, it follows that, for any A > 0,

C(s, t) = C

(
s+ t

2

)
+O(h2n), for |s− t| ≤ Ahn

2
. (B.7)

Combining (B.6) and (B.7) we get,

EĈ

(
s+ t

2

)
= C(s, t) + O(h2n), for |s− t| ≤ Ahn

2
, s, t ∈ [0, 1]. (B.8)

Appendix C

Proof of Proposition 4.1

We start by recalling the definition of the operator kernel Hν . The first step is
to express Ĉ(s, t) as C̃c(s, t)−Wh̃n

(s, t)(σ̂2 − σ2), where

C̃c(s, t) =W h̃n
(s, t)C̃(s, t) +Wh̃n

(s, t)

(
Ĉ∗

(
s+ t

2

)
− σ2

)
. (C.1)

Therefore, in order to separate the effect of estimating σ2, use the fact that for
any fixed ǫ > 0,

‖ HνĈψν ‖22
≤ (1 + ǫ) ‖ HνC̃cψν ‖22 +

(
1 +

1

ǫ

)
(σ̂2 − σ2)2 ‖ HνWh̃n

ψν ‖22

= (1 + ǫ) ‖ HνC̃cψν ‖22 +
(
1 +

1

ǫ

)
(σ̂2 − σ2)2O(h4n). (C.2)

The equality follows since using Hνψν = 0, the definition ofWh̃n
, and the Mean

Value Theorem, we have

|(HνWh̃n
ψν)(x)| =

∣∣∣∣∣

∫
Hν(x, s)

∫ (s−Ahn/2)∧1

(s+Ahn/2)∨0

(ψν(t)− ψν(s))dtds

∣∣∣∣∣

≤ A2h2n
2

‖ ψ′
ν ‖∞

[∫
|Hν(x, s)|ds +

1

λν

]
.
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Since E(σ̂2 − σ2)2 = o(1), it is enough to show that E ‖ HνC̃cψν ‖22 has the
bound given by the RHS of (4.2), without the multiplicative factor (1+ǫ). With

a slight abuse of notation, we write Ĉ(s) to indicate Ĉ∗(s)− σ2. Then, since

(HνC̃cψν)(x) =

∫ ∫
Hν(x, s)W h̃n

(s, t)C̃(s, t)ψν(t)dsdt

+

∫ ∫
Hν(x, s)Wh̃n

(s, t)Ĉ

(
s+ t

2

)
ψν(t)dsdt,

it follows that, ‖ HνC̃cψν ‖22 equals
∫ ∫ ∫ ∫ ∫

Hν(x, s1)Hν(x, s2)W h̃n
(s1, t1)W h̃n

(s2, t2)

· C̃(s1, t1)C̃(s2, t2)ψν(t1)ψν(t2)ds1ds2dt1dt2dx

+

∫ ∫ ∫ ∫ ∫
Hν(x, s1)Hν(x, s2)Wh̃n

(s1, t1)Wh̃n
(s2, t2)

· Ĉ
(
s1 + t1

2

)
Ĉ

(
s2 + t2

2

)
ψν(t1)ψν(t2)ds1ds2dt1dt2dx

+

∫ ∫ ∫ ∫ ∫
Hν(x, s1)Hν(x, s2)Wh̃n

(s1, t1)W h̃n
(s2, t2)

· C̃(s1, t1)Ĉ
(
s2 + t2

2

)
ψν(t1)ψν(t2)ds1ds2dt1dt2dx. (C.3)

Thus, in order to obtain E ‖ HνC̃cψν ‖22, we need to evaluate E[C̃(s1, t1)C̃(s2, t2)],

E[Ĉ( s1+t1
2 )Ĉ( s2+t2

2 )], and E[C̃(s1, t1)Ĉ(
s2+t2

2 )].
Let

Ui(s, t) =

Ln∑

l,l′=1

1

m2
i

mi∑

j,j′=1

YijYij′K̃s,l(Tij)K̃s,l(Tij′ )Qh(s− sl)Qh(t− sl′), (C.4)

where K̃s,l(·) is defined by

K̃s,l(u) =
1

h

[
K

(
sl − u

h

)
+

(
s− sl
h

)
K ′

(
sl − u

hn

)]
, (C.5)

for s ∈ [0, 1] and l = 1, . . . , Ln. Then we can express the expectation of the first
term on the RHS of (C.3) as

