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Abstract: This paper focuses on recovering an unknown vector β from
the noisy data Y = Xβ + σξ, where X is a known n × p-matrix, ξ is a
standard white Gaussian noise, and σ is an unknown noise level. In order
to estimate β, a spectral regularization method is used, and our goal is to
choose its regularization parameter with the help of the data Y . In this
paper, we deal solely with regularization methods based on the so-called
ordered smoothers (see [13]) and extend the oracle inequality from [11] to
the case, where the noise level is unknown.
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1. Introduction and main results

This paper deals with recovering an unknown vector β ∈ R
n from the noisy

data

Y = Xβ + σξ,

where X is a known n×p-matrix with n ≥ p, ξ =
(

ξ(1), . . . , ξ(n)
)⊤

is a standard
white Gaussian noise (Eξ(k) = 0, Eξ2(k) = 1, k = 1, . . . , n ), and σ is an
unknown noise level.

In spite of its simplicity, this mathematical model plays an important role in
solving practical inverse problems like gravity problems (see, e.g. [3]), tomog-
raphy inverse problems [12], and many others. As a rule, in inverse problems n
and p are very large and therefore the main goal in this paper is to propose an
approach suitable for n = ∞, p = ∞, severely ill-posed matrices X⊤X , and the
unknown noise level.
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We begin with the standard maximum likelihood estimate

β̂0 = argmin
β∈Rp

‖Y −Xβ‖2 = (X⊤X)−1X⊤Y,

where ‖z‖2 = ∑n
k=1 z

2(k). It is well known and easy to check that

E(β̂0 − β)(β̂0 − β)⊤ = σ2(X⊤X)−1

and thus, the mean square risk of β̂0 is computed as follows:

E‖β̂0 − β‖2 = σ2trace
[

(X⊤X)−1
]

= σ2

p
∑

k=1

λ−1(k), (1)

where λ(k) and ψk ∈ R
n here and below are the eigenvalues and the eigenvectors

of X⊤X
X⊤Xψk = λ(k)ψk.

In this paper, it is assumed solely that λ(1) ≥ λ(2) ≥ · · · ≥ λ(p). This

assumption together with (1) reveals the main difficulty in β̂0: its risk may be
very large when p is large or when X⊤X has a large condition number.

The natural idea to improve β̂0 is to suppress large λ−1(k) in (1) with the
help of a linear smoother. Therefore we make use of the following family of linear
estimates

β̂α = Hαβ̂0, α ∈ (0, α◦], (2)

where Hα, α ∈ (0, α◦] is a family of p× p-smoothing matrices.
In what follows, we deal with the smoothing matrices admitting the following

representation

Hα =

p
∑

k=1

Hα[λ(k)]ψkψ
⊤
k ,

where Hα(λ) : R
+ → [0, 1] is such that

lim
α→0

Hα(λ) = 1, lim
λ→0

Hα(λ) = 0.

In the literature (see, e.g., [9]), this method is called spectral regularization. It
covers widely used regularizations methods such as the Tikhonov-Phillips regu-
larization [20] known in the statistical literature as ridge regression, Landweber’s
iterations [14], the µ-method (see e.g. [9]), and many others.

Summarizing, β is estimated with the help of the family of linear estimates
β̂α, α ∈ (0, α◦] defined by (2) and our goal is to find based on the data at hand
the best estimator within this family. Notice that for given α, the mean square
risk of β̂α is computed as follows:

Lα(β)
def
= E‖β̂α − β‖2 =

p
∑

k=1

[

1− hα(k)
]2〈β, ψk〉2 + σ2

p
∑

k=1

λ−1(k)h2α(k), (3)
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where

hα(k)
def
= Hα[λ(k)] and 〈β, ψk〉 def

=

p
∑

l=1

β(l)ψk(l).

It is easily seen from (3) that the variance of β̂α is always smaller than that one

of β̂0, but β̂α has a non-zero bias and therefore adjusting α we may improve the
risk of β̂0. This improvement may be very significant when 〈β, ψk〉2 are small
for large k.

In practice, a good choice of the regularizing matrix family Hα is a delicate
problem related to the computational complexity of β̂α. For details, we refer
interested readers to [9].

As a rule, practical spectral regularization methods (the spectral cut–off, the
Tikhonov-Phillips regularization, Landweber’s iterations) represent the so-called
ordered smoothers [13]. This means that the family of functions {Hα(λ), α ∈
(0, α◦]} is ordered in the following sense:

Definition 1. The family of functions {Fα(λ), α ∈ A, λ ∈ Λ ⊆ R
+} is ordered

if:

1. For any given α ∈ A, Fα(λ) : Λ → [0, 1] is a monotone function of λ.
2. If for some α1, α2 ∈ A and some λ′ ∈ Λ, Fα1

(λ′) < Fα2
(λ′), then for all

λ ∈ Λ, Fα1
(λ) ≤ Fα2

(λ).

The next important question usually arising in practice is related to the data-
driven choice of the regularization parameter α. In statistical literature, one can
find several general approaches to this problem. We cite here, for instance, the
Lepski method which has been adopted to inverse problems in [17], [2], [5], and
the model selection technique which was used in [15].

The approach proposed in this paper is a slight modification of the unbiased
risk estimation. To make the presentation simpler, we begin with the case, where
the noise level σ2 is known. Intuitively, a good data-driven regularization pa-
rameter should minimize in some sense the risk Lα(β) (see (3)). Obviously, the
best regularization parameter minimizing Lα(β) cannot be used since it depends
on the unknown parameter of interest β. However, the idea of minimization of
Lα(β) may be put into practice with the help of the empirical risk minimization
principle defining the regularization parameter as follows:

α̂ = argmin
α

Rσ
α[Y, Pen], (4)

where

Rσ
α[Y, Pen]

def
= ‖β̂0 − β̂α‖2 + σ2Pen(α),

and Pen(α) : (0, α◦] → R
+ is a given function called penalty. The main idea in

this approach is to link Lα(β) and R
σ
α[Y, Pen]. Heuristically, we want to find a

minimal penalty Pen(α) that ensures the following inequality

Lα(β) . Rσ
α[Y, Pen] + C, (5)
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where C is a random variable that doesn’t depend on α. It is convenient to define
this constant as follows:

C = −‖β − β̂0‖2 = −σ2

p
∑

k=1

λ−1(k)ξ2(k).

The traditional approach to solving (5) is based on the minimization of the
unbiased risk estimate. In this method, the penalty is computed as a root of the
equation

Lα(β) = E

{

Rσ
α[Y, Penu] + C

}

. (6)

One can check with a simple algebra that

Penu(α) = 2

p
∑

k=1

λ−1(k)hα(k).

The idea of this penalty goes back to [1] and [7] provides some oracle inequalities
related to this approach.

Another well-known and widely used approach to the data-driven choice of α
is related to the cross validation technique [8]. In the framework of our statistical
model, this method prompts a data-driven regularization parameter which is
close to

α̂CV = argmin
α

{

‖Y −Xβ̂α‖2 + σ2PenCV (α)
}

,

with

PenCV (α) = 2

p
∑

k=1

hα(k).

It is well-known (see e.g. [13]) that if the risk of β̂ is measured by E‖Xβ̂−Xβ‖2,
then this penalty is nearly optimal and it works always well.

However, the question Does α̂CV works well when the risk is measured by
E‖β̂ − β‖2 ? has a delicate answer depending on the spectrum of X⊤X . To
the best of our knowledge there are no oracle inequalities controlling the risk of
β̂α̂CV uniformly in β. Notice, however, that one can show with the help of the
method for computing minimal penalties in [4], that if λ(k) ≤ exp(−κk), then
the risk of this method blows up starting from some κ > 0.

The similar effect takes place in the unbiased risk estimation. This happens
because the standard deviation of Rσ

α[Y, Penu] + C may be very large with
respect to the mean E

{

Rσ
α[Y, Penu]+ C

}

and therefore (5) may fail with a high
probability.

