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Abstract: The Huber’s Criterion is a useful method for robust regression.
The adaptive least absolute shrinkage and selection operator (lasso) is a
popular technique for simultaneous estimation and variable selection. The
adaptive weights in the adaptive lasso allow to have the oracle properties.
In this paper we propose to combine the Huber’s criterion and adaptive
penalty as lasso. This regression technique is resistant to heavy-tailed er-
rors or outliers in the response. Furthermore, we show that the estimator
associated with this procedure enjoys the oracle properties. This approach is
compared with LAD-lasso based on least absolute deviation with adaptive
lasso. Extensive simulation studies demonstrate satisfactory finite-sample
performance of such procedure. A real example is analyzed for illustration
purposes.

Keywords and phrases: Adaptive lasso, concomitant scale, Huber’s cri-
terion, oracle property, robust estimation.

Received June 2010.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016
2 The lasso-type method . . . . . . . . . . . . . . . . . . . . . . . . . . 1017

2.1 Lasso-type estimator . . . . . . . . . . . . . . . . . . . . . . . . 1017
2.2 Robust lasso-type estimator: The LAD-lasso . . . . . . . . . . . 1018
2.3 The Huber’s Criterion with adaptive lasso . . . . . . . . . . . . 1019
2.4 Tuning parameter estimation . . . . . . . . . . . . . . . . . . . 1021
2.5 Some remarks on scale invariance . . . . . . . . . . . . . . . . . 1022

3 Theoretical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026

4.1 Models used for simulations . . . . . . . . . . . . . . . . . . . . 1026

1015

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/11-EJS635
mailto:Sophie.Lambert@imag.fr
mailto:Laurent.Zwald@imag.fr


1016 S. Lambert-Lacroix and L. Zwald

4.2 Assessing prediction methods . . . . . . . . . . . . . . . . . . . 1027
4.2.1 Prediction accuracy . . . . . . . . . . . . . . . . . . . . 1027
4.2.2 Selection ability . . . . . . . . . . . . . . . . . . . . . . 1028
4.2.3 Hyperparameter choices . . . . . . . . . . . . . . . . . . 1032

4.3 Comparison results . . . . . . . . . . . . . . . . . . . . . . . . . 1032
5 A real example: The Chinese stock market data . . . . . . . . . . . . 1035
6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036

6.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 1036
6.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . 1037
6.3 Proof of technical Lemmas . . . . . . . . . . . . . . . . . . . . . 1042

6.3.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . 1042
6.3.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . 1042
6.3.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . 1043
6.3.4 Lemma 4 and its proof . . . . . . . . . . . . . . . . . . . 1047

6.4 Computations: Software used for numerical optimization . . . . 1050
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051

1. Introduction

Data subject to heavy-tailed errors or outliers are commonly encountered in
applications which may appear either in response variables or in the predictors.
We consider here the regression problem with responses subject to heavy-tailed
errors or outliers. In this case, the Ordinary Least Square (OLS) estimator
is reputed to be not efficient. To overcome this problem, the least absolute
deviation (LAD) or Huber type estimator for instance can be useful. On the
other hand, an important topic in linear regression analysis is variable selection.
Variable selection is particularly important when the true underlying model
has sparse representation. To enhance the prediction performance of the fitted
model and get an easy interpretation of the model, we need to identify significant
predictors. Scientists prefer a simpler model because it puts more light on the
relationship between the response and covariates. We consider the important
problem of robust model selection.

The lasso penalty is a regularization technique for simultaneous estimation
and variable selection ([32]). It consists to add a l1 penalty to the least square
criterion. This penalty forces to shrink some coefficients. In [4], the authors
show that since lasso uses the same tuning parameters for all the regression
coefficients, the resulting estimators may suffer an appreciable bias. Recently,
[20, 18, 38] and [39] show that the underlying model must satisfy a nontriv-
ial condition for the lasso estimator be consistent in variable selection. Conse-
quently, in some cases, lasso estimator cannot be consistent in variable selection.
In a first attempt to avoid this, [4] proposes the SCAD penalty and shows its
consistency in variable selection. The main drawback of the SCAD penalty is
due to its non-convexity: it typically leads to optimisation problems suffering
from the local minima problem. In a second attempt, [39] provides a convex
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optimisation problem leading to a consistent in variable selection estimator. He
assigns adaptive weights for penalizing differently coefficients in the l1 penalty
and calls this new penalty the adaptive lasso. Owing to the convexity of this
penalty, it typically leads to convex optimisation problems. As a consequence,
they do not suffer from the local minima problem. These adaptive weights in the
penalty allow to have the oracle properties. Moreover, the adaptive lasso can be
solved by the same efficient algorithm (LARS) for solving lasso (see [39]).

In [36], the authors propose to treat the problem of robust model selection
by combining LAD loss and adaptive lasso penalty. So they obtain an estimator
which is robust against outliers and also enjoys a sparse representation. Unfor-
tunately, the LAD loss (l1 criterion) is not adapted for small errors: it penalizes
strongly the small residuals. In particular when the error has no heavy tail and
does not suffers from outliers, this estimator is expected to be less efficient than
the OLS estimator with adaptive lasso. In practice, we do not know in which case
we are. So it is important to consider some methods having good performances
in both situations.

That is why we can prefer to consider Huber’s criterion with concomitant
scale (see [12]). The Huber’s criterion is a hybrid of squared error for relatively
small errors and absolute error for relative large ones. In this paper, we propose
to combine Huber’s criterion with concomitant scale and adaptive lasso. We
show that the resulting estimators enjoy the oracle properties. This approach is
compared with LAD-lasso based on least absolute deviation with adaptive lasso.
Extensive simulation studies demonstrate satisfactory finite-sample performance
of such procedure.

The rest of the article is organized as follows. In Section 2, we recall the lasso-
type method and introduce the Huber’s criterion with adaptive lasso penalty. In
Section 3, we give its statistical properties. Section 4 is devoted to simulation.
This study compares the Huber’s criterion with adaptive lasso with two others
methods: least square criterion with adaptive lasso and the LAD-lasso approach.
In Section 5, we analyze Chinese stock market data for illustration purposes.
We relegate technical proofs to the Appendix.

2. The lasso-type method

2.1. Lasso-type estimator

Let us consider the linear regression model

yi = α∗ + xT
i β

∗ + σǫi, i = 1, . . . , n, (2.1)

where xi = (xi1, . . . , xip)
T is the p-dimensional centered covariable (that is∑n

i=1 xi = 0), α∗ is the constant parameter and β∗ = (β∗
1 , . . . , β

∗
p)

T are the
associated regression coefficients. We suppose that σ > 0 and ǫi are independent
and identically-distributed random errors with mean 0 and variance 1, when it
exists. Indeed in the sequel we do not need existence of variance.
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Let A = {1 ≤ j ≤ p, β∗
j 6= 0} and p0 = |A|. In variables selection context, we

usually assume that β∗
j 6= 0, for j ≤ p0 and β∗

j = 0, for j > p0 for some p0 ≥ 0.
In this case the correct model has p0 significant regression variables. We denote
by βA the vector given by the coordinates of β the index of which are in A.

When p0 = p, the unknown parameters in the model (2.1) are usually esti-
mated by minimizing the ordinary least square criterion. To shrink unnecessary
coefficients to 0, [32] proposed to introduce a constraint on the l1-norm of the
coefficients. This leads to the primal formulation of the lasso. The link with the
following dual criterion is studied in [21]:

n∑

i=1

(yi − α− xT
i β)

2 + λn

p∑

j=1

|βj | .

λn > 0 is the tuning parameter. Notice that the intercept α does not appear in
the penalty term since it seems not reasonable to constrain it.

Fan and Li [4] studied a class of penalization methods including the lasso
one. They showed that the lasso method leads to estimators that may suffer an
appreciable bias. Furthermore they conjectured that the oracle properties do not
hold for the lasso. Hence Zou [39] proposes to consider the following modified
lasso criterion, called adaptive lasso,

Qadl(α, β) =

n∑

i=1

(yi − α− xT
i β)

2 + λn

p∑

j=1

ŵadl
j |βj |,

where ŵadl = (ŵadl
1 , . . . , ŵadl

p ) is a known weights vector. We report to the Sub-
section 2.4 for the hyperparameter choice. This modification allows to produce
sparse solutions more effectively than lasso. Precisely, Zou [39] shows that with
a proper choice of λn and of ŵadl the adaptive lasso enjoys the oracle properties.

2.2. Robust lasso-type estimator: The LAD-lasso

When the regression error has very heavy tail or suffers from outliers, the finite
sample performance of lasso can be poor. A first attempt to solve this problem
has been done in [36]. This paper provides a procedure inspired by the convex
function

Qladl(α, β) =

n∑

i=1

|yi − α− xT
i β|+ λn

p∑

j=1

ŵladl
j |βj | .

Note that the intercept α is not included in the study of [36] but to fairly com-
pare the methods we consider this intercept term in this paper. As in [39], the
authors show that with a proper choice of λn and of ŵladl = (ŵladl

1 , . . . , ŵladl
p ),

the adaptive LAD-lasso enjoys the oracle properties. We report again to the
Subsection 2.4 for the hyperparameter choice. Moreover the obtained estima-
tor is robust to heavy tailed errors since the squared loss has been replaced by
the L1 loss. Unfortunately, this loss is not adapted for small errors: it penalizes
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strongly the small residuals. In particular when the error has no heavy tail and
does not suffer from outliers, this estimator is expected to be less efficient than
the adaptive lasso. That is why we can prefer to consider criterion like Huber’s
one.

2.3. The Huber’s Criterion with adaptive lasso

To be robust to the heavy-tailed errors or outliers in the response, another
possibility is to use the Huber’s criterion as loss function as introduced in [12].
For any positive real M, let us introduce the following function

HM (z) =

{
z2 |z| ≤ M,
2M |z| −M2 |z| > M.

This function is quadratic in small values of z but grows linearly for large values
of z. The parameter M describes where the transition from quadratic to linear
takes place. The Huber’s criterion can be written as

n∑

i=1

HM

(
yi − α− xT

i β

s

)
,

where s > 0 is a scale parameter for the distribution. That is if each yi is re-
placed by cyi for c > 0 then an estimate ŝ should be replaced by cŝ. Usually, the
parameter s is denoted by σ. To avoid confusions, we adopt here another nota-
tion since one can choose σ as scale parameter but various choices are possible.
For example any multiple of σ is a scale parameter and those are not only.

Let us remark that with this loss function errors smaller than sM get squared
while larger errors increase this criterion only linearly. In [12], the parameter
M is viewed as a shape parameter that one chooses to control the amount of
robustness. The Huber’s criterion becomes more similar to least square for larger
values of M while it becomes more similar to LAD criterion for small values of
M . In this case, the Huber’s method is more robust against outliers (as LAD
method) but less efficient for normally distributed data. In [12], Huber proposes
to fix M = 1.345 to get as much robustness as possible while being efficient for
normally distributed data. Even if we adopt this approach, there remains the
scale parameter to estimate.

As far as we know, all the algorithms of the literature designed with a penalty
first estimate the unknown parameter σ defined in (2.1) and plug it as a scale
s in the Huber’s criterion. Among all the possible estimations of the standard
deviation σ of the data, there is no rule how to choose it. A popular choice
(see e.g. [29, 25, 14, 28]) is the Median Absolute Deviation (MAD). It get a
simple explicit formula, needs little computational time and is very robust as
witnessed by its bounded influence function and it 50% breakdown point. Note
that it has a low (37%) gaussian efficiency ([33]). However, this kind of approach
is critizeable (see e.g. [10]). Indeed, the Huber’s criterion is designed to work with
a scale parameter s which, ideally, is not the standard deviation of the data σ (as
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shown by lemma 1 below). Moreover, σ is only a nuisance parameter: the location
one is generally more important. So, focusing attention on a good estimation of
σ introduces difficulties in a superfluous step of the procedure: Huber’s criterion
only needs a well designed scale s. [12] proposed to jointly estimate s and the
parameters of the model in several ways. The common property shared by these
methods is that they do not need an estimation of the parameter σ. We retain
the Huber’s Criterion with concomitant scale defined by,

LH(α, β, s) =





ns+
∑n

i=1 HM

(
yi−α−x

T
i β

s

)
s if s > 0,

2M
∑n

i=1 |yi − α− xT
i β| if s = 0,

+∞ if s < 0,

(2.2)

which are to minimize with respect to s ≥ 0, α and β. To our knowledge, the
statistical properties of this loss function have never been studied. Theorem 3.1
below shows that, as for the MAD, the provided scale estimation is a robust
transformation of the residuals of a location estimate. However, in the case of
MAD, the location esimate is the OLS estimator which can have very poor qual-
ity especially if collinearity is involved. In this case, the corresponding residuals
are irrelevant. On the contrary, the scale used by the Huber’s Criterion with
concomitant scale is obtained from more relevant residuals.

