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Abstract: Let X be a 1-dimensional diffusion process. We study a simple
class of estimators, which rely only on one sample data {X i

n
, 0 ≤ i ≤ nt},

for the occupation time
∫ t
0
IA(Xs)ds of process X in some set A. The main

concern of this paper is the rates of convergence of the estimators. First,
we consider the case that A is a finite union of some intervals in R, then
we show that the estimator converges at rate n−3/4. Second, we consider
the so-called stochastic corridor in mathematical finance. More precisely,
we let A be a stochastic interval, say [Xt0 ,∞) for some t0 ∈ (0, t), then we
show that the estimator converges at rate n−1/2. Some discussions about
the exactness of the rates are also presented.
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1. Introduction

LetX be a 1-dimensional diffusion process defined on a filtered probability space
(Ω,F, (Ft)t≥0,P) by

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0 ∈ R a.s, (1.1)

where W is a standard Brownian motion. Suppose that process X is observed at
each time ti = i/n, i = 0, 1, . . ., we consider an approximation of the occupation

time
∫ t

0
IA(Xs)ds of X in some set A by an average of the values IA(X i

n
), 0 ≤

i ≤ nt, as n → ∞.
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The occupation time of a Brownian motion, and more generally of continu-
ous diffusion processes, has been playing an important role in pricing some type
of path dependent options like corridor option and eddoko option (see [3, 10]
and references therein). Generally speaking, price of such options depends on the
amount of time that the continuous time price process, sayX , stays in some des-
ignated intervals. However, in real market, we can only get the values of process
X at a finite set of observation points. It thus naturally raises a question of how
to approximate the occupation time of X using the data {X i

n
, i = 0, . . . , nt}.

Although the approximation of the local time of X by finite data of obser-
vation, discretized either in time or in space, has been well studied by many
authors (see [1, 6]), there is a few works on the approximation of occupation
time (see [9] and references therein). It is quite natural to use a Riemann sum
to approximate the occupation time, however the rate of convergence seems to
be unknown. The main aim of this paper is to find the rates of convergence by
showing the tightness of the estimators.

In this paper, we consider two cases which are of special importance in theory
as well as in application. Firstly, we study the deterministic corridor case where
A is a finite union of some intervals in R. Secondly, we study the stochastic
corridor case where A is a stochastic interval, say [Xt0 ,∞) for some t0 ∈ (0, t).
It is interesting to compare the rates of convergence of the estimators in the
former and latter cases, which are n−3/4 and n−1/2, respectively.

The present paper is organized in the following way. The framework and main
results will be stated in Section 2. Proofs and further comments of the results
are presented in Section 3.

2. Main results

For each set A ∈ B(R), we introduce the following estimator for the occupation
time of X in A

Γ(A)nt =
1

n

[nt]
∑

i=0

IA(X i
n
),

where [x] denotes the integer part of x. Let us denote by ∂A the boundary of A
and λ(A) the Lebesgue measure of A.

The following proposition shows the convergence of estimator Γ(A)nt to the
occupation time as n → ∞.

Proposition 2.1. Assume that σ(x0) 6= 0, and b and σ satisfy the Lipschitz
condition. Let A be a Borel set satisfying λ(∂A) = 0, then

Γ(A)nt
a.s.−→

∫ t

0

IA(Xs)ds, (2.1)

as n → ∞ for any t > 0.

In order to study the rate of convergence, we recall the definition of C −
tightness (see [8] for more details). First, we denote by D(R) the Polish space
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of all càdlàg functions: R+ → R with Skorokhod topology. A sequence of D(R)-
valued random vectors (ξn) defined on a probability space (Ω,F,P) is called
tight if

inf
K

sup
n

P(ξn 6∈ K) = 0,

where the infimum is taken over all compact sets K in D(R). The sequence (ξn)
is called C-tight if it is tight and all cumulative points of the sequence {L(ξn)}
are laws of continuous processes.

We introduce A, a collection of all sets A of the following form

A = B ∪
n
⋃

i=1

(a2i, a2i+1),

where −∞ ≤ a0 < a1 < · · · < a2n+1 ≤ +∞ and B is a Borel set satisfying
λ(B) = 0. We need the following assumption:

Assumption (H): σ is a continuously differentiable and strictly positive func-
tion with bounded derivative on R. Furthermore, b is a function of linear growth,

|b(x)| ≤ K(1 + |x|), ∀x ∈ R,

for some constant K > 0.

Assumption (H) is sufficient for equation (1.1) to have a non-exploding,
unique strong solution (Proposition V.5.17 [5]).

Now we are in a position to state the first main result of this paper.

Theorem 2.2. Assume (H) and A ∈ A. Then the sequence of processes

{

n3/4
(

Γ(A)nt −
∫ t

0

IA(Xs)ds
)}

t≥0
(2.2)

is C-tight.

The following simple proposition tells that the rate of convergence n−3/4 is
exact in L2-sense when X is a standard Brownian motion.

Proposition 2.3. Let X be a standard Brownian motion. Then there exist
constants K1,K2 ∈ (0,∞) such that for all n, t satisfying nt > 1, we have

K1

√
t ≤ n3/2

E

( 1

n

[nt]
∑

i=1

I{X i
n
≥0} −

∫ t

0

I{Xs≥0}ds
)2

≤ K2

√
t.