To improve the above mentioned drawbacks of the unbiased risk estimation,
we define, following [11], the penalty as a minimal root of the equation

E sup
α≤α◦

[

Lα(β)−Rσ
α[Y, Pen]− C

]

+
≤ C1E

[

Lα◦(β)−Rσ
α◦ [Y, Pen]− C

]

+
, (7)

where [x]+ = max{0, x} and C1 > 1 is a constant. Heuristic motivation behind
this approach is rather transparent. We are looking for the minimal penalty that
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balances the excess risks corresponding to all possible α ∈ (0, α◦]. Recall that
the excess risk is defined by the difference between the risk of the estimate and
its penalized empirical risk. Note that in view of (5), we can deal solely with
the positive part of the excess risk.

In order to explain heuristically how Equation (7) may be solved, we begin
with the spectral representation of the underlying statistical problem. One can
check easily that

y(k)
def
= 〈X⊤Y, ψk〉/λ(k) = 〈β, ψk〉+ σξ′(k)/

√

λ(k),

where ξ′(k) are i.i.d. N (0, 1). With these notations, β̂α admits the following
representation

〈β̂α, ψk〉 = hα(k)y(k) = hα(k)β(k) + σhα(k)ξ
′(k)/

√

λ(k),

where β(k) = 〈β, ψk〉, and therefore

‖β̂0 − β̂α‖2 =

p
∑

k=1

[

1− hα(k)
]2
y2(k),

‖β − β̂α‖2 =

p
∑

k=1

[

β(k)− hα(k)y(k)
]2
.

(8)

In what follows, it is assumed that the penalty has the following structure

Pen(α) = Penu(α) + (1 + γ)Q(α),

where γ is a small positive number and Q(α), α > 0 is a positive function of
α to be defined later on. Recall that the first term at the right-hand side is
obtained from the unbiased risk estimation (see Equation (6)). With Pen(α) we
can rewrite the excess risk as follows:

Lα(β)−Rσ
α[Y, Pen]− C

= σ2

p
∑

k=1

λ−1(k)
[

2hα(k)− h2α(k)
]

(ξ′2(k)− 1)− (1 + γ)σ2Q(α)

+ 2σ

p
∑

k=1

λ−1/2(k)
[

2hα(k)− h2α(k)
]

ξ′(k)β(k).

(9)

The first idea in solving (7) is based on the the fact that the cross term

2σ

p
∑

k=1

λ−1/2(k)
[

2hα(k)− h2α(k)
]

ξ′(k)β(k)

is typically small with respect to E
{

Rσ
α[Y, Pen]+C

}

(see for more details Lemma
9 in [11]). With this in mind, omitting the cross term, Equation (7) can be
rewritten in the following nearly equivalent form

E sup
α≤α◦

[ηα − (1 + γ)Q(α)]+ . C1E[ηα◦ − (1 + γ)Q(α◦)]+ ≍ D(α◦), (10)
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where

ηα
def
=

p
∑

k=1

λ−1(k)
[

2hα(k)− h2α(k)
]

[ξ′2(k)− 1]

and

D(α)
def
=

√

Eη2α =

{

2

p
∑

k=1

λ−2(k)
[

2hα(k)− h2α(k)
]2
}1/2

.

Now we are in a position to compute an approximation of the minimal root
for (10). It is clear that Q(α) ≥ Q+(α), where Q+(α) is a root of

E[ηα −Q+(α)]+ = D(α◦). (11)

To find a feasible solution to (11), we make use of the exponential Chebychev
inequality resulting in

E[η − x]p+ ≤ Γ(p+ 1)λ−p exp(−λx)E exp(λη), (12)

where η is a random variable, Γ(·) is the gamma function, and λ > 0.
Therefore we define Q+(α) as a root of equation

inf
λ

exp[−λQ+(α)]E exp(ληα) = D(α◦).

It is easy to check with a simple algebra that

Q+(α) = 2D(α)µα

p
∑

k=1

ρ2α(k)

1− 2µαρα(k)
, (13)

where µα is a root of the equation

p
∑

k=1

F [µαρα(k)] = log
D(α)

D(α◦)
, (14)

and

F (x) =
1

2
log(1 − 2x) + x+

2x2

1− 2x
,

ρα(k) =
√
2D−1(α)λ−1(k)

[

2hα(k)− h2α(k)
]

.

(15)

The next result (see also Theorem 1 in [11]) shows that Q+(α) is a nearly
optimal solution to (10).

Proposition 1. For any γ > q ≥ 0

E sup
α≤α◦

[

ηα − (1 + γ)Q+(α)
]1+q

+
≤ CD1+q(α◦)

(γ − q)3
,

where here and throughout the paper C denotes a generic constant.
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Let us now turn to the case, where σ is unknown. To compute the data-driven
regularization parameter in this situation, we replace σ2 in Rσ

α[Y, Pen] by the
standard variance estimator

σ̂2
α =

‖Y −Xβ̂α‖2
‖1−Hα‖2

.

Thus we arrive at the following approximation of the empirical risk

Rα[Y, Pen]
def
= ‖β̂0 − β̂α‖2 +

‖Y −Xβ̂α‖2
‖1−Hα‖2

Pen(α)

and the data-driven regularization parameter is computed now as follows:

α̂ = argmin
α◦≤α≤α◦

Rα[Y, Pen].

Notice that in contrast to the case of known σ, it assumed that α is bounded
from below by α◦. This constraint ensures that with a hight probability [σ2 −
σ̂2
α̂]+ < σ2/2 uniformly in β ∈ R

p. Unfortunately, when this inequality fails

we cannot control correctly the risk of β̂α̂ since it may blow up (see [4] for
similar phenomenon in the model selection). So, to avoid the blowup, we need
a relatively good estimate of σ, or equivalently, large ‖1−Hα‖2.

Stress also that since α◦ cannot depend on σ, we would like to have α◦ as
small as possible to be sure that the methods works for small noise levels. From
a mathematical viewpoint, this means that we need a relatively good upper
bound for E|σ − σ̂2

α̂|Pen(α̂). Roughly speaking, we have to check that with a
hight probability

|σ2 − σ̂2
α̂|Pen(α̂) ≪ σ2Pen(α̂).

The main difficulty in proving this equation is related to the fact that the
random variables σ2−σ̂2

α̂ and Pen(α̂) are dependent. To overcome this difficulty
we make use of the law of the iterated logarithm for σ2 − σ̂2

α̂ combined with a
generalization of the Hölder inequality (see Lemmas 4 and 3 below). To carry
out this approach, we need the following additional condition: there exists a
positive constant C2 such that for all α ∈ (0, α◦]

‖hα‖2λ ≥ C2

p
∑

k=1

λ−1(k)hα(k), (16)

‖hα‖2λ
log[D(α)/D(α◦)]

+ max
k

hα(k)

λ(k)
≥ C2D(α), (17)

where

‖hα‖2λ =

p
∑

k=1

λ−1(k)h2α(k).
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Denote for brevity

O(α◦, α
◦)

def
=

1

‖1− hα◦
‖

{[

log log

(

1 +
‖1− hα◦

‖2
‖1− hα◦‖2

)]1/2

+ log

(

1 +
Pen(α◦)

Pen(α◦)

)}

.

The following theorem controls the risk of β̂α̂ via the penalized oracle risk
defined by

r(β)
def
= inf

α◦≤α≤α◦

R̄α(β),

where

R̄α(β)
def
= Eβ

{

Rα[Y, Pen] + C
}

= Lα(β) + (1 + γ)σ2Q+(α)

+
Pen(α)

‖1− hα‖2
p

∑

k=1

[

1− hα(k)
]2
λ(k)β2(k).

Theorem 1. Let Pen(α) = 2
∑p

k=1 λ
−1(k)hα(k) + (1 + γ)Q+(α) with Q+(α)

defined by (13–15) and suppose (16–17) hold. Then, uniformly in β ∈ R
p,

Eβ‖β − β̂α̂‖2 ≤
[

1 + CO(α◦, α
◦) + C log−1/2 r(β)

σ2D(α◦)

]

r(β)

+
Cσ2D(α◦)

[1− CO(α◦, α◦)/γ]+
√
γ
Q
[

r(β)

σ2γD(α◦)
+

1

γ4

]

,

(18)

where Q(x) = x/log(x).