Let us define, for s > 0,

F (s) = E

[
1

n
LH(α∗, β∗, s)

]
= s+ sE

[
HM

(σǫ
s

)]

and
s∗ = argmin

s>0
F (s) . (2.3)

We have the following lemma (its proof is given in Appendix 6.3).

Lemma 1. If M > 1 and (N2) (defined below page 10) holds, then there exists
a unique s∗ > 0 satisfying (2.3). Moreover, it satisfies

s∗ = E

[
σǫH′

M

(σǫ
s∗

)
− s∗HM

(σǫ
s∗

)]
. (2.4)

Consequently, the ŝ obtained by the minimisation of the Huber loss func-
tion with concomitant scale is a scale estimation of the scale parameter s∗.
Generally, it is a poor estimation of the standard deviation σ of the data. As
explained previously, the algorithms of the literature use an estimation of σ as
scale parameter which is not necessarily well suited for the Huber criterion. It is
noticeable that the scale parameter s∗ is the standard deviation σ of the noise
only if the loss is quadratic (i.e. M = +∞).

Let us now briefly comment the way we estimate the intercept α∗ of the
model. In practice, it is usual to center the y and the x and to remove it from the
optimization problem. This procedure is equivalent to minimize the quadratic
loss over α. However, since we use the Huber loss (and not the quadratic loss),
this procedure is not any more equivalent to minimize the loss function. So, we
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minimize the Huber’s loss over α. Consequently, in our procedure, the intercept
α∗ is no more estimated by a mean.

In this paper, we want to combine the Huber’s criterion and adaptive penalty
as lasso. In particular, that allows to have the oracle properties (see Section 3).
So, we consider the following criterion

QHadl(α, β, s) = LH(α, β, s) + λn

p∑

j=1

ŵHadl
j |βj |

where ŵHadl = (ŵHadl
1 , . . . , ŵHadl

p ) is a known weights vector which will be de-

fined at Section 2.4. As can be seen, the criterion QHadl combines the Huber’s
criterion and adaptive lasso penalty. Hence, the resulting estimator is expected
to be robust against outlier and also to enjoy sparse representation. Let us re-
mark that QHadl(α, β, s) is a convex function and thus the optimization problem
does not suffer from the multiple local minima issue. Its global minimizer can
be efficiently solved. We give an algorithm in Appendix 6.4.

2.4. Tuning parameter estimation

We now consider the problem of tuning parameter estimation. For the adaptive
lasso method, Zou [39] proposes to use the following estimation for weights

vector. Let β̂ be a root-n-consistent estimator to β∗; for instance, one can use
the estimate obtained by OLS β̂ols. Let γ > 0 be a constant to be determined.
He defines the weights vector estimation as ŵadl

j = |β̂ols
j |−γ , j = 1, . . . , p. Then

he uses two dimensional cross-validation to find an optimal pair of (γ, λn).
For the LAD-lasso, Wang et al. [36] consider similar estimation for weights

vector. Let β̂lad the unpenalized LAD estimator of β∗. They propose to use
weights vector estimation as ŵladl

j = |β̂lad
j |−1, j = 1, . . . , p, and fix λn = log(n).

For Huber’s Criterion with concomitant scale and adaptive penalty, we pro-
pose to use similar way. We denote by β̂H the unpenalized Huber’s estimator
with concomitant scale. So, the weights vector is estimated by ŵHadl

j = |β̂j |−γ ,
j = 1, . . . , p. It remains to evaluate the constants λn and M . As in [12], we fix
M = 1.345. Next, we can use cross-validation to find optimal values for λn. Let
us note that the theoretical part is given for these forms of weights vector and
for the numerical results we fix γ equal to 1.

Following the remarks of an anonymous referee, for these three methods a
BIC-type model selection procedure has been designed to choose the regular-
ization parameter λn. Let us now describe precisely the BIC criterions we used
for each method. The collections of estimators obtained using adaptive-lasso or
LAD-lasso methods are naturally log-likelihood estimators. The corresponding
collections of models (containing probability density functions) are nested. We
use the classical BIC criterions. In [30], relying on the Kullback-Leibler diver-
gence, it is recommended to select λadl

n minimizing

log

(
n∑

i=1

(
yi − α̂adl

λn
− xT

i β̂
adl
λn

)2
)

+ kλn

log(n)

n
,
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over λn for adaptative-lasso and minimizing

log

(
n∑

i=1

|yi − α̂ladl
λn

− xT
i β̂

ladl
λn

|
)

+ kλn

log(n)

2n
,

over λn for LAD-lasso. Let us note that kλn
denotes the model dimension.

Following [35] and [37], we use for kλn
the number of non-zero coefficients of

β̂adl
λn

(resp. β̂ladl
λn

) for adaptive-lasso (resp. LAD-lasso). In the underlying models
all the residuals are supposed to have the same distribution: gaussian or double
exponential.

Let us now design a BIC-type procedure taking advantage of the two previous
ones. The flexibility of BIC criterions would allow to gather the collection of esti-
mators obtained by adaptive-lasso and LAD-lasso. The corresponding collection
of models are no more nested but BIC criterion have been designed to work in
this framework (see [30]). Thus one easily get a BIC criterion to select the final
estimator in this augmented collection of estimators. However, datasets more
likely contain some outliers. We thus propose a BIC type procedure relying on
the Huber’s loss. In this way, the weight associated to each residual is adapted:
they are not treated all in the same way. By analogy with the two previous ones,
we propose to select λHadl

n in the collection of estimators (α̂Hadl
λn

, β̂Hadl
λn

, ŝHadl
λn

)
by minimizing

log
(
LH

(
α̂Hadl
λn

, β̂Hadl
λn

, ŝHadl
λn

))
+ kλn

log(n)

2n
,

over λn. As previously, kλn
denotes the number of non-zero coefficients of β̂Hadl

λn
.

Since the scale s is not penalized in QHadl, it remains to replace the quadratic
loss of adaptative-lasso (or ℓ1 loss of LAD-lasso) by the loss

min
s≥0

LH(α̂Hadl
λn

, β̂Hadl
λn

, s)

of Huber-lasso within the logarithm of the BIC criterion.

2.5. Some remarks on scale invariance

An estimator ê(y1, . . . , yn) calculated from the data (xi, yi)1≤i≤n is said to be
scale invariant if

∀ c > 0, ê(cy1, . . . , cyn) = cê(y1, . . . , yn) .

Note that, in this definition, the design is fixed. This means that if each yi
is replaced by cyi for c > 0 then the estimate ê should be replaced by cê.
It is important to consider location estimators (α̂, β̂) satisfying this property
since they provide a coherent interpretation of the results. Indeed, if we change
the scale of our measurments y by an arbitrary change of units, the selected
variables are the same and the prediction changes accordingly. Note that others
equivariance notions have also been introduced in [17].
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The following easy property can be used to assert that an estimator is scale
invariant. Let A be a cone of Rq (this means that cx ∈ A when c > 0 and
x ∈ A). If

ê(y1, . . . , yn) = argmin
γ∈A

Q(y1, . . . , yn, γ)

with
Q(cy1, . . . , cyn, cγ) = g(c)Q(y1, . . . , yn, γ), g(c) ≥ 0,

then ê(y1, . . . , yn) is scale invariant.
Let us note that the lasso procedure (OLS with lasso penalty) is not scale

invariant. On the other hand, the LAD criterion or the Huber’s one with con-
comitant scale is always scale invariant when combining with lasso penalty. But,
when an adaptive penalty is introduced in the previous criteria (even if γ = 1),
the scale invariant property is lost. On the other hand, if we consider all the
procedure (λn choice by BIC-type criterion or cross validation technique and
estimation method), the adaptive methods are all scale invariant.

3. Theoretical properties

Let X denotes the design matrix i.e. the n× p matrix the ith rows of which is
xT
i . We will use some of the following assumptions on this design matrix.

(D1) max1≤i≤n ‖xi‖/
√
n → 0 as n → ∞ .

(D2) XTX/n → V as n → ∞ with V1,1 > 0, where V1,1 is the first p0×p0 bloc
of V , corresponding to the covariables associated with non zero coefficients.

Assumption (D1) and (D2) are classical. For instance, (D1) is supposed in
theorem 4.1 of [17] to ensure the asymptotic normality of the regression quantile
estimation. It can also be seen as a “compacity assumption”: it is satisfied if
the variables are supposed to be bounded. In [39], the author needs only the
assumption (D2) since he uses a least square criterion as loss function.

Let us denote by ǫ a variable with the same law as ǫi, i = 1, . . . , n. The
following assumptions on the errors are used in the following:

(N0) The distribution of the errors does not charge the points ±Ms∗:

P [σǫ = ±Ms∗] = 0.

(N1) The variable ǫ is symmetric (i.e. ǫ has the same distribution as −ǫ).
(N2) For all a > 0, P [ǫ ∈ [−a, a]] > 0 .

Note that (N0) holds if ǫ is absolutely continuous with respect to the Lebesgue’s
measure and (N2) is satisfied if, moreover, the density is continuous and strictly
positive at the origin (which is assumption A of [36]). Condition (N1) is natural
without prior knowledge on the distribution of the errors and (N2) ensures
that the noise is not degenerated. It is noticeable that there is no integrability
condition assumed on the errors ǫ. The theorems ensuring the convergence of
the penalized least squared estimators (e.g. [16] and [39]) usually assume that ǫ
has a finite variance.
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Let (α̂Hadl, β̂Hadl, ŝHadl) be defined by the minimizer of QHadl(·) where ŵHadl
j

= 1/|β̂j|γ with γ > 0 and β̂ a root-n-consistent estimator to β∗ (i.e.
√
n(β̂ −

β∗) = OP (1)). We denote An = {1 ≤ j ≤ p, β̂Hadl
j 6= 0}. Let us remark that if

λn > 0, the argminimum (α̂Hadl, β̂Hadl, ŝHadl) exists since the criterion QHadl(·)
is a convex and coercive function.

Theorem 3.1 below states that the estimation of the scale proposed by the
Huber criterion with concomitant is robust to large residuals. The robustness
comes from the fact that only the smallest residuals are taking into account to
obtain the scale estimation. For (α, β) fixed, let us sort the absolute values of
the residuals, ri(α, β) = yi − α− xT

i β, corresponding to (α, β):

|r(1)(α, β)| ≤ |r(2)(α, β) ≤ · · · ≤ |r(n)(α, β)| .

For a real number x, ⌈x⌉ denotes the smallest integer larger than x. Then we
have the following theorem (its proof is postponed in Appendix 6.1).

Theorem 3.1. When M 6= 1, there exists a unique ŝHadl. Moreover if M ≤ 1
then ŝHadl = 0 and (α̂Hadl, β̂Hadl) is obtained by minimising the penalised ℓ1
loss (as LAD). If M > 1,

(
ŝHadl

)2
=

1

n−M2(n− k)

k∑

i=1

r2(i)(α̂
Hadl, β̂Hadl) , (3.1)

where k ∈ [⌈n
(
1− 1

M2

)
⌉, n] is such that

r2(k)(α̂
Hadl, β̂Hadl)

M2
<

∑k
i=1 r

2
(i)(α̂

Hadl, β̂Hadl)

n−M2(n− k)
≤

r2(k+1)(α̂
Hadl, β̂Hadl)

M2
. (3.2)

Note that the criterion (3.2) determines which residuals are small enough to
be used in the estimation (3.1) of the scale. It relies on the energy of the smallest
residuals. This way to be robust is different as the one used by a MAD type
estimation of the standard deviation σ where the median (of the residuals) is
used. Note that when M = +∞, k = n and ŝHadl is the classical arithmetical
mean of the squared residuals. This is the maximum likelihood estimator of σ2

in the gaussian case. Unfortunately, in this case, the likelihood is not concave.
Huber loss criterion with M = +∞ provides a convex objective function the
minimum of which leads to the same estimation. Moreover, we have for any
(α, β):

min
s>0

LH(α, β, s) = 2
√
n− (n− k)M2

√√√√
k∑

i=1

r2(i)(α, β) + 2M

n∑

i=k+1

|r(i)(α, β)| .

