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Abstract: This paper considers the problem of estimation in a general
semiparametric regression model when error-prone covariates are modeled
parametrically while covariates measured without error are modeled non-
parametrically. To account for the effects of measurement error, we apply
a correction to a criterion function. The specific form of the correction
proposed allows Monte Carlo simulations in problems for which the di-
rect calculation of a corrected criterion is difficult. Therefore, in contrast
to methods that require solving integral equations of possibly multiple di-
mensions, as in the case of multiple error-prone covariates, we propose
methodology which offers a simple implementation. The resulting meth-
ods are functional, they make no assumptions about the distribution of
the mismeasured covariates. We utilize profile kernel and backfitting es-
timation methods and derive the asymptotic distribution of the resulting
estimators. Through numerical studies we demonstrate the applicability of
proposed methods to Poisson, logistic and multivariate Gaussian partially
linear models. We show that the performance of our methods is similar
to a computationally demanding alternative. Finally, we demonstrate the
practical value of our methods when applied to Nevada Test Site (NTS)
Thyroid Disease Study data.
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1. Introduction

Regression models with measurement errors arise frequently in practice and have
attracted much attention in the statistical literature. Semiparametric regression
models with errors in covariates have been considered by several authors in the
attempt to develop measurement error calibration techniques when the errors
are in the linear part of linear regression ([9]) or generalized linear regression
([10]) models. [30] used a method of moments and deconvolution to construct
the calibration for the case of partially linear models when the mismeasured
covariate appears in parametric and nonparametric parts. However all of the
above methodologies take advantage of the fact that unknown parameters in a
parametric part enter the model through a linear combination with error prone
covariates. We consider a general semiparametric regression problem where pa-
rameters can enter the model through any known function of covariates. Re-
cently, for a general semiparametric regression problem we proposed to utilize a
popular alternative to regression-calibration, a simulation-extrapolation method
(SIMEX, Apanasovich et al. [2]). We considered the situations where the mis-
measured variable is modeled purely parametrically, purely nonparametrically,



1426 A. Maity and T.V. Apanasovich

or when the mismeasured variable has components that are modeled both para-
metrically and nonparametrically. Even though SIMEX is a general-purpose,
widely applicable method for correcting parameter estimates for the biases in-
duced by measurement error in covariates, it suffers from relying on a rather
heuristic extrapolation step ([4]).

Ma and Carroll ([15]), building upon work of [29], developed a functional
methodology for a general semiparametric measurement error regression frame-
work. They require a specification of a parametric distribution for error-prone
covariates given all other covariates. Nevertheless the method is general, the es-
timators are still consistent and asymptotically normally distributed even when
that distribution is misspecified. However, the implementation of Ma and Car-
roll’s method ([15]) requires solving integral equations, which can be quite com-
putationally expensive. More importantly, this procedure is computationally
infeasible when the error prone covariates are multivariate, e.g., in repeated
measures or longitudinal data settings. Moreover, the methodology is efficient
only when the posited parametric distribution for error-prone covariates given
all other covariates is correctly specified, which is not a practical assumption
for many applications.

In this paper, we develop an alternative functional methodology where almost
no assumptions are made about the distribution of an error prone covariate. We
consider a classical additive measurement error model, where covariate X is un-
observed and W is observed instead, such that W = X + U . The measurement
error U is independent of any other observed variables and has a normal distri-
bution with zero mean and variance Σu,0. The normal distribution is often used
in the literature and is not too restrictive. There are many other ways to model
the relationship between X and W , which give additivity in some functional
scale, e.g. logarithmic. See [6] for more details on transformations of X .

Our method is based upon the idea of Monte Carlo corrected scores (Novick
and Stefanski [18]), where Monte Carlo simulations help to determine the cor-
rected score for a large class of models. To our knowledge, this is the first attempt
to introduce these ideas into semiparametric framework. While our method uses
complex-value arithmetic, it is relatively easy to implement in many standard
software packages. Specifically, its theory falls into the framework of standard es-
timation methods for criterion functions in semiparametric problems (Lin and
Carroll [12]), thus we are taking advantage of some well established results.
Hence, the core of our method’s implementation is the standard semiparamet-
ric estimation technique adjusted for complex valued covariates and performed
with a relatively small number of Monte Carlo runs.

Examples of widely used regression models for which our methods apply
include: linear model ([9]), Poisson regression model ([3, 18]), Gamma regression
model ([21, 1, 17]). In our paper we devote attention to each of these models
except Gamma. We use univariate and multivariate partially linear models to
illustrate the relationship between Monte Carlo corrected score method and
other methods which exist in the literature. Specifically, in the univariate case,
we show that as the number of Monte Carlo iterations goes to infinity, the
estimators converge to that of [9]; and in the case of multivariate partially linear
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models, to that of [12]. Moreover, when X is Gaussian, our univariate estimator
is efficient (Ma and Carroll [15]). Further, we demonstrate through simulations
that our multivariate estimator performs similar to the efficient one with the
reasonable number of Monte Carlo iterations even though its limit is not an
efficient estimator ([12]). Poisson, logistic and multivariate Gaussian regression
models are studied via simulations to demonstrate the ease of implementation
and generality of proposed methods.

Note that logistic regression model is an exception to our method and we only
present heuristic arguments for this model. The problem lies in the fact that
the logistic distribution function is not an entire function, which is an essential
theoretical condition for our method to be applicable. However, Novick and
Stefanski ([18]) noted that for measurement error variance of the magnitudes
commonly encountered in applications one can still apply corrected score based
methods, with only a minor bias (see p. 479 of Novick and Stefanski [18]).
Results from numerical studies show that our method also performs reasonably
well for the logistic case when the measurement error is moderate.

An outline of this paper is as follows. In Section 2, we review the estimation
in a general semiparametric regression where there is no measurement error
as studied in Lin and Carroll ([12]); and corrected score method proposed by
[17] and Novick and Stefanski ([18]). Then we introduce Monte Carlo corrected
score method to the estimation in a general semiparametric regression with error
prone covariates and study the asymptotic behavior of the proposed estimators.
Among other results we offer asymptotic standard errors accounting for the
uncertainty due to estimation of measurement error covariance matrix.

In Section 3, we focus on special cases of univariate and multivariate partially
linear models. We demonstrate that as the size of Monte Carlo correction sam-
ple increases, our estimators converge to the ones mentioned in the literature
([9, 12]). Moreover, we show that when the error prone covariate is Gaussian, our
estimator is efficient in the univariate case and performs similar to the efficient
estimator in the multivariate case.

In Section 4, we present a simulation study using several semiparametric
models to illustrate the performance of our method. We start with partially
linear Poisson model and show that our method produces only a small bias and
appropriate coverage probability. We also use the simulation scenario of Ma and
Carroll ([15]) applied to the logistic partially linear model with a quadratic effect
of X . In this case we note that our method, despite lacking a theoretical foun-
dation for the logistic regression, produces even slightly smaller mean squared
errors than theirs, while being computationally far less challenging. Moreover,
when we triple the variance of the measurement error used in the scenario,
we still get relatively small errors in the estimators. Last, we report results of
simulations in the case of multivariate partially linear model with multivariate
measurement errors. Such a model would be computationally challenging for
the competing methodology (Ma and Carroll [15]), while our methods offer ease
of implementation and satisfactory performance.