Notice that Equation 18 can be rewritten in the following concise form

Eβ‖β − β̂α̂‖2 ≤
[

1 + CO(α◦, α
◦) + Ψα◦,γ

(

r(β)

σ2D(α◦)

)]

r(β), (19)

where Ψα◦,γ(·) is a bounded function such that

lim
x→∞

Ψα◦,γ(x) = 0. (20)

The statistical sense of (19) is rather transparent: this equation shows that
in typical nonparametric situations the method works like the ideal penalized
oracle with the risk r(β). The typical nonparametric situation means that

• p is large, so, for properly chosen α◦, O(α◦, α◦) is small,
• the vector (〈β, ψ1〉, . . . 〈β, ψp〉)⊤ contains many significant components,
and thus r(β) ≫ σ2D(α◦).

These assumptions are typical in the minimax estimation, where it is assumed
that β belongs to an ellipsoid. Notice that with the help of (19–20) one can

check relatively easily that for a proper chosen spectral regularization, β̂α̂ is the
asymptotically minimax estimate up to a constant (see for details [11] and [18]).
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We finish this section with a short discussion of Conditions (16–17). Equation
(16) means that hα(k) vanishes rather rapidly for large k. This is always true
for the spectral cut-off method (hα(k) = 1{αλ(k) ≥ 1}). Indeed, if λ(k) ≍ k−p

with some p ≥ 0, then

‖hα‖2λ ≍ α−p−1, D(α) ≍ α−p−1/2

and it is seen easily that (17) is fulfilled. Assume now that X⊤X is severely
ill-posed, i.e., λ(k) ≍ exp(−κk) with κ > 0. Then

max
k

λ(k)hα(k) ≍ exp(κ/α) and D(α) ≍ κ−1/2 exp(κ/α).

Therefore (17) holds with C2 = κ−1/2.

2. Proofs

2.1. Ordered processes and their basic properties

The main results in this paper are based on a general fact which is similar to
Dudley’s entropy bound (see, e.g., [21]). Let ζt be a separable zero mean random
process on R

+. Denote for brevity

∆ζ(t1, t2) = ζt1 − ζt2 .

The following fact (see Lemma 1 in [11]) plays a cornerstone role in the proof
of Proposition 1 and Theorem 1.

Proposition 2. Let v2u, u ∈ R
+, be a continuous strictly increasing function

with v20 = 0. Then for any λ > 0,

logE exp

{

λ max
0≤s≤t

∆ζ(s, t)

σt

}

≤ log(2)
√
2√

2− 1

+ max
0<s′<s≤t

max
|z|≤

√
2/(

√
2−1)

logE exp

{

zλ
∆ζ(s′, s)

∆̄v(s′, s)

}

,

where ∆̄v(s′, s) =
√

|v2s − v2s′ |.
Definition 2. A zero mean process ζt, t ∈ R

+ is called ordered if there exists
a continuous strictly monotone function v2t , t ∈ R

+ and some Λ > 0 such that

sup
s′,s∈R+: s′ 6=s

E exp

[

Λ
∆ζ(s′, s)

∆̄v(s′, s)

]

<∞.

The next two propositions (see Lemmas 2 and 3 in [11]) show that the ordered
process ζt can be controlled by the deterministic function vt.
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Proposition 3. Let ζt be an ordered process with ζ0 = 0. Then there exists a
constant C(q′, q) such that for all 1 < q′, q ≤ 2, uniformly in z > 0

E sup
t≥0

[

ζt − zvqt
]q′

+
≤ C(q′, q)

zq′/(q−1)
,

where [x]+ = max(0, x).

Proposition 4. Assume that there exists a monotone function vt, t ≥ 0 such
that a random process ζt, t ∈ R

+, satisfies

E sup
t≥0

[

ζt − zvqt
]q′

+
≤ C

zq′/(q−1)
,

for any z > 0 and some q′ ≥ 1, q > 1. Then there exists a constant C′ such that
for any random variable τ ∈ R

+ the following inequality holds

[

E|ζτ |q
′]1/q′ ≤ C′[Evqq

′

τ

]1/(qq′)
.

In what follows, we focus on typical ordered processes related to the empirical
risk. The following two propositions (see Lemmas 4 and 5 in [11]) are essential
in controlling the cross term

σ

p
∑

k=1

λ−1/2(k)[2hα(k)− h2α(k)]ξ
′(k)β(k)

in the case, where α is a random variable depending on ξ′(k), k = 1, . . . , p.

Proposition 5. For any given ᾱ > 0 and any z > 0,

E sup
0≤α≤α◦

{ p
∑

k=1

[

hᾱ(k)− hα(k)
]

b(k)ξ′(k)

− z

[ p
∑

k=1

[

hᾱ(k)− hα(k)
]2
b2(k)

]q′}q

+

≤ C

zq/(2q′−1)
, q′ > 1/2.

Proposition 6. Let ᾱ be a given smoothing parameter. Then for any p ∈ [1, 2),
there exists a constant C(p) so that for any data-driven smoothing parameter α̂,

E

∣

∣

∣

∣

p
∑

k=1

[

hα̂(k)− hᾱ(k)
]

λ−1/2(k)β(k)ξ′(k)

∣

∣

∣

∣

p

≤ C(p)
{

Emax
k

λ−1(k)h2α̂(k)
}p/2

[ p
∑

k=1

[

1− hᾱ(k)
]2
β2(k)

]p/2

+ C(p)
{

max
k

λ−1(k)h2ᾱ(k)
}p/2

[

E

p
∑

k=1

[

1− hα̂(k)
]2
β2(k)

]p/2

.
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In order to obtain oracle inequalities in the case, where the noise variance is
unknown, we will need the following lemma generalizing Proposition 3.

Lemma 1. Let

ζα(b) =

p
∑

k=1

[1− hα(k)]ξ
′(k)b(k), v2α(b) =

p
∑

k=1

[1− hα(k)]
2b2(k), K =

2

(
√
2− 1)2

.

Then uniformly in b ∈ R
p

E exp
{

sup
α∈R+

[

ζα(b)−Kv2α(b)
]}

≤ C.

Proof. Since hα(·), α ≥ 0, is the family of ordered functions, it is not difficult
to check that

E[ζα′(b)− ζα(b)]
2 ≤ |v2α′(b)− v2α(b)|. (21)

Indeed, we can rewrite (21) in the following equivalent form

Eζα′(b)ζα(b) ≥ min
{

v2α′(b), v2α(b)
}

.

Assume for definiteness that hα(k) ≥ hα′(k), k = 1, 2, . . . , p. Then 1− hα(k) ≤
1− hα′(k), k = 1, 2, . . . , p, and we get

Eζα′(b)ζα(b) =

p
∑

k=1

[1− hα(k)][1− hα′(k)]b2(k)

≥
p

∑

k=1

[1− hα(k)]
2b2(k) = v2α(b),

thus proving (21).

Since ζα(b) is a Gaussian process, we obtain by (21)

logE exp

{

λ
ζα′(b)− ζα(b)

√

|v2α′ (b)− v2α(b)|

}

≤ λ2

2
. (22)

We may assume without loss of generality that σα is a continuous function
in α ∈ R

+. Then let us fix some ǫ > 0 and define αl ∈ R
+ as roots of equations

v2αl
(b) = (1 + ǫ)l, l ≥ 0.

Since v2α(b) ≤
∑p

k=1 b
2(k), the set of αl is always finite but it may be empty.