(3.3)
So the loss function linearly penalizes the largest residuals. We put attention to
the reader on the fact that small residuals are put together through a L2 norm
and not the classical squared L2 norm loss. This is natural since we consider
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a scale invariant procedure. Consequently, the objective function QHadl with
M = +∞ is not equal to Qadl.

In the following theorem we show that, with a proper choice of λn, the
proposed estimator enjoys the oracle properties. Its proof is postponed in Ap-
pendix 6.2.

Theorem 3.2. Suppose that λn/
√
n → 0 and λnn

(γ−1)/2 → ∞. Let us also as-
sume that conditions M > 1, p0 > 0, (N0), (N1), (N2), (D1) and (D2) hold.

Moreover, for j = 1, . . . , p, the weights in QHadl are ŵHadl
j = 1/|β̂j|γ where β̂ is

a root-n-consistent estimator of β∗. Then, any minimizer (α̂Hadl, β̂Hadl, ŝHadl)
of QHadl satisfies the following:

• Consistency in variable selection: P [An = A] → 1 as n → +∞.
• Asymptotic normality:

√
n
(
α̂Hadl − α∗, β̂Hadl

A − β∗
A, ŝ

Hadl − s∗
)
−→d Np0+2

(
0,Σ2

)
,

where Σ2 is the squared block diagonal matrix

Σ2 = diag



E

[
H′

M

(
σǫ
s∗

)2]

4A2
s∗

,
E

[
H′

M

(
σǫ
s∗

)2]

4A2
s∗

V −1
1,1 ,

E
[
Z2
]

4D2
s∗




and where

Ds∗ =
1

s∗3
E
[
σ2ǫ211|σǫ|≤Ms∗

]
, As∗ =

1

s∗
P [|σǫ| ≤ Ms∗] ,

Z = 1 +HM

(σǫ
s∗

)
− σǫ

s∗
H′

M

(σǫ
s∗

)
.

[3] already studied asymptotic normality of any minimizer of the Huber loss
without concomitant scale nor penalty. It is noticeable that the previous result
holds under the same assumptions: the introduction of the concomitant scale in
the criterion does not lead to supplementary hypotheses.

Unlike the plug-in methods of the scale, this result provides a simultaneous
convergence of location and scale estimations. Moreover, the asymptotic vari-
ance Σ2 is block diagonal. This means that these estimations are asymptotically
independent.

In [39], the author has already treated the case where the loss is quadratic.
Theorem 3.2 generalizes theorem 2 of [39] to deal with a robust loss (i.e. the
case M < +∞). It is noticeable that, in the quadratic case where M = +∞, the

asymptotic variance matrix E[H′
Ms (σǫ)

2]V −1
1,1 /(4A1(Ms)2) obtained in theorem

3.2 is equal to σ2V −1
1,1 and we recover the asymptotic variance of theorem 2

of [39].
Let us also remark that assumptions on λn are the same as in [39]. They are

used in the penalty term control. The data-dependent ŵHadl is the key in The-
orem 3.2. As the sample size grows, the corresponding weights get inflated (to
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infinity) for zero-coefficient whereas they converge to finite constant for nonzero-
coefficient. Consequently, as explained in [39], we can simultaneously unbiasedly
(asymptotically) estimate large coefficient and remove zero-coefficient.

For simplicity, Theorem 3.2 is stated assuming that the preliminary estima-
tor β̂ is a root-n-consistent estimator to β∗. Using results over loss function
given in the proof of Theorem 3.2, we can prove that the unpenalized Huber’s
estimator β̂H satisfies this property and, consequently, can be used to determine
the weights ŵHadl. As noticed in [39], examining carefully the provided proof,

this assumption on β̂ can be greatly weakened.
Same kind of results can be proved in the random design setting using similar

techniques.

4. Simulation results

In this section, the algorithm minimising the objective function Qadl (resp. Qladl

and QHadl) is called ad-lasso (resp. LAD-ad-lasso and Huber-ad-lasso). The
adaptive weights are obtained from the corresponding unpenalized estimator
and γ = 1. Our aim is to compare the finite sample performances of these
procedures. The purpose of these simulations is to see how our estimator per-
forms in the absence of outliers (where robustness is not essential) and in their
presence (where robustness is needed) and in comparison with other robust
(LAD-ad-lasso) or non-robust methods (ad-lasso). Paragraph 4.1 presents
the studied models. The way simulations are conducted is described in 4.2 and
an insight of conclusions is provided in paragraph 4.3.

4.1. Models used for simulations

The models used to compare the performances of the algorithms are inspired by
those presented in [32], [39] and [36]. They all have the form y = 11n+Xβ∗+σǫ ,
where 11n denotes the vector of Rn composed of ones and y (resp. ǫ) represents

the response (resp. error) vector (y1, . . . , yn)
T (resp. (ǫ1, . . . , ǫn)

T ). The vector
of true coefficients is β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)T . As compared with (2.1), this
means that the intercept of the model is α∗ = 1 and the number of variables
(without the intercept) is p = 8. The number of influencing variables is p0 = 3.
The design matrix X is constructed as follows. The rows of X are given by
n independent gaussian vectors N8(0,Σr). They are normalized such that the
corresponding p-dimensional covariables are centered (as assumed in (2.1)). For
some r ≥ 0, the variance matrix of the variables is defined by Σr,i,j = r|i−j| for
1 ≤ i, j ≤ p.

• Model 1: low correlation, gaussian noise. ǫ ∼ Nn(0, In), σ = 2 and r = 0.5.
• Model 2: high correlation, gaussian noise. ǫ ∼ Nn(0, In), σ = 2 and r =
0.95.

• Model 3: large outliers. ǫ = V/
√
var(V ), σ = 9.67 and r = 0.5. V is a

mixture of gaussians: with probability 0.9, V ∼ N(0, 1) and, otherwise,
V ∼ N(0, 225). Note that

√
var(V ) = 4.83.
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• Model 4: sensible outliers. ǫ = D/
√
var(D), σ = 9.67 and r = 0.5. The

distribution of D is a standard double exponential i.e. its density is x ∈
R → e−|x|/2 and var(D) = 2.

These four models can be divided into two types. The first type contains light
tailed errors models (1 and 2) whereas the second type is composed of heavy
tailed errors models (3 and 4). Models 1 and 2 allow to quantify the deterioration
of the performances of the robust methods LAD-ad-lasso and Huber-ad-lasso

in the absence of outliers. Thinking about the maximum likelihood approach,
the loss used in ad-lasso (resp. Huber-ad-lasso, LAD-ad-lasso) is well de-
signed for models 1 and 2 (resp. 3,4); see [12] for a justification of this claim for
Huber-ad-lasso.

4.2. Assessing prediction methods

4.2.1. Prediction accuracy

The following procedure has been designed to compare the performances of the
various algorithms in the fixed design setting. The performances are measured
both by the prediction errors and the model selection ability. For any considered
underlying models, the distribution of the design matrix is given. It is used to
generate the covariates used in the training and test datasets. So we generate a
first set of n training designs (x1, . . . ,xn) and a second set of m =10 000 test
designs (xn+1, . . . ,xn+m).

These two sets are centered in mean to stick on the theoretical definition (2.1)
of the model. For the ad-lasso, [39] recommends to standardize the design in
mean (i.e. ensures that

∑n
i=1 xi = 0) which only leads to α̂ = y and does not

affect the β̂ value (since the intercept is not penalized and the squared loss is
used). Concerning the LAD-ad-lasso, the intercept is not included in the study
of [36] and no recommendation are provided for the beforehand normalizations
of the data. Moreover, their simulations are performed on stochastically inde-
pendent covariables. If (α̂ladl, β̂ladl) denotes the LAD-ad-lasso estimator, α̂ladl

is the median of the n residuals yi − xT
i β̂

ladl for i = 1 · · ·n. In a general way,
for the LAD-ad-lasso or Huber-ad-lasso, such a normalization has some effect
over β̂ but it is not so clear how it works (since the loss function is no more
the squared loss). In this paper, we follow the normalization of design in mean
provided in [39] for the three procedures.

Since the theoretical results are established in fix design framework, the train-
ing and test design are fixed once and for all: they will be used for all the data
generations. 100 training sets of size n are generated according to definition
(2.1) of the model. All the algorithms have been runned on the 100 training sets
of size n =50, 100, 200 and their prediction capacity have been evaluated on the
test design set of size m =10 000.

In order to compare the prediction accuracy, the Relative Prediction Errors
(RPEs) already considered in [39] are computed. Let us now precisely recall the
definition of this index. In our model, it is assumed that the true regression
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Table 1

Means of the RPE (standard deviation of the 100 RPE) with cross-validation. Best mean
indicated in italic

Model 1 Model 2 Model 3 Model 4
ad-lasso (n=50) 0.140(0.101) 0.174(0.105) 0.142(0.112) 0.196(0.115)
LAD-ad-lasso (n=50) 0.233(0.154) 0.231(0.135) 0.025(0.031) 0.138(0.106)
Huber-ad-lasso (n=50) 0.156(0.107) 0.179(0.109) 0.024(0.037) 0.144(0.094)
ad-lasso (n=100) 0.075(0.053) 0.088(0.055) 0.087(0.061) 0.086(0.051)
LAD-ad-lasso (n=100) 0.103(0.072) 0.122(0.074) 0.008(0.009) 0.065(0.043)
Huber-ad-lasso (n=100) 0.076(0.054) 0.093(0.056) 0.008(0.011) 0.064(0.037)
ad-lasso (n=200) 0.027(0.019) 0.034(0.021) 0.039(0.027) 0.036(0.022)
LAD-ad-lasso (n=200) 0.038(0.023) 0.050(0.029) 0.003(0.002) 0.023(0.015)
Huber-ad-lasso (n=200) 0.029(0.019) 0.039(0.024) 0.002(0.002) 0.024(0.017)

Table 2

Means of the RPE (standard deviation of the 100 RPE) with BIC. Best mean indicated in
italic

Model 1 Model 2 Model 3 Model 4
ad-lasso (n=50) 0.125(0.094) 0.167(0.111) 0.153(0.105) 0.174(0.086)
LAD-ad-lasso (n=50) 0.215(0.165) 0.254(0.152) 0.016(0.016) 0.126(0.090)
Huber-ad-lasso (n=50) 0.188(0.159) 0.214(0.139) 0.016(0.028) 0.143(0.087)
ad-lasso (n=100) 0.060(0.045) 0.093(0.072) 0.079(0.051) 0.091(0.054)
LAD-ad-lasso (n=100) 0.096(0.068) 0.122(0.065) 0.004(0.003) 0.065(0.043)
Huber-ad-lasso (n=100) 0.072(0.066) 0.098(0.070) 0.004(0.003) 0.066(0.042)
ad-lasso (n=200) 0.020(0.014) 0.045(0.034) 0.046(0.036) 0.041(0.025)
LAD-ad-lasso (n=200) 0.035(0.021) 0.055(0.035) 0.001(0.001) 0.023(0.017)
Huber-ad-lasso (n=200) 0.025(0.019) 0.039(0.029) 0.001(9e-04) 0.025(0.018)

function is m(x) = α∗ + xTβ∗ for any x ∈ R
p. Consequently, any estimator

(α̂, β̂) of (α∗, β∗) leads to the estimation mn(x) = α̂ + xT β̂ of the regression
function. The following decomposition of the excess risk is classical when we are
interested in regression functions (see e.g. [9]):

Ex,y

[
(y −mn(x))

2
]
− Ex,y

[
(y −m(x))2

]
= Ex

[
(mn(x)−m(x))2

]
.