1

n2

n∑

i=1

w2(mi)

∫ ∫ ∫ ∫ ∫
Hν(x, s1)Hν(x, s2)W h̃n

(s1, t1)W h̃n
(s2, t2)

·[g(s1)g(s2)g(t1)g(t2)]−1
E[Ui(s1, t1)Ui(s2, t2)]ψν(t1)ψν(t2)ds1ds2dt1dt2dx

+
1

n2

n∑

i1 6=i2

w(mi1 )w(mi2 )

∫ ∫ ∫ ∫ ∫
Hν(x, s1)Hν(x, s2)W h̃n

(s1, t1)W h̃n
(s2, t2)

·[g(s1)g(s2)g(t1)g(t2)]−1
E[Ui1(s1, t1)Ui2(s2, t2)]ψν(t1)ψν(t2)ds1ds2dt1dt2dx.

(C.6)
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The following proposition is the key to get a simplified bound on (C.6). It is
proved using a lengthy, but fairly straightforward calculation, the details of
which are given in Appendix F of [22].

Proposition C.1. Suppose that A > 4(BK + CQ). Then for |sk − tk| > 1
2Ahn

(k = 1, 2), we have

1

n2

n∑

i=1

w2(mi)
E[Ui(s1, t1)Ui(s2, t2)]

g(s1)g(s2)g(t1)g(t2)

=
1

n2

n∑

i=1

(mi − 2)(mi − 3)

mi(mi − 1)

[
(C(s1, t1) +O(h2n))(C(s2, t2) +O(h2n))

+ (C(s1, s2) +O(h2n))(C(t1, t2) +O(h2n))

+(C(s1, t2) +O(h2n))(C(s2, t1) +O(h2n))
]

+ Z1 + Z2 + Z3 + Z4 + Z5 + Z6, (C.7)

where the quantities Zj := Zj(s1, s2, t1, t2), j = 1, . . . , 6. Here, Z1, . . . , Z4

are asymptotically equivalent to Z(s1, s2), Z(s1, t2), Z(t1, s2) and Z(t1, t2), re-

spectively; and Z5, and Z6 are asymptotically equivalent to Z̃(s1, s2, t1, t2) and

Z̃(s1, t2, t1, s2), respectively, where

Z(s, t) =

{
O
(

1
nhnmn

)
if |s− t| ≤ Ahn

2

0 otherwise;

and

Z̃(s1, s2, t1, t2) =





O
(

1
nh2

nm
2
n

)
if max{|s1 − s2|, |t1 − t2|} ≤ Ahn

2

O
(

1
nhnm2

n

)
if |s1 − s2| ≤ Ahn

2 and |t1 − t2| > Ahn

2

O
(

1
nhnm2

n

)
if |s1 − s2| > Ahn

2 and |t1 − t2| ≤ Ahn

2

0 otherwise.

Also,

1

n2

n∑

i1 6=i2

w(mi1 )w(mi2 )
E[Ui1(s1, t1)Ui2(s2, t2)]

g(s1)g(s2)g(t1)g(t2)

=
n− 1

n
(C(s1, t1) +O(h2n))(C(s2, t2) +O(h2n))

+
1

n2




n∑

i1 6=i2

ρ2i1i2


[(C(s1, s2) +O(h2n))(C(t1, t2) +O(h2n))

+(C(s1, t2) +O(h2n))(C(s2, t1) +O(h2n))
]
. (C.8)

In all of above the O(·) terms are uniform in s1, s2, t1, t2 in their respective
domains.
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Now we deal with the last two terms on the RHS of (C.3). Let

Vi(s) =

Ln∑

l=1

1

mi

mi∑

j=1

Y 2
ijK̃s,l(Tij). (C.9)

Then,

Ĉ∗(s) =
1

n

n∑

i=1

[g(s)]−1Vi(s)Qhn
(s− sl).