Let α∗ be a root of the equation v2α∗(b) = 1. Then by Proposition 2 and (22)
we obtain
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E exp
{

max
α∈R+

[

ζα(b)−Kv2α(b)
]

}

≤ E exp
{

max
α>α∗

[

ζα(b)−Kv2α(b)
]

}

+E exp
{

max
α≤α∗

[

ζα(b)−Kv2α(b)
]

}

≤ E exp
{

max
α≤α∗

ζα(b)
}

+
∑

l≥0

E exp
{

max
αl<α≤αl+1

[

ζα(b)−Kv2αl−1
(b)

]

}

≤ C +
∑

l≥0

E exp

{

max
0<α≤αl

[

vαl
(b)

ζα(b)

vαl
(b)

−Kv2αl−1
(b)

]}

≤ C + C
∑

l≥0

exp

{[

v2αl
(b)

(
√
2− 1)2

−Kv2αl−1
(b)

]}

≤ C + C
∑

l≥0

exp

{[

(1 + ǫ)l
(

1

(
√
2− 1)2

− K

1 + ǫ

)]}

= C + C
∑

l≥0

exp

{

−(1 + ǫ)l−1 1− ǫ

(
√
2− 1)2

}

.

This equation with ǫ = 0.5 completes the proof.

2.2. Recovering the noise variance

In this section, we focus on basic probabilistic properties of the variance esti-
mator

σ̂2
α̂ =

‖Y −Xβ̂α̂‖2
‖1−Hα̂‖2

,

in the case, where α̂ is a data-driven smoothing parameter. We begin with a
simple auxiliary fact.

Lemma 2. Let η′ and η be nonnegative random variables. Then the following
inequality

Eη′ηq ≤ 2q−1λq

(2− q)q
Eη′ logq

{

1 +
η′

Eη′

}

+
2q−1λq

(2 − q)q
Eη′ logq

{

1 +E

[

exp

(

η

λ

)

− η

λ
− 1

]}

+ qλqEη′
(23)

holds for any λ > 0 and q ∈ (1, 2).

Proof. Consider the following function

F (z, y)
def
= max

x≥0

{

xqy − z[exp(x)− 1− x]
}

.

Differentiating xqy − z[exp(x)− 1− x] in x, it is easy to check that

F (z, y) = xq∗y − z[exp(x∗)− 1− x∗] ≤ xq∗y,
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where x∗ is a root of the equation

x∗ = log

(

1 +
qyxq−1

∗
z

)

.

Since log(x) is convex, it is clear

log

(

1 +
qyxq−1

∗
z

)

≤ log

(

1 +
qy

z

)

+

(

1 +
qy

z

)−1
q(q − 1)y

z
(x∗ − 1).

Therefore x∗ ≤ x∗, where x∗ is a root of the following linear equation

x∗ = log

(

1 +
qy

z

)

+

(

1 +
qy

z

)−1
q(q − 1)y

z
(x∗ − 1).

Since q > 1, with a little algebra we get

x∗ ≤
(

1 +
qy

z

)[

1 +
q(2− q)y

z

]−1

log

(

1 +
qy

z

)

≤ 1

2− q
log

(

1 +
qy

z

)

,

thus arriving at the following upper bound

F (z, y) ≤ y

(2− q)q
logq

(

1 +
qy

z

)

.

Now we are in a position to finish the proof. Notice that for any λ > 0

η′
(

η

λ

)q

− z

[

exp

(

η

λ

)

− 1− η

λ

]

≤ max
x≥0

{

η′
(

x

λ

)q

− z

[

exp

(

x

λ

)

− 1− x

λ

]}

= F (z, η′),

and therefore

Eη′ηq ≤λq
{

EF (z, η′) + zE

[

exp

(

η

λ

)

− 1− η

λ

]}

≤λq
{

1

(2− q)q
Eη′ logq

(

1 +
qη′

z

)

+ zE

[

exp

(

η

λ

)

− 1− η

λ

]}

.

Next, substituting in the above equation

z = qEη′
{

E

[

exp

(

η

λ

)

− 1− η

λ

]}−1

,

we obtain

Eη′ηq ≤ λq
{

1

(2− q)q
Eη′ logq

(

1 +
η′

Eη′
E

[

exp

(

η

λ

)

− 1− η

λ

])

+ qEη′
}

. (24)
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Finally, applying the following inequality

logq(1 + xy) ≤ [log(1 + y) + log(1 + x)]q ≤ 2q−1 logq(1 + x)

+ 2q−1 logq(1 + y), x, y > 0,

we get

Eη′ logq
{

1 +
η′

Eη′
E

[

exp

(

η

λ

)

− 1− η

λ

]}

≤ 2q−1Eη′ logq
(

1 +
η′

Eη′

)

+ 2q−1 logq
{

1 +E

[

exp

(

η

λ

)

− 1− η

λ

]}

,

and combining this equation with (24), we finish the proof of (23).

Lemma 3. Let η be a nonnegative sub-Gaussian random variable, i.e., such
that for all λ > 0 and some S > 0

E exp(η/λ) ≤ C exp(S2/λ2). (25)

Then for any q ∈ [1, 2)

[

Eη′qηq
]1/q

≤ CS

2− q

[

Eη′q logq
(

1 +
η′q

Eη′q

)]1/q

. (26)

Proof. Replacing η′ in (23) by η′q and substituting (25) in (23), we get with
λ = S

Eη′qηq ≤ 2q−1Sq

(2− q)q
Eη′q logq

[

1 +
η′q

Eη′q

]

+
2q−1Sq

(2− q)q
Eη′q + qSqEη′q.

Let F (x) = x logq(1 + x). It is clear that

F ′(x) = logq(1 + x) +
qx logq−1(1 + x)

1 + x

is increasing in x and therefore F (x) is convex. Therefore by Jensen’s inequality

Eη′q logq
[

1 +
η′q

Eη′q

]

≥ log(2)Eη′q,

and thus, we arrive at (26).

Lemma 4. Let

ζα =

p
∑

k=1

[

1− hα(k)
]2
[1− ξ′2(k)]

and

Σα = 2‖(1− hα)
2‖
√

log log
‖(1− hα◦)2‖2 exp(2)

‖(1− hα)2‖2
.

Then for any s ∈ (1, 2],

P

{

sup
α≤α◦

ζα − sΣα

‖(1− hα)2‖
≥ x

}

≤ C

(s− 1)3
exp

{

− (3− s)2x2

16

}

.
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Proof. For some ǫ > 0 define αk, k ≥ 0, as roots of equations

‖(1− hαk
)2‖2 = (1 + ǫ)−k‖(1− hα◦)2‖2.

Then, denoting for brevity

Gk+1(x) = sΣαk+1
+ x‖(1− hαk+1

)2‖,

we obtain

P

{

sup
α≤α◦

ζα − sΣα

‖(1− hα)2‖
≥ x

}

≤
∞
∑

k=0

P

{

sup
α∈[αk+1,αk]

ζα − sΣα

‖(1− hα)2‖
≥ x

}

≤
∞
∑

k=0

P

{

sup
α∈[αk+1,αk]

ζα ≥ Gk+1(x)

}

≤
∞
∑

k=0

P

{

ζαk+1
≥ [1− f(ǫ)]Gk+1(x)

}

+

∞
∑

k=0

P

{

sup
α∈[αk+1,αk]

[ζα − ζαk+1
] ≥ f(ǫ)Gk+1(x)

}

,

(27)

where f(ǫ) will be chosen later on.

Since log(1 + x) ≥ x− x2/2, x ≥ 0, then for any λ > 0

E exp(λζα) ≤ exp
[

λ2‖(1− hα)
2‖2

]

, (28)

and by the exponential Tchebychev inequality we get

P

{

ζαk+1
≥ [1− f(ǫ)]Gk+1(x)

}

≤ exp

{

− [1− f(ǫ)]2G2
k+1(x)

4‖(1− hαk+1
)2‖2

}

≤ exp

{

−s2[1− f(ǫ)]2 log[(k + 1) log(1 + ǫ)]− [1− f(ǫ)]2x2

4

}

.

(29)

To bound from above the last term in Equation (27), we make use of that
2hα(k)− h2α(k) is a family of ordered functions, and thus (see (21))

‖(1− hαk
)2 − (1− hαk+1

)2‖2 ≤ ‖(1− hαk
)2‖2 − ‖(1− hαk+1

)2‖2.

Similarly to (28)

E exp
{

λ[ζαk
− ζαk+1

]
}

≤ exp
[

λ2‖(1− hαk
)2 − (1 − hαk+1

)2‖2
]

.

