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Abstract: We revisit the adaptive Lasso as well as the thresholded Lasso
with refitting, in a high-dimensional linear model, and study prediction
error, ℓq-error (q ∈ {1, 2}), and number of false positive selections. Our
theoretical results for the two methods are, at a rather fine scale, compa-
rable. The differences only show up in terms of the (minimal) restricted
and sparse eigenvalues, favoring thresholding over the adaptive Lasso. As
regards prediction and estimation, the difference is virtually negligible, but
our bound for the number of false positives is larger for the adaptive Lasso
than for thresholding. We also study the adaptive Lasso under beta-min
conditions, which are conditions on the size of the coefficients. We show
that for exact variable selection, the adaptive Lasso generally needs more
severe beta-min conditions than thresholding. Both the two-stage methods
add value to the one-stage Lasso in the sense that, under appropriate re-
stricted and sparse eigenvalue conditions, they have similar prediction and
estimation error as the one-stage Lasso but substantially less false positives.
Regarding the latter, we provide a lower bound for the Lasso with respect
to false positive selections.
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1. Introduction

Consider the linear model
Y = Xβ + ǫ,

where β ∈ R
p is a vector of coefficients, X is an (n × p)-design matrix, and Y

is an n-vector of noisy observations, ǫ being the noise term. We examine the
case p ≥ n, i.e., a high-dimensional situation. The design matrix X is treated
as fixed, and the Gram matrix is denoted by Σ̂ := XTX/n. Throughout, we
assume the normalization Σ̂j,j = 1 for all j ∈ {1, . . . , p}.

This paper presents a theoretical comparison between the thresholded Lasso
with refitting and the adaptive Lasso. Our analysis is motivated by the fact that
both methods are very popular in practical applications for reducing the number
of active variables. Our theoretical study shows that under suitable conditions
both methods reduce the number of false positives while maintaining a good
prediction error.

We emphasize here and describe later that we allow for model misspecification
where the true regression function may be non-linear in the covariates. For such
cases, we can consider the projection onto the linear span of the covariates. The
(projected or true) linear model does not need to be sparse nor do we assume
so-called beta-min conditions, requiring that the non-zero regression coefficients
(from a sparse approximation) are “sufficiently large”. We will show in Lemma
3.3 how beta-min conditions can be invoked to improve the result. Furthermore,
we also do not require the stringent irrepresentable conditions or incoherence
assumptions on the design matrix X but only some weaker restricted or sparse
eigenvalue conditions.

Regularized estimation with the ℓ1-norm penalty, also known as the Lasso
([25]), refers to the following convex optimization problem:

β̂ := argmin
β

{

‖Y −Xβ‖22/n+ λ‖β‖1
}

, (1.1)

where λ > 0 is a penalization parameter.
Regularization with ℓ1-penalization in high-dimensional scenarios has become

extremely popular. The methods are easy to use, due to recent progress in
specifically tailored convex optimization ([21], [15]).

A two-stage version of the Lasso is the so-called adaptive Lasso

β̂adap := argmin
β

{

‖Y −Xβ‖22/n+ λinitλadap

p
∑

j=1

|βj |
|β̂j,init|

}

. (1.2)

Here, β̂init is the one-stage Lasso defined in (1.1), with initial tuning parameter
λ = λinit, and λadap > 0 is the tuning parameter for the second stage. Note that



Adaptive and thresholded Lasso 691

when |β̂j,init| = 0, we exclude variable j in the second stage. The adaptive Lasso
was originally proposed by [39].

Another possibility is the thresholded Lasso with refitting. Define

Ŝthres = {j : |β̂j,init| > λthres}, (1.3)

which is the set of variables having estimated coefficients larger than some given
threshold λthres. The refitting is then done by ordinary least squares:

b̂thres = arg min
βŜthres

‖Y −XβŜthres
‖22/n,

where, for a set S ⊂ {1, . . . , p}, βS has coefficients different from zero at the
components in S only.

We will present bounds for the prediction error, its ℓq-error (q ∈ {1, 2}), and
the number of false positives. The bounds for the two methods are qualitatively
the same. A difference is that our variable selection properties results for the
adaptive Lasso depend on its prediction error, whereas for the thresholded Lasso,
variable selection can be studied without reference to its prediction error. In our
analysis this leads to a bound for the number of false positives of the thresh-
olded Lasso that is smaller than the one for the adaptive Lasso, when restricted
or sparse minimal eigenvalues are small and/or sparse maximal eigenvalues are
large.

Of course, such comparisons depend on how the tuning parameters are chosen.
Choosing these by cross validation is in our view the most appropriate, but it
is beyond the scope of this paper to present a mathematically rigorous theory
for the cross validation scheme for the adaptive and/or thresholded Lasso (see
[1] for a recent survey on cross validation).

1.1. Related work

Consistency results for the prediction error of the Lasso can be found in [16]. The
prediction error is asymptotically oracle optimal under certain conditions on the
design matrix X, see e.g. [6–8], [26], [4], [18, 19], where also estimation in terms
of the ℓ1- or ℓ2-loss is considered. The “restricted eigenvalue condition” of [4] (see
also [18, 19]) plays a key role here. Restricted eigenvalue conditions are implied
by, but generally much weaker than, “incoherence” conditions, which exclude
high correlations between co-variables. Also [9] allow for a major relaxation of
incoherence conditions, using assumptions on the set of true coefficients.

