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Abstract: Time series models are often constructed by combining nonsta-
tionary effects such as trends with stochastic processes that are believed to
be stationary. Although stationarity of the underlying process is typically
crucial to ensure desirable properties or even validity of statistical estima-
tors, there are numerous time series models for which this stationarity is
not yet proven. A major barrier is that the most commonly-used methods
assume ϕ-irreducibility, a condition that can be violated for the important
class of discrete-valued observation-driven models.

We show (strict) stationarity for the class of Generalized Autoregres-
sive Moving Average (GARMA) models, which provides a flexible ana-
logue of ARMA models for count, binary, or other discrete-valued data.
We do this from two perspectives. First, we show conditions under which
GARMA models have a unique stationary distribution (so are strictly sta-
tionary when initialized in that distribution). This result potentially forms
the foundation for broadly showing consistency and asymptotic normality
of maximum likelihood estimators for GARMA models. Since these con-
clusions are not immediate, however, we also take a second approach. We
show stationarity and ergodicity of a perturbed version of the GARMA
model, which utilizes the fact that the perturbed model is ϕ-irreducible
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and immediately implies consistent estimation of the mean, lagged co-
variances, and other functionals of the perturbed process. We relate the
perturbed and original processes by showing that the perturbed model
yields parameter estimates that are arbitrarily close to those of the original
model.
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1. Introduction

Stationarity is a fundamental concept in time series modeling, capturing the
idea that the future is expected to behave like the past; this assumption is
inherent in any attempt to forecast the future. Many time series models are cre-
ated by combining nonstationary effects such as trends, covariate effects, and
seasonality with a stochastic process that is known or believed to be station-
ary. Alternatively, they can be defined by partial sums or other transformations
of a stationary process. The properties of statistical estimators for particular
models are then established via the relationship to the stationary process; this
includes consistency of parameter estimators and of standard error estimators
([4], Chap. 7-8).

However, (strict) stationarity can be nontrivial to establish, and many time
series models currently in use are based on processes for which it has not been
proven. Strict stationarity (henceforth, “stationarity”) of a stochastic process
{Xn}n∈Z means that the distribution of the random vector (Xn, Xn+1 . . . , Xn+j)
does not depend on n, for any j ≥ 0 ([2], p.494). Sometimes weak stationarity
(constant, finite first and second moments of the process {Xn}n∈Z) is proven
instead, or simulations are used to argue for stationarity.

The most common approach to establishing strict stationarity and ergodic-
ity (defined as in [2], p.494) is via application of Lyapunov function methods
(also known as drift conditions) to a Markov chain that is related to the time
series model. However, Lyapunov function methods are almost always used in
conjunction with an assumption of ϕ-irreducibility, which can be violated by
discrete-valued observation-driven time series models (for an example see Sec-
tion 2). Such models are important since (due to the simplicity of evaluating the
likelihood function) they are typically the best option for modeling very long
count- or binary-valued time series.

We address this challenge to show for the first time stationarity of two mod-
els designed for discrete-valued time series: a Poisson threshold model and the
class of Generalized Autoregressive Moving Average (GARMA) models [1]. We
do this from two perspectives. First, we show that these models have a unique
stationary distribution (so are strictly stationary when initialized in that dis-
tribution), by using Feller properties of the chain. Precisely, we show that both
the mean process and the observed process have stationary solutions, and that
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the stationary solution of the mean process is unique. To our knowledge Feller
properties have not previously been used to show uniqueness of the stationary
distribution for discrete-valued time series models (although they have been
used to show existence of a stationary distribution; [7, 24]). This approach is
very general and has the potential to be used for showing that wide classes of
discrete-valued models have unique stationary distributions.

These stationarity results potentially form the foundation for showing consis-
tency and asymptotic normality of parameter estimates in the GARMA model
class in its general form. However, these properties are not immediate so we
also take a second approach, showing stationarity and ergodicity of a perturbed
version of the model. This implies consistent estimation of the mean and lagged
covariances of the perturbed process, and more generally the expectation of
any integrable function ([2], p.495). More importantly, such ergodicity results
for a perturbed model can be used in some cases to show asymptotic normal-
ity of parameter estimators for the original model [10, 11, 12]. We also show
that the perturbed and original models are closely related in the sense that
the perturbed model yields (finite-sample) parameter estimates that are arbi-
trarily close to those from the original model. This result is given under weak
conditions that encompass nearly all discrete-valued time series models, and
utilizes the fact that the perturbed model is ϕ-irreducible. It implies that a re-
searcher can choose to use the perturbed model without substantially affecting
(finite-sample) parameter estimates, in order to get strong theoretical properties
associated with stationarity and ergodicity.

GARMA models generalize autoregressive moving average models to expo-
nential-family distributions, naturally handling count- and binary-valued data
among others. They can also be seen as an extension of generalized linear mod-
els to time series data. The numerous applications of these models include pre-
dicting numbers of births [16], modeling poliomyelitis cases [1], and predicting
valley fever incidence [22]. The main stationarity result that currently exists for
GARMA models is weak stationarity in the case of an identity link function;
unfortunately this excludes the most popular of the count-valued models [1].
[26] have also used a connection to branching processes to show stationarity
for a special case of the purely autoregressive Poisson log-link GARMA model.
The stationarity of particular models related to Poisson GARMA has also been
addressed by [7] (log link case) and [9] (linear link case).

In Section 2 we give background on Lyapunov function methods, describe
the use of Feller properties to show stationarity, and give our justification for
analyzing perturbed versions of discrete-valued time series models. In Section 3
we illustrate the perturbation approach by applying it to a specific count-valued
threshold model, and in Section 4 we use the perturbation method to prove
stationarity for the class of perturbed GARMA models. In Section 5 we show
stationarity of the original GARMA and count-valued threshold models using
Feller properties.
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2. Tools for showing stationarity

For a real-valued process {Yn}n∈N, let Yn:m = (Yn, Yn+1, . . . , Ym) where n ≤ m.
An observation-driven time series model for {Yn}n∈N has the form:

Yn|Y0:n−1 ∼ ψν(·;µn) (1)

µn = hθ,n(Y0:n−1) (2)

for functions hθ,n parameterized by θ and some density function ψν (typi-
cally with respect to counting or Lebesgue measure) that can depend on both
time-invariant parameters ν and the time-dependent quantities µn [7, 9, 26].
Observation-driven models are desirable because the likelihood function for the
parameter vector (θ, ν) can be evaluated explicitly. The alternative class of
parameter-driven models [6, 25], by contrast, incorporates latent random in-
novations which typically make explicit evaluation of the likelihood function
impossible, so that one must resort to approximate inference or computation-
ally intensive Monte Carlo integration over the latent process [5, 8, 15]. These
methods do not scale well to very long time series, so observation-driven models
are typically the better option in this case.

Observation-driven models are usually constructed via a Markov-p structure
for µn, meaning that for n ≥ p

µn = gθ(Yn−p:n−1, µn−p:n−1) (3)

for some function gθ and for fixed initial values µ0:p−1. This structure implies
that the vector µn−p:n−1 forms the state of a Markov chain indexed by n. In this
case it is sometimes possible to prove stationarity and ergodicity of {Yn}n∈N by
first showing these properties for the multivariate Markov chain {µn−p:n−1}n≥p,
then “lifting” the results back to the time series model {Yn}n∈N. For instance,
showing that {µn−p:n−1}n≥p is ϕ-irreducible, aperiodic and positive Harris re-
current (defined below) implies that it has a unique stationary distribution π,
and that if µ0:p−1 ∼ π then {µn−p:n−1}n≥p is a stationary and ergodic process.
That {Yn}n∈N is also stationary and ergodic is seen as follows. Conditional on
{µn}n∈N, the Yn are independent across n and each Yn has a distribution that is a
function of only µn:n+p (since Yn ∼ ψν(µn) and since the values µn+1:n+p depend
on Yn). Therefore there is a deterministic function f such that one can simulate
{Yn} conditional on {µn} by: (a) generating an i.i.d. sequence of Uniform(0, 1)
random variables Un, and (b) setting Yn = f(µn:n+p, Un). The multivariate
process {(µn−p:n−1, Un)}n≥p is stationary and ergodic, and so Thm. 36.4 of [2]
shows that its transformation {Yn} is also stationary and ergodic.

First we give background on the use of drift conditions to show stationarity
and ergodicity of ϕ-irreducible processes; we extend to the non-ϕ-irreducible
models of interest in Sections 2.1 and 2.2. For a general Markov chain X =
{Xn}n∈N on state space S with σ-algebra F define T n(x,A) = Pr(Xn ∈ A|X0 =
x) for A ∈ F to be the n-step transition probability starting from state X0 = x.
The appropriate notion of irreducibility when dealing with a general state space
is that of ϕ-irreducibility, since general state space Markov chains may never
visit the same point twice.
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Definition 1. A Markov chain X is ϕ-irreducible if there exists a nontrivial
measure ϕ on F such that, whenever ϕ(A) > 0, T n(x,A) > 0 for some n =
n(x,A) ≥ 1, for all x ∈ S.