Since in our model Ex,y

[
(y −m(x))2

]
= σ2, the relative prediction error

Ex

[
(mn(x)−m(x))2

]
/σ2 is reported. In our simulations, it is estimated by the

corresponding mean
∑m

j=1(mn(xn+j)−m(xn+j))
2/(mσ2) over the test sample.

Tables 1 and 2 provide the mean and the standard deviation of the 100 obtained
RPE. Figures 1 and 2 provide the corresponding boxplots.

4.2.2. Selection ability

The model selection ability of the algorithms are reported in the same manner
as done by [36], [32] and [4] in Tables 3, 4, 5 and 6 for cross-validation and in
Tables 7, 8, 9 and 10 for BIC. In order to provide the indicators defined below,
a coefficient is considered to be zero if it absolute value is strictly less than
10−5 (i.e. its five first decimals vanish). In all cases, amongst the 100 obtained
estimators, the first column (C) counts the number of well chosen models i.e.

the cases where the first, second and fifth coordinates of β̂ are non-zeros and
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Fig 1. n = 50, 100, 200: RPE of Huber-ad-lasso (H), LAD-ad-lasso (L) and ad-lasso (A)
with cross-validation.
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Fig 2. n = 50, 100, 200: RPE of Huber-ad-lasso (H), LAD-ad-lasso (L) and ad-lasso (A)
with BIC.
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Table 3

Selection model ability on Model 1 based on 100 replications and cross-validation

C O U SV MM IZ CZ Z
ad-lasso (n=50) 34 66 0 4 [-1.24 ; 1.01] 0 3.75 3.75
LAD-ad-lasso(n=50) 27 70 3 4 [-1.24 ; 1.33] 0.03 3.44 3.47
Huber-ad-lasso (n=50) 35 64 1 4 [-1.14 ; 1.08] 0.01 3.75 3.76
ad-lasso (n=100) 40 60 0 4 [-1.08 ; 0.78] 0 3.79 3.79
LAD-ad-lasso (n=100) 35 65 0 4 [-1.15 ; 0.83] 0 3.62 3.62
Huber-ad-lasso (n=100) 38 62 0 4 [-0.79 ; 0.73] 0 3.88 3.88
ad-lasso (n=200) 49 51 0 4 [-0.52 ; 0.53] 0 4.02 4.02
LAD-ad-lasso (n=200) 42 58 0 4 [-0.43 ; 0.56] 0 4.03 4.03
Huber-ad-lasso (n=200) 47 53 0 4 [-0.42 ; 0.50] 0 4.04 4.04

Table 4

Selection model ability on Model 2 based on 100 replications and cross-validation

C O U SV MM IZ CZ Z
ad-lasso (n=50) 14 18 68 3 [-4.12 ; 3.39] 0.84 3.58 4.42
LAD-ad-lasso (n=50) 8 25 67 3 [-4.28 ; 4.08] 0.87 3.41 4.28
Huber-ad-lasso (n=50) 12 16 72 3 [-3.53 ; 3.26] 0.91 3.63 4.54
ad-lasso (n=100) 19 42 39 4 [-3.58 ; 2.80] 0.43 3.85 4.28
LAD-ad-lasso (n=100) 12 45 43 4 [-3.68 ; 3.73] 0.48 3.51 3.99
Huber-ad-lasso (n=100) 14 39 47 4 [-2.71 ; 2.89] 0.49 3.73 4.22
ad-lasso (n=200) 33 51 16 4 [-1.66 ; 1.79] 0.16 3.85 4.01
LAD-ad-lasso (n=200) 25 51 24 4 [-1.51 ; 2.58] 0.25 3.66 3.91
Huber-ad-lasso (n=200) 26 55 19 4 [-1.45 ; 2.02] 0.19 3.76 3.95

Table 5

Selection model ability on Model 3 based on 100 replications and cross-validation

C O U SV MM IZ CZ Z
ad-lasso (n=50) 5 26 69 4 [-6.39 ; 6.52] 1.14 3.21 4.35
LAD-ad-lasso (n=50) 18 59 23 4 [-1.66 ; 2.08] 0.28 3.10 3.38
Huber-ad-lasso (n=50) 17 62 21 4 [-1.56 ; 1.75] 0.28 3.29 3.57
ad-lasso (n=100) 7 31 62 4 [-3.75 ; 5.16] 0.82 3.60 4.42
LAD-ad-lasso (n=100) 39 58 3 4 [-1.28 ; 0.97] 0.04 3.39 3.43
Huber-ad-lasso (n=100) 39 56 5 4 [-1.20 ; 0.97] 0.06 3.57 3.63
ad-lasso (n=200) 6 65 29 4 [-2.16 ; 3.13] 0.30 3.31 3.61
LAD-ad-lasso (n=200) 39 61 0 4 [-0.57 ; 0.68] 0 3.17 3.17
Huber-ad-lasso (n=200) 42 58 0 4 [-0.68 ; 0.61] 0 3.32 3.32

Table 6

Selection model ability on Model 4 based on 100 replications and cross-validation

C O U SV MM IZ CZ Z
ad-lasso (n=50) 4 8 88 3 [-7.32 ; 6.20] 1.54 3.62 5.16
LAD-ad-lasso (n=50) 1 32 67 3 [-7.66 ; 5.74] 1.04 3.39 4.43
Huber-ad-lasso (n=50) 3 20 77 3 [-7.05 ; 5.07] 1.20 3.60 4.80
ad-lasso (n=100) 8 32 60 4 [-3.93 ; 3.68] 0.80 3.44 4.24
LAD-ad-lasso (n=100) 7 51 42 4 [-3.52 ; 2.92] 0.51 3.18 3.69
Huber-ad-lasso (n=100) 12 37 51 4 [-3.47 ; 3.14] 0.60 3.37 3.97
ad-lasso (n=200) 18 47 35 4 [-2.50 ; 2.88] 0.39 3.66 4.05
LAD-ad-lasso (n=200) 16 66 18 4 [-2.12 ; 2.01] 0.19 3.24 3.43
Huber-ad-lasso (n=200) 26 60 14 4 [-1.94 ; 2.32] 0.15 3.62 3.77
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Table 7

Selection model ability on Model 1 based on 100 replications and BIC’s model selection

C O U SV MM IZ CZ Z
ad-lasso (n=50) 70 29 1 3 [-1.27 ; 0.93] 0.01 4.59 4.60
LAD-ad-lasso(n=50) 49 45 6 3 [-1.24 ; 1.15] 0.06 4.25 4.31
Huber-ad-lasso (n=50) 62 32 6 3 [-1.57 ; 1.33] 0.06 4.40 4.46
ad-lasso (n=100) 74 26 0 3 [-0.76 ; 0.64] 0 4.70 4.70
LAD-ad-lasso (n=100) 60 40 0 3 [-0.90 ; 0.76] 0 4.39 4.39
Huber-ad-lasso (n=100) 79 21 0 3 [-0.67 ; 1.40] 0 4.71 4.71
ad-lasso (n=200) 92 8 0 3 [-0.38 ; 0.34] 0 4.92 4.92
LAD-ad-lasso (n=200) 74 26 0 3 [-0.43 ; 0.47] 0 4.70 4.70
Huber-ad-lasso (n=200) 92 8 0 3 [-0.38 ; 0.41] 0 4.91 4.91

Table 8

Selection model ability on Model 2 based on 100 replications and BIC’s model selection

C O U SV MM IZ CZ Z
ad-lasso (n=50) 13 11 76 3 [-4.49 ; 3.01] 0.89 4.27 5.16
LAD-ad-lasso (n=50) 10 15 75 3 [-4.28 ; 4.71] 1.02 3.86 4.88
Huber-ad-lasso (n=50) 19 6 75 3 [-4.06 ; 3.95] 0.97 4.10 5.07
ad-lasso (n=100) 30 9 61 3 [-1.88 ; 2.68] 0.70 4.55 5.25
LAD-ad-lasso (n=100) 22 12 66 3 [-2.61 ; 3.38] 0.78 4.23 5.01
Huber-ad-lasso (n=100) 26 10 64 3 [-2.43 ; 4.60] 0.71 4.40 5.11
ad-lasso(n=200) 45 21 34 3 [-1.56 ; 2.77] 0.38 4.47 4.85
LAD-ad-lasso (n=200) 42 23 35 3 [-2.28 ; 2.62] 0.38 4.41 4.79
Huber-ad-lasso (n=200) 57 15 28 3 [-1.23 ; 1.81] 0.29 4.70 4.99

Table 9

Selection model ability on Model 3 based on 100 replications and BIC’s model selection

C O U SV MM IZ CZ Z
ad-lasso (n=50) 4 7 89 2 [-6.94 ; 6.12] 1.75 4.45 6.20
LAD-ad-lasso (n=50) 52 27 21 3 [-1.20 ; 2.00] 0.26 4.62 4.88
Huber-ad-lasso (n=50) 70 8 22 3 [-1.50 ; 1.50] 0.29 4.81 5.10
ad-lasso (n=100) 10 5 85 2 [-2.39 ; 3.20] 1.25 4.53 5.78
LAD-ad-lasso (n=100) 82 16 2 3 [-0.83 ; 1.07] 0.02 4.80 4.82
Huber-ad-lasso (n=100) 90 8 2 3 [-0.68 ; 1.00] 0.02 4.89 4.91
ad-lasso (n=200) 27 17 56 3 [-2.53 ; 2.73] 0.73 4.48 5.21
LAD-ad-lasso (n=200) 98 2 0 3 [-0.69 ; 0.52] 0 4.97 4.97
Huber-ad-lasso (n=200) 100 0 0 3 [0 ; 0] 0 5.00 5.00

Table 10

Selection model ability on Model 4 based on 100 replications and BIC’s model selection

C O U SV MM IZ CZ Z
ad-lasso (n=50) 2 0 98 1 [-5.79 ; 4.54] 2 4.60 6.60
LAD-ad-lasso (n=50) 6 6 88 2 [-7.09 ; 4.21] 1.49 4.53 6.02
Huber-ad-lasso (n=50) 3 3 94 2 [-5.93 ; 4.20] 1.74 4.59 6.33
ad-lasso (n=100) 9 8 83 2 [-4.06 ; 3.55] 1.29 4.41 5.70
LAD-ad-lasso (n=100) 20 8 72 2 [-2.47 ; 2.86] 0.96 4.57 5.53
Huber-ad-lasso (n=100) 18 8 74 2 [-3.12 ; 2.65] 1.07 4.52 5.59
ad-lasso (n=200) 27 9 64 3 [-2.19 ; 2.85] 0.75 4.65 5.40
LAD-ad-lasso (n=200) 42 18 40 3 [-1.38 ; 2.24] 0.42 4.60 5.02
Huber-ad-lasso (n=200) 36 17 47 3 [-1.54 ; 1.63] 0.52 4.66 5.18
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the third, fourth, sixth, seventh and eightth ones are zeros. To go further in the
model selection ability analysis, we consider another measurements. To begin
with, the second column (O) reports the number of overfitting models i.e. those
selecting all the non-zeros coefficients and at least one zero coefficient. Next,
the third column (U) reports the number of chosen underfitting models i.e.
those not selecting at least one non-zero coefficient. In this way, all the 100
models are counted one time. Columns (0) and (U) aim to explain the results
obtained in (C). The fourth column (SV) reports the median number of selected
variables. Finally, the fifth column (MM) reports the minimal and maximal
values of estimations of the coefficients of non-influencing variables. For each n
and each column, the best performance is indicated in bold. The sixth (resp.
seventh) column (IZ) (resp. (CZ)) provides the average number of correctly
(resp. mistakenly) estimated 0’s. The last column (Z) is the average number of
estimated 0’s.

Models selection abilities are closely related to the accuracy of estimations of
the coefficients. This fact is illustated by columns (MM) and by boxplots of the
coefficients estimations of Figures 3 and 4.

4.2.3. Hyperparameter choices

Concerning the hyperparameter choices, the regularization parameters are cho-
sen by either BIC criterion or a 5−fold cross validation on each of the 100
training sets. The same grid has always been used. It is composed of 0 and 100
points log-linearly spaced between 0.01 and 1400. For Huber-ad-lasso, the sim-
ulation studies report the performances obtained with M = 1.345. This value
has been recommended by Huber in [12]. Let us remark that it is possible to
chose the M parameter from the data (for example by cross-validation simul-
taneous with the tuning parameter). But in practice we do not observe some
improvement to make it data adaptive. It is also noticeable that, within each
of the four considered models, the two model selection procedures have been
tested on the same simulated datasets.