Therefore with the help of Proposition 2 and the exponential Tchebychev in-
equality we obtain



Adaptive spectral regularizations 1603

P

{

sup
αk+1<α≤αk

[ζα − ζαk+1
] ≥ f(ǫ)Gk+1(x)

}

≤ min
λ>0

exp

{

−λf(ǫ)Gk+1(x)

+
λ2(

√
2− 1)2‖(1− hαk

)2 − (1− hαk+1
)2‖2

4[‖(1− hαk
)2‖2 − ‖(1− hαk+1

)2‖2]

}

≤ C exp

{

− (
√
2− 1)2f2(ǫ)G2

k+1(x)

8[‖(1− hαk
)2‖2 − ‖(1− hαk+1

)2‖2]

}

= C exp

{

− (
√
2− 1)2s2f2(ǫ)

4ǫ
log[(k + 1) log(1 + ǫ)]

− (
√
2− 1)2x2f2(ǫ)

8ǫ

}

.

(30)

Now we chose f(ǫ) to balance the exponents at the right-hand sides in (29)
and (30), thus arriving at following equation for this function

(
√
2− 1)2f2(ǫ)

2ǫ
= [1− f(ǫ)]2.

This yields

f(ǫ) =

√
2ǫ√

2− 1 +
√
2ǫ
.

With this f(ǫ) and with (27–30) we get

P

{

sup
α≤α◦

ζα − sΣα

‖(1− hα)2‖
≥ x

}

≤ C exp{−[1− f(ǫ)]2x2/4}
ǫs2[1−f(ǫ)]2

{

s2[1− f(ǫ)]2 − 1
}

+

.

Finally, choosing ǫ as a root of f(ǫ) = (s− 1)/2, we finish the proof.

We summarize the main properties of the variance estimator in the following
lemma.

Lemma 5. For any q ∈ (1, 2)

E
{

[σ2 − σ̂2
α̂]+σ

−2Pen(α̂)
}q

≤ C(2 − q)−qOq(α◦, α
◦)E

[

Pen(α̂)
]q
.

Proof. By (8) we obtain

σ2 − σ̂2
α̂ =

σ2

‖1− hα̂‖2
p

∑

k=1

[

1− hα̂(k)
]2
[1− ξ′2(k)]

− 2σ

‖1− hα̂‖2
p

∑

k=1

[

1− hα̂(k)
]2
ξ′(k)β(k)

√

λ(k)

− 1

‖1− hα̂‖2
p

∑

k=1

[

1− hα̂(k)
]2
β2(k)λ(k).

(31)
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The first term at the right-hand side in (31) is controlled with the help of
Lemmas 3 and 4 (with s = 2) as follows:

{

E

∣

∣

∣

∣

Pen(α̂)

‖1− hα̂‖2
p

∑

k=1

[

1− hα̂(k)
]2
[1− ξ′2(k)]

∣

∣

∣

∣

q}1/q

=

{

E
Penq(α̂)

‖1− hα̂‖q
∣

∣

∣

∣

ζα̂ − 2Σα̂ + 2Σα̂

‖1− hα̂‖

∣

∣

∣

∣

q}1/q

≤ C

‖1− hα◦
‖

{

log log

(

1 +
‖1− hα◦

‖2
‖1− hα◦‖2

)}1/2
[

EPenq(α̂)
]1/q

+
C

(2− p)‖1− hα◦
‖ log

[

1 +
Pen(α◦)

Pen(α◦)

]

[

EPenq(α̂)
]1/q

.

(32)

To control the last two terms in (31), notice that h̃α(k) = 2hα(k)−h2α(k), α >
0, is a family of ordered functions. Hence, applying Lemma 1 with

b(k) =
2β(k)

√

λ(k)

Kσ
,

we have

E exp

{

2

Kσ2

[

2σ

p
∑

k=1

[

1− h̃α̂(k)
]

ξ′(k)β(k)
√

λ(k)

−
p

∑

k=1

[

1− h̃α̂(k)
]2
β2(k)λ(k)

]}

≤ C.

(33)

This inequality and Lemma 2 with

η′ = Penq(α)

η =
2

Kσ2

[

2σ

p
∑

k=1

[

1− h̃α̂(k)
]

ξ′(k)β(k)
√

λ(k)−
p

∑

k=1

[

1− h̃α̂(k)
]2
β2(k)λ(k)

]

,

yield

E

[

2σ

‖1− hα̂‖2
p

∑

k=1

[

1− hα̂(k)
]2
ξ′(k)β(k)

√

λ(k)

− 1

‖1− hα̂‖2
p

∑

k=1

[

1− hα̂(k)
]2
β2(k)λ(k)

]q

Penq(α̂)

≤ Cσ2q

(2− q)q‖1− hα◦
‖2q logq

[

1 +
Pen(α◦)

Pen(α◦)

]

EPenq(α̂).

(34)

Finally, combining (31), (32), and (34) and using Jensen’s inequality, we finish
the proof.
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2.3. Proof of Theorem 1

The following proposition (see Lemma 7 in [11]) summarizes some basic prop-
erties of the penalty defined by (13–15).

Proposition 7.

Q+(α) ≥ D(α)max

{

√

log
D(α)

D(α◦)
,
1

µα
log

D(α)

D(α◦)

}

,

µα ≥ min

{

1

2

√

log
D(α)

D(α◦)
,
1

4

}

,

If D(α) ≥ exp(2)D(α◦), then

D(α) ≥ µαQ
+(α)

[

log
µαQ

+(α)

D(α◦)

]−1

.

For any α1 ≤ α2

D(α1)

D(α2)
≤ Q+(α1)

Q+(α2)
.

We begin the proof of Theorem 1 with a simple generalization of Proposi-
tion 3. Consider the following random process

ηǫα =

p
∑

k=1

λ−1(k)hǫα(k)[ξ
′2(k)− 1],

where hǫα(k) = [2(1 + ǫ)hα(k)− ǫh2α(k)]/(2 + ǫ).

Lemma 6. Let q ∈ (1, 2]. Then for any random variable α̂ ≤ α◦

Eηǫα̂ ≤ Cσǫ
α◦√

q − 1

[

E

(

σǫ
α̂

σǫ
α◦

)q]1/q

,

where

σǫ
α =

{

2

p
∑

k=1

λ−2(k)[hǫα(k)]
2

}1/2

.

Proof. It is based on the following fact. Let S(x) = x1/(q−1), x ∈ R
+. Then

ρ(z)
def
= E sup

α≤α◦

{

ηǫα − zσǫ
αS

−1

(

σǫ
α

σǫ
α◦

)}

+

≤ Cσǫ
α◦

∫ ∞

0

xS

(

x

z

)

e−Cx2

dx,

where S−1(x) = xq−1 denotes the inverse function to S(x).
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To prove this inequality, define αk, k = 0, 1, 2, . . . as roots of the following
equations

σǫ
αk

= σǫ
α◦S

(

1/z
)

ek.

Then, noticing that ηǫα − ηǫαk
is an ordered process, we obtain by (12) and

Proposition 2

ρ(z) ≤ E sup
α0≤α≤α◦

|ηǫα|+
∞
∑

k=2

E sup
αk≤α<αk−1

{

ηǫα − zσǫ
αk−1

S−1

(

σǫ
αk−1

σǫ
α◦

)]}

+

≤ Cσǫ
α◦S

(

1

z

) ∞
∑

k=0

ek exp
{

−C
[

zS−1
(

S
(

z−1
)

ek
)]2

}

≤ Cσǫ
α◦

∫ ∞

0

exp
{

−C
[

zS−1(u)
]2}

du = Cσǫ
α◦

∫ ∞

0

e−Cz2v2

dS(v)

≤ Cσǫ
α◦z2

∫ ∞

0

S(v)ve−Cz2v2

dv = Cσǫ
α◦

∫ ∞

0

xS

(

x

z

)

e−Cx2

dx.