Moreover, when X is a standard Brownian motion, we can modify Γ to get an
unbiased estimator for the occupation time of X in some interval [K,∞), K ∈
R, and then establishing a central limit theorem for the new estimator (see
Corollary 3.4). Nevertheless, it is the bias of the general estimator Γn

t that
makes the problem of showing a central limit theorem become very hard.



Discrete approximation of occupation time 1377

Next, we consider the case of so-called stochastic corridor in option pricing
theory (see [3, 10]). We fix the horizontal time, say t = 1, and for a fixed constant
t0 ∈ (0, 1), the stochastic corridor at time t0 is defined by

R(t0) =

∫ 1

0

I{Xu≥Xt0}du.

Since Xt0 may not be observable, a natural estimator for R(t0) is

Λn(t0) =
1

n

n
∑

i=1

I{X i
n
≥X [nt0]

n

}.

We state the second main result of this paper.

Theorem 2.4. Assume (H). Then the sequence of random variables n1/2
(

Λn(t0)−
R(t0)

)

is tight.

The rate of convergence drops from n−3/4 to n−1/2 due to the discreteness
of the estimator which compares Xi/n with X[nt0]/n instead of the unobservable
Xt0 . In fact, if we take t0 = 1, then we have the following result.

Proposition 2.5. Assume (H). Then for any t > 0, the sequence of random
variables

n3/4
( 1

n

[nt]
∑

i=1

I{X i
n
≥X1} −

∫ t

0

I{Xu≥X1}du
)

is tight.

The proofs of all above results and some further comments will be presented
in the next section.

3. Proofs

3.1. Preliminary

First we recall some facts about stable convergence. Let ξn be a sequence of
random vectors with values in a Polish space X, all defined on the same proba-
bility space (Ω,F,P) and let G be a sub-σ-algebra of F. We say that ξn converges
G-stably in law to ξ, if ξ is an X-valued random vector defined on an extension
(Ω̃, F̃, P̃) of the original probability space and if

lim
n

E(Uf(Yn)) = Ẽ(Uf(Y )),

for every bounded continuous functions f : X → R and all bounded G-measurable
random variables U . Stable convergence in law is obviously stronger than the
convergence in law.

We will make use of the following lemmas.
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Lemma 3.1. Let (ξn) be a C-tight sequence of càdlàg processes defined on
a probability space (Ω,F, (Ft)t≥0,P) and Q another probability measure which
is equivalent to P. Then the sequence (ξn) is also C-tight on probability space
(Ω,F, (Ft)t≥0, Q).

Proof. The result follows easily from Proposition VI.3.26 [8].

Lemma 3.2 (Corollary VI.3.33 [8]). Let (ξn) and (ηn) be C-tight sequences of
càdlàg processes. Then the sequence (ξn + ηn) is also C-tight.

3.2. Proof of Proposition 2.1

It follows from Theorem 7.3 [11] that, under the given condition for coefficients b
and σ, the law of Xt is absolutely continuous with respect to the Lebesgue mea-
sure on R. We denote A◦ and Ā the interior and closed bound of A, respectively.
Since λ(∂A) = 0, applying Fubini’s theorem, we get

∫ t

0

IA(Xs)ds =

∫ t

0

IĀ(Xs)ds =

∫ t

0

IA◦(Xs)ds a.s.

Applying Fatou’s lemma, we get

lim sup
n→∞

1

n

[nt]
∑

i=0

IA(X i
n
) = lim sup

n→∞

∫ t

0

IA(X [ns]
n

)ds

≤
∫ t

0

lim sup
n→∞

IA(X [ns]
n

)ds ≤
∫ t

0

lim sup
n→∞

IĀ(X [ns]
n

)ds

≤
∫ t

0

IĀ(Xs)ds =

∫ t

0

IA(Xs)ds a.s.

On the other hand, a similar argument as above yields

lim inf
n→∞

1

n

[nt]
∑

i=0

IA(X i
n
) ≥

∫ t

0

IA(Xs)ds a.s.

Hence we get (2.1).

Remark. By looking again at the above proof, we see that the conclusion of
Proposition 2.1 holds for any process X which is continuous and has continuous
marginal distribution. We refer to [4] and references therein for other classes of
conditions on b and σ, which guarantee the continuity of sample path as well as
of marginal distribution of X .

3.3. Proof of Theorem 2.2

It is enough to prove Theorem 2.2 with an additional assumption that b and
1/σ are bounded functions. Then the proof for general case can be obtained
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via a well-known localization procedure (see [6, 7] for instance). Furthermore,
by applying the argument in Section 2 of [6], it is sufficient to prove Theorem
2.2 when (Ω,F) is the canonical space (C[0,∞),B(C[0,∞))) with W is the
coordinate mapping process and P is the Wiener measure. Hence, from now on,
we suppose that b and 1/σ are bounded and our probability space is canonical.

We denote S(x) =
∫ x

x0

1
σ(u)du, Yt = S(Xt). It follows from Itô’s formula that

dYt = g(Xt)dt+ dWt, (3.1)

where g(x) = b(x)
σ(x) − 1

2σ
′(x). Since σ is strictly positive, S is strictly increasing

and continuous, hence the inverse S−1 of S is well-defined. We denote h(x) =
g(S−1(x)), then equation (3.1) becomes

dY (t) = h(Yt)dt+ dWt.