In Section 5.1, we apply our method to Nevada Test Site (NTS) Thyroid
Disease Study data and report the results. We also present a simulation study
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where the measurement errors in the covariates are comparable to those in the
real NTS data example. We show that for the assumed amount of uncertainty
in radiation exposure, our method performs reasonably well.

Finally, Section 6 gives a few brief concluding remarks. All technical details
are collected in an appendix.

2. Methodology

We describe a general semiparametric regression when there is no measurement
error as studied in Lin and Carroll ([12]) first. Assume that data (Yi, Xi, Zi),
i = 1, . . . , n are independent replications of a (py + px + 1)-dimensional ran-
dom vector (Y,X,Z). Let B denote the parameter of interest and θ(·) be an
infinitely dimensional nuisance parameter with true values of B0 and θ0(·) re-
spectively. Let L{Y,X,B0, θ0(Z)} be a criterion function in the sense that
E[LB{Y,X,B0, θ0(Z)}|Z] = 0 and E[Lθ{Y,X,B0, θ0(Z)}|Z] = 0, where here
and in what follows, we use subscripts B and θ to denote the partial derivatives
with respect to B and θ respectively. Suppose K(·) is a symmetric density func-
tion with variance 1 and define Kh(v) = h−1K(v/h), where h is the bandwidth.
Let Gi(z) = {1, (Zi−z)/h}T. Given a fixed value of B = B∗, the modified kernel

estimate of θ̂(z,B∗) is a solution of the local-linear estimating equations

n−1
n∑

i=1

Kh(Zi − z)Gi(z)Lθ {Yi, Xi,B∗, (α0, α1)Gi(z)} = 0 (2.1)

for α0, calling it α̂0. To estimate B, Lin and Carroll ([12]) proposed profile
and backfitting methods. The profile kernel estimator for B maximizes∑n

i=1 L{Yi, Xi,B, θ̂(Zi,B)} in B which is equivalent to solving the score equation

n−1
n∑

i=1

[
LB

{
Yi, Xi,B, θ̂(Zi,B)

}
+ Lθ

{
Yi, Xi,B, θ̂(Zi,B)

}
θ̂B(Zi,B)

]
= 0.(2.2)

Maximization of the profile likelihood requires calculating θ̂B(Zi,B) = ∂θ̂(Zi,B)/
∂B, which can be computed by numerical differentiation. In some cases where the
profile kernel methods may be difficult to implement numerically, a backfitting
algorithm can be used instead. Suppose that the current estimate is B∗, the up-
dated backfitting estimate then maximizes B in the function

∑n
i=1 L{Yi, Xi,B,

θ̂(Zi,B∗)} or is the solution of

n−1
n∑

i=1

LB

{
Yi, Xi,B, θ̂(Zi,B∗)

}
= 0.

The second step in backfitting iterations is to find a solution of the local linear
estimating equations (2.1) using updated estimate of B. Lin and Carroll ([12])
showed that profiling and backfitting are asymptotically equivalent, however to
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obtain
√
n-consistent estimator of B, unlike profiling, undersmoothing of the

nonparametric function is required by the backfitting method.
In this paper, we consider the case where covariate X is unobserved and

instead W is observed such that (possibly after transformation)

W = X + U,

where U is independent of any other observed variables and follows a Normal dis-
tribution with mean 0 and covariance matrix Σu,0. Measurement error induces
bias in estimating equations (2.1) and (2.2), which results in biased estimators
of the parameters. Thus, the purpose of the current study is to modify (2.1)
and (2.2) and obtain unbiased estimating equations corrected for measurement
error, as we describe next.

2.1. Monte-Carlo corrected score estimation

A function L̃{Y,W,B0, θ0(Z)} is a criterion function if

E[L̃{Y,W,B, θ(Z)}|Y,X,Z] = L{Y,X,B, θ(Z)}

for any B, θ(Z) from the parameter space ([17]). Novick and Stefanski ([18]),
considering parametric models, proposed a general method to construct cor-
rected score functions based on the results from complex analysis. Let W̃ be a
complex random vector

W̃ = W + ιV,

where ι =
√
−1 and V is a normal random vector with mean 0 and covariance

matrix Σu,0. [26] showed that if f(·) is an entire function then, under integra-
bility conditions

E{f(W̃ )|X} = E[Re{f(W̃ )}|X ] = f(X),

where Re(·) denotes the real part of its argument.
Assume that L(·) is an entire function of its second argument. We define the

corrected criterion function as

L̃{Y,W,B0, θ0(Z)} = E(Re[L{Y, W̃ ,B0, θ0(Z)}]|Y,W,Z).

However, the required conditional expectation is not always easy to obtain an-
alytically. Novick and Stefanski ([18]) proposed to use Monte Carlo integration
to approximate the conditional expectation in the parametric models they con-
sidered. We introduce Monte Carlo correction into our semiparametric models
so that Monte Carlo corrected criterion function becomes

R(·) = M−1
M∑

m=1

Re[L{Y, W̃m,B0, θ0(Z)}],
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where here and in what follows (·) denotes a real argument {Y,W, V ,B0, θ0(Z)},
where V = (V1, . . . , VM ). Here M is the Monte Carlo correction sample size. We
will suppress the dependence on M in R(·) for notational convenience. Note
that R(·) is a real valued function of real arguments and is a criterion function
in the sense we discussed in the beginning of the section. Therefore, analogous
to (2.1), we propose to estimate θ0(z) by solving

n−1
n∑

i=1

Kh(Zi − z)Gi(z)Rθ {Yi,Wi, V i,B∗, (α0, α1)Gi(z)} = 0 (2.3)

for α0, setting θ̂(z,B∗) = α̂0 at some fixed B∗.
There are two methods to estimate B:
1. The profile kernel estimator B̂pf maximizes n−1

∑n
i=1 R{Yi,Wi, V i,B,

θ̂(Zi,B)} in B solving

n−1
n∑

i=1

[RB{Yi,Wi, V i,B, θ̂(Zi,B)}+Rθ{Yi,Wi, V i,B, θ̂(Zi,B)}

× θ̂B(Zi,B)] = 0. (2.4)

2. The backfitting kernel estimator, B̂bf is obtained at convergence of the
following iterations. Based on the current estimate, B̂cur, solve for B

n−1
n∑

i=1

RB

{
Yi,Wi, V i,B, θ̂(Zi, B̂cur)

}
= 0

call B̂new, and then solve the local linear estimating equation (2.3) us-

ing B̂new.