Next we get by the Laplace method

ρ(z) = Cq/(q−1)S

(

1

z

)
∫ ∞

0

xq/(q−1)e−x2/2 dx

≤ Cq/(q−1)

(

1

z

)1/(q−1)

exp

[

q

2(q − 1)
log

q

q − 1

]

.

(35)

To finish the proof, denote for brevity

E = E

(

σǫ
α̂

σǫ
α◦

)q

.

Then by (35) we obtain with a simple algebra

Eηǫα ≤ min
z

{

zEσǫ
α̂σα◦S−1

(

σǫ
α̂

σǫ
α◦

)

+ S

(

C

z

)

exp

[

q

2(q − 1)
log

q

q − 1

]}

≤ Cσǫ
α◦ min

z

{

zE +

(

C

z

)1/(q−1)

exp

[

q

2(q − 1)
log

q

q − 1

]}

≤ C√
q − 1

σǫ
α◦E1/q.

The following important lemma provides an upper bound for Lα̂(β) + (1 +
γ)Q+(α̂).

Lemma 7. For any data-driven α̂ and any given ᾱ ∈ [α◦, α◦], the following
inequality

{

E
[

σ−2Lα̂(β) + (1 + γ)Q+(α̂)
]1+γ/4

}1/(1+γ/4)

≤ C

[1− CO(α◦, α◦)/γ]+

[

R̄ᾱ(β)

γσ2
+
D(α◦)

γ4

]
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holds uniformly in β ∈ R
p and γ ∈ (0, 1/4).

Proof. In view of the definition of α̂, for any given smoothing parameter ᾱ,
Rα̂[Y, Pen] ≤ Rᾱ[Y, Pen]. It is easy to check with the help of (8) that this
inequality is equivalent to the following one

Lα̂(β) + (1 + γ)σ2Q+(α̂)− σ2

p
∑

k=1

λ−1(k)h̃α̂(k)[ξ
′2(k)− 1]

+ 2σ

p
∑

k=1

λ−1/2(k)[1 − hα̂(k)]
2ξ′(k)β(k) + [σ̂2

α̂ − σ2]Pen(α̂)

≤ Lᾱ(β) + (1 + γ)σ2Q+(ᾱ)− σ2

p
∑

k=1

λ−1(k)h̃ᾱ(k)[ξ
′2(k)− 1]

+ 2σ

p
∑

k=1

λ−1/2(k)[1 − hᾱ(k)]
2ξ′(k)β(k) + [σ̂2

ᾱ − σ2]Pen(ᾱ),

(36)

where h̃α(k) = 2hα(k)− h2α(k). We can rewrite (36) as follows:

γ

2

[

Lα̂(β) + (1 + γ)σ2Q+(α̂)
]

≤ Lᾱ(β) + (1 + γ)σ2Q+(ᾱ)

− σ2

p
∑

k=1

λ−1(k)h̃ᾱ(k)[ξ
′2(k)− 1]

+ σ2

p
∑

k=1

λ−1(k)h̃α̂(k)[ξ
′2(k)− 1]−

(

1 +
γ

2
− γ2

2

)

σ2Q+(α̂)

+ 2σ

p
∑

k=1

λ−1/2(k)[h̃α̂(k)− h̃ᾱ(k)]ξ
′(k)β(k) −

(

1− γ

2

)

Lα̂(β)

+[σ̂2
ᾱ − σ2]+Pen(ᾱ) + [σ2 − σ̂2

α̂]+Pen(α̂).

(37)

Since ᾱ is given, we get by Jensen’s inequality

E

∣

∣

∣

∣

p
∑

k=1

λ−1(k)h̃ᾱ(k)[ξ
′2(k)− 1]

∣

∣

∣

∣

1+γ/4

≤ C

{ p
∑

k=1

λ−2(k)h̃2ᾱ(k)

}1/2+γ/8

≤ C
[

D(ᾱ)
]1+γ/4 ≤ C

[

σ−2R̄ᾱ(β)
]1+γ/4

.

(38)

The third line in (37) is bounded by Proposition 1 as follows:

E

[ p
∑

k=1

λ−1(k)h̃α̂(k)[ξ
′2(k)− 1]−

(

1 +
γ

2
− γ2

2

)

Q+(α̂)

]1+γ/4

+

≤ CD1+γ/4(α◦)

γ3
,

(39)

where γ ≤ 1/
√
2.
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The upper bound for the fourth line in (37) is a little bit more tricky. Since
{

h̃α(·), α ∈ (0, α◦]
}

is a family of ordered functions, we obtain by Proposition
5 that for any ǫ > 0 and given q′ > 1/2,

E

∣

∣

∣

∣

2σ

p
∑

k=1

λ−1/2(k)
[

h̃α̂(k)− h̃ᾱ(k)
]

ξ′(k)β(k)

− ǫ

{

σ2

p
∑

k=1

λ−1(k)
[

h̃α̂(k)− h̃ᾱ(k)
]2
β2(k)

}q′ ∣
∣

∣

∣

q

≤ 1

(Cǫ)q/(2q′−1)
.

(40)

To continue this inequality, notice that if α̂ ≥ ᾱ, then

h̃α̂(k)

h̃ᾱ(k)
≤ 1,

h̃α̂(k)

h̃ᾱ(k)
≥ h̃α̂(k)

and therefore

∞
∑

k=1

[

h̃ᾱ(k)− h̃α̂(k)
]2β2(k)

λ(k)
=

∞
∑

k=1

h̃2ᾱ(k)

[

1− h̃α̂(k)

h̃ᾱ(k)

]2
β2(k)

λ(k)

≤ max
s

h̃2ᾱ(s)

λ(s)

∞
∑

k=1

[

1− h̃α̂(k)
]2
β2(k)

≤ max
s

4h2ᾱ(s)

λ(s)

∞
∑

k=1

[

1− hα̂(k)
]2
β2(k).

(41)

Similarly, if α̂ < ᾱ, then

∞
∑

k=1

[

h̃ᾱ(k)− h̃α̂(k)
]2β2(k)

λ(k)
≤ max

s

h̃2α̂(s)

λ(s)

∞
∑

k=1

[

1− h̃ᾱ(k)
]2
β2(k)

≤ max
s

4h2α̂(s)

λ(s)

∞
∑

k=1

[

1− hᾱ(k)
]2
β2(k).

(42)

So, combining (41–42) with Young’s inequality

yxs − x ≤ (1− s)ss/(1−s)y1/(1−s), x, y ≥ 0, s < 1,

gives

ǫ

[

σ2
∞
∑

k=1

[

h̃ᾱ(k)− h̃α̂(k)
]2
λ−1(k)β2(k)

]q′

−
(

1− γ

2

)

Lα̂(β)

≤
(

1− γ

2

)−1

ǫ

[

σ2
∞
∑

k=1

[

h̃ᾱ(k)− h̃α̂(k)
]2
λ−1(k)β2(k)

]q′

− Lα̂(β)

≤ Cǫ1/(1−q′)

[ ∞
∑

k=1

[

1− hᾱ(k)
]2
β2(k) + σ2 max

k

h2ᾱ(k)

λ(k)

]q′/(1−q′)

.

(43)
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Thus, by (40) and (43) we obtain

E

∣

∣

∣

∣

2σ

p
∑

k=1

λ−1/2(k)
[

h̃α̂(k)− h̃ᾱ(k)
]

ξ′(k)β(k)−
(

1− γ

2

)

Lα̂(β)

∣

∣

∣

∣

q

≤ CE

∣

∣

∣

∣

2σ

p
∑

k=1

λ−1/2(k)
[

h̃α̂(k)− h̃ᾱ(k)
]

ξ′(k)β(k)

−
[

σ2

p
∑

k=1

λ−1(k)
[

h̃α̂(k)− h̃ᾱ(k)
]2
β2(k)

]q′ ∣
∣

∣

∣

q

+ CE

∣

∣

∣

∣

[

σ2

p
∑

k=1

λ−1(k)
[

h̃α̂(k)− h̃ᾱ(k)
]2

β2(k)

]q′

−
(

1− γ

2

)

Lα̂(β)

∣

∣

∣

∣

q

≤ (Cǫ)
− q

2q′−1 + Cǫ
q

1−q′

[ ∞
∑

k=1

[

1− hᾱ(k)
]2
β2(k) + σ2 max

k

h2ᾱ(k)

λ(k)

]

qq′

1−q′

.