Denote

Zt = exp
(

−
∫ t

0

h(Ys)dWs −
1

2

∫ t

0

h(Ys)
2ds

)

.

Since g is bounded, h is also bounded and therefore Z is a martingale. Applying
Girsanov’s theorem (Corollary III.5.2 [5]), there is a unique probability measure
P̃ which is absolutely continuous with respect to P, and under P̃,

Bt := Wt +

∫ t

0

h(Ys)ds

is a Brownian motion. Denote by (Gt) the filtration generated by the process
B, and G =

∨

Gt. Denote Gn
i = G i

n
, Bn

i = B i
n

and Ẽ is the expectation with

respect to P̃.

For some K ∈ R, we set

Zi,n = n3/4
( 1

n
I[K,∞)(B

n
i−1)−

∫ i
n

i−1
n

I[K,∞)(Bs)ds
)

,

Yi,n = Zi,n − Ẽ(Zi,n|Gn
i−1), i = 1, 2, . . .

and

Zn
t =

[nt]
∑

i=1

Zi,n, Y n
t =

[nt]
∑

i=1

Yi,n, T n
t =

[nt]
∑

i=1

Ẽ(Zi,n|Gn
i−1).

Now, the proof is divided into a series of lemmas.

Lemma 3.3. The sequence Y n converges G-stably to a continuous process de-
fined on an extension of the original probability space. In particular, the sequence
(Y n) is C-tight under probability measure P̃.
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Proof. Denote by Φ the standard normal distribution function. The proof will
proceed in several steps.
1) We have

Ẽ(Zi,n|Gn
i−1) = n3/4

( 1

n
Ẽ(I{Bn

i−1≥K}|Gn
i−1)− Ẽ

(

∫ i
n

i−1
n

I{Bs≥K}ds|Gn
i−1

))

.

By Markov property,

Ẽ(Zi,n|Gn
i−1)

= n3/4
( 1

n
I{Bn

i−1≥K} −
∫ 1

n

0

Φ
(Bn

i−1 −K√
u

)

du
)

=
1√
2π

n−1/4

∫ ∞

√
n(Bn

i−1−K)

(

1− n(Bn
i−1 −K)2

t2

)

e−t2/2dtI{Bn
i−1≥K}

− 1√
2π

n−1/4

∫

√
n(Bn

i−1−K)

−∞

(

1− n(Bn
i−1 −K)2

t2

)

e−t2/2dtI{Bn
i−1<K}.

We denote

g1(x) =
(

∫ ∞

x

(

1− x2

t2

)

e−t2/2dtI{x≥0} −
∫ x

−∞

(

1− x2

t2

)

e−t2/2dtI{x<0}
)2

.

=
(

∫ ∞

|x|

(

1− x2

t2

)

e−t2/2dt
)2

,

and

λ1 =

∫

R

g1(x)dx = 2

∫ ∞

0

(

∫ ∞

x

(

1− x2

t2

)

e−t2/2dt
)2

dx.

For any x 6= 0, one has

0 ≤
∫ ∞

|x|

(

1− x2

t2

)

e−t2/2dt ≤
∫ ∞

0

e−t2/2dt =

√

π

2
,

and,

∫ ∞

|x|

(

1− x2

t2

)

e−t2/2dt ≤
∫ ∞

|x|
e−t2/2dt ≤

∫ ∞

|x|

t

|x|e
−t2/2dt = |x|−1e−x2/2.

Therefore
g1(x) ≤ min

{π

2
, x−2e−x2

}

.

Furthermore, one has

λ1 = 2

∫ ∞

0

∫ ∞

x

(

1− x2

t2

)

e−t2/2dt

∫ ∞

x

(

1− x2

s2

)

e−s2/2dsdx.
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Since the integrand is non-negative, it follows from Fubini theorem that

λ1 = 2

∫ ∞

1

du

∫ ∞

1

dv
(

1− 1

u2

)(

1− 1

v2

)

∫ ∞

0

x2 exp
(

− (u2 + v2)x2

2

)

dx

=
√
2π

∫ ∞

1

du

∫ ∞

1

dv
(

1− 1

u2

)(

1− 1

v2

)

(u2 + v2)−3/2.

And then after a change of variables,

{

u = 1
r sinα

v = 1
r cosα

0 < r ≤ 1, 0 ≤ α ≤ π

2
,

one gets λ1 = 7
√
2π

20 . According to Theorem 4.1 [6], we have

1√
n

[nt]
∑

i=1

g1(
√
n(Bn

i−1 −K))
P̃−→ 7

√
2π

20
Lt(K), (3.2)

where Lt(K) is the local time of B defined by

Lt(K) = |Bt −K| − |K| −
∫ t

0

sgn(Bs −K)dBs. (3.3)

Hence
[nt]
∑

i=1

Ẽ(Zi,n|Gn
i−1)

2 P̃−→ 7

20
√
2π

Lt(K). (3.4)

2) Next, we have

Ẽ

((

∫ i
n

i−1
n

I{Bs≥K}ds
)2∣

∣

∣
Gn
i−1

)

= Ẽ

((

∫ i
n

i−1
n

I{Bs−Bn
i−1≥K−Bn

i−1}ds
)2∣

∣

∣
Gn
i−1

)