4.3. Comparison results

To begin with, let us point out some fact observed both with a cross-validation
and BIC model selection. Gaussian tailed errors models (1 and 2) emphasize that
the use of Huber loss with concomitant scale instead of the squared loss does
not lead to a significant loss of performances in the absence of outlier. Indeed,
the relative prediction errors and model selection ability of Huber-ad-lasso
are closed to the ones of ad-lasso (see Tables 1, 2, 3 and 7). It is noticeable
that, as attended, the results of LAD-ad-lasso are the worst from a prediction
and model selection point of view. Let us also stress that in the case of large
correlations between the covariables (Model 2), the use of Huber loss does not
solve the poor behavior of the quadratic loss: in this case, in comparison with the
low correlated case, we even observe a slightly more marked deterioration of the
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Fig 3. For n = 100, estimations of influencing and non-influencing coefficients by
Huber-ad-lasso (H), LAD-ad-lasso (L) and ad-lasso (A) with cross-validation.

performances of Huber-ad-lasso with respect to adaptative-lasso. To settle
this, one has to change the penalty: this is a point for a future work. Heavy tailed
errors models (3 and 4) emphasize better performances of Huber-ad-lassowith
respect to ad-lasso. More precisely, the quadratic loss is particularly unsuited
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Fig 4. For n = 100, estimations of influencing and non-influencing coefficients by
Huber-ad-lasso (H), LAD-ad-lasso (L) and ad-lasso (A) with BIC.

in presence of a small quantity of potentially large outliers (Model 3). Indeed,
the relative prediction errors of ad-lasso are around ten times as big as the
ones of Huber-ad-lasso (see Tables 1 and 2) in this Model 3. The standard
deviation is also far bigger (see Figures 1 and 2). In this case, ad-lasso leads
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to a poor estimation of the coefficients (see Figures 3 and 4). In presence of
sensible outliers (Model 4), the quadratic loss get worst results than Huber loss
but the gap is smaller. Let us now compare the Huber-ad-lasso with a robust-
designed algorithm: the LAD-ad-lasso. In the gaussian tails errors models (1
and 2) Huber-ad-lasso always get better results than the LAD-ad-lasso from
prediction error and model selection ability point of view (see Tables 1, 2, 3,
7, 4 and 8). Tables 4 and 8 emphasizes that the benefit decreases when the
correlations between variables increase.

Next, let us point out some differences due to the model selection pro-
cedure. These differences occur for the comparison of Huber-ad-lasso and
LAD-ad-lasso in the heavy tails models (model 3 and 4). When cross-validation
is used, in model 3, Huber-ad-lasso and LAD-ad-lasso get similar perfor-
mances in terms of prediction error and model selection ability (see Tables 1
and 5) while in model 4 Huber-ad-lasso has a better model selection abil-
ity than LAD-ad-lasso. As a contrary, when a BIC-type criterion is used, the
results are less surprising. Indeed, the nature of the noise directly determines
the more performant algorithm (from a prediction error and model selection
ability points of view). Precisely, as attended, the mixture of gaussians (resp.
double exponential) noise of model 3 (resp. 4) favours Huber-ad-lasso (resp.
LAD-ad-lasso) over LAD-ad-lasso (resp. Huber-ad-lasso).

Finally, let us provide some general concluding remarks highlighted by these
experiments. If the model selection is performed by cross-validation, it is prefer-
able to use Huber-ad-lasso rather than ad-lasso or LAD-ad-lasso. However,
it is noticeable that for each of the four models, each value of n and each method,
the performances in terms of model selection ability are better with a BIC-
type criterion rather than with cross-validation. Moreover, roughly speaking,
BIC-type procedures are 5 times faster than the corresponding cross-validation
procedure.

5. A real example: The Chinese stock market data

In this section we consider for illustrating purposes the Chinese stock market
data analyzed in [36]. These data set is derived from CCER China Stock, which
was partially developed by the China Center for Economic Research (CCER) at
Peking University. It contains a total of 2 247 records; each record corresponds
to one yearly observation of one company. In these data set, 1 092 records come
from year 2002 and the rest comes from year 2003. As in [36] we use year 2002
records as the training data and year 2003 records as the testing data. The re-
sponse variable is the return on equity (denoted by ROE) of the following year
(denoted by ROEt+1). The explanatory variables all measured at year t in-
clude ROE of the current year (denoted by ROEt), asset turnover ratio (ATO),
profit margin (PM), debt-to-asset ratio or leverage (LEV), sales growth rate
(GROWTH), price-to-book ratio (PB), account receivables/revenues (ARR),
inventory/asset (INV), and the logarithm of total assets (ASSET).

The reliability of the usual OLS-based estimation and model selection meth-
ods (e.g. lasso) is severely challenged for these data set (see [36]), whereas the
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Table 11

Estimation results for Chinese stock market (H-ad-l for Huber-ad-lasso, L-ad-l
LAD-ad-lasso and ad-l for ad-lasso)

cross-validation BIC criterion
H-ad-l L-ad-l ad-l H-ad-l L-ad-l ad-l LAD OLS Huber

Int 0.042 0.035 -0.028 0.034 0.034 -0.028 0.035 -0.028 0.033
ROEt 0.069 0.190 -0.114 0.135 0.191 -0.177 0.190 -0.181 0.145
ATO 0.054 0.058 0.128 0.064 0.060 0.159 0.058 0.165 0.066
PM 0.124 0.134 0.062 0.155 0.142 0.188 0.134 0.209 0.159
LEV -0.014 -0.023 -0.240 -0.024 -0.020 -0.245 -0.023 -0.245 -0.029
GR 0.002 0.019 0.026 0.015 0.016 0.032 0.019 0.033 0.018
PB 0.000 0.001 0.017 0.000 0.000 0.018 0.001 0.018 0.001
ARR -0.000 -0.002 -0.000 -0.000 -0.000 0.000 -0.002 0.009 -0.001
INV 0.000 0.012 0.209 0.000 0.000 0.344 0.012 0.354 0.034
ASSET 0.007 0.016 0.089 0.015 0.013 0.100 0.016 0.101 0.019
MAPE 0.116 0.120 0.229 0.119 0.120 0.233 0.120 0.234 0.120
STD 0.021 0.021 0.020 0.021 0.021 0.020 0.021 0.021 0.021

robust selection methods (such as LAD or Huber based methods) become more
attractive. We run the three methods ad-lasso, LAD-ad-lasso and Huber-ad-

lasso for the both hyperparameters choice methods (cross-validation and BIC
criterion). Each method is used to select the best model based on the training
dataset of 2002. The prediction accuracies of these methods are measured by
the mean absolute prediction error (MAPE) and the corresponding standard
deviation (STD), evaluated on the testing data for 2003. The STD denotes the
standard deviation of the absolute values of the prediction errors divided by the
square root of the number of testing data. Let us notice that contrary to [36],
we do not penalize the intercept term. For comparison purposes, the results of
the full model based on the LAD, OLS ad Huber estimators are also reported
(see Table 11).

We find similar results as in [36]. The MAPE of the OLS (with or without
variables selection) is as large and is substantially worse than all other robust
methods (like LAD or Huber). That justifies the use of the robust methods for
this data set. According to the reported standard error of the MAPE estimate,
we can clearly see that a difference cannot be statistically significant between all
the robust methods. Based on a substantially simplified model, the prediction
accuracy of the robust lasso estimator remains very satisfactory. In particular,
the Huber-ad-lasso leads to the same set of selected variables for the both
hyperparameters choice methods whereas this is not the case for LAD-ad-lasso.

6. Appendix

6.1. Proof of Theorem 3.1

We have ŝHadl = argmins≥0 LH(α̂Hadl, β̂Hadl, s) . The continuity and convexity
of the objective function defining the estimators with respect to the involved
variables implies that the new objective function f(s) = LH(α̂Hadl, β̂Hadl, s) is
convex continuous on R+. The function f is of class C1 on R

∗
+ by composition
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of functions of class C1. Moreover, as s goes to 0, f ′(s) → n − M2#{1 ≤ i ≤
n, Yi − α̂Hadl − xT

i β̂
Hadl 6= 0}. Thus, from the mean value theorem, f is right

differentiable at 0 with f ′(0) = n−M2#{1 ≤ i ≤ n, Yi− α̂Hadl−xT
i β̂

Hadl 6= 0}.
From now on, we denote r(i) = r2(i)(α̂

Hadl, β̂Hadl) for i = 1, . . . , n.

The set R+ can be cut up into intervals such that, on each interval, the
function f get the form a

s + bs+ c for various constants a, b and c. Precisely, we
have:

f(s) =





2M
∑n

i=1 |r(i)| if case 1,

2M
∑n

i=1 |r(i)|+ ns(1−M2) if case 2,

2M
∑n

i=k+1 |r(i)|+ 1
s

∑k
i=1 r

2
(i) + s(n−M2(n− k)) if case 3,

ns+ 1
s

∑n
i=1 r

2
(i) if case 4,

where
case 1: s = 0,

case 2: 0 < s ≤ |r(1)|
M ,

case 3: ∃ k ∈ [1, n− 1] ,
|r(k)|
M < s ≤ |r(k+1)|

M ,

case 4: s >
|r(n)|
M .

The function s → a/s + bs + c with a ≥ 0 is decreasing on R+ if b ≤ 0
whereas it is decreasing on [0,

√
a/b] and increasing on [

√
a/b,∞[ if b > 0 and

so its minimum is reached at
√
a/b.

When M < 1, all the b coefficients are strictly positive but all the functions
s → a/s+ bs+ c are considered on their increasing part. By continuity of f on
R+, the function f is increasing in this case. Thus, ŝHadl = 0.

When M = 1, the function f is constant on [0, |r(1)|] and increasing on
[|r(1)|,+∞[. Thus, if r(1) 6= 0, the argmin is not unique but we can choose

ŝHadl = 0. Thus, ifM ≤ 1, ŝHadl = 0. The definition of (α̂Hadl, β̂Hadl, ŝHadl) and

(2.2) implies that (α̂Hadl, β̂Hadl) is an argmin of the penalized loss 2M
∑n

i=1 |yi−
α− xT

i β|. The first point of Theorem 3.1 is established.
Next, we suppose that M > 1. For the intervals having k ≤ n

(
1− 1/(M2)

)
,

the b coefficients are negative (b ≤ 0). Thus, by continuity of f on R+, the
function f is decreasing on these intervals. The interval

[
|r(k)|/M, |r(k+1)|/M

]

with k = ⌈n
(
1− 1/M2

)
⌉ is the first one where the function f can be minimal.

By convexity of f , among all the intervals, there is only one where f is a valley.
Expression and unicity of ŝHadl come from f expression over this interval.

6.2. Proof of Theorem 3.2

In the Step 1, we prove the asymptotic normality of this estimator and, in the
Step 2, its consistency in variable selection.

Step 1. Let us first prove the asymptotic normality. This proof in an adap-
tation to our case of the proof given by [39]. The only difference concerns the
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treatment of the loss function. So in the following, we will use notations similar
to the ones of [39]. We will point out the difference between the both proofs.

Let us define Un(u) = QHadl ((α∗, β∗, s∗)T + u/
√
n)−QHadl(α∗, β∗, s∗) with

u = (u0, . . . , up+1)
T ∈ R

p+2. Obviously, Un(u) is minimized at

û(n) =
√
n
(
α̂Hadl − α∗, β̂Hadl − β∗, ŝHadl − s∗

)T
.