2.2. Asymptotic properties

In this section, we derive the asymptotic properties of our method in the case
where the measurement error covariance matrix Σu,0 is known, see Section 2.4
for the case where it is estimated. The results given in Lin and Carroll ([12])
for the profiling and backfitting methods are true for any criterion function as
long as various conditions are satisfied: these conditions translate into A1-A4,
given in the Appendix. We assume that conditional expectations of W,V given
Y, Z,X and the first and second order partial derivatives of L with respect to
B and θ exist and are interchangeable. Define

θB(z,B0) = −E{RθB(·)|Z = z}/E{Rθθ(·)|Z = z}
= −E[LθB{Y,X,B0, θ0(Z)}|Z = z]/E[Lθθ{Y,X,B0, θ0(Z)}|Z = z];

Ω(z) = fZ(z)E{Rθθ(·)|Z = z}
= fZ(z)E[Lθθ{Y,X,B0, θ0(Z)}|Z = z];

V = E{RBB(·) +RBθ(·)θTB (Z,B0)}
= E[LBB{Y,X,B0, θ0(Z)}+ LBθ{Y,X,B0, θ(Z)}θTB(Z,B0)].
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Then the following result is a direct consequence of the main results of Lin and
Carroll ([12]).

Theorem 2.1. Assume that (Yi, Zi,Wi), i = 1, . . . , n are independent and iden-

tically distributed; and B̂pf and θ̂(·) are estimates obtained by using (2.3) and
(2.4). Suppose further that the bandwidth h ∝ n−c with 1/5 ≤ c ≤ 1/3. Let
θ(2)(z) be the second derivative of θ(z) and φ2 =

∫
z2K(z)dz. Then, for the

nonparametric part

θ̂(z, B̂pf)− θ0(z) = (h2/2)φ2θ
(2)
0 (z)− n−1

n∑

i=1

Kh(Zi − z)Riθ(·)/Ω(z)

− θB(z,B0)
TV−1n−1

n∑

i=1

{RiB(·) +Riθ(·)θB(Zi,B0)}+ op(n
−1/2);

and for the parametric part

n1/2(B̂pf − B0) = −V−1n−1/2
n∑

i=1

{RiB(·) +Riθ(·)θB(Zi,B0)} + op(1)

⇒ Normal(0,V−1FV−T ),

where F = var[RB(·) +Rθ(·)θB(Z,B0)].

Theorem 2.2. Make the same assumptions as in Theorem 2.1 except that
nh4 → 0. Then the backfitting estimator B̂bf has the same limiting distribu-
tion as does the profile estimator B̂pf.

Remark 2.1. One can show that

F = F1 + F2 + F3,

where F is F1 in the absence of measurement error,

F1 = var[LB{Y, Z,X,B0, θ0(Z)}+ Lθ{Y, Z,X,B0, θ0(Z)}θB(Z,B0)],

F2 is the additional variation due to the use of corrected scores

F2 = E(var[L̃B{Y, Z,W,B0, θ0(Z)}+ L̃θ{Y, Z,W,B0, θ0(Z)}θB(Z,B0)|Y, Z,X ])

and F3 is the additional variation due to the use of Monte Carlo method

F3 = E(var[RB(·) +Rθ(·)θB(Z,B0)|Y, Z,W ]) = O(M−1).

Remark 2.2. Estimation of the asymptotic variance of B̂pf or B̂bf is a straight-
forward exercise. To construct such estimates, all the expectations in the def-
initions of V and F are replaced by sums and all the regression functions are
replaced by kernel estimates.
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2.3. Multivariate measurement error models

Consider longitudinal or repeated measures data, where for each subject we
observe L responses Y = (Y1, . . . , YL); and predictors X = (X1, . . . , XL) and
Z = (Z1, . . . , ZL), where each Zj is scalar. The underlying loglikelihood function
is taken to be of the form L{Y,X,B0, θ0(Z1), . . . , θ0(ZL)}. Here the key feature
is that the nonparametric component θ0(·) is evaluated multiple times per indi-
vidual. For notational convenience, we use boldface to denote the multivariate
version of the corresponding observations, and let θ0(Z) = {θ0(Z1), . . . , θ0(ZL)}.
In the measurement error settings under consideration, instead of observing Xj ,
we observe Wj = Xj +Uj, j = 1, . . . , L and assume that vec(U), where “vec” is
a vector form of a matrix, has a Normal distribution with mean zero and covari-

ance matrix Σu,0. Let W̃m = W + ιVm for m = 1, . . . ,M , where vec(Vm) has
a Normal distribution with mean zero and covariance matrix Σu,0. Then Monte
Carlo corrected criterion function is given by

M−1
M∑

m=1

Re
[
L{Y,W̃m,B, θ(Z)}

]
,

and our asymptotic results apply.

2.4. Estimation of error covariance matrix

We now consider the case in which the measurement error covariance matrix
Σu,0 is estimated from replicated measurements. Suppose we observe R ≥ 2
replicates {Wi(r)}Rr=1, where Wi(r) = Xi + Ui(r) and Ui(r) has Normal(0,Σu,0).

Then a root-n consistent estimate Σ̂u of Σu,0 is the sample covariance matrix
of the terms Wi(r)s is n

−1
∑n

i=1 Si where

Si =

∑R
r=1{Wi(r) −W i·}{Wi(r) −W i·}T

(R− 1)
, and W i· = R−1

R∑

r=1

Wi(r).

Let γ = vech(Σu), where “vech” is the vector half, i.e., the vector of the unique
elements of Σu. Then we have that γ̂ − γ0 = n−1

∑
i vech(Si − Σu,0). Since V

can be written as Σ
1/2
u e where e comes from a standard Normal distribution,

we can redefine the score equations (2.4) as

n−1
n∑

i=1

[RB{Yi,W i(r),Σ
1/2
u ei,B, θ̂(Zi,B,Σu)}+Rθ{Yi,W i(r),Σ

1/2
u ei,B, θ̂(Zi,B)}

× θ̂B(Zi,B,Σu)] = 0.

Let subscript γ denote a partial derivative with respect to γ. Then following
Section 4 of Lin and Carroll ([12]), we have the following asymptotic expansion
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for the profile estimator:

n1/2(B̂pf − B0) = −V−1

[
n−1/2

n∑

i=1

{RiB(·) +Riθ(·)θB(Zi,B0,Σu,0)}

+ VBγn
1/2(γ̂ − γ)

]
+ op(1)

= −V−1

(
n−1/2

n∑

i=1

[RiB(·) +Riθ(·)θB(Zi,B0,Σu,0)

+ VBγ{vech(Si − Σu,0)}]
)
+ op(1),

where VBγ = E{RiBγ(·) + θB(Zi,B0,Σu,0)RT
iθγ(·)}. The covariance matrix of

n1/2(B̂pf − B0) follows from the above expressions and its estimator can be
constructed as discussed in Remark 2.2.