= Ẽ

(

∫ i
n

i−1
n

I{Bs−Bn
i−1≥−r}ds

)2∣
∣

∣

r=Bn
i−1−K

,

the Markov property yields,

Ẽ

((

∫ i
n

i−1
n

I{Bs≥K}ds
)2∣

∣

∣
Gn
i−1

)

= Ẽ

(

∫ 1
n

0

I{Bs≥−r}ds
)2∣

∣

∣

r=Bn
i−1−K

. (3.5)

Using formula 1.1.4.4 Borodin et al. [2], we get, if r ≤ 0,

Ẽ

(

∫ 1
n

0

I{Bs≥−r}ds
)2

=

∫ 1/n

0

v2

π
√

v( 1n − v)
exp

(

− r2

2( 1n − v)

)

dv

=
1

n2π

∫ 1

0

z3/2√
1− z

exp
(

− nr2

2(1− z)

)

dz, (3.6)
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and if r > 0,

Ẽ

(

∫ 1
n

0

I{Bs≥−r}ds
)2

=
1

n2

(

1−
∫ 1

n

0

1

π
√

v( 1
n − v)

exp
(

− r2

2v

)

dv
)

+

∫ 1
n

0

v2

π
√

v( 1n − v)
exp

(

− r2

2v

)

dv

=
1

n2

(

1−
∫ 1

0

1

π
√

z(1− z)
exp

(

−nr2

2z

)

dv
)

+
1

n2π

∫ 1

0

z3/2√
1− z

exp
(

−nr2

2z

)

dz.

(3.7)

We write

Ẽ(Z2
i,n|Gn

i−1) =
1√
n
I{Bn

i−1≥K} − 2n1/2I{Bn
i−1≥K}Ẽ

(

∫ i
n

i−1
n

I{Bs≥K}ds
∣

∣

∣
Gn
i−1

)

+ n3/2
Ẽ

((

∫ i
n

i−1
n

I{Bs≥K}ds
)2∣

∣

∣
G
n
i−1

)

,

then it follows from (3.5)-(3.7) and an elementary calculation that

Ẽ(Z2
i,n|Gn

i−1) =
1√
n

{ 1

π

∫ 1

0

z3/2√
1− z

exp
(

− n

2(1− z)
(Bn

i−1 −K)2
)

dzI{Bn
i−1<K}

+ 2

∫ 1

0

(

1− Φ
(

√
n√
u
(Bn

i−1 −K)
))

duI{Bn
i−1≥K}

+
1

π

∫ 1

0

z3/2√
1− z

exp
(

− n

2z
(Bn

i−1 −K)2
)

dzI{Bn
i−1≥K}

− 1

π

∫ 1

0

1
√

z(1− z)
exp

(

− n

2z
(Bn

i−1 −K)2
)

dzI{Bn
i−1≥K}

}

.

Denote

g2(x) =
1

π

∫ 1

0

z3/2√
1− z

exp
(

− x2

2(1− z)

)

dzI{x<0}

+
{

2

∫ 1

0

(

1− Φ(
x√
u
)
)

du+
1

π

∫ 1

0

z3/2√
1− z

exp
(

−x2

2z

)

dz

− 1

π

∫ 1

0

1
√

z(1− z)
exp

(

−x2

2z

)

dz
}

I{x≥0}.

Using the fact that e−u < 1/u for all u > 0, once can show that

|g2(x)| ≤ Kmin{1, |x|−1e−x2/2 + x−2}, ∀x ∈ R,

for some positive constant K. Furthermore, by applying Fubini theorem, one
gets

∫ +∞

−∞
g2(x)dx =

2
√
2

5
√
π
.
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Apply Theorem 4.1 [6] again, we have

[nt]
∑

i=1

Ẽ(Z2
i,n|Gn

i−1) =
1√
n

[nt]
∑

i=1

g2
(√

n(Bn
i−1 −K)

)

P̃−→ 2
√
2

5
√
π
Lt(K). (3.8)

3) It follows from (3.4) and (3.8) that

[nt]
∑

i=1

Ẽ(Y 2
i,n|Gn

i−1)
P̃−→ 9

20
√
2π

Lt(K). (3.9)

4) Next, we have

[nt]
∑

i=1

Ẽ
(

Yi,n(B
n
i −Bn

i−1)|Gn
i−1

)

=

[nt]
∑

i=1

Ẽ
(

Zi,n(B
n
i −Bn

i−1)|Gn
i−1

)

=− n3/4

[nt]
∑

i=1

Ẽ

(

(Bn
i −Bn

i−1)

∫ i
n

i−1
n

I{Bs≥K}ds|Gn
i−1

)

=− n3/4

[nt]
∑

i=1

∫ i
n

i−1
n

Ẽ

(

(Bs −Bn
i−1)I{Bs≥K}|Gn

i−1

)

ds.