The principle of the proof of [39] is to study the epi-limit of Un. The notion of
epi-convergence has been introduced to ensure variational properties. It provides
the natural conditions, minimal in some sense, under which, if Un epi-converges
to U , one can guarantee the convergence of the corresponding minimizations
problems. See theorem 1.10, section 2.2 and page 39 of [2] for a precise definition
in the case of deterministic functions. As noticed by [6], if we restrict ourselves to
lower semicontinuous extended real-valued functions from R

q with non-empty
epigraphs, epi-convergence is induced by an explicit distance. Consequently,
[6] defines epi-convergence in distribution (denoted →e−d) for random lower
semicontinuous extended real-valued variables from R

q as the convergence in
distribution for this distance. We refer to [15] and [23] for other equivalent
definitions. It has already been used in statistics to get expedient proofs for
asymptotic normality theorems. For example, it has been used in [16]. Theorem
4.1 of [17] (asymptotic normality of the regression quantile estimates) is proved
using epi-convergence. In these cases, it leads to a simpler argument than the
one used previously.

The function Un(u) can be decomposed as the sum of two terms, one du to
the loss function given by Jn(u) = LH

(
(α∗, β∗, s∗)T + u/

√
n
)
− LH(α∗, β∗, s∗)

and one du to the penalty term given by Pn(u) = λn

∑p
j=1 ŵ

Hadl
j (|β∗

j +uj/
√
n|−

|β∗
j |) . This penalty term is the same as in [39]. Let P (u) = 0 if u is such that uj =

0 for all j /∈ A and P (u) = +∞ otherwise. [39] claims that, under assumptions

λn/
√
n → 0, λnn

(γ−1)/2 → ∞ and β̂ is a root-n-consistent estimator of β∗, Pn

epi-converges to P .

Concerning the term Jn, we need the following lemma. Let u1:p be the vector
defined by (u1, . . . , up)

T . We denote by→f−d the finite dimensional convergence
in distribution.

Lemma 2. Under conditions M > 1, (N0), (N1), (N2), (D1) and (D2), we
have Jn →f−d J and Jn →e−d J, where J is defined by

J(u) = As∗
(
uT
1:pV u1:p + u2

0

)
+Ds∗u

2
p+1 −WTu .

In this expression, W ∼ Np+2

(
0,Σ2

1

)
with Σ2

1 the squared block diagonal matrix
of size p+ 2 defined by

Σ2
1 = diag

(
E

[
H′

M (σǫ/s∗)2
]
,E
[
H′

M (σǫ/s∗)2
]
V,E

[
Z2
])

and Z is as in Theorem 3.2 .
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Using the definiton of [6], the notion of epi-convergence in distribution of
convex lower semicontinuous random variables is a particular case of weak con-
vergence of a net as stated in definition 1.33 of [34]. Consequently, we can
use Slutsky’s theorem page 32 and example 1.4.7 of [34] to ensure that epi-
convergence of Jn and Pn implies that (Jn, Pn) →e−d (J, P ) since P is deter-
ministic. However, the metric space involved by epi-convergence is not a topo-
logical space i.e. the sum of epi-limits is not necessary the epi-limit of the sum
(see [19] and [27] for counter-examples). Consequently, the epi-convergence of
the couple (Jn, Pn) is not enough to ensure the epi-convergence of the sum.
One has to consider a stronger convergence of a coordinate. Let →u−d de-
notes the convergence in distribution with respect to the topology of uniform
convergence on compacts. Since Jn →f−d J and Jn, J are finite (for n suffi-
ciently large) convex functions, [15], page 13 claims that Jn →u−d J . Gathering
(Jn, Pn) →e−d (J, P ), Jn →u−d J and continuity of J , theorem 4 of [15] en-
sures Un →e−d U , where U(u) = As∗

(
uT
1:pV u1:p + u2

0

)
+ Ds∗u

2
p+1 − WTu if

uj = 0 ∀ j /∈ A and j = 1, . . . , p. U(u) = +∞ otherwise. Since Un and U are
convex lower semicontinuous functions defined on the whole set Rp+2, gathering
the previous epi-convergence with the definition of û(n) as an argmin, theorem
5 of [15] ensures that

û(n) =
√
n
(
α̂Hadl − α∗, β̂Hadl

A − β∗
A, β̂

Hadl
Ac , ŝHadl − s∗

)

→d

(
W0

2As∗
,

1

2As∗
V −1
1,1 WA, 0,

Wp+1

2Ds∗

)
. (6.1)

Indeed, V1,1 is supposed positive definite in assumption (D2) and Theorem 3.2
assumes that the noise satisfies (N2). Consequently, U get a unique argminimum
and the asymptotic normality part is proved.

Step 2. Let us now show the consistency in variable selection part. A finite
intersection of random sets the probability of which tends to 1 as n tends to
infinity also tends to 1 as n tends to infinity. Consequently, it suffices to show
that P [A ⊂ An] → 1 and P [Ac ⊂ An

c] → 1 as n tends to infinity.

The first claim is an easy consequence of (6.1). Indeed, (6.1) implies that

∀ j ∈ A, β̂Hadl
j

P→ β∗
j with β∗

j 6= 0. Thus,

∀ǫ > 0, ∃Nǫ, ∀n ≥ Nǫ, P
[
|β̂Hadl

j − β∗
j | ≤ |β∗

j |/2
]
≥ 1− ǫ.

Moreover, |β̂Hadl
j − β∗

j | ≤ |β∗
j |/2 implies that |β̂Hadl

j | ≥ |β∗
j |/2. Thus ∀ǫ >

0, ∃Nǫ, ∀n ≥ Nǫ, P[|β̂Hadl
j | ≥ |β∗

j |/2] ≥ 1− ǫ and the first claim is proved.

Let j such that β∗
j = 0. To prove the second claim, we have to show that

P[β̂Hadl
j 6= 0] → 0 as n tends to infinity. If β̂Hadl

j 6= 0, ŝHadl > 0, the objective

function QHadl get a partial derivative with respect to βj at β̂Hadl
j . Moreover,

this function is minimal at (α̂Hadl, β̂Hadl, ŝHadl) thus the limit of the Newton’s
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difference quotient defining the partial derivative is null:

{β̂Hadl
j 6= 0} ⊂

{
n∑

i=1

xi,jH′
M

(
yi − α̂Hadl − xT

i β̂
Hadl

ŝHadl

)
11ŝHadl>0

= λnŵ
Hadl
j sign(β̂Hadl

j )11ŝHadl>0

}
. (6.2)

Now, the probability of this event is given by

P
[
ŝHadl = 0

]
+ P

[
ŝHadl > 0 and

n∑

i=1

xi,jH′
M

(
yi − α̂Hadl − xT

i β̂
Hadl

ŝHadl

)
= λnŵ

Hadl
j sign(β̂Hadl

j )

]
. (6.3)

Moreover, (6.1) ensures that
√
n(ŝHadl − s∗) = OP (1), thus ŝHadl P→ s∗. The

condition M > 1 ensures s∗ > 0 through Lemma 1. Noting that P
[
ŝHadl = 0

]
≤

P
[
|ŝHadl − s∗| ≥ s∗/2

]
, we have P

[
ŝHadl = 0

]
→ 0 , as n tends to infinity. As in

[39], we have for j ∈ Ac, λn|ŵHadl
j |/√n goes to +∞ as n goes to +∞. Indeed,

√
n/(λn|ŵHadl

j |) = |√nβ̂j |γ/(λnn
(γ−1)/2)

P→ 0 since the numerator is uniformly

tight (j ∈ Ac and β̂ is root-n-consistent) and Theorem 2 supposes that the
denominator tends to +∞. So, if we show that

1√
n

n∑

i=1

xi,jH′
M

(
yi − α̂Hadl − xT

i β̂
Hadl

ŝHadl

)
= OP (1), (6.4)

we get the result since

P

[
β̂Hadl
j 6= 0

]
≤ P

[
ŝHadl > 0 andOP (1) = λn|ŵHadl

j |/√n
]
+P

[
ŝHadl = 0

]
→ 0.

Let us now prove (6.4). Using the definition (2.1) of the model and û(n), we
have

1√
n

n∑

i=1

xi,jH′
M

(
yi − α̂Hadl − xT

i β̂
Hadl

ŝHadl

)
=

1√
n

n∑

i=1

xi,jH′
M



σǫi − û

(n)
0 +x

T
i û

(n)
1:p√

n

û
(n)
p+1√
n

+ s∗


 . (6.5)

Equation (6.1) ensures that û(n) = OP (1) since it converges in distribution
to a finite everywhere random variable (theorem 2.4 of [33]). Combined with

ŝHadl P→ s∗ > 0, this leads to ∀ ǫ > 0, ∃Mǫ , ∃Nǫ, ∀n ≥ Nǫ,

P

[(
−
√
ns∗

2

)
∨ (−Mǫ) < û

(n)
p+1 < Mǫ and ‖û(n)

0:p‖ ≤ Mǫ

]
≥ 1− ǫ

2
. (6.6)
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Let us denote

Fn(u) = Jn(u) +

n∑

i=1

H′
M

(σǫi
s∗

)( u0√
n
+

xT
i u1:p√
n

)
− up+1√

n

n∑

i=1

Zi,

where for 1 ≤ i ≤ n , Zi = 1+HM (σǫi/s
∗)−σǫi/s

∗H′
M (σǫi/s

∗) . From Lemma 3,

we have Fn(u)
P→ f(u), where

f(u) = As∗

(
‖V 1/2u1:p‖22 + u2

0

)
+Ds∗u

2
p+1.

Consequently, equation (6.6) involves that ∀ ǫ > 0, ∃Mǫ , ∃Nǫ, ∀n ≥ Nǫ,

P

[∥∥∥∥
∂Fn

∂u1:p
(û)− ∂f

∂u1:p
(û)

∥∥∥∥ ≤ sup
E

‖∇Fn(u)−∇f(u)‖
]
≥ 1− ǫ

2
,

where E = {‖u0:p‖ ≤ Mǫ, (−
√
ns∗

2 )∨(−Mǫ) ≤ up+1 ≤ Mǫ}. Du to the convexity
of Fn and f , the pointwise convergence in probability of Lemma 3 ensures con-
vergence in probability uniformly over any compact set of Fn and its derivative.
This result is available in a deterministic framework in theorems 10.8 and 25.7
of [26]. Its generalization for convergence in probability is done in theorem II.1
(appendix II) of [1] for Fn (see also [24], section 6 for a direct proof). In [1], the
convergence in probability is shown by extracting from any subsequence of Fn

a subsequence converging almost surely. The subsequence is extracted using a
countable dense set of points in R

p+2 and a diagonal argument. Theorem 10.8
of [26] ensures the almost sure convergence of the extracted subsequence. The
same argument can be used to ensure the convergence in probability uniformly
over any compact set of ∇Fn using Theorem 25.7 of [26] instead of Theorem
10.8. See [5] page 73 for a detailed treatment of the involved diagonal argument.
Consequently,

sup
E

‖∇Fn(u)−∇f(u)‖ P→ 0, and so

∥∥∥∥
∂Fn

∂u1:p
(û)− ∂f

∂u1:p
(û)

∥∥∥∥
P→ 0.

This means that

1√
n

n∑

i=1

xi


H′

M



σǫi − n−1/2

(
û
(n)
0 + xT

i û
(n)
1:p

)

s∗ +
û
(n)
p+1√
n


−H′

M

(σǫi
s∗

)

+2As∗V û

(n)
1:p

P→ 0 . (6.7)

We have that

Hn ,
1√
n

n∑

i=1

xiH′
M

(σǫi
s∗

)
= OP (1).

Indeed, Var(Hn) = E[H′
M (σǫ/s∗)2]XTX/n since the random variables ǫ1, . . . ,

ǫn are independent and E[H′
M (σǫ/s∗)] = 0 under condition (N1). Conse-

quently, tr(Var(Hn)) = E[H′
M (σǫ/s∗)2]tr(XTX)/n and condition (D2) en-

sures that (tr(Var(Hn)))n≥1 is a convergent and thus bounded sequence. More-
over, condition (N1) implies that E[Hn] = 0. Since Markov’s inequality entails
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P [‖Hn‖ ≥ M ] ≤ tr(Var(Hn))/M
2, we get that supn≥1 P [‖Hn‖ ≥ M ] → 0 as M

tends to infinity which is the definition of Hn = OP (1). Since û
(n)
1:p = OP (1) (a

consequence of (6.1)) and Hn = OP (1), (6.7) leads to (6.4).