The notion of aperiodicity in general state space chains is the same as that
seen in countable state space chains, namely that one cannot decompose the
state space into a finite partition of sets where the chain moves successively
from one set to the next in sequence, with probability one. For a more precise
definition, see [20], Sec. 5.4.

We need one more definition before we can present drift conditions.

Definition 2. A set A ∈ F is called a small set if there exists an m ≥ 1, a
nontrivial measure ν on F , and a λ > 0 such that for all x ∈ A and all C ∈ F ,
Tm(x,C) ≥ λν(C).

Small sets are a fundamental tool in the analysis of general state space Markov
chains because, among other things, they allow one to apply regenerative ar-
guments to the analysis of a chain’s long-run behavior. Regenerative theory is
indeed the fundamental tool behind the following result, which is a special case
of Theorem 14.0.1 in [20]. Let Ex(·) denote the expectation under the proba-
bility Px(·) induced on the path space of the chain when the initial state X0 is
deterministically x.

Theorem 1 (Drift Conditions). Suppose that X = {Xn}n∈N is ϕ-irreducible
on S. Let A ⊂ S be small, and suppose that there exist b ∈ (0,∞), ǫ > 0, and a
function V : S → [0,∞) such that for all x ∈ S,

ExV (X1) ≤ V (x) − ǫ+ b1{x∈A}. (4)

Then X is positive Harris recurrent.

The function V is called a Lyapunov function or energy function. The condi-
tion (4) is known as a drift condition, in that for x /∈ A, the expected energy V
drifts towards zero by at least ǫ. The indicator function in (4) asserts that from
a state x ∈ A, any energy increase is bounded (in expectation).

Positive Harris recurrent chains possess a unique stationary probability dis-
tribution π. If X0 is distributed according to π then the chain X is a stationary
process. If the chain is also aperiodic then X is ergodic, in which case if the
chain is initialized according to some other distribution, then the distribution
of Xn will converge to π as n→ ∞.

Hence, the drift condition (4), together with aperiodicity, establishes ergod-
icity. A stronger form of ergodicity, called geometric ergodicity, arises if (4) is
replaced by the condition

ExV (X1) ≤ βV (x) + b1{x∈A} (5)

for some β ∈ (0, 1) and some V : S → [1,∞) (note the change in the range of V ).
Indeed, (5) implies (4). Either of these criteria are sufficient for our purposes.

A problem can occur, however, when we attempt to apply this method for
proving stationarity to an observation-driven time series model given by (1)
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and (3): the Markov chain {µn−p:n−1}n≥p may not be ϕ-irreducible. This occurs,
for instance, whenever Yn can only take a countable set of values and the state
space of µn−p:n−1 is R

p. Then, given a particular initial vector µ0:p−1 the set
of possible values for µn is countable. In fact, for any fixed initialization µ0:p−1

there is a countable set A ⊂ R
p such that

∑∞
n=p Pr(µn−p:n−1 ∈ A|µ0:p−1) = 1,

and distinct initial vectors µ0:p−1 can have distinct sets A. For a simpler example
of a Markov chain with the same property, consider the stochastic recursion
defined by Xn = [Xn−1 + Yn] mod 1 where {Yn}n≥1 are i.i.d. discrete random
variables on the rationals and x mod 1 is the fractional part of x. If X0 is
rational, then so is Xn for all n ≥ 1, while if X0 is irrational then so is Xn

for all n ≥ 1. Also, the set of states that can be reached from any fixed X0 is
countable.

2.1. Feller conditions for stationarity

When the chain {µn−p:n−1}n≥p associated with the observation-driven time-
series model is not ϕ-irreducible we will see that one can instead use Feller
properties to prove that it has a unique stationary distribution. We address
existence of a stationarity distribution first, then uniqueness of that distribution.

In the absence of ϕ-irreducibility, the “weak Feller” condition can be com-
bined with a drift condition (4) to show existence of a stationary distribution.
A chain evolving on a complete separable metric space S is said to be “weak
Feller” if the transition kernel T (x, ·) satisfies T (x, ·) ⇒ T (y, ·) as x→ y, for any
y ∈ S and where ⇒ indicates convergence in distribution; see, e.g., Section 6.1.1
of [20] and Theorem 25.8 (i) and (ii) of [2].

Theorem 2 (Tweedie 1988 [24]). Suppose that S is a locally compact complete
separable metric space with F the Borel σ-field on S, and that the Markov chain
{Xn}n∈N with transition kernel T is weak Feller. Let A ∈ F be compact, and
suppose that there exist b ∈ (0,∞), ǫ > 0, and a function V : S → [0,∞) such
that for all x ∈ S the drift condition (4) holds. Then there exists a stationary
distribution for T .

Uniqueness of the stationary distribution can be established using the “asymp-
totic strong Feller” property, defined as follows [14]. Let S be a Polish (complete,
separable, metrizable) space. A “totally separating system of metrics {dn}n∈N

for S” is a set of metrics such that for any x, y ∈ S with x 6= y, the value dn(x, y)
is nondecreasing in n and limn→∞ dn(x, y) = 1. A metric d on S implies the
following distance between probability measures µ1 and µ2:

‖µ1 − µ2‖d = sup
Lipdφ=1

(∫

φ(x)µ1(dx) −

∫

φ(x)µ2(dx)

)

(6)

where

Lipdφ = sup
x,y∈S:x 6=y

|φ(x) − φ(y)|

d(x, y)
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is the minimal Lipschitz constant for φ with respect to d. Using these definitions,
a chain is asymptotically strong Feller if, for every fixed x ∈ S, there is a totally
separating system of metrics {dn} for S and a sequence tn > 0 such that

lim
γ→0

lim sup
n→∞

sup
y∈B(x,γ)

‖T tn(x, ·)− T tn(y, ·)‖dn
= 0 (7)

where B(x, γ) is the open ball of radius γ centered at x, as measured using some
metric defining the topology of S.

Then we have the following result, which is an extension of results in [13] and
[14]. A “reachable” point x ∈ S means that for all open sets A containing x,
∑∞

n=1 T
n(y,A) > 0 for all y ∈ S [20, p. 135].

Theorem 3. Suppose that S is a Polish space and the Markov chain {Xn}n∈N

with transition kernel T is asymptotically strong Feller. If there is a reachable
point x ∈ S then T can have at most one stationary distribution.

The results in [13] require an “accessible” point, which is stronger than a reach-
able point. Theorem 3 is proven in Appendix A.1.

We will show stationarity of discrete-valued time series models by applying
Theorems 2 and 3. These results lay the foundation for showing convergence
of time averages for a broad class of functions, and asymptotic properties of
maximum likelihood estimators. However, these results are not immediate. For
instance, Laws of Large Numbers do exist for non-ϕ-irreducible stationary pro-
cesses (cf. [20], Thm. 17.1.2), and show that time averages of bounded function-
als converge. However, the value to which they converge may depend on the
initialization of the process. It may be possible to obtain correct limits of time
averages by restricting the class of functions under consideration, or by obtain-
ing additional mixing results for the time series models under consideration; we
leave this for future work.

2.2. Analyzing a perturbed process

Due to the constraints of our stationarity results for the original process (end
of Section 2.1), we give an alternative approach based on a perturbed version of
the discrete-valued model, and justify its use. By adding small real-valued per-
turbations to a discrete-valued time series model one can obtain a ϕ-irreducible
process. We do this by returning to the most general framework (1) and (2),
and replacing hθ,n with a function of two inputs:

Y (σ)
n |Y

(σ)
0:n−1 ∼ ψν(·;µ

(σ)
n )

µ(σ)
n = hθ,n(Y

(σ)
0:n−1, σZ0:n−1) (8)

where the Zi
iid
∼ φ are random perturbations having density function φ (typically

with respect to Lebesgue measure), σ > 0 is a scale factor associated with
the perturbation, and hθ,n(·, σZ0:n−1) is a continuous function of Z0:n−1 such

that hθ,n(y, 0) = hθ,n(y) for any y. The value µ
(σ)
0 is a fixed constant that we
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take to be independent of σ, so that µ
(σ)
0 = µ0. When the perturbed model is

constructed to be ϕ-irreducible, one can then apply drift conditions to prove its
stationarity.