The Markov property yields

[nt]
∑

i=1

Ẽ
(

Yi,n(B
n
i −Bn

i−1)|Gn
i−1

)

=− n3/4

[nt]
∑

i=1

∫ i
n

i−1
n

Ẽ

(

(Bs −Bn
i−1)I{Bs−Bn

i−1≥r}
)

ds
∣

∣

∣

r=K−Bn
i−1

=− n3/4

[nt]
∑

i=1

∫ 1
n

0

Ẽ

(

BsI{Bs≥r}
)

ds
∣

∣

∣

r=K−Bn
i−1

=− n3/4

[nt]
∑

i=1

1√
2π

∫ 1
n

0

√
z exp

(

− (Bn
i−1 −K)2

2z

)

dz.

Hence,

Ẽ

∣

∣

∣

[nt]
∑

i=1

Ẽ
(

Yi,n(B
n
i −Bn

i−1)|Gn
i−1

)

∣

∣

∣

≤n3/4

[nt]
∑

i=1

1√
2π

∫ 1
n

0

√
zẼ exp

(

− (Bn
i−1 −K)2

2z

)

dz
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Since e−u < 1 if u > 0, we have

Ẽ

∣

∣

∣

[nt]
∑

i=1

Ẽ
(

Yi,n(B
n
i −Bn

i−1)|Gn
i−1

)

∣

∣

∣

≤ 1

n3/4
+ n3/4

[nt]
∑

i=2

1√
2π

∫ 1
n

0

dz

∫ +∞

−∞

1
√

2π i−1
n

√
z exp

(

− (x−K)2

2z

)

dx

≤ 1

n3/4
+ n3/4

[nt]
∑

i=2

√
n

n2
√
i− 1

≤2n−1/4(1 +
√
t).

Therefore,

[nt]
∑

i=1

Ẽ
(

Yi,n(B
n
i −Bn

i−1)|Gn
i−1

)

P̃−→ 0. (3.10)

5) We have

[nt]
∑

i=1

Ẽ
(

Y 4
i,n|Gn

i−1

)

≤ 16

[nt]
∑

i=1

Ẽ
(

Z4
i,n|Gn

i−1

)

Because of Markov property, we get

[nt]
∑

i=1

Ẽ
(

Y 4
i,n|Gn

i−1

)

≤ 16n3

[nt]
∑

i=1

Ẽ

( 1

n
I{r≥0} −

∫ 1
n

0

I{Bs≥−r}ds
)4∣

∣

∣

r=Bn
i−1−K

≤ 16n3

[nt]
∑

i=1

Ẽ

(

∫ 1
n

0

I{Bs≥r}ds
)4∣

∣

∣

r=|Bn
i−1−K|

≤ 16

[nt]
∑

i=1

∫ 1
n

0

(

1− Φ
( |Bn

i−1 −K|√
s

))

ds.

Hence

Ẽ

∣

∣

∣

[nt]
∑

i=1

Ẽ
(

Y 4
i,n|Gn

i−1

)

∣

∣

∣
≤ 16

[nt]
∑

i=1

∫ 1
n

0

Ẽ

(

1− Φ
( |Bn

i−1 −K|√
s

))

ds

≤16n−1 + 16

[nt]
∑

i=2

∫ 1
n

0

ds

∫ +∞

−∞
dx

∫ +∞

0

√
n√

i− 1
I{t≥ |x−K|√

s
}e

−t2/2dt
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Applying Fubini theorem, one gets

Ẽ

∣

∣

∣

[nt]
∑

i=1

Ẽ
(

Y 4
i,n|Gn

i−1

)

∣

∣

∣
≤16n−1 + 16

[nt]
∑

i=2

∫ 1
n

0

ds

∫ +∞

0

√
n√

i− 1
2t
√
se−t2/2dt

=16n−1 +
64

3

[nt]
∑

i=2

1

n
√
i− 1

≤64

3

( 1

n
+

√
t√
n

)

.

Therefore
[nt]
∑

i=1

Ẽ
(

Y 4
i,n|Gn

i−1

)

P̃−→ 0. (3.11)

6) We have that Y n = (Yi,n,G
n
i ) is a martingale. Further, under P̃, any mar-

tingale with respect to (Gt) orthogonal to B is constant. Hence it follows from
(3.9)-(3.11) and Theorem IX.7.28 [8] that Y n converges G-stably to a continuous
process defined on an extension of the original probability space. In particular,
the sequence (Y n) is C-tight under probability measure P̃.

It should be noted here that although the Riemann estimator Γ(.) of the
occupation time is consistent, it is biased in general. However, Lemma 3.3 tells us
that we can construct an unbiased and consistent estimator for the occupation
time of Brownian motion. More precisely, we have the following central limit
theorem in which we refer to [8] for notions we have not defined so far.

Corollary 3.4. Suppose that B is a Brownian motion defined on a filtered
probability space B = (Ω,G, (G)t, P̃). For each n ≥ 1, t > 0 and K ∈ R, we
denote

Γ̃(K)nt =

[nt]
∑

i=1

∫ i
n

i−1
n

Φ
(K −B(i−1)/n

√

s− i−1
n

)

ds+

∫ t

[nt]
n

Φ
(K −B[nt]/n

√

s− [nt]
n

)

ds.

Then Γ̃(K)nt is an unbiased estimator for the occupation time Γ̃(K)t =
∫ t

0
I{Bs≥K}ds. Moreover, there is a very good extension B̃ of B and a continu-

ous B-biased G-progressive conditional martingale with independent increment
X ′ on this extension with

〈X ′, X ′〉t =
9

20
√
2π

Lt(K), 〈X ′, B〉 = 0,

such that n3/4
(

Γ̃(K)n− Γ̃(K)
)

converges G-stably to X ′, where Lt(K) is defined
in (3.3).