For convenience, in the rest of this subsection we shall use zk to denote (sk +
tk)/2, for k = 1, 2. Then the following proposition describes the contribution of
the quantities of the type E[Vi1 (z1)Vi2(z2)] and E[Ui1(s1, t1)Vi2(z2)].

Proposition C.2. Suppose that A > 4(BK+CQ). Then for (i) |sk−tk| ≤ Ahn

2 ,
k = 1, 2,

1

n2

n∑

i=1

E(Vi(z1)Vi(z2))

g(z1)g(z2)

+
1

n2

n∑

i1 6=i2

E(Vi1 (z1)Vi2 (z2))

g(z1)g(z2)
− σ2[E(Ĉ∗(z1)) + E(Ĉ∗(z2))] + σ4

= C(s1, t1)C(s2, t2)−
(

1

n2

n∑

i=1

1

mi

)
(C(s1, t1) + σ2)(C(s2, t2) + σ2) +O(h2n)

+


 1

n

(
1− 1

n

n∑

i=1

1

mi

)
+

1

n2

n∑

i1 6=i2

ρ2i1i2




· (C(s1, s2)C(t1, t2) + C(s1, t2)C(s2, t1) +O(hn)) + Z7, (C.10)

where Z7 := Z7(z1, z2) is asymptotically equivalent to Z(z1, z2). Next, if (ii)
|s1 − t1| > Ahn

2 and |s2 − t2| ≤ Ahn

2 , then

1

n2

n∑

i=1

w(mi)E(Ui(s1, t1)Vi(z2))

+
1

n2

∑

i1 6=i2

w(mi1 )E(Ui1 (s1, t1)Vi2(z2)) − σ2
EC̃(s1, t1)

= (C(s1, t1) +O(h2n))(C(s2, t2) +O(h2n))

−
(

1

n2

n∑

i=1

2

mi

)
(C(s1, t1) +O(h2n))(C(s2, t2) + σ2 +O(h2n))

+


 1

n

(
1− 1

n

n∑

i=1

2

mi

)
+

1

n2

n∑

i1 6=i2

ρ2i1i2




· (C(s1, s2)C(t1, t2) + C(s1, t2)C(s2, t1) +O(hn)) + Z8 + Z9,

(C.11)



PCA for correlated functional data 1993

where the O(h2n) terms within brackets in the first term on the RHS depend on
(s1, t1) and (s2, t2) respectively, and Zj := Zj(s1, t1, z2), j = 8, 9 satisfy

Z8 =

{
O
(

1
nh2

nmn

)
if |s1 − s2| ≤ Ahn

2

0 otherwise;

Z9 =

{
O
(

1
nh2

nmn

)
if |t1 − s2| ≤ Ahn

2

0 otherwise.

The proof of Proposition 4.1 is now finished by using the definitions of

E[C̃(s1, t1)C̃(s2, t2)], E[Ĉ(
s1+t1

2 )Ĉ( s2+t2
2 )], and E[C̃(s1, t1)Ĉ( s2+t2

2 )]; using the
properties of the kernel Hν(x, y); and the bounds in Propositions C.1 and C.2
and plugging everything back into the expectation of (C.3). For details, see
Appendix E.

Appendix D

Asymptotic pointwise variance (3.2)

In this section, we prove (3.2), (3.9) and (3.10). Most of the derivations are
similar to that of Proposition 4.1. Thus we simply give a brief outline.

First, using the fact that W h̃n
(s, t)Wh̃n

(s, t) = 0, we obtain

Var(Ĉ(s, t))

= W h̃n
(s, t)Var(C̃(s, t)) +Wh̃n

(s, t)Var

(
Ĉ∗

(
s+ t

2

)
− σ̂2

)

≤ W h̃n
(s, t)Var(C̃(s, t)) + 2Wh̃n

(s, t)

[
Var

(
Ĉ∗

(
s+ t

2

))
+Var(σ̂2)

]
.

Since E(σ̂2 − σ2)2 has the rate given by (3.9) (Corollary 3.1), we only need to

provide bounds for W h̃n
(s, t)Var(C̃(s, t)) and Wh̃n

(s, t)Var(Ĉ∗(
s+t
2 )). We state

these in the following propositions which are proved in Appendix F of [22].