We will show that using the perturbed instead of the original model has an
arbitrarily small effect on the (finite-sample) parameter estimates. We do this by
proving that the likelihood of the parameter vector η = (θ, ν) calculated using
(8) converges uniformly to the likelihood calculated using (2) as σ → 0. More

precisely, the joint density of the observations Y = Y
(σ)
0:n and first n perturbations

Z = Z0:n−1, conditional on the parameter vector η, the perturbation scale σ,
and the initial value µ0, is

f(Y, Z|η, σ, µ0) = f(Z|η, σ, µ0)× f(Y |Z, η, σ, µ0)

=

[

n−1
∏

k=0

φ(Zk)

]

n
∏

k=0

ψν(Y
(σ)
k ;µk(σZ))

where µk(σZ) is the value of µ
(σ)
k induced by the perturbation vector σZ through

(8), with µ0(σZ) = µ0. The likelihood function for the parameter vector η
implied by the perturbed model is the marginal density of Y integrating over
Z, i.e.,

Lσ(η) = f(Y |η, σ, µ0) =

∫

f(Y, Z|η, σ, µ0) dZ.

Here we have placed a subscript σ on the likelihood function to emphasize
its dependence on σ. Let the likelihood function without the perturbations be
denoted by L, so that

L(η) =

n
∏

k=0

ψν(Yk;µk(0)).

Theorem 4. Under regularity conditions (a) & (b) below, the likelihood function
Lσ based on the perturbed model (8) converges uniformly on any compact set K
to the likelihood function L based on the original model (2), i.e.,

sup
η∈K

|Lσ(η)− L(η)|
σ→0
−→ 0

for any fixed sequence of observations y0:n and conditional on the initial value
µ0. So if L is continuous in η and has a finite number of local maxima and a
unique global maximum on K, the maximum-likelihood estimate of η based on
Lσ converges to that based on L. Also, Bayesian inferences based on Lσ converge
to those based on L, in the sense that the posterior probability of any measurable
set A using likelihood Lσ (and restricting to a compact set) converges to that
using L.

Regularity Conditions:

(a) For any fixed y the function ψν(y;µ) is bounded and Lipschitz continuous
in µ, uniformly in η ∈ K.
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(b) For each n, µn(σZ) is Lipschitz in some bounded neighborhood of zero,
uniformly in η ∈ K.

Assumption (a) holds, e.g., for ψν(y;µ) equal to a Poisson or binomial density
with mean µ, or a negative binomial density with mean µ and precision param-
eter ν. As we will see for several models, µn(σZ) can easily be constructed to
satisfy (b). Theorem 4 is proven in Appendix A.2.

Theorem 4 says that one can choose to use the perturbed model (with fixed
and sufficiently small perturbation scale σ) instead of the original model, with-
out significantly affecting finite-sample parameter estimates, in order to get the
strong theoretical properties associated with stationarity and ergodicity. These
include consistent estimation of the mean and lagged covariances of the process.
Although we have shown that the perturbed and original models are closely
related, and although one can use drift conditions to show stationarity and
ergodicity properties of the perturbed model, this approach does not yield sta-
tionarity and ergodicity properties for the original model. This is due to the
substantial technical difficulty associated with interchanging the limits σ → 0
and n→ ∞. Theorem 4 addresses the case of a fixed number of observations n,
as σ → 0, while consistency of parameter estimation for the perturbed model is
a statement about n→ ∞ for fixed σ.

3. A Poisson threshold model

Our first example is a Poisson threshold model with identity link function that
we have found useful in our own applications [18]. The model is defined as

Yn|Y0:n−1 ∼ Poisson(µn)

µn = ω + αYn−1 + βµn−1 + (γYn−1 + ηµn−1)1{Yn−1 /∈(L,U)} (9)

where n ≥ 0 and the threshold boundaries satisfy 0 < L < U < ∞. To ensure
positivity of µn we assume ω, α, β > 0, (α+γ) > 0, and (β+η) > 0. Additionally
we take η ≤ 0 and γ ≥ 0, so that when Yn−1 is outside the range (L,U) the
mean process µn is more adaptive, i.e. puts more weight on Yn−1 and less on
µn−1.

We will first show that a perturbed version of the model {Yn}n∈N is stationary
and ergodic under the restriction (α+β+γ+η) < 1. Stationarity of the original
process {Yn}n∈N will follow from the same proof, as shown in Section 5.

Stationarity and ergodicity of the perturbed model can be proven via exten-
sion of results in [10] for a non-threshold linear model. However, a much simpler

proof is as follows. First, incorporate perturbations Zn
iid
∼ Uniform(0, 1) as in

Theorem 4:

Y (σ)
n |Y

(σ)
0:n−1 ∼ Poisson(µ(σ)

n )

µ(σ)
n = ω + αY

(σ)
n−1 + βµ

(σ)
n−1 +

(

γY
(σ)
n−1 + ηµ

(σ)
n−1

)

1
{Y

(σ)
n−1 /∈(L,U)}

+ σZn−1.
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The regularity conditions for Theorem 4 hold since ψν is the Poisson density

and µ
(σ)
n is linear in Z0:n−1 with bounded coefficients.

Set Xn = µ
(σ)
n and take the state space of the Markov chain X = {Xn}n∈N to

be S = [ ω
1−β−η ,∞). Define A = [ ω

1−β−η ,
ω

1−β−η +M ] for any M > 0, and define

m to be the smallest positive integer such that M(β + η)m−1 < σ/2. Then

inf
x∈A

Pr(Y0 = Y1 = · · · = Ym−2 = 0|X0 = x) > 0 and

Pr
(

σ(Z0 + Z1 + · · ·+ Zm−2) <
σ

2
−M(β + η)m−1

)

> 0.

Therefore infx∈A T
m−1(x,B) > 0, where B = [ ω

1−β−η ,
ω

1−β−η + σ
2 ] and where

T is the transition kernel of the Markov chain X . Taking ν = Unif( ω
1−β−η +

σ
2 ,

ω
1−β−η + σ) in Definition 2 then establishes A as a small set. A similar argu-

ment can be used to show ϕ-irreducibility and aperiodicity.
Taking the energy function V (x) = x,

ExV (X1) = (α+ β)V (x) + γEx[Y01{Y0 /∈(L,U)}] + ηxPx[Y0 /∈ (L,U)] + (ω + σ/2)

≤ (α+ β + γ)V (x) + ηx− ηxPx[Y0 ∈ (L,U)] + (ω + σ/2).

In particular, ExV (X1) is bounded for x ∈ A. Also, as x→ ∞ we have xPx[Y0 ∈
(L,U)] → 0, so for sufficiently large M , x > M implies that −ηxPx[Y0 ∈
(L,U)] ≤ 1. Thus for x > M ,

ExV (X1) ≤ (α+ β + γ + η)V (x) + (ω + σ/2 + 1) ≤ νV (x)

for some |ν| < 1 and for M large enough. So ExV (X1) has geometric drift for
x 6∈ A. Although the range of V is [0,∞) here, we can easily replace V by

Ṽ (x) = x + 1 to get the range [1,∞). So the chain {µ
(σ)
n }n∈N is geometrically

ergodic, and thus stationary for an appropriate initial distribution for µ
(σ)
0 . As

shown in Section 2, this implies that the time series model {Y
(σ)
n }n∈N is also

stationary and ergodic.

4. Generalized Autoregressive Moving Average models

Generalized Autoregressive Moving Average (GARMA) models are a general-
ization of autoregressive moving average models to exponential-family distribu-
tions, allowing direct treatment of binary and count-valued data, among others.
GARMA models were stated in their most general form by [1], based on ear-
lier work by [26] and [17]. Showing stationarity for GARMA models is harder
than for the linear models that have been the subject of most previous studies
[3, 9, 10], since a small change in the transformed mean can correspond to a
very large change on the scale of the observations, causing instability.

We write GARMA models in the following form [1]:

Yn|Y0:n−1 ∼ ψν(µn)

g(µn) = γ + ρ[g(Y ∗
n−1)− γ] + θ[g(Y ∗

n−1)− g(µn−1)] (10)
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for some real-valued link function g, where Y ∗
n is some mapping of Yn to the

domain of g, and where ψν is a density function with respect to some measure
on R (typically Lebesgue or counting measure), parameterized by ν. The second
and third terms of the model (10) are the autoregressive and moving-average
terms, respectively. This model is more general than the class of models devel-
oped in [1] in the sense that we do not assume that ψν is in the exponential
family. However, we do assume that E(Yn|µn) = µn, and we assume a bound on
the (2 + δ) moment of Yn in terms of |µn|, for some δ > 0. We will see that our
conditions are satisfied by many standard choices such as the Poisson and bino-
mial GARMA models. In practice when applying the GARMA model covariates
are often included, and multiple lags can be allowed in the autocorrelation and
moving-average terms, yielding the more general model:

g(µn) =W ′
nβ +

p
∑

j=1

ρj[g(Y
∗
n−j)−W ′

n−jβ] +

q
∑

j=1

θj [g(Y
∗
n−j)− g(µn−j)]. (11)

However, for simplicity we focus on the case p, q = 1; we discuss how one might
extend our results to p > 1 and q > 1 at the end of Sec. 4.1. Since the covariates
are time-dependent, the model (11) is in general nonstationary, and interest is
in proving stationarity in the absence of covariates, i.e. where W ′

nβ = γ as in
(10).