Proof. Γ̃(K)nt is an unbiased estimator for Γ̃(K)t because

Γ̃(K)nt =

[nt]
∑

i=1

E

(

∫ i
n

i−1
n

I[K,∞)(Bs)ds
∣

∣B i−1
n

)

+ E

(

∫ t

[nt]
n

I[K,∞)(Bs)ds
∣

∣B [nt]
n

)

.
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Furthermore, we have

n3/4

∫ t

[nt]
n

Φ
(K −B[nt]/n

√

s− [nt]
n

)

ds ≤ n−1/4.

Then by following the same argument as in the proof of Lemma 3.3 we get the
desired result.

We continue the proof of Theorem 2.2.

Lemma 3.5. The sequence (T n) is C-tight under probability measure P̃.

Proof. We write

[nt]
∑

i=1

Ẽ(Zi,n|Gn
i−1) = n3/4

[nt]
∑

i=1

( 1

n
I{Bn

i−1≥K} −
1

n

∫ 1

0

Φ
(

√
n(Bn

i−1 −K)√
u

)

du
)

= n−1/4

[nt]
∑

i=1

g3(
√
n(Bn

i−1 −K)),

where

g3(x) = I{x≥0} −
∫ 1

0

Φ(xu−1/2)du = sgn(x)

∫ 1

0

(

1− Φ(|x|u−1/2)
)

du.

Since
∫ +∞
−∞ g3(x)dx = 0 and |g3(x)| ≤ min{1, |x|−1e−x2/2}, applying Theorem

1.2 [6], we have T n converges G-stably to a continuous process defined on an
extension of the original probability space. In particular, the sequence (T n) is
C-tight under probability measure P̃.

We are now in a position to finish the proof of Theorem 2.2. Indeed, according
to Lemmas 3.3, 3.5 and Lemma 3.2, the sequence of processes

{

n3/4
(

Γ([K,∞))nt −
∫ t

0

I[K,∞)(Xs)ds
)

}

t≥0

is C-tight under P̃. Moreover, for each t > 0, we define a signed measure µt on
(R,B(R)) by

µt(A) = Γ(A)−
∫ t

0

IA(Xs)ds.

It follows from Fubini theorem that µt(A) = 0 for any Borel set A satisfying
λ(A) = 0. Furthermore, for any a < b, µt([a, b)) = µt([a,∞))−µt([b,∞)), hence
it follows from Lemma 3.2 that the sequence of process

{

n3/4µt([a, b))
}

is C-

tight under P̃. By repeating the same argument, one can show that the sequence
{

n3/4
(

Γ(A)nt −
∫ t

0 IA(Xs)ds
)}

t≥0
is C-tight under P̃ for any A ∈ A. Applying

Lemma 3.1, we get the desired result.
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3.4. Proof of Proposition 2.3

Suppose that X is a standard Brownian motion. We need the following equality,
which is more or less known but simple to prove.

Lemma 3.6. For any t > s > 0,

P(Xs ≥ 0, Xt ≥ 0) =
1

4
+

1

2π
arctan

√

s

t− s
. (3.12)

Proof. Since X is a Brownian motion, one has

P(Xs ≥ 0, Xt ≥ 0) = E

(

E
(

I{Xt−s≥−x}I{x≥0}
)

|Xs=x

)

=

∫ ∞

0

1√
2π

e−x2/2Φ
(

√
sx√

t− s

)

dx

=

∫ ∞

0

1√
2π

e−x2/2
(1

2
+

1√
2π

∫ ∞

0

e−y2/2I{
√
t−sy≤√

sx}dy
)

dx.

An elementary calculation by using change of variables formula yields the desired
result.

We also make use of the following estimate for the error due to the Riemann
approximation of function f(x) =

√
x− x2 defined on [0, 1]. The difficulty comes

from the fact that the derivative of f is not bounded on (0, 1).

Lemma 3.7. There exist positive constants κ1, κ2 such that for any positive
integer m,

κ1m
−3/2 ≤ π

8
− 1

m

m
∑

i=1

i

m

√

m

i
− 1 ≤ κ2m

−3/2. (3.13)

Proof. On the Cartesian plane Oxy, let (C) be a semicircle with equation
{

y2 = x− x2

y ≥ 0.

We denote I(1/2, 0) the central point of the circle. Set Mi = ( i
m , f( i

m )) ∈
(C), i = 0, . . . ,m, and αi = ∠MiIMi+1, i = 0, . . . ,m− 1. It is clear that

π

8
− 1

m

m
∑

i=1

i

m

√

m

i
− 1 =

1

8

m−1
∑

i=0

(αi − sinαi) > 0.

since sinα < α for all α > 0. Hence it is sufficient to verify inequality (3.13) for
m large enough.

Since limα→0
α−sinα

α3 = 1
6 , there exists δ > 0 such that for all α < δ, α −

sinα > α3

12 . Hence, for m large enough, we have

π

8
− 1

m

m
∑

i=1

i

m

√

m

i
− 1 ≥ 1

8
(α0 − sinα0) ≥

1

96
α3
0.
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Since cosα0 = 1− 2
m , one has,

sinα0 =

√

1− (1− 2

m
)2 ≥ 1√

m
.