6.3. Proof of technical Lemmas

6.3.1. Proof of Lemma 1

Let us firstly show that s∗ is given by the equation (2.4). Convexity of HM (.)
and theorem 1.1.6 page 5 of [11] imply that for all t ∈ R, the function ft :
s → s+ sHM (σt/s) is convex on ]0,+∞[. Since the law of ǫ defines a positive
measure, this implies that the function F (s) = E [Fǫ(s)] is convex. Moreover,
for all t ∈ R the function ft is of class C1 on the open interval ]0,+∞[ and
f ′
t(s) = 1 +HM (σt/s)− (σt/s)H′

M (σt/s) . However, the function g : x ∈ R →
1 +HM (x) − xH′

M (x) satisfies supx∈R |g(x)| ≤ 1. Consequently, the following
uniform bound holds: ∀s > 0, |f ′

t(s)| ≤ 1 . This allows to use the dominated con-
vergence theorem impling that F is of class C1 on the open interval ]0,+∞[ with
F ′(s) = E [F ′

ǫ(s)]. Consequently, s
∗ satisfies (2.3) if and only if it satisfies (2.4).

In order to finish the proof of lemma 1, it suffices to show that the function
F ′ has a unique zero on ]0,+∞[. The function g is continuous and such that
g(x) → 1 − M2 as x → +∞ and g(0) = 1. Thus, justifying the use of the
dominated convergence theorem by the same uniform bound as previously, we
get F ′(s) → 1 −M2 as s tends to 0 and F ′(s) → 1 as s tends to infinity. The
continuity of F ′ and the intermediate value theorem implies that F ′ has a zero
on ]0,+∞[ if M > 1. To see that this zero is unique, we show that the function
F ′ is strictly increasing. Let s1 > s2 > 0. The following decomposition holds
since the function g is constant on ]−∞,−M ] ∪ [M,+∞[:

F ′(s1)− F ′(s2) = E

[(
g

(
σǫ

s1

)
− g

(
σǫ

s2

))]

= σ2

(
1

s22
− 1

s21

)
E

[
ǫ211|ǫ|≤M

σ
s2

]
+ E

[(
M2 − σ2ǫ2

s21

)
11M

σ
s2<|ǫ|≤M

σ
s1

]
.

Under condition (N2), the last quantity is strictly positive. This equality also
implies that condition (N2) is necessary to ensure that the function F ′ is strictly
increasing. Actually, suppose that (N2) does not hold i.e. there exists a > 0
such that P [|ǫ| ≤ a] = 0. If we consider s1 = aσ/M and s2 = aσ/(2M), we
have s1 > s2. Moreover, the last equality implies that F ′(s1) = F ′(s2) since the
integral of a function over a null set is equal to 0. Consequently, if (N2) does
not hold, the function F ′ is not strictly increasing. This concludes the proof.

6.3.2. Proof of Lemma 2

First we need to the following lemma.
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Lemma 3. If (D1), (D2), (N0), (N1), (N2) hold and M > 1, for every u
fixed in R

p+2,

Jn(u) +

n∑

i=1

H′
M

(σǫi
s∗

)( u0√
n
+

xT
i u1:p√
n

)
− up+1√

n

n∑

i=1

Zi

P→ As∗

(
‖V 1/2u1:p‖22 + u2

0

)
+D2

s∗up+1, (6.8)

where Ds∗ , As∗ are defined as in Theorem 3.2.

Gathering this lemma and Lemma 4 (with w
(n)
i =

(
1
xi

)
, δi = H′

M (σǫi/s
∗) and

Wi = −Zi) and the Cramer-Wold device, we get Jn →f−d J . Let us show that
the conditions of Lemma 4 are satisfied. Condition (T3) holds with w∞ =

(
1
0

)

since the covariables are supposed centered in the definition (2.1) of the model.
Moreover, (D2) (resp. (D1)) leads to condition (T1) (resp. (T2)). Assump-
tion (R) is satisfied. Indeed, the (ǫi)1≤i≤n are supposed to be independent and
identically-distributed random variables. E [δ] = 0 since H′

M (.) is odd and (N1)
holds. E [W ] = 0 since the property (2.4) of s∗ is available (M > 1 and (N2) are
supposed). Finally, the functions H′

M (.) and g : x ∈ R → 1+HM (x)−xH′
M (x)

are bounded ensuring the finite variance hypothesis of (R).
In order to show that the asymptotic variance Σ2 involved in Lemma 4 is a

diagonal matrix, one has to note that Cov(δ,W ) = E [δW ] = 0. This holds since
the function x → H′

M (x) g(x) is odd (H′
M (.) is odd and g(.) is even) and (N1)

is supposed.
To conclude the proof of Lemma 2, since J is convex, continuous and finite

everywhere random variable, part (a) of Theorem 5 of [15] implies that Jn →e−d

J since the finite-dimensional convergence holds.

6.3.3. Proof of Lemma 3

The condition M > 1 and (N2) ensure s∗ > 0 through Lemma 1. Thus, for
n sufficiently large (with respect to a non-random bound depending on up+1),
up+1/

√
n + s∗ > 0. Consequently, the definitions (2.1) of the model and (2.2)

of the function LH imply that, for n sufficiently large (with respect to a non-
random bound depending on up+1),

LH

(
(α∗, β∗, s∗)T +

u√
n

)
=

n∑

i=1

(
s∗ +

up+1√
n

)
1 +HM


σǫi − u0√

n
− x

T
i u1:p√

n

s∗ + up+1√
n




 ,

n∑

i=1

dn,i(u).

Simple calculations lead to the following explicit expression of the derivative of
dn,i at 0. For 1 ≤ i ≤ n,

∂dn,i
∂u

(0) =
1√
n

(
−H′

M

(σǫi
s∗

)
,−H′

M

(σǫi
s∗

)
xT
i , Zi

)T
.
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We have to show the convergence in probability of

Dn ,

n∑

i=1

(
dn,i(u)− dn,i(0)− uT ∂dn,i

∂u
(0)

)

since this quantity is equal (for n sufficiently large) to the left-hand side quantity
in (6.8). The structure of the rest of the proof is inspired by [3].

Step 1. To begin with, we show that Var(Dn) → 0 as n → +∞ . Using that
the errors (ǫi)1≤i≤n are independent random variables, we get

Var(Dn) ≤
n∑

i=1

E

[(
dn,i(u)− dn,i(0)− uT ∂dn,i

∂u
(0)

)2
]
.

Moreover, convexity of HM (.) combined with proposition 2.2.1 page 160 of [11]
implies that for all 1 ≤ i ≤ n, dn,i is a convex function. As such, it lies above
all of its tangents:

0 ≤ dn,i(u)− dn,i(0)− uT ∂dn,i
∂u

(0) ≤ uT

(
∂dn,i
∂u

(u)− ∂dn,i
∂u

(0)

)
.

Furthermore, easy calculations imply that the the previous upper bound is equal
to

up+1√
n


g


σǫi − u0+x

T
i u1:p√
n

s∗ + up+1√
n


− g

(σǫi
s∗

)

−


H′

M


σǫi − u0+x

T
i u1:p√
n

s∗ + up+1√
n


−H′

M

(σǫi
s∗

)


(
u0 + xT

i u1:p√
n

)
,

where g(x) = 1+HM (x)− xH′
M (x). Using that (a+ b+ c)2 ≤ 4(a2+ b2)+ 2c2,

Var(Dn) is bounded above by the sum of I1, I2 and I3 where

I1 , 4
u2
p+1

n

n∑

i=1

E





g


σǫi − u0+x

T
i u1:p√
n

s∗ + up+1√
n


− g

(σǫi
s∗

)



2

,

I2 , 4
u2
0

n

n∑

i=1

E





H′

M


σǫi − u0+x

T
i u1:p√
n

s∗ + up+1√
n


−H′

M

(σǫi
s∗

)



2



and the term I3 is defined by

I3 , 2

n∑

i=1

E



(
xT
i u1:p√
n

)2

H′

M


σǫi − u0+x

T
i u1:p√
n

s∗ + up+1√
n


−H′

M

(σǫi
s∗

)



2

 .
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In order to show that each term Ii (1 ≤ i ≤ 3) tends to 0 as n tends to infinity,
we notice that they all have the same following general form. Let ϕ denote a
lipschitz continuous function from R to R with lipschitz constant L such that,
for some constants K1 and K2, ϕ(x) = K1 if x ≥ M and ϕ(x) = K2 if x ≤ −M .
Let

Γ(h, h′) = E

[(
ϕ

(
σǫ + h

s∗ + h′

)
− ϕ

(σǫ
s∗

))2
]

be a function of two variables associated to ϕ. We note that I1 (resp. I2) are pro-
portionnal to Γ

(
−(u0 + xT

i u1:p)/
√
n, up+1/

√
n
)
with ϕ = g, L = 2M andK1 =

K2 = 1−M2 (resp. ϕ = H′
M (·) , L = 2,K1 = 2M andK2 = −2M).

Let us now show a general property satisfied by functions Γ. Spliting the
expectation over the sets {|σǫ| ≤ Ms∗} and {|σǫ| > Ms∗}, we easily get

Γ(h, h′) ≤ 2L2

s∗2(s∗ + h′)2

(
h′2σ2

E
[
ǫ211|σǫ|≤Ms∗

]
+ h2s∗

)

+ 2
(
‖ϕ‖2∞ +K2

1

)
P

[
σǫ > Ms∗,

σǫ + h

s∗ + h′ ≤ M

]

+ 2
(
‖ϕ‖2∞ +K2

2

)
P

[
σǫ < −Ms∗,

σǫ+ h

s∗ + h′ > −M

]
.

Moreover,

P

[
σǫ > Ms∗ and

σǫ+ h

s∗ + h′ ≤ M

]
= P [σǫ ≤ M(s∗ + h′)− h]− P [σǫ ≤ Ms∗]

and

P

[
σǫ < −Ms∗ and

σǫ + h

s∗ + h′ > −M

]
=

P [σǫ < −Ms∗]− P [σǫ ≤ −M(s∗ + h′)− h] .

Assumption (N0) ensures that the distribution function of σǫ is continuous at
±Ms∗. Consequently, Γ is continuous at 0 with Γ(0) = 0: as (h, h′) tends to 0,
Γ(h, h′) → 0. Moreover, assumption (D1) ensures that

max
1≤i≤n

∥∥∥∥
(
−u0 + xT

i u1:p√
n

,
up+1√

n

)∥∥∥∥
2

→ 0

as n tends to infinity. Consequently, the following assertion holds:

∀ ǫ > 0, ∃Nǫ, ∀n ≥ Nǫ, ∀ 1 ≤ i ≤ n, Γ
(
(u0 + xT

i u1:p)/
√
n, up+1/

√
n
)
≤ ǫ .

It directly entails that I1 and I2 tend to 0 as n goes to infinity. More-
over, combined with assumption (D2), it also implies I3 → 0. Consequently,
Var(Dn) → 0 .
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Step 2. Now, we show that E [Dn] → As∗(u
2
0+uT

1:pV u1:p)+Ds∗u
2
p+1 as n →

+∞ . Since the function H′
M (.) is odd, the explicit expression of the derivative

of dn,i (given at the begining of the proof) combined with assumption (N1)

and property (2.4) of s∗ imply that E
[∂dn,i

∂u (0)
]
= 0 (note that Zi = g (σǫi/s

∗)).
Consequently, the definition of Dn leads to E [Dn] =

∑n
i=1 E [dn,i(u)− dn,i(0)] .

Moreover, the random variables (σǫi)1≤i≤n are identically-distributed thus

E [Dn] =
n∑

i=1

E

[(
s∗ +

up+1√
n

)
+

(
s∗ +

up+1√
n

)
HM


σǫ − u0+x

T
i u1:p√
n

s∗ + s′√
n


−

(
s∗ + s∗HM

(σǫ
s∗

))

 .

Let us introduce the following function:

Ψ(h, h′) = (s∗ + h′) + (s∗ + h′)E [HM ((σǫ + h)/(s∗ + h′))] .