Proposition D.1.

W h̃n
(s, t)Var(C̃(s, t))

= O

(
1

n

)
+


 1

n2

n∑

i6=j

ρ2ij


O(1) +O

(
max

{
1

nh2nm
2
n

,
1

nhnmn

})
. (D.1)

Proposition D.2.

Wh̃n
(s, t)Var

(
Ĉ∗

(
s+ t

2

))
= O

(
1

n

)
+


 1

n2

n∑

i6=j

ρ2ij


O(1) +O

(
1

nhnmn

)
.

(D.2)

The proof of (3.10) is finished by combining Propositions D.1 and D.2 and
Corollary 3.1.
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Proof of Corollary 3.1

First observe that,

E(σ̂2 − σ2)2

=
1

(T1 − T0)2

∫ T1

T0

∫ T1

T0

E

[(
Ĉ∗(t)− σ2 − Ĉ0(t)

)(
Ĉ∗(s)− σ2 − Ĉ0(s)

)]
dsdt

≤ sup
t∈[T0,T1]

E(Ĉ∗(t)− σ2 − Ĉ0(t))
2 (by Cauchy-Schwarz inequality)

≤ 2 sup
t∈[T0,T1]

Var(Ĉ∗(t)) + 2 sup
t∈[T0,T1]

Var(Ĉ0(t))

+ sup
t∈[T0,T1]

(
E(Ĉ∗(t))− σ2 − E(Ĉ0(t))

)2
. (D.3)

By Propositions D.1 and D.2, and the definition (2.10) of Ĉ0, the sum of the
first two term on the RHS on (D.3) is bounded by

O

(
1

n

)
+


 1

n2

n∑

i6=j

ρ2ij


O(1) +O

(
max

{
1

nh2nm
2
n

,
1

nhnmn

})
.

On the other hand, since for any bounded u ∈ [A1, A2],

∣∣∣∣
1

2
(C(t− hnu, t+ hnu) + C(t+ hnu, t− hnu))− C(t, t)

∣∣∣∣ = O(h2n),

uniformly in t ∈ [T0, T1], it follows from Lemmas B.1 and B.2 (Appendix B)
that the last term on the RHS of (D.3) is O(h4n).

Proof of Proposition 4.2

Without loss of generality we assume g to be the uniform density on [0, 1]. For
convenience we drop subscript n from hn, mn and mn. We need to consider two
cases separately: (i) |s− t| > Ah/2 and (ii) |s− t| ≤ Ah/2.

First consider the case |s − t| > Ah/2. Then, we have Ĉ(s, t) − E[Ĉ(s, t)] =

WAh(s, t)(C̃(s, t)− E[C̃(s, t)]). Let

B(s, Tij) =

Ln∑

l=1

K̃s,l(Tij)Qh(s− sl), 1 ≤ j ≤ mi, 1 ≤ i ≤ n.

Since |K̃s,l(Tij)| = O(h−1) and the summands are nonzero for a bounded num-
ber of indices l, there exists a constant C3 > 0 such that

sup
s∈[0,1]

max
1≤i≤n

max
1≤j≤mi

|B(s, Tij)| ≤ C3h
−1. (D.4)
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Note further that B(s, Tij) = 0 if |s− Tij | > 2(BK + CQ)h. Next,

Ln∑

l=1

X̃i,l(s) =
1

mi

mi∑

j=1

(Xi(Tij) + σεij)B(s, Tij)

=

M∑

k=1

√
λkξik


 1

mi

mi∑

j=1

ψk(Tij)B(s, Tij)


 + σ

1

mi

mi∑

j=1

εijB(s, Tij)

=
M∑

k=1

√
λkξikBi,k(s) + σ

1

mi

mi∑

j=1

εijB(s, Tij),

where Bi,k(s) :=
1
mi

∑mi

j=1 ψk(Tij)B(s, Tij). By (D.4), there exists C4 > 0 such
that

sup
s∈[0,1]

max
1≤k≤M

max
1≤i≤n

|Bi,k(s)| ≤ C4h
−1. (D.5)