Therefore

π

8
− 1

m

m
∑

i=1

i

m

√

m

i
− 1 ≥ 1

96
m−3/2,

for all m large enough.

Next we show the upper bound of (3.13). For each j < (m− 1)/2, we denote

βj =
∑j

i=0 αi. We have cos(βj) = 1− 2(j+1)
m , hence, for 1 ≤ i ≤ (m− 1)/2,

sinαi−1 = sin(βi − βi−1)

=

√

1−
(

1− 2(i+ 1)

m

)2(

1− 2i

m

)

−
√

1−
(

1− 2i

m

)2(

1− 2i+ 2

m

)

=

(

4
m − 4(2i+1)

m2

)(

1− 2i
m

)

√

1−
(

1− 2(i+1)
m

)2
+

√

1−
(

1− 2i
m

)2
+

2

m

√

1−
(

1− 2i

m

)2

≤
4
m

√

4i
m − 4i2

m2

+
2

m
,

and this implies

sinαi ≤
6√
mi

. (3.14)

On the other hand, since α− sinα < α3/6 for all α > 0, one has

π

8
− 1

m

m
∑

i=1

i

m

√

m

i
− 1 ≤ 1

48

m−1
∑

i=0

α3
i .

For m large enough, we have αi < 2 sinαi, hence,

π

8
− 1

m

m
∑

i=1

i

m

√

m

i
− 1 ≤ 1

6

m−1
∑

i=0

sin3 αi.

Because of the symmetry, αi = αm−i−1 for all i = 0, . . . ,m − 1. This fact
together with inequality (3.14) yields

π

8
− 1

m

m
∑

i=1

i

m

√

m

i
− 1 ≤ C

m
∑

i=1

1

(mi)3/2
≤ C′ 1

m3/2
,

for some positive constants C and C′.
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Next, we denote Xn
j = X j

n
and

Sn =
1

n

[nt]
∑

i=1

I{Xn
i
≥0} −

∫
[nt]
n

0

I{Xs≥0}ds.

We write

ES2
n = T n

1 + T n
2 + T n

3 , (3.15)

where

T n
1 =

1

n2
E

(

[nt]
∑

i=1

I{Xn
i ≥0}

)2

,

T n
2 = − 2

n

[nt]
∑

i=1

E

(

I{Xn
i
≥0}

∫

[nt]
n

0

I{Xs≥0}ds
)

,

T n
3 = E

(

∫

[nt]
n

0

I{Xs≥0}ds
)2

.

It follows from (3.12) that

n2T n
1 =

[nt]
∑

i=1

E(I{Xn
i ≥0}) + 2

∑

1≤i<j≤[nt]

E
(

I{Xn
i ≥0}I{Xn

j ≥0}
)

=
[nt]

2
+ 2

∑

1≤i<j≤[nt]

(1

4
+

1

2π
arctan

√

i

j − i

)

=
[nt]([nt] + 1)

4
+

1

2π

∑

i,j≥1

i+j≤[nt]

(

arctan

√

i

j
+ arctan

√

j

i

)

,

=
[nt](3[nt] + 1)

8
,

here, and in the following, we use the fact that arctan(x) + arctan(1/x) = π/2.
Moreover,

−n

2
T n
2 =

[nt]
∑

i=1

∫

[nt]
n

0

E
(

I{Xn
i
≥0}I{Xs≥0}

)

ds

=

[nt]
∑

i=1

∫ i
n

0

(1

4
+

1

2π
arctan

√

s
i
n − s

)

ds

+

[nt]
∑

i=1

∫

[nt]
n

i
n

(1

4
+

1

2π
arctan

√

i
n

s− i
n

)

ds.
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An elementary calculation shows that

−n

2
T n
2 =

[nt]

4
+

1

2π

[nt]
∑

i=1

( iπ

4n
+

[nt]

n
arctan

√

i

[nt]− i
+

i

n

√

[nt]

i
− 1− iπ

2n

)

=
[nt]2

4n
+

[nt]([nt] + 1)

16n
+

1

2π

[nt]
∑

i=1

i

n

√

[nt]

i
− 1.

By arcsin law, we have

T n
3 =

3[nt]2

8n2
.

Therefore,

ES2
n =

[nt]2

8n2
− [nt]

n2π

[nt]
∑

i=1

i

[nt]

√

[nt]

i
− 1. (3.16)

Applying Lemma 3.7, there exist positive constants κ1, κ2 such that

κ1[nt]
−3/2 ≤ π

8
− 1

[nt]

[nt]
∑

i=1

i

[nt]

√

[nt]

i
− 1 ≤ κ2[nt]

−3/2.

Hence
κ1

π
n−3/2t1/2 ≤ ES2

n ≤ κ2

π
n−3/2t1/2.

This relation together with the fact that

E

(

∫ t

[nt]
n

I{Xs≥0}ds
)2

≤ n−2

yield the desired result.

3.5. Proof of Theorem 2.4

We first state an auxiliary lemma.