We handle three separate cases:

Case 1: ψν(µ) is defined for any µ ∈ R. In this case the domain of g is R and
we take Y ∗

n = Yn.
Case 2: ψν(µ) is defined for only µ ∈ R

+ (or µ on any one-sided open interval
by analogy). In this case the domain of g is R

+ and we take Y ∗
n =

max{Yn, c} for some c > 0.
Case 3: ψν(µ) is defined for only µ ∈ (0, a) where a > 0 (or any bounded open

interval by analogy). In this case the domain of g is (0, a) and we take
Y ∗
n = min [max(Yn, c), (a− c)] for some c ∈ (0, a/2).

Valid link functions g are bijective and monotonic (WLOG, increasing).
Choices for Case 2 include the log link, which is the most commonly used,
and the link, parameterized by α > 0,

g(µ) = log (eαµ − 1) /α, (12)

which has the property that g(µ) ≈ µ for large µ. [1] also suggest an unmod-
ified identity link function g(µ) = µ for Case 2; however, this requires strong
restrictions on the parameters in order to guarantee that µn ≥ 0, so we do not
address this or other cases of non-surjective link functions. Examples of valid
link functions for Cases 1 and 3 are the identity and logit functions, respectively.

In this section we obtain ergodicity and stationarity results for the following
perturbed model. Stationarity of the original model (10) follows from a special
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case of the same proof, as shown in Section 5. The perturbed model is

Y (σ)
n |Y

(σ)
0:n−1 ∼ ψν(µ

(σ)
n )

g(µ(σ)
n ) = γ + ρ[g(Y

(σ)∗
n−1 )− γ] + θ[g(Y

(σ)∗
n−1 )− g(µ

(σ)
n−1)] + σZn−1 (13)

where Zn
iid
∼ N(0, 1), for any σ > 0.

For the perturbed model we have the following stationarity results.

Theorem 5. The process {µ
(σ)
n }n∈N specified by the perturbed GARMA model

(13) is an ergodic Markov chain and thus stationary for an appropriate initial

distribution for µ
(σ)
0 , under the conditions below. This implies that the perturbed

GARMA model {Y
(σ)
n }n∈N is stationary and ergodic when µ

(σ)
0 is initialized

appropriately. The conditions are:

• E(Y
(σ)
n |µ

(σ)
n ) = µ

(σ)
n

• (2+δ moment condition): There exist δ > 0, r ∈ [0, 1+δ) and nonnegative
constants d1, d2 such that

E
[

|Y (σ)
n − µ(σ)

n |2+δ
∣

∣

∣µ(σ)
n

]

≤ d1|µ
(σ)
n |r + d2.

• g is bijective, increasing, and

Case 1: g : R 7→ R is concave on R
+ and convex on R

−, and |ρ| < 1

Case 2: g : R+ 7→ R is concave on R
+, and |ρ|, |θ| < 1

Case 3: |θ| < 1; no additional conditions on g : (0, a) 7→ R

In fact we show the stronger condition of geometric ergodicity of the {µ
(σ)
n }n∈N

process. This implies geometric ergodicity of the joint {(Y
(σ)
n , µ

(σ)
n )}n∈N process,

by applying Prop. 1 of [19].
The following popular models are special cases of Theorem 5:

Corollary 6. Suppose that conditional on µ
(σ)
n , Y

(σ)
n is Poisson distributed with

mean µ
(σ)
n . Then the perturbed GARMA model is ergodic and stationary given

an appropriate initial distribution for µ
(σ)
0 , provided that |ρ|, |θ| < 1 and the link

function g is bijective, increasing, and concave. This is satisfied, for instance,
by the log link and the modified identity link (12). Theorem 4 applies with no
further restrictions.

Proof. If X is Poisson with mean µ then

E(X − λ)4 = 3λ2 + λ ≤ 4λ2 + 1,

where the inequality can be seen by considering the cases λ ≤ 1 and λ > 1
separately. Thus we can take δ = 2 and r = 2. Theorem 4 applies here, shown
as follows. The Poisson density satisfies regularity condition (a). Also, Xn =

g(µ
(σ)
n ) is linear in Z0:n−1 and g

−1(·) is Lipschitz on any compact set (due to the
concavity of g), implying that µn = g−1(Xn) is Lipschitz in Z0:n−1, uniformly
on any compact subset of the parameter space (γ, ρ, θ) ∈ R

3.
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Corollary 7. Suppose that conditional on µ
(σ)
n , Y

(σ)
n is binomially distributed

with mean µ
(σ)
n and fixed number of trials a. Then the perturbed GARMA model

is ergodic and thus stationary for an appropriate initial distribution for µ
(σ)
0 ,

provided that |θ| < 1 and g is bijective and increasing (e.g. the logit link). If g−1

is locally Lipschitz then Theorem 4 also holds.

The local Lipschitz condition on g−1 is satisfied for the logit and probit link
functions, and in the case where g is differentiable holds as long as the derivative
of g is nowhere zero.

Proof. The 2 + δ moment condition holds by taking δ = 0.5 and r = 0:

E
[

|Y (σ)
n − µ(σ)

n |2.5
]

≤ k2.5.

Theorem 4 applies here, by verifying the regularity conditions as for Cor. 6.
Unlike the case of Cor. 6, g−1 is not automatically locally Lipschitz, which is
why Cor. 7 explicitly makes this assumption.

4.1. Proof of Theorem 5

Define Xn = g(µ
(σ)
n ); we will prove Theorem 5 by showing that the Markov

chain X = {Xn}n∈N with transition kernel T on state space R is ϕ-irreducible,
aperiodic, and positive Harris recurrent with a geometric drift condition. Ape-
riodicity and ϕ-irreducibility are immediate since the Markov transition kernel
has a (normal mixture) density that is positive on the whole real line.

Next, define the set A = [−M,M ] for some constant M > 0 to be chosen
later; we will show that A is small, taking m = 1 and ν to be the uniform
distribution on A in Definition 2. Let x = X0 and write µ = g−1(x). For any
y > 0 Markov’s inequality then gives

Px(|Y
(σ)
0 − µ| > y) ≤

Ex|Y
(σ)
0 − µ|2+δ

y2+δ
≤
d1|µ|

r + d2
y2+δ

. (14)

In particular, for y = [4(d1|µ|
r +d2)]

1/(2+δ), Px(|Y
(σ)
0 −µ| > y) ≤ 1/4. Then for

any x ∈ A,

Px(Y
(σ)
0 ∈ [a1(M), a2(M)]) > 3/4 for

a1(M) = g−1(−M)− [4(d1 max{|g−1(−M)|, |g−1(M)|}r + d2)]
1/(2+δ)

a2(M) = g−1(M) + [4(d1 max{|g−1(−M)|, |g−1(M)|}r + d2)]
1/(2+δ).

Then with probability at least 3/4,

X1 − σZ0 ≥ min{b(a1(M)), b(a2(M))} − |θ|M and

X1 − σZ0 ≤ max{b(a1(M)), b(a2(M))}+ |θ|M where

b(a) = (ρ+ θ)g(a∗) + (1− ρ)γ
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where a∗ is the operator ∗ applied to a (e.g. a∗ = max{a, c} for Case 2). Then
it is easy to see that ∃λ > 0 such that T (x, ·) ≥ λν(·) for all x ∈ A.

Next we use the small set A to prove a drift condition. Taking the energy
function V (x) = |x|, we have the following results. First we give the drift con-
dition for x ∈ A:

Proposition 8. Cases 1-3: There is some constant K(M) < ∞ such that
ExV (X1) ≤ K(M) for all x ∈ A.

Then we give the drift condition for x /∈ A, handling the cases x < −M and
x > M separately:

Proposition 9. Cases 2-3: There is some constantK2 <∞ such that ExV (X1) ≤
|θ|V (x) +K2 for all x < −M .
Case 1: For any ǫ ∈ (0, 1) there is some constant K2 < ∞ such that for M
large enough, ExV (X1) ≤ (|ρ|+ ǫ)V (x) +K2 for all x < −M .

Proposition 10. Cases 1-2: For any ǫ ∈ (0, 1) there is some constant K3 <
∞ such that for M large enough, ExV (X1) ≤ (|ρ|+ ǫ)V (x)+K3 for all x > M .
Case 3: There is some constant K3 < ∞ such that ExV (X1) ≤ |θ|V (x) +K3

for all x > M .

Propositions 8-10 are proven in Appendices A.6-A.11. Propositions 9 and 10
give the overall drift condition for x 6∈ A as follows. Consider Case 2; the other
two cases are analogous. Take ǫ = (1 − |ρ|)/2, define η = max{|θ|, |ρ|+ ǫ} < 1,
and choose M large enough to satisfy Prop. 10. Then for any x 6∈ A we have

ExV (X1) ≤ ηV (x) + max{K2,K3}

≤
η + 1

2
V (x)

for M large enough, establishing geometric ergodicity (although the range of V
is [0,∞), we can easily replace V with Ṽ (x) = |x|+ 1 to get the range [1,∞)).