Also, since A > 4(BK +CQ)h and since |s− t| ≥ Ah
2 , it follows that B(s, Tij)×

B(t, Tij) = 0. Furthermore, for each k = 1, . . . ,M , {Bi,k(s)}ni=1 are independent,
and these random variables are independent of {ξik : 1 ≤ k ≤ M}ni=1 and
{εi}ni=1 where εi = (εij)

mi

j=1. Let Bi(s) = (B(s, Tij))
mi

j=1. Then, we can express

C̃(s, t)− E[C̃(s, t)] as,

C̃(s, t)− E[C̃(s, t)]

=
∑

1≤k 6=k′≤M

√
λkλk′

1

n

n∑

i=1

ξikξik′w(mi)Bi,k(s)Bi,k′ (t)

+

M∑

k=1

λk
1

n

n∑

i=1

(ξ2ik − 1)w(mi)Bi,k(s)Bi,k(t)

+

M∑

k=1

λk
1

n

n∑

i=1

w(mi)(Bi,k(s)Bi,k(t)− E(Bi,k(s)Bi,k(t)))

+σ
M∑

k=1

√
λk

1

n

n∑

i=1

w(mi)

mi
ξik(ε

T
i Bi(t)Bi,k(s) + ε

T
i Bi(s)Bi,k(t))

+σ2 1

n

n∑

i=1

w(mi)

m2
i

[
εTi Bi(s)(Bi(t))

T εi − (Bi(t))
TBi(s)

]

+σ2 1

n

n∑

i=1

w(mi)

m2
i

[(Bi(t))
TBi(s)− E((Bi(t))

TBi(s))].

The last term in the above expression vanishes since |s− t| > 4(BK + CQ)h so
that, in particular, (Bi(t))

TBi(s) = 0. Note that, max1≤i≤n w(mi) is bounded.
By (D.5), max1≤k,k′≤M |Bi,k(s)Bi,k′ (t)| ≤ C2

4h
−2 and by straightforward com-
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putations

max
1≤k,k′≤M

max
1≤i≤n

V ar(Bi,k(s)Bi,k′ (t)) ≤ C5 max
{
(mh)−2, (mh)−1

}
for C5 > 0.

(D.6)
Since mnh = o(1), for sufficiently large n, the bound in (D.6) is of the form
C5(mnh)

−2. Thus, using the condition that m2
n = o(nh2/ logn), by Bernstein’s

inequality, we conclude that given η > 0, there exists c1,η > 0 such that for
sufficiently large n,

P

(
max

1≤k≤M

∣∣∣∣∣
1

n

n∑

i=1

w(mi)(Bi,k(s)Bi,k(t)− E(Bi,k(s)Bi,k(t)))

∣∣∣∣∣ > c1,η

√
logn

nm2
nh

2

)

≤ n−η. (D.7)

Again, since mh = o(1), from direct calculations, for sufficiently large n

max
1≤k,k′≤M

V ar((Bi,k(s)Bi,k′ (t))2) ≤ C6(mh)
−6.

From this, (D.5) and Bernstein’s inequality, we have, for any x > 0, and for any
1 ≤ k, k′ ≤M ,

P

(
1

n

n∑

i=1

(w(mi))
2 [Bi,k(s)Bi,k′ (t)− E(Bi,k(s)Bi,k′ (t))]

2

− 1

n

n∑

i=1

(w(mi))
2Var(Bi,k(s)Bi,k′ (t)) > x

)

≤ exp

(
− nx2

2C6(mh)−6 + xC7h−4

)
(D.8)

for some constant C7 > 0. We take

x ∼





(
log n

n(mh)6

)1/2
if m6 = O

(
nh2

logn

)

log n
nh4 if m6 ≫

(
nh2

logn

)

and recall that by (3.4), m2 = o(nh2/ logn) and n(mh)2/ logn ≫ κ2n ≥ 1, so
that

1

(mh)2
≫ max

{(
logn

n(mh)6

)1/2

,
logn

nh4

}
,

to conclude from (D.8) that there exists c3,η > 0 such that for sufficiently large n,

P

(
1

n

n∑

i=1

(w(mi))
2 [Bi,k(s)Bi,k′ (t)− E(Bi,k(s)Bi,k′ (t))]

2
> (C5 + c3,η)

1

m2h2

)

≤ n−η. (D.9)
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Since max1≤k,k′≤M |E(Bi,k(s)Bi,k′ (t))| = O(1), a bound similar to (D.9) holds
even when the summands are not centered.