Lemma 3.8. Let B be a standard Brownian motion. For each t0 ∈ (0, 1], there
exist positive constants κ1, κ2, κ3 such that for all n > 0,

E

∣

∣

∣

1

n

n
∑

i=1

I{B i
n
≥B [nt0]

n

} −
∫ 1

0

I{Bu≥B [nt0]
n

}du
∣

∣

∣
≤ κ1n

−3/4, (3.17)

and if t0 < 1,

κ2

√

t0 −
[nt0]

n
≤ E

∣

∣

∣

∫ 1

0

I{Bu≥Bt0}du−
∫ 1

0

I{Bu≥B [nt0]
n

}du
∣

∣

∣
≤ κ3

√

t0 −
[nt0]

n
.

(3.18)
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Proof. Let denote tn = [nt0]
n , n = 1, 2, . . . for simplicity. We write

1

n

n
∑

i=1

I{B i
n
≥Btn} −

∫ 1

0

I{Bu≥Btn}du

=
1

n

[nt0]
∑

i=1

I{B i
n
−Btn≥0} −

∫ tn

0

I{Bu−Btn≥0}du

+
1

n

n
∑

i=[nt0]+1

I{B i
n
−Btn≥0} −

∫ 1

tn

I{Bu−Btn≥0}du.

It is well-known that for each n, processes B̂ = {Bt+tn − Btn}t≥0 and B̃ =
{Btn−t − Btn}0≤t≤tn are Brownian motions. By applying Proposition 2.3, we
get (3.17).

Now we consider inequality (3.18). Since the case t0 = tn is trivial, we suppose
tn < t0. Moreover, it is sufficient to verify (3.18) when n is big enough, say, n
satisfies nt0 > 1 and t0 < n−1

n .
Because of the symmetry of Brownian motion, we get

E

∣

∣

∣

∫ 1

0

I{Bu≥Bt0}du −
∫ 1

0

I{Bu≥B [nt0]
n

}du
∣

∣

∣
= 2E

(

∫ 1

0

I{Btn≥Bu≥Bt0}du
)

.

(3.19)

We decompose the right hand side of (3.19) in a sum of three terms:

E

(

∫ 1

0

I{Btn≥Bu≥Bt0}du
)

= J1 + J2 + J3,

where J1 = E
( ∫ tn

0 I{Btn≥Bu≥Bt0}du
)

, J2 = E
( ∫ t0

tn
I{Btn≥Bu≥Bt0}du

)

, and

J3 = E
( ∫ 1

t0
I{Btn≥Bu≥Bt0}du

)

.
For the first term J1, we write

J1 =

∫ tn

0

E
(

I{Btn≤Bu≤Bt0}
)

du

=

∫ tn

0

E
(

I{0≤Bu−Btn≤Bt0−Btn}
)

du

=

∫ tn

0

du

∫ +∞

0

dx

∫ +∞

x

dy
1

2π
√

(tn − u)(t0 − tn)
exp

(

− x2

2(tn− u)
− y2

2(t0 − tn)

)

=
1

2π

∫ tn

0

arctan

√

t0 − tn
u

du.

It is elementary to show that for any x ∈ (0, 1),

x

2
≤ arctan(x) ≤ x.
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Moreover, the upper bound also holds for arbitrary positive x. Hence, for all
t0 > 0,

J1 ≤
√
tn
π

√
t0 − tn, (3.20)

and if nt0 ≥ 1,

J1 ≥
√
tn −√

t0 − tn
2π

√
t0 − tn. (3.21)

Using a similar argument, we have, for all t0 > 0,

J3 ≤
√
1− t0
π

√
t0 − tn, (3.22)

and if t0 ≤ n−1
n ,

J3 ≥
√
1− t0 −

√
t0 − tn

2π

√
t0 − tn. (3.23)

Furthermore, it is trivial that

0 ≤ J2 ≤ t0 − tn. (3.24)

Putting together inequalities (3.20)-(3.24) we get (3.18).

Before proving Theorem 2.4, we state a corollary of Lemma 3.8, which has
interest on its own.

Corollary 3.9. Let B be a standard Brownian motion. The sequence of random
variables

n1/2
( 1

n

n
∑

i=1

I{B i
n
≥B [nt0]

n

} −
∫ 1

0

I{Bu≥Bt0}du
)

is bounded in L1. Furthermore, for any δ > 0, the sequence of random variables

n1/2+δ
( 1

n

n
∑

i=1

I{B i
n
≥B [nt0]

n

} −
∫ 1

0

I{Bu≥Bt0}du
)

is not bounded in L1.

Corollary 3.9 shows that in the case of Brownian motion, the discrete esti-
mators of stochastic corridor converge at the rate n−1/2 and this rate is exact
in L1-sense.

We now return to the proof of Theorem 2.4. Using the same notations as in
Section 3.3, we write

√
n
( 1

n

n
∑

i=1

I{X i
n
≥X [nt0]

n

}−R(t0)
)

=
√
n
( 1

n

n
∑

i=1

I{Y i
n
≥Y [nt0]

n

}−
∫ 1

0

I{Yu≥Yt0}du
)

,

(3.25)
where Y is a standard Brownian motion under probability measure P̃ which is
equivalent to P. Corollary 3.9 tells that the sequence of random variables in the
right hand side of (3.25) is bounded in L1(P̃), which yields the desired result.
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3.6. Proof of Proposition 2.5

By using the similar argument as above, we can show that Proposition 2.5 is
followed from inequality (3.17).
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