3. Special case: Partially linear model

Two regression examples, the Univariate and Multivariate Partially Linear Mod-
els, are considered to illustrate the relationship between proposed Monte Carlo
corrected score method and other methods that exist in the literature. Poisson
and Logistic Partially Linear Models are also studied via simulations in the next
section to demonstrate the general applicability of proposed methods.

3.1. Univariate partially linear model

Estimation in the partially linear model with error prone covariates are described
in [9]. In this section we derive the asymptotic distribution of our estimates
explicitly and compare our estimates to that of [9].

Consider the model

Yi = XT
i γ0 + θ0(Zi) + ǫi, i = 1, . . . , n,

where ǫ has a Normal distribution with mean zero and variance σ2
0 . Let β =

(γT, σ2)T and choose the loglikelihood to be our criterion function

L{Y,X, θ(Z), β} = −log(σ2)/2− (2σ2)−1{Y −XTγ − θ(Z)}2.

Then, the corrected loglikelihood as discussed in the previous section is

R{Y,W, Ṽ , θ(Z), β}

= −log(σ2)/2−M−1
M∑

m=1

Re[(2σ2)−1{Y − (W + ιVm)Tγ − θ(Z)}2]

= −log(σ2)/2− (2σ2)−1

[
{Y −WTγ − θ(Z)}2 − γTM−1

M∑

m=1

VmV T
mγ

]
.
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Also, define

Γ = E[{X − E(X |Z)}(ǫ− UTγ0)
2{X − E(X |Z)}T] + E(UUTǫ2)

+ E{(UUT − Σu,0)γ0γ
T
0 (UUT − Σu,0)

T};
S = cov{X − E(X |Z)};
τ2 = E{(ǫ− UTγ0)

2 − (σ2
0 + γT

0 Σu,0γ0)}2;
C = Σu,0γ0 + [E{U(UTγ0)

3} − Σu,0γ0γ
T
0 Σu,0γ0]/(2σ

2
0).

Then we have the following result:

Theorem 3.1. Let γ̂ and σ̂2 denote the estimates based on our method. Then
jointly,

n1/2

(
γ̂ − γ0
σ̂2 − σ2

0

)
⇒ Normal

{
0,

[
S−1ΓS−T +R11 2σ2S−1C +R12

• τ2 +R22

]}
,

where R11, R12, R22 → 0 as M → ∞.

See Appendix B for the proof and the expressions of R11, R12 and R22.

Remark 3.1. It is important to note that as Rijs vanish, the limiting distribu-
tion of our estimators becomes the same as of estimators in [9]. Ma and Carroll
([15]) showed that the estimator in [9] is exactly the same as theirs when posited
p(X), p(W |X) and p(Y |X,Z) are all normal, proving that our estimator is also
efficient when M = ∞.

3.2. Multivariate partially linear model

We illustrate our approach on the following multivariate partially linear mea-
surement error model discussed in Lin and Carroll ([12])

Yij = XT
ijβ0 + θ0(Zij) + eij , (3.1)

for i = 1, . . . , n and j = 1, . . . , L, where ei = (ei1, . . . , eiL)
T has a Normal

distribution with mean zero and covariance matrix Σǫ,0. Let B = (β,Σǫ) be the
parameter of interest. Then the criterion function ignoring the measurement
errors is given by

L{Y,X,B, θ(Z̃)}
= (1/2) log{det(Σ−1

ǫ )} − (1/2){Y−Xβ − θ(Z)}TΣ−1
ǫ {Y −Xβ − θ(Z)}.

The Monte-Carlo Corrected Scores criterion function is given by

R(·) = M−1
M∑

m=1

Re[L{Y,W̃m,B, θ(Z)}]

= (1/2) log{det(Σ−1
ǫ )} − (1/2){Y−Wβ − θ(Z)}TΣ−1

ǫ {Y −Wβ − θ(Z)}

+ (1/2)βT

(
M−1

M∑

m=1

VT
mΣ−1

ǫ Vm

)
β.
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The backfitting algorithm is easy to apply in this case. Given the current esti-
mates, B̂cur = (β̂cur, Σ̂ǫ,cur), the new estimates are given by

β̂new =

[
n−1

n∑

i=1

{
WT

i Σ̂
−1
ǫ,curWi −M−1

M∑

m=1

(VT
imΣ̂−1

ǫ,curVim)

}]−1

× n−1
n∑

i=1

WT
i Σ̂

−1
ǫ,cur{Yi − θ̂(Zi, B̂cur)};

and

Σ̂ǫ,new = n−1
n∑

i=1

[
{Yi −Wiβ̂cur − θ̂(Zi, B̂cur)}

× {Yi −Wiβ̂cur − θ̂(Zi, B̂cur)}T −M−1
M∑

m=1

(Vimβ̂curβ̂
T
curV

T
im)

]
.

Profile pseudolikelihood estimates are also easily constructed. Let S be a
smoother matrix as in [11] and define Y = (Y11, . . . , Ynm)T and T = (WT

1 , . . . ,

WT
n )

T. Let T∗ = (I − S)T , Y∗ = (I − S)Y and Σ̃ǫ = In
⊗

Σǫ. Then for given
Σǫ, the profile estimate of β is given by

β̂pf =

{
T T
∗ Σ̃−1

ǫ T∗ −
∑

i

(
M−1

∑

m

VT
imΣ−1

ǫ Vim

)}−1

T T
∗ Σ̃−1

ǫ Y∗.

A simple estimate of Σǫ,0 can be constructed by first forming the working in-

dependence estimate of β0, then applying the above equation to obtain Σ̂ǫ,new

and iterating the steps until convergence.

Remark 3.2. Estimation of the error covariance matrix Σu,0 and its impact
on limiting distribution theory for estimation of B0 is described in Section 2.4.

Remark 3.3. As M → ∞, our estimators converges to those given in Lin and
Carroll ([12]), see Appendix C for a sketch of proof.

3.3. Performance with respect to efficient methods

We show that under the assumption that X is generated from a Gaussian dis-
tribution, our method using different M < ∞, as well as Lin and Carroll’s
procedure ([12]), which is equivalent to our method with M = ∞, performs
very similar to the semiparametrically efficient method.

Suppose X is from a Normal distribution with mean µx,0 and covariance
matrix Σx,0; and for simplicity of notation we let β0 be a scalar. Then the
criterion function becomes

LG(·) = −(1/2)
{
log(|J (µx,Σx,Σǫ)|) + [Y −Q{W, β, θ(Z), µx,Σx}]T

× {J (µx,Σx,Σǫ)}−1[Y −Q{W, β, θ(Z), µx,Σx}]
+ log(|Σx +Σu|)− (1/2)(W − µx)

T(Σx +Σu)
−1(W − µx)

}
,



1436 A. Maity and T.V. Apanasovich

where

Q{W, β, θ(Z), µx,Σx} = βµx + θ(Z) + βΣx(Σx +Σu)
−1(W − µx);

J (β,Σx,Σǫ) = Σǫ + β2Σx(Σx +Σu)
−1Σu.