These results have the following intuition for Case 2: Prop. 9 shows that for
very negative Xn−1, |θ| controls the rate of drift, while Prop. 10 shows that for
large positive Xn−1, |ρ| controls the rate of drift. The former result is due to the
fact that for very negative values of Xn−1 the autoregressive term in (13) is a
constant, ρ(g(c)−γ), so the moving-average term dominates. The latter result is

due to the fact that for large positiveXn−1, the distribution of Y
(σ)
n−1 concentrates

around µ
(σ)
n−1, so that the moving-average term θ[g(Y

(σ)∗
n−1 )− g(µ

(σ)
n−1)] in (13) is

negligible and the autoregressive term dominates.

For a perturbed version of the GARMA model with multiple lags (11), it
may be possible to show geometric ergodicity of the multivariate Markov chain

with state vector µ
(σ)
(n−max{p,q}+1):n. Again this could be done by finding a small

set and energy function such that a drift condition holds, subject to appropriate
restrictions on the parameters (ρ1, . . . , ρp) and (θ1, . . . , θq).
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5. Stationarity of the original model

In this section we will show existence and uniqueness of the stationary dis-
tribution for the original (unperturbed) Poisson threshold model and class of
GARMA models. These results potentially form the foundation for broadly
showing consistency and asymptotic normality of maximum likelihood estima-
tors in these models.

5.1. The Poisson threshold model

We will illustrate the use of Feller properties to show that a discrete-valued time
series model has a unique stationary distribution. For the Poisson threshold
model (9) we first show existence of a stationary distribution.

Lemma 11. The Markov chain {µn}n∈N defined by (9) has a stationary distri-
bution, under the restriction (α+ β + γ + η) < 1 and recalling that ω, α, β > 0,
(α+ γ) > 0, (β + η) > 0, η ≤ 0, and γ ≥ 0.

Proof. We use Theorem 2. The space S = [ w
1−β−η ,∞) is a locally compact

complete separable metric space with Borel σ-field. Let Y0(x) and µ1(x) denote
the random variables Y0 and µ1 conditioned on µ0 = x. Since Y0(x) = Pois(x)
we have that Y0(x) converges in distribution to Y0(y) as x → y for any y ∈ S.
Therefore µ1(x) converges in distribution to µ1(y) as x → y, proving that the
chain {µn}n∈N is weak Feller. The set A defined in Section 3 is compact, and
a drift condition for this set is shown in that Section (the proof of the drift
condition is valid in the case σ = 0). By Theorem 2 the chain {µn}n∈N has a
stationary distribution.

Next we show uniqueness of the stationary distribution.

Lemma 12. The chain {µn}n∈N defined by (9) has at most one stationary
distribution, provided that β < 1 and recalling that ω, α, β > 0, (α + γ) > 0,
(β + η) > 0, η ≤ 0, and γ ≥ 0.

Proof. The space S is a Polish space. The point x = w
1−β−η is reachable, shown

as follows. For any initial state µ0 = y and any m the probability that Yn = 0
for all n = 0, . . . ,m is strictly positive. So for any open set A containing x we
can choose m large enough that µm ∈ A with positive probability; therefore x
is reachable.

The process {µn}n∈N is asymptotically strong Feller; the proof is given in
Appendix A.5, under the condition β < 1. Theorem 3 then implies that the
process {µn} has at most one stationary distribution.

Putting together Lemmas 11 and 12 we find that:

Corollary 13. The mean process {µn}n∈N of the Poisson threshold model
defined by (9) has a unique stationary distribution π, under the restrictions
(α + β + γ + η) < 1 and β < 1, and recalling that ω, α, β > 0, (α + γ) > 0,
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(β+η) > 0, η ≤ 0, and γ ≥ 0. When µ0 is initialized according to π the Poisson
threshold model {Yn}n∈N is strictly stationary.

Notice that stationarity holds for both the mean process {µn}n∈N and the ob-
served process {Yn}n∈N, while uniqueness of the stationary solution has been
shown for just the mean process {µn}n∈N. Feller properties cannot be directly
applied to the observed process {Yn}n∈N to show uniqueness of its stationary so-
lution, since that process is non-Markovian. Additionally, it is not immediately
clear that the uniqueness property for a mean process {µn}n∈N is inherited by
the observed process. We leave this question for future work.

5.2. The GARMA model

First we show existence of a stationary distribution for the GARMA model (10)
by using the weak Feller property. Let Y0(x) denote the random variable Y0
conditioned on µ0 = x.

Theorem 14. The process {µn}n∈N specified by the GARMA model (10) has a
stationary distribution, and thus is stationary for an appropriate initial distri-
bution for µ0, under the conditions below. This implies that the GARMA model
{Yn}n∈N is stationary when µ0 is initialized appropriately. The conditions are:

• Y0(x) ⇒ Y0(y) as x→ y
• E(Yn|µn) = µn

• (2+δ moment condition): There exist δ > 0, r ∈ [0, 1+δ) and nonnegative
constants d1, d2 such that

E
[

|Yn − µn|
2+δ

∣

∣

∣
µn

]

≤ d1|µn|
r + d2.

• g is bijective, increasing, and

Case 1: g : R 7→ R is concave on R
+ and convex on R

−, and |ρ| < 1

Case 2: g : R+ 7→ R is concave on R
+, and |ρ|, |θ| < 1

Case 3: |θ| < 1; no additional conditions on g : (0, a) 7→ R.

Proof. We apply Theorem 2 to the chain {g(µn)}n∈N to show that it has a
stationary distribution; this implies the same result for the chain {µn}n∈N. The
state space S = R of {g(µn)}n∈N is a locally compact complete separable metric
space with Borel σ-field. A drift condition for {g(µn)}n∈N is given in the proof of
Theorem 5, for the compact set A = [−M,M ] (the proof of that drift condition
holds when σ = 0). All that remains is to show that the chain {g(µn)}n∈N is
weak Feller. Let Xn = g(µn). For X0 = x we have that

X1(x) = γ + ρ(g(Y ∗
0 (g

−1(x))) − γ) + θ(g(Y ∗
0 (g

−1(x))) − x).

Since g−1 is continuous, Y0(g
−1(x)) ⇒ Y0(g

−1(y)) as x→ y. Since the ∗ opera-
tion that maps Y0 to the domain of g is continuous, it follows that Y ∗

0 (g
−1(x)) ⇒

Y ∗
0 (g

−1(y)) as x → y. Since g is continuous, we have that g(Y ∗
0 (g

−1(x))) ⇒
g(Y ∗

0 (g
−1(y))). So X1(x) ⇒ X1(y) as x → y, showing the weak Feller prop-

erty.
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Next we show uniqueness of the stationary distribution, using the asymptotic
strong Feller property. We will assume that the distribution πz(·) of g(Y

∗
n ) con-

ditional on g(µn) = z varies smoothly and not too quickly as a function of z.
By this we mean that πz(·) has the Lipschitz property

sup
w,z∈R:w 6=z

‖πw(·)− πz(·)‖TV

|w − z|
< B <∞. (15)

Theorem 15. Suppose that the conditions of Thm. 14 and the Lipschitz con-
dition (15) hold, and that there is some x ∈ R that is in the support of Y0 for
all values of µ0. Then there is a unique stationary distribution for {µn}n∈N.

This result is proven in Appendix A.3.
The following two results give two classes of examples where Theorem 15 may

be applied. The proofs of these results may be found in Appendix A.4.

Proposition 16. Suppose that conditional on µn, Yn is Poisson(µn), the link
function g : R

+ → R is bijective, concave and increasing, g−1 is Lipschitz,
|ρ|, |θ| < 1 and c ∈ (0, 1). Then the process {µn}n∈N defined in (10) has a
unique stationary distribution π. Hence, when µ0 is initialized according to π,
the process {Yn}n∈N is strictly stationary.

The condition that g−1 be Lipschitz is equivalent to requiring that for y > x,
g(y)− g(x) ≥ ζ(y − x) for some ζ > 0, and this condition in turn is equivalent
to requiring that g′ be bounded away from zero when g is differentiable. The
link function (12) satisfies this condition, while the log link does not.

We suspect that the Lipschitz condition in Theorem 15 can be weakened to
a local Lipschitz condition, based on the fact that local Lipschitz is equivalent
to Lipschitz on a compact space, and the fact that although the state space
of g(µn) is not compact, we have a drift condition for the process {g(µn)}n∈N

which (informally) ensures that the chain stays in a limited part of the space.
With the weaker local Lipschitz condition, Proposition 16 could be extended to
link functions like the log link.

Proposition 17. Suppose that conditional on µn, Yn is binomial with fixed
number of trials a and mean µn, the link function g : (0, a) → R is bijective and
increasing, g−1 is Lipschitz, |θ| < 1 and c ∈ (0, 1). Then the process {µn}n∈N

defined in (10) has a unique stationary distribution π. Hence, when µ0 is ini-
tialized according to π, the process {Yn}n∈N is strictly stationary.