Next, we deal with the first term on the RHS of (D.6). Conditioning on T,

we can express ξk = (ξik)
n
i=1 as ξk := R1/2ξ̃k, where the random vectors ξ̃k are

independently distributed as Nn(0, I) for different k’s, and are independent of
{εi}ni=1. Then we can write (conditionally on T)

1

n

n∑

i=1

ξikξik′w(mi)Bi,k(s)Bi,k′ (t) = ξ̃
T

k Φ(T)ξ̃k′ ,

where Φ(T) = R1/2 diag((w(mi)
n Bi,k(s)Bi,k′ (t))ni=1)R

1/2. Observe that by (D.5)
and condition C3, we have ‖ Φ(T) ‖≤ C4κn/(nh

2). Moreover, by the non-
centered version of (D.9), there is a set Dn in the sigma-field generated by
T, such that, P (T ∈ Dn) ≥ 1 − n−η, and for T ∈ Dn, we have tr (Φ(T)2) ≤
c4,ηκ

2
n/(nm

2h2). Therefore, by an application of Lemma A.2 (with A ∼ (nh2)−1,
B ∼ (nm2h2)−1/2 and t ∼ κn(logn/(nm

2h2))1/2), we have, for some c5,η > 0,

max
1≤k 6=k′≤M

P

(∣∣∣∣∣
1

n

n∑

i=1

ξikξik′w(mi)Bi,k(s)Bi,k′ (t)

∣∣∣∣∣ > c5,ηκn

√
logn

nm2h2
,T ∈ Dn

)

≤ n−η. (D.10)

Very similar arguments (using Lemma A.3 in addition to Lemma A.2) can be
used to obtain bounds of order κn(logn/(nm

2h2))1/2 (that hold with probability
at least 1−O(n−η), for any given η > 0) for the second, fourth and fifth terms
on the RHS of (D.6). Thus, combining these bounds, we have, for some constant
c6,η > 0,

P

(∣∣∣WAh(s, t)
(
Ĉ(s, t)− E(Ĉ(s, t)

)∣∣∣ > c6,ηκn

√
logn

nm2h2

)
≤ n−η. (D.11)

Finally, we deal with the case |s− t| ≤ Ah/2. In this case, we have Ĉ(s, t)−
E[Ĉ(s, t)] =WAh(s, t)(Ĉ∗(

s+t
2 )−E[Ĉ∗(

s+t
2 )]) (ignoring the maximum over h2 in

the definition). Then similar (but somewhat simpler) arguments, now involving
Lemma A.3, show that for some c7,η > 0,

P

(∣∣∣∣WAh(s, t)

(
Ĉ∗

(
s+ t

2

)
− E

[
Ĉ∗

(
s+ t

2

)])∣∣∣∣ > c7,ηκn

√
logn

nm2h2

)
≤ n−η.

(D.12)
Combining (D.11) and (D.12) we obtain the result.

Appendix E

Computation of E ‖ HνC̃cψν ‖22

We put the different pieces derived in Appendix C together to obtain the bound
for E ‖ HνC̃cψν ‖22. For ease of notation, we denote by Hν ≡ Hν(x, s1, s2, t1, t2)
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the integral operator with kernel Hν(x, s1)Hν(x, s2)ψν(t1)ψν(t2). Then, with r1,
r2 taking values 0 or 1, not both equal to 0,