By the results of Lin and Carroll ([12]), the estimators based on LG(·) are
semiparametrically efficient.

We compared our method with the optimal one (see discussion above) via a
simulation study under the following scenario. We set L = 3 and let β0 = 0.7,
θ0(z) = 0.5 cos(2z)−1. We chose µx,0 = (−1,−1,−1)T, Σǫ,0 = I3+0.3(J3− I3),
Σx,0 = I3, and Σu,0 = 0.3I3 +0.2J3, where Jk denotes the k× k matrix with all
the elements equal to one. We generated Z from a Uniform on [0, π] distribution.

Under this setup, we generated 1, 000 data sets following the model given by
(3.1) with n = 200. We used Epanechnikov kernel with the bandwidth estimated
as σ̂zn

−1/3, where σ̂z is the sample standard deviation of Z. Using each data
set we constructed backfitting estimator of β0 using our method with different
values of M ranging from 100 to 500; Lin and Carroll method ([12]), which is
ours when M = ∞; and semiparametrically efficient method (using LG(·)). Root
mean squared error (RMSE) of β̂ does not differ much between M = 100 and
M = ∞ (as in Lin and Carroll [12]) and is equal to 0.1432. Hence we show that
our methods do not require many Monte Carlo runs. In fact in our numerical
studies we find M = 150 satisfactory. RMSE for the semiparametrically efficient
method is 0.1421. This indicates that the efficiency of our method is very close
to the optimal (0.77 percent loss).

4. Simulation study

4.1. Partially linear poisson regression model

We study the performance of our method via a simulation study. We considered
the partially linear Poisson regression model where the response Y is Poisson
distributed with mean λ(X,Z) = XTβ0+θ0(Z). The true variableX = (X1, X2)
was generated from a bivariate standard Gaussian distribution, Z was generated
from a Uniform on [0, π] distribution. Error prone covariate was generated as
W = X + U where U followed a bivariate normal distribution with mean zero
and a known covariance matrix Σu,0. We set Σu,0 = I2 and B0 = (β1,0, β2,0) =
(0.2, 0.2) and used two different functions: (1) θ0(z) = 5 − 0.5 cos(z) and (2)
θ0(z) = 5− 0.5 cos(2z). We generated 1, 000 samples of size n = 1, 000 and used
M = 500 as Monte Carlo correction sample size.

We employed Epanechnikov kernel to estimate the nonparametric function.
We used the globally fixed bandwidth hn = κσ̂zn

−1/3, where σ̂z is the estimated
standard deviation of Z and κ is some selected positive number. We report the
results for κ = 1. Similar results were obtained for other values of κ ranging
from 0.5 to 2. We used backfitting to estimate B0.

The results are displayed in Table 1. It is clear that our method produces
only a small bias and favorable coverage probability.
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Table 1

Results of the simulations using Poisson regression model. In nonparametric part: (1) is
θ0(z) = 5− 0.5 cos(z) and (2) is θ0(z) = 5− 0.5 cos(2z). Reported are the mean, empirical
standard errors (e.s.e.), root mean squared error (RMSE) and empirical coverage of 95%
confidence intervals of β1,0 and β2,0 based on 1000 simulated data sets each with a sample

size n = 1000

θ0(z) estimation of β1,0 = 0.2 estimation of β2,0 = 0.2
mean e.s.e. RMSE 95% mean e.s.e. RMSE 95%

(1) 0.203 0.039 0.039 0.951 0.199 0.038 0.038 0.952
(2) 0.204 0.040 0.041 0.954 0.202 0.041 0.041 0.955

4.2. Partially linear logistic model

We borrowed a simulation scenario applied to a logistic regression model from
Ma and Carroll ([15]). As in their paper, we considered the model logit{pr(Y =
1|X,Z)} = β1,0X + β2,0X

2 + θ0(Z), where W = X + U and U is from Normal
distribution with mean 0 and variance σ2

u,0 with σ2
u,0 known. We set σ2

u,0 =
0.16, B0 = (β1,0, β2,0) = (0.7, 0.7) and used two different functions: (1) θ0(z) =
0.5 cos(z) − 1 and (2) θ0(z) = 0.5 cos(2z) − 1. The covariates X and Z were
generated from Normal distribution with mean −1 and variance 1, and Uniform
on [0, π], respectively. We used the sample size of n = 500 and M = 150 Monte
Carlo correction sample size. Backfitting with Epanechnikov kernel was used to
estimate the model components. For the sake of comparison, we used the global
bandwidth hn = σ̂zn

−1/3 as in Ma and Carroll ([15]).
Technically, the logistic regression setup as described above does not fall

into our framework as the logistic distribution function is not entire in the
complex plane. However, Novick and Stefanski ([18]) pointed out that for small
measurement error variance one can still apply corrected score based methods,
with only a minor bias. Specifically, Novick and Stefanski ([18]) followed the
same paradigm to construct likelihood based corrected score, call it ΨM (Y,W )
and showed that Ψ∗(Y,X) = E[limM→∞ ΨM (Y,W )|Y,X ] is not the same as
the true likelihood score function. However, they argued that the differences
between the components of Ψ∗(Y,X) and the true likelihood score function are
small for measurement error variances of the magnitudes commonly encountered
in applications (see p. 479 of Novick and Stefanski [18]).

The results of the simulation study are displayed in Table 2. It is evident
that our method is comparable in both cases to that of Ma and Carroll ([15]) in
terms of mean squared error and coverage probability, albeit with the small bias
expected from the fact that the logistic function is not entire on the complex
plane. It is clear from this numerical example that even though technically our
method is not applicable in logistic regression, it performs quite well and is very
close to that of Ma and Carroll ([15]).

The simulation was repeated for a much larger measurement error variance,
σ2
u,0 = 0.5 versus σ2

u,0 = 0.16. The results are shown in Table 2. Again, our
results indicate only a small bias and favorable coverage probability. Ma and
Carroll ([15]) did not report results for this situation so it is not possible to
compare our method with theirs.
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Table 2

Results of the simulations using logit model. In nonparametric part: (1) is
θ0(z) = 0.5 cos(z)− 1 and (2) is θ0(z) = 0.5 cos(2z)− 1. Reported are the mean, empirical
standard errors (e.s.e.), root mean squared error (RMSE) and empirical coverage of 95%
confidence intervals of β1,0 and β2,0 for two values of σ2

u,0
, based on 1000 simulated data

sets each with a sample size n = 500. Our method is coded as MA in the column “Me” and
the results from Ma and Carroll ([15]) are coded as MC. Ma and Carroll [15] did not

consider the case of σ2

u,0
= 0.5

θ0(z) σ2

u,0
Me estimation of β1,0 = 0.7 estimation of β2,0 = 0.7

mean e.s.e. RMSE 95% mean e.s.e. RMSE 95%
(1) 0.16 MA 0.638 0.261 0.268 0.942 0.653 0.149 0.156 0.940