The restrictions on g are satisfied, for instance, by the logit and probit link
functions.

Appendix A: Appendix: Proofs

A.1. Proof of Theorem 3

We will show that if a point x is reachable, then x is in the support of any
invariant distribution. Combined with Corollary 3.17 of [14] this gives the desired
result.
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Let x be reachable and let π be an invariant probability measure. We will
show that x is in the support of π by showing that π(A) > 0 for all open sets
A containing x (see Lemma 3.7 of [14]). To begin, let A be an arbitrary open
set containing x. Let Bn be the set of initial states y ∈ S that have positive
probability of hitting A on the nth step, i.e., Bn = {y : T n(y,A) > 0}.

Since x is reachable, the countable union of {Bn : n ≥ 1} contains S. Since
π(S) = 1, it follows that the π measure of at least one Bn is strictly positive.
Fix n ≥ 1 such that this is the case. Then

π(A) =

∫

S

π(dy)T n(y,A) ≥

∫

Bn

π(dy)T n(y,A) > 0.

The fact that this quantity is strictly positive follows using a standard argument
as follows. First, we can write Bn as the countable union of the increasing sets
Ck, k ≥ 1, where

Ck = {y : T n(y,A) ≥ 1/k}.

So then π(Bn) = limk→∞ π(Ck). Fix k > 0 such that π(Ck) > 0. Then
∫

Bn

π(dy)T n(y,A) ≥

∫

Ck

π(dy)T n(y,A) ≥

∫

Ck

π(dy)
1

k
=
π(Ck)

k
> 0.

A.2. Proof of Theorem 4

Fixing y0:n and letting Z = Z0:n−1 be the perturbations,

sup
η∈K

|Lσ(η)− L(η)| = sup
η∈K

∣

∣

∣

∣

∣

E

n
∏

k=0

ψν(yk;µk(σZ)) −

n
∏

k=0

ψν(yk;µk(0))

∣

∣

∣

∣

∣

where the expectation is taken over Z, the data being fixed. Then we have

sup
η∈K

|Lσ(η)− L(η)| ≤ sup
η∈K

E

∣

∣

∣

∣

∣

n
∏

k=0

ψν(yk;µk(σZ)) −

n
∏

k=0

ψν(yk;µk(0))

∣

∣

∣

∣

∣

≤ E sup
η∈K

∣

∣

∣

∣

∣

n
∏

k=0

ψν(yk;µk(σZ)) −
n
∏

k=0

ψν(yk;µk(0))

∣

∣

∣

∣

∣

= E sup
η∈K

∣

∣

∣

∣

∣

n
∏

k=0

βk(σZ)−

n
∏

k=0

βk(0)

∣

∣

∣

∣

∣

(16)

where βk(·) = ψν(yk;µk(·)). We will show that the supremum inside the ex-
pectation in (16) converges to 0 almost surely (in Z) as σ → 0; then bounded
convergence implies that the expectation (16) itself converges to 0 as σ → 0,
proving Thm. 4.

By assumption the function ψν(y;µ) is Lipschitz continuous in µ, and µk(·) is
Lipschitz continuous in some bounded neighborhood C of 0, uniformly in η ∈ K.
In other words, there exists a finite constant Lk such that, for any z, z′ ∈ C,

sup
η∈K

|µk(z)− µk(z
′)| ≤ Lk‖z − z′‖
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for each k = 0, 1, . . . , n. Thus, the composition βk(·) = ψν(yk, µk(·)) is Lipschitz
continuous on C, uniformly in η ∈ K, for each k = 0, 1, . . . , n.

Finally, we apply the usual telescoping-sum argument to conclude that the
function

∏n
k=0 βk(·) is Lipschitz in z ∈ C, uniformly in η ∈ K. For any z, z′ ∈ C,

∣

∣

∣

∣

∣

n
∏

k=0

βk(z)−

n
∏

k=0

βk(z
′)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

k=0





n−k
∏

i=0

βi(z)
n
∏

j=n−k+1

βj(z
′)−

n−k−1
∏

i=0

βi(z)
n
∏

j=n−k

βj(z
′)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

k=0

(βn−k(z)− βn−k(z
′))

n−k−1
∏

i=0

βi(z)
n
∏

j=n−k+1

βj(z
′)

∣

∣

∣

∣

∣

∣

≤
n
∑

k=0





∏

j 6=n−k

sup
µ
ψν(yj ;µ)



 |βn−k(z)− βn−k(z
′)|.

By regularity condition (a),
[
∏

j 6=n−k supµ ψν(yj ;µ)
]

is bounded uniformly in
η ∈ K for each k. The fact that βk(·) is Lipschitz uniformly in η ∈ K for each
k = 0, 1, . . . , n then ensures that

∏n
k=0 βk(·) is Lipschitz on C, uniformly in

η ∈ K as desired.

A.3. Proof of Theorem 15

Let Zn = g(µn) for all n ≥ 0. We will show that the Markov chain {Zn}n∈N is
asymptotically strong Feller, and that there is a reachable point for {Zn}n∈N.
Combined with Theorem 3 and the fact that R is Polish this shows that the
chain {Zn} can have at most one stationary distribution. Since g is bijective,
this implies that the Markov chain {µn}n∈N can have at most one stationary
distribution. Combined with Theorem 14 this gives the desired result.

First we show the existence of a reachable point for {Zn}n∈N. Since there is
some point x ∈ R that is in the support of Yn for all values of µn, the point
g(x∗) is in the support of g(Y ∗

n ) for all values of µn (since the transformations
∗ and g are continuous and monotonic). So for every open set B ∋ g(x∗) we
have Pr(g(Y ∗

n ) ∈ B | µn) > 0 for all µn. Furthermore, Pr(g(Y ∗
j ) ∈ B ∀j =

1, . . . , n | µ0) > 0.
We can rewrite the definition of g(µn) given in (10) as

g(µn) = γ(1− ρ)

n−1
∑

j=0

(−θ)j + (ρ+ θ)

n−1
∑

j=0

(−θ)jg(Y ∗
n−1−j) + (−θ)ng(µ0).

We will show that z = [γ(1−ρ)+(ρ+θ)g(x∗)]/(1+θ) is a reachable point, using

the fact that
∑n−1

j=0 (−θ)
j n→∞

−→ 1/(1 + θ). Take any open set A ∋ z, and any
initial value µ0; we will show that ∃n such that Pr(g(µn) ∈ A | µ0) > 0. Letting
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B(z, ǫ) indicate the open ball of radius ǫ > 0 centered at z, there is some ǫ such
that B(z, ǫ) ⊂ A. Then for some δ > 0 we have that for all w ∈ B(g(x∗), δ),

[γ(1− ρ) + (ρ+ θ)w]/(1 + θ) ∈ B(z, ǫ/2).

Choose n large enough that for all w ∈ B(g(x∗), δ) we have

[γ(1− ρ) + (ρ+ θ)w]

n−1
∑

j=0

(−θ)j + (−θ)ng(µ0) ∈ B(z, ǫ) ⊂ A.

Since Pr
[

g(Y ∗
j ) ∈ B(g(x∗), δ) ∀j = 1, . . . , n − 1 | µ0

]

> 0, we have Pr(g(µn) ∈
A | µ0) > 0 as desired.

To show that {Zn}n∈N is asymptotically strong Feller we will use the sequence
of metrics dn defined by

dn(x, y) =

{

n|x− y| |x− y| < 1/n

1 else.
(17)

By Example 3.2 (1) in [14] this is a totally separating system of metrics. We
will also define tn = n.

An interesting property of the distance metric (6) is that if we take d(x, y) =
1{x 6=y} then we get the total variation distance between the probability measures
µ1, µ2. This is because in this case taking the supremum over {φ : Lipdφ = 1} is
equivalent to taking the supremum over {φ : φ(x) ∈ [0, 1] ∀x ∈ R}. An analogous
result is true for our choice of distance dn, that when taking the supremum over
{φ : Lipdn

φ = 1} it is sufficient to consider φ such that φ(x) ∈ [0, 1] ∀x ∈ R and
Lipdn

φ = 1.

Let Yn(z) and Zn(z) indicate the random variables Yn and Zn conditioned
on Z0 = z. By (15) we have ‖πz(·) − πw(·)‖TV < B|z − w|. Using Proposition
3(g) of [21] we can construct the random variables g(Y ∗

0 (z)) and g(Y ∗
0 (w)) in

such a way that they have the correct marginal distributions πz and πw, and
that Pr(g(Y ∗

0 (w)) = g(Y ∗
0 (z))) ≥ 1− ‖πw(·)− πz(·)‖TV > 1−B|z − w|.