∫ ∫ ∫ ∫ ∫
Hν(x, s1, s2, t1, t2)(C(s1, t1))

r1(C(s2, t2))
r2ds1ds2dt1dt2dx

= 0; (E.1)∫ ∫ ∫ ∫ ∫
Hν(x, s1, s2, t1, t2)(C(s1, t2))

r1(C(s2, t1))
r2ds1ds2dt1dt2dx

= 0; and (E.2)∫ ∫ ∫ ∫ ∫
Hν(x, s1, s2, t1, t2)C(s1, s2)C(t1, t2)ds1ds2dt1dt2dx

=
∑

1≤k 6=ν≤M

λνλk
(λk − λν)2

. (E.3)

Implicitly using (E.7)–(E.9), we also have the bound

∣∣∣∣
∫ ∫ ∫ ∫ ∫

Hν(x, s1, s2, t1, t2)R(s1, s2, t1, t2)ds1ds2dt1dt2dx

∣∣∣∣ = O(‖ R ‖∞).

(E.4)
From Proposition C.1, the total contribution in (C.6) of (C.8) and the first

term on the RHS of (C.7), becomes

(
1

n

(
1− 1

n

n∑

i=1

4mi − 6

mi(mi − 1)

)
+
n− 1

n

)

·
∫ [∫ ∫

Hν(x, s)W h̃n
(s, t)[C(s, t) +O(h2n)]ψν(t)dsdt

]2
dx

+


 1

n

(
1− 1

n

n∑

i=1

4mi − 6

mi(mi − 1)

)
+

1

n2

∑

i1 6=i2

ρ2i1i2




·
∫ ∫ ∫ ∫ ∫

Hν(x, s1)Hν(x, s2)W h̃n
(s1, t1)W h̃n

(s2, t2)

(
C(s1, s2) +O(h2n)

) (
C(t1, t2) +O(h2n)

)
ψν(t1)ψν(t2)ds1ds2dt1dt2dx

+


 1

n

(
1− 1

n

n∑

i=1

4mi − 6

mi(mi − 1)

)
+

1

n2

∑

i1 6=i2

ρ2i1i2




·
∫ ∫ ∫ ∫ ∫

Hν(x, s1)Hν(x, s2)W h̃n
(s1, t1)W h̃n

(s2, t2)

(
C(s1, t2) +O(h2n)

) (
C(s2, t1) +O(h2n)

)
ψν(t1)ψν(t2)ds1ds2dt1dt2dx.

(E.5)

Since HνCψν ≡ 0, it can be checked that the first integral in (E.5) is O(h2n). On
the other hand, from the definition of W h̃n

(s, t) and the fact that HνCψν ≡ 0,
it follows that the last integral term is O(hn).
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Next, apply Hν to the following functions: Wh̃n
(s1, t1)Wh̃n

(s2, t2)D2(s1, s2,

t1, t2) and 2W h̃n
(s1, t1)Wh̃n

(s2, t2)D3(s1, s2, t1, t2), where D2(s1, s2, t1, t2) and
D3(s1, s2, t1, t2) are the terms given by the sum of the first three terms on the
RHS of (C.10) (including the isolated O(h2n) term), and the sum of the first
three terms on the RHS of (C.11), respectively. Then, adding these terms to
(E.5), we have, by (E.1)–(E.4), (E.9) (for dealing with the isolated O(h2n) term
in (C.10)), and the comment following (E.5), that this sum equals

R1 =
1

n


 ∑

1≤k 6=ν≤M

λkλν
(λk − λν)2




+


 1

n2

n∑

i1 6=i2

ρ2i1i2




 ∑

1≤k 6=ν≤M

λkλν
(λk − λν)2

+O(hn)




+O(h4n) +O

(
1

nmn

)
+O

(
hn
n

)
. (E.6)

Next, for notational convenience, denote the integral operator Hν applied to Zj

multiplied by W h̃n
(s1, t1)W h̃n

(s2, t2)Wh̃n
(s1, t2) (where Zj are as in Proposi-

tions C.1–C.2) byHνW
s1,t1

W
s2,t2

W s1,t2Zj . Using (E.7)–(E.12), and the bounds
in Proposition C.1 for Zj, j = 1, . . . , 4, we have,

R2 := HνW
s1,t1

W
s2,t2

Z1 = HνW
s1,t1

W
s2,t2

W s1,s2Z1 = O

(
1

nhnmn

)
,

R3 := HνW
s1,t1

W
s2,t2

Z2 = HνW
s1,t1

W
s2,t2

W s1,t2Z2 = O

(
1

nmn

)
,

R4 := HνW
s1,t1

W
s2,t2

Z3 = HνW
s1,t1

W
s2,t2

W s2,t1Z3 = O

(
1

nmn

)
,

R5 := HνW
s1,t1

W
s2,t2

Z4 = HνW
s1,t1

W
s2,t2

W t1,t2Z4 = O

(
1

nmn

)
.