0.16 MC 0.720 0.277 0.278 0.947 0.726 0.156 0.158 0.939
0.50 MA 0.621 0.272 0.283 0.948 0.633 0.161 0.175 0.943

(2) 0.16 MA 0.615 0.238 0.253 0.943 0.639 0.135 0.148 0.942
0.16 MC 0.727 0.276 0.277 0.951 0.728 0.155 0.158 0.940
0.50 MA 0.600 0.250 0.269 0.942 0.618 0.155 0.175 0.945

4.3. Multivariate partially linear model

In this section we consider the partially linear Gaussian regression model with
repeated measures. We generated data according to the model

Yij = Xij1β1,0 +Xij2β2,0 + θ0(Zij) + eij ,

for i = 1, . . . , n and j = 1, . . . , L, where ei = (ei1, . . . , eiL)
T has a Normal

distribution with mean zero and covariance matrix Σǫ,0. We set L = 3 and let
β1,0 = β2,0 = 0.7. The covariates Xijℓ were each generated from a Normal with
mean −1 and variance 1 distribution and Z was generated from a Uniform on
[0, π] distribution. The error prone variable was generated as Wijℓ = Xijℓ +
Uijℓ, where (Uij1, Uij2, Uij3) follows a normal distribution with mean zero and
covariance matrix Σu,0 = 0.3I3 + 0.2J3. Here Jk denotes the k × k matrix with
all the elements equal to one.

We used two different functions: (1) θ0(z) = 0.5 cos(z) − 1 and (2) θ0(z) =
0.5 cos(2z)− 1, and considered two different covariance structures for Σǫ,0: (1)
compound symmetry with common marginal variance 1 and correlation 0.3 and
(2) AR(1) structure with autocorrelation parameter 0.4.

We generated 1, 000 samples of size n = 200 for each scenarion, and used
M = 150 as Monte Carlo correction score sample size. The Gaussian kernel
was used to estimate the nonparametric function and backfitting was used to
estimate the parameters. We used the globally fixed bandwidth hn = κσ̂zn

−1/3,
where σ̂z is the estimated standard deviation of Z and κ is some selected positive
number. We report the results for κ = 1. Similar results were obtained for other
values of κ ranging from 0.5 to 2.

The results are displayed in Table 3. It is evident that our method produces
only a small bias and favorable coverage probability for both cases: compound
symmetry and AR(1) error structures.



Corrected scores in semiparametric regression 1439

Table 3

Results of the simulations using multivariate Gaussian measurement error. In
nonparametric part: (1) is θ0(z) = 0.5 cos(z)− 1 and (2) is θ0(z) = 0.5 cos(2z)− 1. Reported

are the mean, empirical standard errors (e.s.e.), root mean squared error (RMSE) and
empirical coverage of 95% confidence intervals of β1,0 and β2,0 based on 1, 000 simulated

data sets each with a sample size n = 200 for different error correlation structures

Compound symmetry
θ0(z) estimation of β1,0 = 0.7 estimation of β2,0 = 0.7

mean e.s.e. RMSE 95% mean e.s.e. RMSE 95%
(1) 0.687 0.137 0.138 0.945 0.691 0.144 0.145 0.947
(2) 0.685 0.143 0.144 0.949 0.689 0.152 0.152 0.947

AR(1)
θ0(z) estimation of β1,0 = 0.7 estimation of β2,0 = 0.7

mean e.s.e. RMSE 95% mean e.s.e. RMSE 95%
(1) 0.687 0.137 0.138 0.948 0.690 0.144 0.145 0.949
(2) 0.686 0.143 0.143 0.946 0.689 0.152 0.153 0.946

5. Application

5.1. Nevada test site thyroiditis data example

In this section we apply our method to the Nevada test site (NTS) thyroid
study data. The study was conducted in 1980’s by the University of Utah. The
original study is described in [27, 7] and [24]. The main idea of the study was to
relate the incidence of thyroid related diseases to the exposure of radiation to
the thyroid. In this study, 2, 491 individuals, who were exposed to radiation as
children, were tested for thyroid disease. The primary radiation exposure to the
thyroid glands of these children came from the ingestion of milk and vegetables
contaminated with radioactive isotopes of iodine. Recently, the dosimetry for
the study was redone ([25]), and the study results were reported in [14].

Due to the fact that the actual radiation doses in foods or in the thyroid
gland of the individuals are not available, the estimated radiation doses are
well known to be contaminated with measurement errors. Many authors have
studied and described measurement error properties and analysis in this con-
text ([20, 23, 16, 28, 13, 19, 22, 8]). A common approach is to build a large
dosimetry model that attempts to convert the known data about above-ground
nuclear testing to the radiation actually absorbed into the thyroid. Dosimetry
calculations for individual subjects were based upon several variables, such as,
age at exposure, gender, residence history, whether as a child the individual was
breast-fed, and a diet questionnaire filled out by the parent focusing on milk
consumption and vegetables. The data were then put into a complex model and
for each individual, the point estimate of thyroid dose (the arithmetic mean of
a lognormal distribution of dose estimates) and an associated error term (the
geometric standard deviation) for the measurement error were reported.

It is typical to assume that radiation doses are estimated with a combination
of Berkson and a classical measurement error ([20]). In the log-scale, true log-
dose T is related to observed or calculated log-dose W by a latent intermediate
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X via

T = X + Uberk;

W = X + Uclass,

where Uberk and Uclass are the Berkson uncertainty and the classical uncertainty,
respectively, with corresponding variances σ2

u,berk,0 and σ2
u,class,0 depending on

the individual. It is typical to assume that the errors Uberk have Gaussian dis-
tributions. In the NTS study, the total uncertainty σ2

u,berk,0+σ2
u,class,0 is known

but not the relative contributions. We will let 50% of the total uncertainty be
classical in our study.

We take the incidence of thyroiditis (inflammation of the thyroid gland), Y ,
as the response variable. If the latent, X , could be observed then typically the
total mean dose, E(T |X) = exp(X + σ2

u,berk,0/2) would be the main predic-
tor. In addition, we consider S, the sex of the patient and Z, age at exposure
(standardized to have mean zero and variance 1), which are measured without
measurement error. We include Z, age at exposure, nonparametrically into so
called excess relative risk model

pr(Y = 1|X,S, Z) = H [β0S + log{1 + γ0 exp(X + σ2
u,berk,0/2)}+ θ0(Z)], (5.1)

where H(·) is the logistic distribution function, θ0(·) is an unknown function
and γ0 is called the excess relative risk.

We employed our method discussed in Section 2 to the model given by (5.1).
Specifically, we used backfitting with Epanechnikov kernel and bandwidth equal
to 1.5 (similar results were obtained for 1.0 and 2.0). We used M = 100 as the
Monte Carlo correction sample size. We compared our method to the naive
method, when one ignores the measurement error of both types. The estimated
effect of gender, β̂1 ≈ 1.75 for both the naive and Monte Carlo corrected scores
method. This can be explained by the fact that gender and radiation dose for
an individual are essentially independent and hence the effect of gender is not
affected by measurement error in radiation dose.