If g(Y ∗
0 (w)) = g(Y ∗

0 (z)) then |Z1(w)−Z1(z)| = |θ||z−w|, and so ‖πZ1(z)(·)−
πZ1(w)(·)‖TV < |θ||z − w|B. Then we can construct g(Y ∗

1 (z)) and g(Y ∗
1 (w))

so that they have the correct marginal distributions, and that Pr(g(Y ∗
1 (z)) =

g(Y ∗
1 (w)) | g(Y

∗
0 (w)) = g(Y ∗

0 (z))) ≥ 1− ‖πZ1(z)(·)− πZ1(w)(·)‖TV > 1− |θ||z −
w|B. If g(Y ∗

1 (z)) = g(Y ∗
1 (w)) then we can continue to “couple” the chains in

the above way. Notice that the probability that the chains couple for all times

0, 1, . . . is at least 1−B|z − w|
∑∞

n=0 |θ|
n = 1− |z−w|B

1−|θ| .

Consider the distance ‖T n(z, ·) − T n(w, ·)‖dn
; we will bound this by condi-

tioning on whether or not the chains couple for all time. If they couple for all
time, then |Zn(z) − Zn(w)| = |θ|n|z − w|. Due to this fact and the fact that it
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is sufficient to consider φ such that φ(x) ∈ [0, 1] for all x ∈ R,

‖T tn(z, ·)− T tn(w, ·)‖dn

= ‖T n(z, ·)− T n(w, ·)‖dn

= sup
Lipdnφ=1

(∫

φ(x)T n(z, dx)−

∫

φ(x)T n(w, dx)

)

= sup
Lipdnφ=1

(E[φ(Zn(z))]− E[φ(Zn(w))])

= sup
Lipdnφ=1

E[φ(Zn(z))− φ(Zn(w))]

≤ sup
Lipdnφ=1

E
[

φ(Zn(z))− φ(Zn(w))
∣

∣ g(Y ∗
0:n(z)) = g(Y ∗

0:n(w))
]

+ sup
Lipdnφ=1

E
[

φ(Zn(z))− φ(Zn(w))
∣

∣ g(Y ∗
0:n(z)) 6= g(Y ∗

0:n(w))
]

× Pr
[

g(Y ∗
0:n(z)) 6= g(Y ∗

0:n(w))
]

≤ n|θ|n|z − w|+ Pr
[

g(Y ∗
0:n(z)) 6= g(Y ∗

0:n(w))
]

≤ n|θ|n|z − w|+
|z − w|B

1− |θ|
.

So

lim sup
n→∞

sup
y∈B(x,γ)

‖T tn(x, ·) − T tn(y, ·)‖dn
≤

γB

1− |θ|

which converges to 0 as γ → 0. Therefore the process {Zn}n∈N is asymptotically
strong Feller.

A.4. Proof of Propositions 16 and 17

In view of Corollary 6 it suffices to verify the two conditions stated in Theorem 15
to prove Proposition 16.

Zero is in the support of Y0 for all values of µ0. To establish the Lipschitz
condition (15), we use coupling theory as follows. Let Yn(z) denote Yn condi-
tional on g(µn) = z. Suppose that z and w are two values of g(µn). Then the
total variation distance between g(Y ∗

n (z)) and g(Y
∗
n (w)) is

dTV (g(Y
∗
n (z)), g(Y

∗
n (w))) = sup

A
|P (g(Y ∗

n (z)) ∈ A)− P (g(Y ∗
n (w)) ∈ A)|

= sup
A

|P (Y ∗
n (z) ∈ A)− P (Y ∗

n (w) ∈ A)|

= sup
A

|P (Yn(z) ∈ A)− P (Yn(w) ∈ A)|

= dTV (Yn(z), Yn(w)),

since g is invertible, and we can recover Yn from Y ∗
n since c ∈ (0, 1).
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The coupling inequality, e.g., [23], ensures that

dTV (X,Y ) ≤ P (X ′ 6= Y ′)

for any random variables X ′ and Y ′ such that X ′ D=X and Y ′ D=Y , where
D
=

means “has the same distribution as.” The key point is that the joint distribution
of X ′ and Y ′ is arbitrary. We choose X ′ and Y ′ in such a way that we can
bound P (X ′ 6= Y ′) and therefore obtain a bound on the total-variation distance
between X and Y . When this bound is Lipschitz, we then have the desired
property.

So, suppose z > w. Let Yn(w) be Poisson distributed with mean g−1(w). Let ξ
be a Poisson random variable, independent of Yn(w), with mean g−1(z)−g−1(w),
and set Yn(z) = Yn(w) + ξ. Then

P (Yn(z) 6= Yn(w)) = P (ξ > 0)

= 1− exp(−[g−1(z)− g−1(w)]). (18)

Let ζ be the Lipschitz constant for g−1. Then (18) is bounded above by

1− exp(−ζ(z − w))

which is Lipschitz, with Lipschitz constant ζ, and this completes the proof of
Proposition 16.

The proof of Proposition 17 follows exactly the same lines as Proposition 16
except for the coupling used. To this end, suppose that z > w and let Yn(z)
be binomially distributed with parameters a (number of trials) and g−1(z)/a
(probability of success). Let Yn(w) be conditionally binomially distributed with
parameters Yn(z) and g−1(w)/g−1(z), conditional on Yn(w). Then Yn(w) is
(marginally) binomially distributed with mean g−1(w), and

P (Yn(z) 6= Yn(w)) = E

(

1−

(

g−1(w)

g−1(z)

)Yn(z)
)

.

The moment generating function of a binomial random variable X ∼ Bin(a, p)
with a trials and probability p of success is E(etX) = (pet + 1 − p)a. Taking
et = g−1(w)/g−1(z) gives

P (Yn(z) 6= Yn(w)) = 1−

(

1−
g−1(z)− g−1(w)

a

)a

≤ 1−

(

1−min

{

ζ(z − w)

a
, 1

})a

= 1−

(

max

{

1−
ζ(z − w)

a
, 0

})a

. (19)

Now, the function (1− ζ(z − w)/a)a is Lipschitz for z ∈ [w,w + a/ζ] as can be
seen since the absolute value of its derivative is bounded (by ζ), and this implies
that (19) is Lipschitz. This completes the proof of Proposition 17.
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A.5. Proof that model (9) is asymptotically strong Feller

The proof is nearly identical to that for the GARMA model given in Ap-
pendix A.3. However, it requires that 1 > max{β + η, β} = β. The necessary
Lipschitz property referred to in that proof holds for the Poisson threshold model
(9) since this model uses the identity link function.

To give more detail, let Zn = µn and let πz(·) be the distribution of Yn
conditional on Zn = z, i.e. πz = Pois(z). The proof of Prop. 16 then implies
that the Lipschitz condition (15) holds. As in Appendix A.3, use the system of
metrics dn defined in (17) and define tn = n. Let Yn(z) and µn(z) indicate the
random variables Yn and µn conditioned on µ0 = z. We have ‖πz(·)−πw(·)‖TV <
B|z−w|. So we can construct Y0(z) and Y0(w) in such a way that they have the
correct marginal distributions πz and πw, and Pr(Y0(z) = Y0(w)) ≥ 1−‖πz(·)−
πw(·)‖TV > 1−B|z − w|. If Y0(z) = Y0(w) then

|µ1(w)− µ1(z)| =

{

β|w − z| Y0 ∈ (L,U)

(β + η)|w − z| else

≤ β|w − z|.

This implies that ‖πµ1(w)(·)−πµ1(z)(·)‖TV < Bβ|w−z|. If β < 1, the probability

that the chains “couple” in this way for all time is at least 1− B|w−z|
1−β . The rest

of the argument from Sec A.3 holds unchanged.

A.6. Proof of Proposition 8, Case 1

For readability we make the dependence of Y
(σ)
0 on σ implicit. Recall that

µ = g−1(x), and assume WLOG that g(0) = 0, since replacing g(y) with h(y) =
g(y)−g(0) simply changes the value of γ. Due to the fact that g is concave on R

+

and convex on R
−, there are constants a0, a1 ≥ 0 such that |g(y)| ≤ a0 + a1|y|

for all y. Using these facts, equation (13), and the triangle inequality, we can
bound ExV (X1) as follows, where di denote bounded (in µ) constants for each
i ≥ 3:

ExV (X1) = Ex|(1− ρ)γ + ρg(Y0) + θ(g(Y0)− x) + σZ0|

≤ (1− ρ)|γ|+
√

2σ2/π + |ρ|Ex|g(Y0)|+ |θ|Ex|g(Y0)− x| (20)

≤ d3 + (|ρ|+ |θ|)a1Ex|Y0|+ |θ||x|.