Therefore, substituting in the above equation q′ = 2/3 and

ǫ =

[ ∞
∑

k=1

[

1− hᾱ(k)
]2
β2(k) + σ2 max

k

h2ᾱ(k)

λ(k)

]−3q

,

we get

E

∣

∣

∣

∣

2σ

p
∑

k=1

λ−1/2(k)
[

h̃α̂(k)− h̃ᾱ(k)
]

ξ′(k)β(k) −
(

1− γ

2

)

Lα̂(β)

∣

∣

∣

∣

q

≤ C

[ ∞
∑

k=1

[

1− hᾱ(k)
]2
β2(k) + σ2 max

k

h2ᾱ(k)

λ(k)

]q

.

(44)

Now we proceed with the last line in Equation (37). Since ᾱ is given, we have
by (31)

{

E[σ̂2
ᾱ − σ2]2

}1/2 ≤ σ2

‖1− hᾱ‖2
{ p
∑

k=1

[

1− hᾱ(k)
]4
}1/2

+
2σ

‖1− hᾱ‖2
{ p
∑

k=1

[

1− hᾱ(k)
]4
β2(k)λ(k)

}1/2

+
1

‖1− hᾱ‖2
p

∑

k=1

{

1− hᾱ(k)
}2
β2(k)λ(k)

≤ Cσ2

‖1− hᾱ‖
+

C

‖1− hᾱ‖2
p

∑

k=1

[

1− hᾱ(k)
]2
β2(k)λ(k)

and therefore

E
{

[σ̂2
ᾱ − σ2]+Pen(ᾱ)

}1+γ/4 ≤ C
[

σ−2O(α◦, α
◦)R̄ᾱ(β)

]1+γ/4
. (45)
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The last term in (37) can be bounded by Lemma 5 and (16) as follows:

E
{

[σ2 − σ̂2
α̂]+Pen(α̂)

}1+γ/4

≤ CO1+γ/4(α◦)E
{

σ−2Lα̂(β) + (1 + γ)Q+(α̂)
}1+γ/4

.
(46)

Finally combining Equations (37), (38), (39), (44), (45), (46), we finish the
proof.

The next idea in the proof of Theorem 1 is that the data-driven parameter α̂
defined by (4) cannot be very small, or equivalently, that the ratio D(α̂)/D(α◦)
cannot be very large.

Lemma 8. For any data-driven α̂ and any given ᾱ ∈ [α◦, α◦], the following
upper bound holds

{

E

[

D(α̂)

D(α◦)

]1+γ/4}1/(1+γ/4)

≤ C

[1− CO(α◦, α◦)/γ]+
Q
[

R̄ᾱ(β)

σ2γD(α◦)
+

1

γ4

]

,

(47)

for any γ ∈ (0, 1/4).

Proof. Representing

(1 + γ)Q+(α̂) =

(

1 +
γ

2

)

Q+(α̂) +
γ

2
Q+(α̂),

we obtain with a simple algebra from (37)

γσ2

2

[ p
∑

k=1

h2α̂(k)

λ(k)
+ (1 + γ)Q+(α̂)

]

≤ R̄ᾱ(β) − σ2

p
∑

k=1

h̃ᾱ(k)

λ(k)
[ξ′2(k)− 1]

+ σ2 sup
α≤α◦

[ p
∑

k=1

h̃α(k)

λ(k)
[ξ′2(k)− 1]−

(

1 +
γ

2
− γ2

2

)

Q+(α)

]

+

+ 2σ

p
∑

k=1

λ−1/2(k)
[

h̃α̂(k)− h̃ᾱ(k)
]

ξ′(k)β(k) −
(

1− γ

2

)

Lα̂(β)

+ [σ̂2
ᾱ − σ2]Pen(ᾱ) + [σ2 − σ̂2

α̂]+Pen(α̂).

Combining this with Equations (38), (39), (44), (45), (46), we obtain

{

E

[‖hα̂‖2λ +Q+(α̂)

D(α◦)

]1+γ/4}1/(1+γ/4)

≤ C

[1− CO(α◦, α◦)/γ]+

[

CR̄ᾱ(β)

σ2γD(α◦)
+

1

γ4

]

.

(48)
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To continue this inequality, we need a lower bound for ‖hα‖2λ+Q+(α). Notice
that

f(x)
def
= F (x) − x2

1− 2x
=

1

2
log(1− 2x) + x+

x2

1− 2x

is a non-negative function for x ≥ 0 since

f ′(x) =
2x2

(1 − 2x)2
≥ 0 and f(0) = 0.

Therefore the following inequality holds

F (x) ≥ x2

1− 2x
. (49)

Let

kα = argmax
k

hα(k)

λ(k)
, (50)

then by (14) and (49) we obviously get

log
D(α)

D(α◦)
≥ F [µαρα(kα)] ≥

[µαρα(kα)]
2

1− 2µαρα(kα)
.

With this inequality we obtain

µαρα(kα) ≤
{

1 +

[

1 + log−1 D(α)

D(α◦)

]1/2}−1

,

thus arriving at

µ−1
α ≥ 2ρα(kα). (51)

Now we are in a position to bound from below ‖hα‖2λ +Q+(α). By (13–15),
(50–51), and (17) we obtain

‖hα‖2λ +Q+(α) ≥ ‖hα‖2λ +
2D(α)

µα

p
∑

k=1

[µαρα(k)]
2

1− 2µαρα(k)

≥ ‖hα‖2λ +
D(α)

µα

p
∑

k=1

F [µαρα(k)] = ‖hα‖2λ +
D(α)

µα
log

D(α)

D(α◦)

≥ ‖hα‖2λ + 2ρα(kα)D(α) log
D(α)

D(α◦)

≥ ‖hα‖2λ +
hα(kα)

λ(kα)
log

D(α)

D(α◦)

≥ ‖hα‖2λ + log
D(α)

D(α◦)
max

k

hα(k)

λ(k)
≥ CD(α) log

D(α)

D(α◦)
.

(52)
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With the help of (52) we continue (48) as follows:

{

E

[

D(α̂)

D(α◦)
log

D(α̂)

D(α◦)

]1+γ/4}1/(1+γ/4)

≤ C

[1− CO(α◦, α◦)/γ]+

[

CR̄ᾱ(β)

σ2γD(α◦)
+

1

γ4

]

.

(53)

To control from below the left-hand side in the above equation, notice that

E

[

D(α̂)

D(ᾱ)
log

D(α̂)

D(ᾱ)

]1+γ/4

=
1

(1 + γ/4)1+γ/4
E

[

D(α̂)

D(ᾱ)

]1+γ/4

×
{

log

[

D(α̂)

D(ᾱ)

]1+γ/4}1+γ/4

.

(54)

To finish the proof, let us consider the function f(x) = x log1+γ/4(x), x ≥ 1.
Computing its second order derivative, one can easily check that f(x) is convex
for all x ≥ exp(1) = e. So, f(x+e−1) is convex for x ≥ 1. It is easily seen there
exists a constant C > 0 such that for all x ≥ 1

f(x) ≥ 1

2
f(x+ e− 1)− C.

Therefore by (54) and Jensen’s inequality,

E

[

D(α̂)

D(ᾱ)
log

D(α̂)

D(ᾱ)

]1+γ/4

≥ C

{

E

[

D(α̂)

D(ᾱ)

]1+γ/4

+ e− 1

}

× log1+γ/4

{

E

[

D(α̂)

D(ᾱ)

]1+γ/4

+ e− 1

}

− C.

(55)

Let

ψ(x) = (x+ e− 1) log1+γ/4(x+ e− 1).

It is easy to check that the inverse function ψ−1(x) satisfies the following in-
equality

ψ−1(x) ≤ (x+ e− 1) log−1−γ/4(x+ e− 1).

Therefore combining this equation and (55) with (53), we arrive at (47).