The estimated value of the relative risk parameter was 8.54 for the naive
method and 17.19 for the proposed method. The effect of age, Z, is displayed in
Figure 1 for both the naive and MCCS procedures. It is evident from the results
that because of the difference in the estimate of the excess relative risk γ, there
is a noticeable difference in the estimated age effect when measurement error is
taken into account.

Remark 5.1. As noted in Section 4, the logistic regression setup does not
fall into our framework as the logistic distribution function is not entire in
the complex plane. To observe the performance of semiparametric-Monte Carlo
corrected scores in this example, we compared our results to the well known
SIMEX procedure ([5, 26]). Please refer to Apanasovich et. al. ([2]) for details.
In short, we modeled the age effect parametrically by a quadratic polynomial
and used a quartic extrapolant for SIMEX. The estimated value of the excess
relative risk parameter was 15.92. We can see that in this case the SIMEX
estimate is close to what proposed method produces.
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Fig 1. Estimated age effect in the Nevada Test Site thyroiditis data. Solid line: the proposed
estimate. Dashed line: the naive estimate ignoring the presence of measurement error.

5.2. Simulation study mimicking the data example

To further assess the performance of our method when applied to the data
example, we set up a simulation study where the measurement error present in
the variables is of the same magnitude as the measurement error from the data
example. Specifically, we generate responses using the model

pr(Y = 1|X,S, Z) = H [β0S + log{1 + γ0 exp(X + σ2
u,berk,0/2)}+ θ0(Z)],

where we generate S from a Binary distribution with rate 0.5, X from a Normal
distribution with mean zero and variance 4; and Z from a Uniform distribution
within [−3, 2] interval. Following the data example, we set true β0 = 1.7 and
γ0 = 17.2 and take θ0(z) to be the assumed estimate of a true function. We
generate 500 samples of size n = 2500 and, as in the example, use M = 100 as
Monte Carlo corrected score runs.

As in the data example, the measurement error is Gaussian, a combination
of Berkson and classical and we take the variance of classical uncertainty to be
50% of the total uncertainty present in the NTS data set.

The average of estimates for β0 and γ0 over the 500 generated data sets
are 1.72 and 17.79, respectively, with empirical standard errors 0.18 and 4.69.
It is evident that the proposed procedure performs quite well, giving low bias
and moderate variability for the estimates when the magnitude of measurement
errors is similar to that of the original NTS data.
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6. Discussion

We consider the problem of estimation in a general semiparametric regression
model when error-prone covariates are modeled parametrically while covariates
measured without error are modeled nonparametrically. We propose to utilize
ideas of corrected score methodology introduced by [18] for a purely parametric
framework. Monte Carlo corrected scores method uses simulations and allows for
simple implementation of the corrected score methodology in problems for which
direct calculation of corrected scores is difficult. Its implementation is straight-
forward in any programming language that allows for complex-value arithmetic.

Following the common practice in a general semiparametric regression, our
method is based upon profiling and backfitting for a criterion function. Our the-
oretical developments seem to be novel even though are supported by previously
developed ideas. We demonstrate that our methods are general and include the
existing in a literature methods for univariate and multivariate partially linear
models as special cases. Moreover, we show that in a partially linear model and
logistic model with quadratic effects of X , our method produces mean square er-
rors similar to ones from the semiparametric efficient method. It should be noted
that the theory of our method fails for logistic model, however it performs well
even in presence of large measurement errors.

Here we have focused on the case where the covariate modeled nonparamet-
rically is univariate. However, the idea of building a semiparametric criterion
function using Monte-Carlo corrected scores can be applied to more general
problems, e.g., additive models.
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Appendix A: Conditions and assumptions

Regularity conditions. We require the following conditions.
A1. Distribution law of Z is absolutely continuous and has compact support

Z, its density fZ(·) is differentiable on Z, the derivative is continuous and
infz∈Z fZ(z) > 0. Moreover supz∈Z |θ0(z)| ≤ M < ∞. X also has a compact
support, X .

A2. Mixed partial derivatives ∂r+t

∂Br∂θt L̃(Y,W,B, θ), 0 ≤ r, t ≤ 4, r + t ≤ 4,

exist for almost all (Y,W ) and E{| ∂r+t

∂Br∂θtL(Y,X,B, θ)|2} are bounded.
A3. The smallest and the largest eigenvalues of matrix V are bounded away

from zero and infinity. Moreover, G(Z) =

E

{
∂

∂(BT , θT )T
L(Y,X,B0, θ)|θ=θ0(Z)

∂

∂(BT , θT )
L(Y,X,B0, θ)|θ=θ0(Z) | Z

}

possesses a continuous derivative and infz∈Z G(z) > 0.
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A4. ∂k+l

∂zk∂Bl θ0(z,B), 0 ≤ k + 1 ≤ 3, exist and continuous for almost all z and

B; and || ∂k+l

∂zk∂Bl θ0(z,B)||∞ < ∞.

Appendix B: Proof of Theorem 3.1

We start by noting that the loglikelihood is given by

L(•) = −log(σ2)/2− {Y −XTγ − θ(Z)}2/(2σ2).

Define ǫ∗ = Y −WTγ − θ(Z). Then by definition, we have

R(•) = −log(σ2)/2− (ǫ∗2 − γTM−1
M∑

m=1

VmV T
mγ)/(2σ2).

Note that the parameter of interest is β = (γT, σ2)T.
Direct calculations yield

Rβ(•) =

(
(Wǫ∗ +M−1

∑
m VmV T

mγ)/σ2

−1/(2σ2) + [ǫ∗2 − γTM−1
∑

m VmV T
mγ]/(2σ4)

)
;

Rθ(•) = ǫ∗/σ2;

Rββ(•) =[
(−WWT + 1

M

∑
m VmV T

m )/σ2 −[Wǫ∗ + 1
M

∑
m VmV T

mγ]/σ4

−[Wǫ∗ + 1
M

∑
m VmV T

mγ]/σ4 1
2σ4 − [ǫ∗2 − γT 1

M

∑
m VmV T

mγ]/σ6

]
;

Rβθ(•) =

(
−W/σ2

−ǫ∗/σ4

)
;

Rθθ(•) = −1/σ2.

Using these, we obtain that

θβ(•) = −E{Rβθ(•)|Z}/E{Rθθ(•)|Z} = −
{

E(W |Z)
0

}
;

E{Rββ(•)} =

[
−E(XXT)/σ2 0

0 1/(2σ4)

]

E{Rβθ(•)θβ(•)T} =

[
(σ2)−1E{WE(W |Z)T} 0

0 0

]

=

[
E{XE(X |Z)T}/σ2 0

0 0

]
.

Hence, using the definition that S = var{X − E(X |Z)}, we derive that

V = E{Rββ(•) +Rβθ(•)θβ(•)T} =

[
−S/σ2 0

0 1/(2σ4)
.