By the triangle and Jensen’s inequalities,

Ex|Y0| = Ex|µ+ Y0 − µ|

≤ |µ|+ Ex|Y0 − µ|

≤ |µ|+
[

Ex|Y0 − µ|2+δ
]1/(2+δ)

≤ |µ|+ (d1|µ|
r + d2)

1/(2+δ). (21)

So supx∈[−M,M ]ExV (X1) <∞, proving Prop. 8.
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A.7. Proof of Propositions 9 and 10, Case 1

We will prove Prop. 10 for Case 1; Prop. 9 for Case 1 then holds by symmetry.
We will show that for large x, the autoregressive part of the GARMA model
dominates and the moving-average portion of the model is negligible. In the
bound (20), the autoregressive part of the model is captured by |ρ|Ex|g(Y0)|,
while the moving-average part corresponds to the term |θ|Ex|g(Y0) − x|. Since
g(0) = 0 and g is monotonic increasing, for all x large enough

Ex|g(Y0)| = Ex[g(Y0)1Y0>0]− Ex[g(Y0)1Y0<0]

= Exg(Y01Y0>0)− Exg(Y01Y0<0)

≤ g(Ex[Y01Y0>0])− g(Ex[Y01Y0<0])

= g(ExY0 − Ex[Y01Y0<0])− g(Ex[Y01Y0<0]) (22)

by Jensen’s inequality. Now, µ = g−1(x) > 0 for x > 0, so using (14)

−Ex[Y01Y0<0] =

∫ ∞

0

Px(Y0 < −u) du

≤

∫ ∞

0

Px(|Y0 − µ| > u+ µ) du

≤

∫ ∞

0

d1µ
r + d2

(u+ µ)2+δ
du

=
d1µ

r + d2
(1 + δ)µ1+δ

→ 0 (23)

as x→ ∞. Thus, from (22), for any given ǫ > 0, there exists M > 0 so that for
x > M ,

Ex|g(Y0)| ≤ g(ExY0 + ǫ) + ǫ ≤ g(ExY0) + g(ǫ) + ǫ = x+ d4 (24)

where the second inequality is due to concavity of g on R
+.

Next we show that the term Ex|g(Y0) − x| in (20) is “small” relative to the
linear (in x) term:

Proposition 18. There is some constant d13 such that

Ex|g(Y0)− x| ≤ d13x
r/(2+δ)

for all x large enough.

Prop. 18 is proven in Appendix A.11. Combining it with (20) and (24), we have
that for all x large enough,

ExV (X1) ≤ d14 + |ρ|x+ |θ|d13x
r/(2+δ)

≤ d14 + (|ρ|+ ǫ)x

proving Prop. 10.
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A.8. Proof of Proposition 8 and Proposition 9, Case 2

Assume WLOG that g(c) = 0, since replacing g(y) with h(y) = g(y) − g(c)
simply changes the value of γ. Since g(c) = 0, g(Y ∗

0 ) ≥ 0 is nonnegative for any
Y ∗
0 . Also, due to the concavity of g, there is some a1 > 0 such that g(y) ≤ a1y

for all y ∈ R
+. Using these facts, equation (13), and the triangle inequality, we

can bound ExV (X1) as follows:

ExV (X1) = Ex|(1− ρ)γ + ρg(Y ∗
0 ) + θ(g(Y ∗

0 )− x) + σZ0|

≤ (1 − ρ)|γ|+
√

2σ2/π + |ρ|Ex[g(Y
∗
0 )] + |θ|Ex|g(Y

∗
0 )− x| (25)

= d15 + |ρ|Px(Y0 < c)g(c) + |ρ|Ex[g(Y0)1Y0≥c]

+ |θ|Px(Y0 < c)|g(c)− x|+ |θ|Ex[|g(Y0)− x|1Y0≥c]

≤ d15 + (|ρ|+ |θ|)Ex[g(Y0)1Y0≥c]

+ |θ|Px(Y0 < c)|g(c)− x|+ |θ|Px(Y0 ≥ c)|x|

≤ d15 + (|ρ|+ |θ|)a1Ex[Y01Y0≥c] + |θ||x|

In the same way that we obtained (21) for Case 1, we have the following bound
for Case 2:

Ex[Y01Y0≥c] ≤ Ex|Y0| ≤ µ+ (d1µ
r + d2)

1/(2+δ)

≤ d16 + d17µ
r/(2+δ)

where µ = g−1(x), implying that

ExV (X1) ≤ d18 + d19µ+ |θ| |x|.

This is sufficient to get a uniform bound on ExV (X1) for x ∈ [−M,M ], proving
Prop. 8. It also proves Prop. 9 by showing that for x < −M , ExV (X1) ≤
d20 + |θ| |x|, since µ = g−1(x) ≤ g−1(0) on this set.

A.9. Proof of Proposition 10, Case 2

Using Jensen’s inequality and the fact that Px(Y0 < c)
x→∞
−→ 0, for all x large

enough

Ex[g(Y
∗
0 )] ≤ g(ExY

∗
0 ) = g(Ex[Y01Y0≥c] + cPx(Y0 < c))

= g(Ex[Y0]− Ex[Y01Y0<c] + cPx(Y0 < c)).

Using a similar argument to (23) above, we see that the last two terms in the
argument of g converge to 0 as x→ ∞. Hence, for any ǫ > 0 we can find M > 0
so that, for all x > M ,

Ex[g(Y
∗
0 )] ≤ g(g−1(x) + ǫ) ≤ x+ d21ǫ,

where d21 is the slope of a subgradient of g at g−1(M).
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Combining this with (25), there exists M > 0 such that for x > M ,

ExV (X1) ≤ d22 + |ρ|V (x) + |θ|Ex|g(Y
∗
0 )− x|.

It remains to show that the final term in this expression is small relative to the
linear (in V (x)) term as x→ ∞. This follows in almost identical fashion to the
proof of this result in Case 1. We omit the details.

A.10. Proof of Propositions 8-10, Case 3

Assume WLOG that g(c) = 0. Since g(Y ∗
0 ) ∈ [g(c), g(a− c)],

ExV (X1) = Ex|(1 − ρ)γ + (ρ+ θ)g(Y ∗
0 )− θx+ σZ0|

≤ (1− ρ)|γ|+
√

2σ2/π + |ρ+ θ|Ex |g(Y
∗
0 )|+ |θ||x|

≤ d23 + |ρ+ θ| g(a− c) + |θ||x|.

Propositions 8, 9, and 10 follow immediately.

A.11. Proof of Proposition 18

By (23),

Ex|g(Y0)− x| = Ex|g(Y01Y0>0)− x+ g(Y01Y0<0)|

≤ Ex|g(Y01Y0>0)− x|+ Ex|g(Y01Y0<0)|

≤ Ex|g(Y01Y0>0)− x|+ a0 + a1Ex[|Y0|1Y0<0]

≤ Ex|g(Y01Y0>0)− x|+ d5

for x > M .
Using (14), for any fixed ǫ ∈ (0, 1) and x > M ,

Ex

[

|g(Y01Y0>0)− x|1Y0≤(1−ǫ)µ

]

(26)

≤ xPx(Y0 ≤ (1− ǫ)µ)

≤ xPx(|Y0 − µ| > ǫµ)

≤
x(d1µ

r + d2)

ǫ2+δµ2+δ

≤
d6x

µ2+δ−r
.

Recall that for y ≥ 0, a0 + a1y ≥ g(y), so that a0 + a1g
−1(y) ≥ y. Hence

µ = g−1(x) ≥ (x− a0)/a1. So (26) is bounded by

d7x

(x− a0)2+δ−r
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which converges to 0 as x→ ∞ and is therefore bounded by d8 say for x > M .
It only remains to show that

Ex|g(Y01{Y0>0})− x|1{Y0>(1−ǫ)µ} = Ex|g(Y0)− x|1{Y0>(1−ǫ)µ}

is “small.”
Recall that g is concave on R

+ and so has a subgradient at (1 − ǫ)µ, i.e.
there exist b0(x), b1(x) such that g(y) ≤ b0(x) + b1(x)y for y > 0, with equality
at y = (1 − ǫ)µ. The slope of the chord from (0, 0) to ((1 − ǫ)µ, g((1 − ǫ)µ)) is
greater than or equal to b1(x), so

b1(x)(1 − ǫ)µ ≤ g((1− ǫ)µ) ≤ g(µ) = x. (27)

Furthermore, g is concave so b1(x) is bounded for x > M . We now have

Ex|g(Y0)− x|1{Y0>(1−ǫ)µ} ≤ b1(x)Ex|Y0 − µ|1{Y0>(1−ǫ)µ}

≤ b1(x)Ex|Y0 − µ|

≤ b1(x)
[

Ex|Y0 − µ|2+δ
]1/(2+δ)

(Jensen)

≤ b1(x)(d1µ
r + d2)

1/(2+δ)

≤ b1(x)(d9µ
r/(2+δ) + d10) (triangle inequality)

= d9b1(x)µ
r/(2+δ) + d10b1(x)

≤
d9xµ

r/(2+δ)

(1 − ǫ)µ
+ d11 (from (27))

≤ d12xµ
−(1−r/(2+δ))

≤ d12x

(

x− a0
a1

)−(1−r/(2+δ))

≤ d13x
r/(2+δ).

proving the result.
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