Now we are ready to proceed with the proof of Theorem 1. Let ǫ > 0 be a
small given number to be defined later on. By (8) and (9), the following equation
for the skewed excess risk
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E(ǫ) def
= sup

β∈Rp

Eβ

{

‖β − β̂α̂‖2 − (1 + ǫ)
{

Rα̂[Y ] + C
}

}

= sup
β∈Rp

Eβ

{

−ǫ
p

∑

k=1

[

1− hα̂(k)
]2
β2(k)− ǫσ2

p
∑

k=1

λ−1(k)h2α̂(k)

−(1 + ǫ)(1 + γ)σ2Q+(α̂)

−2σ

p
∑

k=1

{

1 + ǫ− [(1 + 2ǫ)hα̂(k)− ǫh2α̂(k)]
}

β(k)λ−1/2(k)ξ′(k)

+σ2

p
∑

k=1

λ−1(k)
[

2(1 + ǫ)hα̂(k)− ǫh2α̂(k)
]

[ξ′2(k)− 1]

+[σ2 − σ̂2
α̂]Pen(α̂)

}

(56)

holds.

We proceed with the second line from below at the right-hand side of this
display. By Lemmas 6 and 8, we obtain

σ2E

p
∑

k=1

λ−1(k)
[

(1 + ǫ)hα̂(k)− ǫh2α̂(k)
]

[ξ′2(k)− 1]

≤ C

[1− CO(α◦, α◦)/γ]+
√
γ
Q
[

R̄ᾱ(β)

σ2γD(α◦)
+

1

γ4

]

.

(57)

The next step is to bound the third line from below at the right-hand side
of (56). It suffices to note that h̃ǫα(k) =

[

(1 + 2ǫ)hα(k) − ǫh2α(k)
]

/(1 + ǫ) is
the family of ordered functions. Hence, by Proposition 6, we get with ᾱ =
argminα∈[α◦,α◦] R̄α(β)

2σE

p
∑

k=1

{

1 + ǫ− [(1 + 2ǫ)hα̂(k)− ǫh2α̂(k)]
}

β(k)λ−1/2(k)ξ′(k)

= 2(1 + ǫ)σE

p
∑

k=1

[

hǫᾱ(k)− hǫα̂(k)
]

β(k)λ−1/2(k)ξ′(k)

≤ C

[

σ2Emax
k

λ−1(k)h2α̂(k)

p
∑

k=1

[

1− hᾱ(k)
]2
β2(k)

]1/2

+ C

[

σ2 max
k

λ−1(k)h2ᾱ(k)E

p
∑

k=1

[

1− hα̂(k)
]2
β2(k)

]1/2

≤ Cσ2ǫ−1Emax
k

λ−1(k)h2α̂(k) + ǫ

p
∑

k=1

[

1− hᾱ(k)
]2
β2(k)

+ Cσ2ǫ−1max
k

λ−1(k)h2ᾱ(k) + ǫE

p
∑

k=1

[

1− hα̂(k)
]2
β2(k).

(58)
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Therefore, substituting (45), (46), (57), (58) in (56), we obtain the following
upper bound for the skewed excess risk

E(ǫ) ≤ Cσ2ǫ−1Emax
k

λ−1(k)h2α̂(k)− σ2EQ+(α̂) + CO(α◦, α
◦)R̄ᾱ(β)

+Cσ2ǫ−1 max
k

λ−1(k)h2ᾱ(k) + ǫ

p
∑

k=1

[

1− hᾱ(k)
]2
β2(k)

+
Cσ2D(α◦)

[1− CO(α◦, α◦)/γ]+
√
γ
Q
[

R̄ᾱ(β)

σ2γD(α◦)
+

1

γ4

]

.

(59)

Let us consider the function

U(ǫ) = max
α≤α◦

{

Cǫ−1 max
k

λ−1(k)h2α(k)−Q+(α)
}

.

Since

max
k

h2α(k)

λ(k)
≤ max

k

hα(k)

λ(k)
≤

[ p
∑

k=1

h2α(k)

λ2(k)

]1/2

≤
{ p
∑

k=1

h2α(k)

λ2(k)
[2− hα(k)]

2

}1/2

≤ D(α)√
2

and by Proposition 7

Q+(α) ≥ D(α)

√

log
D(α)

D(α◦)
,

we get

U(ǫ) ≤ D(α◦) max
α≤α◦

{

C

ǫ

D(α)

D(α◦)
− D(α)

D(α◦)

[

log
D(α)

D(α◦)

]1/2}

≤ D(α◦)max
x≥1

{

Cx

ǫ
− x

√

log(x)

}

.

One can easily check with a simple algebra that

max
x≥1

{

Cx

ǫ
− x

√

log(x)

}

≤ ǫ

C
exp

[

C2

ǫ2

]

. (60)

Indeed, let x∗ = argmaxx

{

Cx/ǫ − x
√

log(x)
}

. Then, differentiating Cx/ǫ −
x
√

log(x) in x, we obtain the following equation for x∗

C

ǫ
−
√

log(x∗)− 1

2
√

log(x∗)
= 0.

Therefore

x∗ = exp

{(

C

2ǫ
+

√

C2

4ǫ2
− 1

)2}

≤ exp

(

C2

ǫ2

)

.
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This equation proves (60) since

max
x≥1

{

Cx

ǫ
− x

√

log(x)

}

≤ Cx∗

ǫ
.

With (60) we continue (59) as follows:

E(ǫ) ≤ Cσ2D(α◦)ǫ exp
C2

ǫ2
+ CO(α◦, α

◦)R̄ᾱ(β)

+ Cσ2ǫ

p
∑

k=1

λ−1(k)h2ᾱ(k) + ǫ

p
∑

k=1

[

1− hᾱ(k)
]2
β2(k)

+
Cσ2D(α◦)

[1− CO(α◦, α◦)/γ]+
√
γ
Q
[

R̄ᾱ(β)

σ2γD(α◦)
+

1

γ4

]

≤ Cσ2D(α◦)ǫ exp
C2

ǫ2
+ CǫR̄ᾱ(β) + CO(α◦, α

◦)R̄ᾱ(β)

+
C

[1− CO(α◦, α◦)/γ]+
√
γ
Q
[

R̄ᾱ(β)

σ2γD(α◦)
+

1

γ4

]

.

Therefore, substituting this equation in

E‖β − β̂α̂‖2 ≤ (1 + ǫ)R̄ᾱ(β) + E(ǫ),

we get

E‖β − β̂α̂‖2 ≤ [1 + CO(α◦, α
◦)]r(β) + Cσ2D(α◦)×

× inf
ǫ

[

ǫ exp
C2

ǫ2
+

ǫr(β)

σ2D(α◦)

]

+
Cσ2D(α◦)

[1− CO(α◦, α◦)/γ]+
√
γ
Q
[

r(β)

σ2γD(α◦)
+

1

γ4

]

.

(61)

Hence, to finish the proof of the theorem, it remains to check that

inf
ǫ
F (ǫ, u) = inf

ǫ

[

ǫ exp
C2

ǫ2
+ ǫu

]

≤ Cu
√

log(u)
. (62)

Let ǫ∗ = argminǫ F (ǫ, u). Then, differentiating F (ǫ, u) in ǫ, we arrive at the
following equation for ǫ∗

exp

(

C2

ǫ2∗

)

− C2

ǫ2∗
exp

(

C2

ǫ2∗

)

+ u = 0.

Thus
C2

ǫ2∗
+ log

(

C2

ǫ2∗
− 1

)

= u

and it follows immediately from the above equation that

ǫ∗ ≤ C
√

log(u)
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and therefore

F (ǫ∗, u) ≤ 2uǫ∗ ≤ 2Cu
√

log(u)
,

thus proving (62).
Finally, substituting (62) with u = r(β)/[σ2D(α◦)] in (61), we complete the

proof of the theorem.
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[3] Bauer, F., Mathé, P. and Pereverzev, S. (2007) Local solutions to
inverse problems in geodesy. Journal of Geodesy, 81, no. 1, pp. 39-51.
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