]
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Also, let K = Rβ +Rθθβ . Then we have from Theorem 2.1 that

n1/2(β̂ − β0) ⇒ Normal(0,V−1FV−T ),

where F = var(K).

To complete the proof, we need to derive the asymptotic covariance matrix
V−1FV−T . First we note that

K = (1/σ2)

(
{W − E(W |Z)}ǫ∗ +M−1

∑M
m=1 VmV T

mγ

−1/2 + [ǫ∗2 − γTM−1
∑M

m=1 VmV T
mγ]/(2σ2)

)

= (1/σ2)

(
K1

K2

)
.

Hence we have

var(K) = (1/σ4)

(
var(K1) F12

FT
12 var(K2)

)
,

where F12 = E(K1K2)− E(K1)E(K2). Now we derive,

var(K1) = var

[
{X − E(X |Z) + U}(ǫ− UTγ) +M−1

M∑

m=1

VmV T
mγ

]

= var

[
{X − E(X |Z)}(ǫ− UTγ) + Uǫ− UUTγ +M−1

M∑

m=1

VmV T
mγ

]

= var[{X − E(X |Z)}(ǫ− UTγ)] + var(Uǫ) + var{(UUT − Σu)γ}

+ var

{
M−1

M∑

m=1

(VmV T
m − Σu)γ

}

= var[{X − E(X |Z)}(ǫ− UTγ)] + var(Uǫ) + var{(UUT − Σu)γ}
+M−1var{(VmV T

m − Σu)γ}
= Γ+M−1var{(VmV T

m − Σu)γ},

and

(4σ4)var(K2) = var(ǫ∗2) + var

(
γTM−1

M∑

m=1

VmV T
mγ

)

= E{(ǫ− UTγ)4} − (σ2 + γTΣuγ)
2 +M−2

M∑

m=1

var{γT(VmV T
m − Σu)γ}

= E{(ǫ− UTγ)2 − (σ2 + γTΣuγ)}2 +M−1var{γT(VmV T
m − Σu)γ}

= τ2 +M−1var{γT(VmV T
m − Σu)γ}.
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Finally, we derive

E(K1) = E

[
{W − E(W |Z)}ǫ∗ +M−1

M∑

m=1

VmV T
mγ

]
= −Σuγ +Σuγ = 0;

E(K2) = E

(
− 1/2 +

[
ǫ∗2 − γTM−1

M∑

m=1

VmV T
mγ

]
/(2σ2)

)
= 0;

E(K1K2) = E

([
{W − E(W |Z)}ǫ∗ +M−1

M∑

m=1

VmV T
mγ

]

×
[
−1/2 + [ǫ∗2 − γTM−1

M∑

m=1

VmV T
mγ]/(2σ2)

])
.

Note that ǫ∗ = ǫ−UTγ is independent of X and Z. Hence using W = X+U ,
we observe

E({W − E(W |Z)}ǫ∗3) = −3σ2Σuγ − E{U(UTγ)3};

E

[
{W − E(W |Z)}ǫ∗γTM−1

M∑

m=1

VmV T
mγ

]
= −Σuγγ

TΣuγ;

E

[
M−1

M∑

m=1

VmV T
mγǫ∗2

]
= Σuγσ

2 +Σuγγ
TΣuγ;

E

[{
M−1

M∑

m=1

VmV T
mγ

}{
γTM−1

M∑

l=1

VlV
T
l γ

}]

= E

[
M−2

M∑

m=1

M∑

l=1

VmV T
mγγTVlV

T
l γ

]

= E

[
M−2

M∑

m=1

VmV T
mγγTVmV T

mγ

]
+ E

[
M−2

M∑

m=1

M∑

l 6=m=1

VlV
T
l γγTVlV

T
l γ

]

= M−1E{Vm(V T
mγ)3}+M−1(M − 1)Σuγγ

TΣuγ.

Hence we see that

E(K1K2) = Σuγ/2− 3Σuγ/2− {E{U(UTγ)3 − Σuγγ
TΣuγ}/(2σ2)

− (1/2)Σuγ + (1/2)Σuγ +Σuγγ
TΣuγ/(2σ

2)

−M−1E{Vm(V T
mγ)3}/(2σ2)−M−1(M − 1)Σuγγ

TΣuγ/(2σ
2)

= −Σuγ − [E{U(UTγ)3} − Σuγγ
TΣuγ]/(2σ

2)

−M−1E{Vm(V T
mγ)3}/(2σ2) + {1−M−1(M − 1)}Σuγγ

TΣuγ/(2σ
2).
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Finally, we obtain that the asymptotic covariance matrix is given by

V−1FV−T =

[
S−1ΓS−T +R11 2σ2S−1C +R12

· τ2 +R22

]
,

where

R11 = M−1S−1cov{(VmV T
m − Σu)γ}S−T ;

R12 = 2σ2S−1[M−1E{Vm(V T
mγ)3} − {1−M−1(M − 1)}Σuγγ

TΣuγ];

R22 = M−1var{γT(VmV T
m − Σu)γ}.

Now the result follows from Theorem 2.1.

Appendix C: Proof of Remark 3.3

Recall that, for a fixed M , Monte Carlo corrected criterion function is given by

RM (·) = M−1
M∑

m=1

Re[L{Y,W̃m,B, θ(Z)}]

= (1/2) log{det(Σ−1
ǫ )}− (1/2){Y−Wβ− θ(Z)}TΣ−1

ǫ {Y−Wβ− θ(Z)}

+ (1/2)βT

(
M−1

M∑

m=1

VT
mΣ−1

ǫ Vm

)
β.

We observe that as M → ∞, RM (·) = R∞(·) +Op(M
−1/2), where

R∞(·) = [log{det(Σ−1
ǫ )} − {Y −Tβ − θ(Z)}TΣ−1

ǫ {Y −Tβ − θ(Z)}
+ βTE(VT

mΣ−1
ǫ Vm)β]/2.

Note that R∞(·) is exactly the same criterion function as in Lin and Carroll[12]
(see their equation (22), p. 81). Hence asM → ∞, the estimates based on R∞(·)
are given as follows: given the current estimates, B̂cur = (β̂cur, Σ̂ǫ,cur), the new
estimates are given by

β̂new =

[
n−1

n∑

i=1

{WT
i Σ̂

−1
ǫ,curWi − E(VT

mΣ̂−1
ǫ,curVm)}

]−1

× n−1
n∑

i=1

WT
i Σ̂

−1
ǫ,cur{Yi − θ̂(Zi, B̂cur)};

Σ̂ǫ,new = n−1
n∑

i=1

[{Yi −Wiβ̂cur − θ̂(Zi, B̂cur)}{Yi −Wiβ̂cur

− θ̂(Zi, B̂cur)}T − E(Vmβ̂curβ̂
T
curV

T
m)].

Again, as M → ∞, we note that the estimating equation for β and Σǫ are same
as Lin and Carroll [12] (see their equation (23), p. 81). Hence the result.
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