Using analogous reasoning, from Propositions C.1 and C.2 we also have

R6 := HνW
s1,t1

W
s2,t2

Z5 = O

(
1

nhnm2
n

)
,

R7 := HνW
s1,t1

W
s2,t2

Z6 = O

(
1

nm2
n

)

R8 := HνW
s1,t1W s2,t2Z7 = O

(
hn
nmn

)
,

R9 := HνW
s1,t1

W s2,t2Z8 = O

(
1

nhnmn

)
,

R10 := HνW
s1,t1

W s2,t2Z9 = O

(
1

nmn

)
.
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Hence, combining (E.6) with the bounds for R2 to R10, using the definitions of

E[C̃(s1, t1)C̃(s2, t2)], E[Ĉ( s1+t1
2 )Ĉ( s2+t2

2 )], and E[C̃(s1, t1)Ĉ(
s2+t2

2 )], and plug-
ging everything back into (C.3), we complete the proof of Proposition 4.1.

Some error bounds involving Dirac’s δ

Here, we provide some key estimates that are crucial to obtaining the overall risk
bound. They all involve the operatorHν . Due to the decomposition (4.1) we can
reduce the computations of these bounds to integrals involving {ψk(·)}Mk=1 and
δ(·, ·). Throughout we assume that R(s1, s2, t1, t2) is a “nice” function satisfying
certain boundedness conditions. Then the following bounds hold.

∣∣∣∣
∫ ∫ ∫ ∫

δ(x, s1)δ(x, s2)R(s1, s2, t1, t2)ψν(t1)ψν(t2)ds1ds2dt1dt2

∣∣∣∣
≤ ‖ R ‖∞‖ ψν ‖2∞ . (E.7)

∣∣∣
∫ ∫ ∫ ∫

δ(x, s1)δ(x, s2)WAhn
(s1, t1)

·R(s1, s2, t1, t2)ψν(t1)ψν(t2)ds1ds2dt1dt2

∣∣∣
≤ Ahn ‖ R ‖∞‖ ψν ‖2∞ . (E.8)

∣∣∣
∫ ∫ ∫ ∫

δ(x, s1)δ(x, s2)WAhn
(s1, t1)WAhn

(s2, t2)

· R(s1, s2, t1, t2)ψν(t1)ψν(t2)ds1ds2dt1dt2

∣∣∣
≤ (Ahn)

2 ‖ R ‖∞‖ ψν ‖2∞ . (E.9)

∣∣∣
∫ ∫ ∫ ∫

δ(x, s1)δ(x, s2)WAhn
(t1, t2)

·R(s1, s2, t1, t2)ψν(t1)ψν(t2)ds1ds2dt1dt2

∣∣∣
≤ Ahn ‖ R ‖∞‖ ψν ‖2∞ . (E.10)

∣∣∣
∫ ∫ ∫ ∫

δ(x, s1)δ(x, s2)WAhn
(t1, t2)WAhn

(s2, t2)

· R(s1, s2, t1, t2)ψν(t1)ψν(t2)ds1ds2dt1dt2

∣∣∣
≤ (Ahn)

2 ‖ R ‖∞‖ ψν ‖2∞ . (E.11)

∣∣∣
∫ ∫ ∫ ∫

δ(x, s1)δ(x, s2)WAhn
(t1, s2)WAhn

(s2, t2)

·R(s1, s2, t1, t2)ψν(t1)ψν(t2)ds1ds2dt1dt2

∣∣∣
≤ (Ahn)

2 ‖ R ‖∞‖ ψν ‖2∞ . (E.12)
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