It is defined on the open set R×]−s∗; +∞[. In order to get the asymptotic limit
of E [Dn], a Taylor expansion of degree 2 of Ψ around 0 is required. This means
that we look for constants As∗ , Bs∗ , Cs∗ , Ds∗ , Es∗ such that Ψ(h, h′) = Ψ(0) +

Bs∗h+Cs∗h
′ +As∗h

2 +Ds∗h
′2 +Es∗hh

′ + ξ(h, h′) with ξ(h, h′)/‖(h, h′)‖2 → 0
as (h, h′) → 0. To get such a Taylor expansion, one has to be neat since HM (·)
is not two times differentiable at ±M . In the case of the Huber loss without
concomitant scale, [3] already solves this technical difficulty by an argument
of approximation of convex functions. In the case of Huber loss with concomi-
tant scale, roughly speaking, one has to deal with a supplementary variable
(s). However, the function LH(α, β, s) is still convex w.r.t (α, β, s). Thus, fol-
lowing readily the proof of Lemma 1 of [3], we get the desired expansion of Ψ
in return for a bit more work to deal with the supplementary terms. We no-
tice that the obtained proofs rely on the convexity of the involved functions.
Now, we claim that this expansion has nothing to do with convexity. Using suc-
cessively the dominated convergence theorem, we show that the function Ψ is
two times differentiable at 0. The rigorous reasoning relies on the fact that the
derivatives with respect to h and h′ of the integrated function are related to
functions g and H′

M (·). Precisely, using that these functions are lipschitz con-
tinuous and bounded, we can derive the uniform bounds justifying the uses of
the dominated convergence theorem. Consequently, the classical Taylor-Young
theorem is available to get the desired Taylor expansion. Moreover, the coeffi-
cients As∗ , Bs∗ , Cs∗ , Ds∗ , Es∗ are now explicit. Note that the proof relying on
dominated convergence theorem only supposes that (N0) holds to provide sat-
isfying coefficients. Under the supplementary hypothesis (N1), it is clear that
Es∗ = 0 and Bs∗ = 0 since H′

M (·) is odd. Since we also suppose M > 1 and
that (N2) holds, s∗ satisfies (2.4) which is equivalent to Cs∗ = 0. Finally, under
assumptions (N0), (N1) and (N2), we get
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E [Dn] = As∗

n∑

i=1

(
u0 + xT

i u1:p√
n

)2

+Ds∗u
2
p+1 +

n∑

i=1

ξ

(
−u0 + xT

i u1:p√
n

,
up+1√

n

)
,

(6.9)
where ξ(h, h′)/‖(h, h′)‖2 → 0 as (h, h′) → 0. Gathering this property of ξ with
assumption (D1), we get ∀ η > 0, ∃Nη, ∀n ≥ Nη,

n∑

i=1

∣∣∣∣ξ
(
−u0 + xT

i u1:p√
n

,
up+1√

n

)∣∣∣∣ ≤ η

(
u2
p+1 +

n∑

i=1

(
u0 + xT

i u1:p√
n

)2
)
. (6.10)

Assumption (D2) leads to
∑n

i=1

(
(u0 + xT

i u1:p)/
√
n
)2 → u2

0 + uT
1:pV u1:p since∑n

i=1 xi = 0 in the definition (2.1) of the model. Noting that

(
n∑

i=1

(
(u0 + xT

i u1:p)/
√
n
)2
)

n∈N

is a bounded sequence (since it converges), (6.10) ensures that the rest

n∑

i=1

ξ
(
−(u0 + xT

i u1:p)/
√
n, up+1/

√
n
)

tends to 0 as n tends to infinity. Consequently, (6.9) leads to the desired con-
vergence of the expectation.

Step 3. Bienaymé-Chebyshev inequality and step 1 lead to Dn−E [Dn]
P→ 0.

Gathering that with step 2 and using Slutsky’s theorem, the proof of lemma 3
is done.

6.3.4. Lemma 4 and its proof

The following lemma extends the classical Central Limit Theorem. It is an
extension of corollary 1 page 637 of [13].

Lemma 4. Let us consider a sequence of deterministic vectors of Rp with double

subscript (w
(n)
i )(n≥1,1≤i≤n) such that, as n tends to infinity,

(T1) 1
n

∑n
i=1 w

(n)
i w

(n)
i

T
→ V .

(T2) 1√
n
max1≤i≤n ‖w(n)

i ‖ → 0.

(T3) 1
n

∑n
i=1 w

(n)
i → w∞.

Moreover,

(R) (δi)(i≥1) (resp. (Wi)(i≥1)) is a real-valued (resp. R
k-valued) random se-

quence such that (δi,Wi)(i≥1) are independent and identically-distributed

random variables of R
k+1 with mean 0 (i.e. E [(δ,W )] = 0) and finite

variance.
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Then
1√
n

n∑

i=1

(
δiw

(n)
i ,Wi

)
→d Np+k(0,Σ

2) ,

where Σ2 is the following (p+ k)× (p+ k) matrix:

Σ2 =

[
Σ2

1,1 Σ2
1,2

Σ2T
1,2 Σ2

2,2

]
,

with
Σ2

1,1 = E
[
δ2
]
V, Σ2

2,2 = Var(W ), Σ2
1,2 = w∞Cov(δ,W ).

Corollary 1 page 637 of [13] studied the case where W ≡ 0. With our nota-
tions, it states that, if assumptions (T1) and (R) are true, then 1/

√
n
∑n

i=1 δi

w
(n)
i →d Np(0,Σ

2
1,1). Consequently, our assumption (T2) seems unnecessary.

However, as the following example exhibits, this assumption (T2) is neces-
sary. In the case p = 1, let us define the following double subscript sequence:

w
(n)
1 =

√
n and, for i ≥ 2, w

(n)
i = 0. It satisfies (T1) but not (T2) and,

for n ≥ 1, 1/
√
n
∑n

i=1 δiw
(n)
i = δ1 which is not gaussian. Consequently, the

conclusion of corollary 1 page 637 of [13] is wrong in this case.
Proof. Following the proof of the classical Central Limit Theorem, we con-

sider the characteristic function of the random variable

Zn , 1/
√
n

n∑

i=1

(
δiw

(n)
i ,Wi

)
: ϕn(t) , E [exp i 〈t, Zn〉]

with t an element of Rp+k. We write t = (tp, tk)
T where tp ∈ R

p and tk ∈ R
k.

Condition (R) implies that

ϕn(t) =

n∏

j=1

φ

(〈
tp√
n
,w

(n)
j

〉
,
tk√
n

)
,

where φ is the characteristic function of the random variable (δ,W ). Condition
(R) implies that E [(δ,W )] = 0 and E‖(δ,W )‖2 < +∞. Let G = Var (δ,W )
be the (k + 1) × (k + 1) variance matrix of the random variable (δ,W ). The
dominated convergence and Taylor-Young (at 0) theorems entail that φ(u, xk) =
1− 1

2 (u, xk)
TG(u, xk)

T+ξ(u, xk) for all u ∈ R and xk ∈ R
k, where ξ is a complex-

valued function satisfying ξ(u, xk)/‖(u, xk)‖2 → 0 as the vector (u, xk) tends to
0 in R

k+1. The following equality holds:

φ

(〈
tp√
n
,w

(n)
j

〉
,
tk√
n

)
= 1 + zjn

with

zjn = −1

2
E
[
δ2
]〈 tp√

n
,w

(n)
j

〉2

− 1

2n
tTkVar(W )tk

−
〈

tp√
n
,w

(n)
j

〉
Cov(δ,W )

tk√
n
+ ξ

(〈
tp√
n
,w

(n)
j

〉
,
tk√
n

)
.
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Condition (T2) and the fact that the function ξ does not depend on j and
satisfies ξ(u, xk) → 0 as (u, xk) → 0, ensure that max1≤j≤n |zjn| → 0 as n tends
to infinity. Consequently, for n sufficiently large, max1≤j≤n |zjn| < 1. However,
the Newton-Mercator series allows to define a branch of log(1+z) defined on the
open unit disk. Thus, for n sufficiently large, ϕn(t) = exp

(∑n
j=1 log(1 + zjn)

)
.

Using again the Newton-Mercator series, we get log(1+z) = z−z2/2+h(z) ,with
h(z)/|z|2 → 0 as |z| → 0. Consequently, we have log(1 + zjn) = zjn − (zjn)

2/2 +
h(zjn) . Moreover, Condition (T2) and the fact that ξ(u, xk)/‖(u, xk)‖2 → 0 as
(u, xk) → 0 imply

max
1≤j≤n

|ξ
(〈

tp√
n
,w

(n)
j

〉
,

tk√
n

)
|

〈
t
p√
n
,w

(n)
j

〉2
+

‖t
k
‖2

n

→ 0

and

max
1≤j≤n

|(zjn)2|〈
tp√
n
,w

(n)
j

〉2
+

‖tk‖2

n

→ 0

as n → +∞. The last limit, combined with the fact that h(z)
|z|2 → 0 as |z| → 0,

entails

max
1≤j≤n

|h(zjn)|〈
tp√
n
,w

(n)
j

〉2
+

‖t
k
‖2

n

→ 0

as n → +∞. Consequently, there exists a sequence (un)n≥1 which is independent
of j and converges to 0 as n tends to infinity such that

log(1 + zjn) = −1

2
E
[
δ2
]〈 tp√

n
,w

(n)
j

〉2

− 1

2n
tTkVar(W )tk

−
〈

tp√
n
,w

(n)
j

〉
Cov(δ,W )

tk√
n
+ ajn.

with

|ajn| ≤ un

(〈
tp√
n
,w

(n)
j

〉2

+
‖tk‖2
n

)
.

Noting An = 1/n
∑n

j=1 w
(n)
j w

(n)
j

T
, this leads to

ϕn(t) = exp

(
−1

2
E
[
δ2
]
tTp Antp −

1

2
tTkVar(W )tk

−
〈
tp,

1

n

n∑

j=1

w
(n)
j

〉
Cov(δ,W )tk +

n∑

j=1

ajn


 . (6.11)

Gathering the previous bound on |ajn|, the facts that un converges to 0 and that
the sequence 


n∑

j=1

(〈
tp/

√
n,w

(n)
j

〉2
+ ‖tk‖2/n

)


n≥1
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is bounded (since (T1) ensures its convergence), we easily get that
∑n

j=1 a
j
n →

0. Moreover, using conditions (T1) and (T3) in (6.11), we obtain the asymp-
totic behavior of the characteristic function: ϕn(t) → exp

(
− 1

2 t
TΣ2t

)
, which

is the characteristic function of a gaussian vector Np+k(0,Σ
2). Now, the Lévy

continuity theorem leads to Lemma 4.

6.4. Computations: Software used for numerical optimization

When the regularization parameter is fixed, to solve all the involved optimization
problems we used CVX, a package for specifying and solving convex programs
[7, 8]. CVX is a set of Matlab functions using the methodology of disciplined
convex programming. Disciplined convex programming imposes a limited set
of conventions or rules, which are called the DCP ruleset. Problems which ad-
here to the ruleset can be rapidly and automatically verified as convex and
converted to solvable form. Problems that violate the ruleset are rejected, even
when convexity of the problem is obvious to the user. The version of CVX we
use, is a preprocessor for the convex optimization solver SeDuMi (Self-Dual-
Minimization [31]).

Let us now recall a well-known fact of convex analysis: the Huber function is
the Moreau-Yosida regularization of the absolute value function ([11, 26, 29]).
Precisely, it can be easily shown that the Huber function satisfies

HM (z) = min
v∈R

(
(z − v)2 + 2M |v|

)
.

This allows to write our optimization problem in a conforming manner to use
CVX.

Note that [22] uses an expression of HM (z) as the solution of a quadratic
optimization problem (borrowed from the user guide of CVX) to write his problem
in a conforming manner to use CVX. However, the expression of [22] involves
more constraints and more variables than the previous formulation. We give
here the way to use CVX in order to compute the estimators alpha=α̂Hadl,
beta=β̂Hadl and s=ŝHadl. The variable X represents the design matrix X. The
unpenalized estimator betaUNP= β̂H is calculated beforehand (using also CVX)
and the regularisation parameter λn is fixed and denoted by lambda.

cvx_begin

variables alpha beta(p) s v(n);

minimize (n*s+quad_over_lin(y-alpha-X*beta-v,s)+2*M*norm(v,1)

+ lambda*norm(beta./betaUNP,1))

subject to

s > 0;

cvx_end

Let us remark that betaUNP is computed in the same way but deleting the term
multiplied by lambda.
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