There is however a bias problem with ℓ1-penalization, due to the shrinking
of the estimates which correspond to true signal variables. A discussion can
be found in [39], and [22]. Moreover, for consistent variable selection with the
Lasso, it is known that the so-called “neighborhood stability condition” ([23])
for the design matrix, which has been re-formulated in a nicer form as the “irrep-
resentable condition” ([36]), is sufficient and essentially necessary. The papers
[30, 31] analyze the smallest sample size needed to recover a sparse signal under
certain incoherence conditions. Because irrepresentable or incoherence condi-
tions are restrictive and much stronger than restricted eigenvalue conditions
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(see [29] for a comparison), we conclude that the Lasso for exact variable se-
lection only works in a rather narrow range of problems, excluding for example
some cases where the design exhibits strong (empirical) correlations.

Regularization with the ℓq-“norm” with q < 1 will mitigate some of the bias
problems, see [33]. Related are multi-step procedures where each of the steps in-
volves a convex optimization only. A prime example is the adaptive Lasso which
is a two-step algorithm and whose repeated application corresponds in some
“loose” sense to a non-convex penalization scheme ([40]). In [39], the adaptive
Lasso is analyzed in an asymptotic setup for the case where p is fixed. Further
progress in the high-dimensional scenario has been achieved by [17]. Under a
rather strong mutual incoherence condition between every pair of relevant and
irrelevant covariables, they prove that the adaptive Lasso recovers the correct
model and has an oracle property. As we will explain in Subsection 5.4, the
adaptive Lasso indeed essentially needs a - still quite restrictive - weighted ver-
sion of the irrepresentable condition in order to be able to correctly estimate
the support of the coefficients.

The paper [24] examines the thresholding procedure, assuming all non-zero
components are large enough, an assumption we will avoid. Thresholding and
multistage procedures are also considered in [12, 13]. In [37, 38], it is shown
that a multi-step thresholding procedure can accurately estimate a sparse vec-
tor β ∈ R

p under the restricted eigenvalue condition of [4]. The two-stage pro-
cedure in [35] applies “selective penalization” in the second stage. This proce-
dure is studied assuming incoherence conditions. A more general framework for
multi-stage variable selection was studied by [32]. Their approach controls the
probability of false positives (type I error) but pays a price in terms of false neg-
atives (type II error). The contribution of this paper is that we provide bounds
for the adaptive Lasso that are comparable to the bounds for the Lasso followed
by a thresholding procedure. Because the true regression itself, or its linear pro-
jection, is perhaps not sparse, we moreover consider a sparse approximation of
the truth, somewhat in the spirit of [34].

1.2. Organization of the paper

The next section introduces the sparse oracle approximation, with which we
compare the initial and adaptive Lasso. In Section 3, we present the main results.
Eigenvalues and their restricted and sparse counterparts are defined in Section
4. In Section 5 we give in an example the exact solution for the initial Lasso,
illustrating that it can have very many false positives. We also provide the
irrepresentable conditions for the initial, adaptive and more generally, weighted
Lasso. We show in Subsection 5.4 that even the adaptive Lasso needs beta-min
conditions and/or strong conditions on the design for exact variable selection.
This is linked to Corollary 3.2, where it is proved that the false positives of
the adaptive Lasso vanish under beta-min conditions. Some conclusions are
presented in Section 6.

The rest of the paper presents intermediate results and complements for
establishing the main results of Section 3. In Section 7, we consider the noiseless
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case, i.e., the case where ǫ = 0. The reason is that many of the theoretical issues
involved concern the approximation properties of the two stage procedure, and
not so much the fact that there is noise. By studying the noiseless case first, we
separate the approximation problem from the stochastic problem.

Both initial and adaptive Lasso are special cases of a weighted Lasso. We
discuss prediction error, ℓq-error (q ∈ {1, 2}) and variable selection with the
weighted Lasso in Subsection 7.1. Theorem 7.1 in this section is the core of
the present work as regards prediction and estimation, and Lemma 7.1 is the
main result as regards variable selection. The behavior of the noiseless initial
and adaptive Lasso are simple corollaries of Theorem 7.1 and Lemma 7.1. We
give in Subsection 7.2 the resulting bounds for the initial Lasso and discuss in
Section 7.3 its thresholded version. In Subsection 7.4 we derive results for the
adaptive Lasso by comparing it with a thresholded initial Lasso.

Section 8 studies the noisy case. It is an easy extension of the results of
Sections 7.1, 7.2, 7.3 and 7.4. We do however need to further specify the choice
of the tuning parameters λinit, λthres and λadap. After explaining the notation,
we present the bounds for the prediction error, estimation error and for the
number of false positives, of the weighted Lasso. This then provides us with the
tools to prove the main results.

All proofs are in Section 9. There, we also present explicit constants in the
bounds to highlight the non-asymptotic character of the results.

2. Model misspecification, weak variables and the oracle

Let

IEY := f0,

where f0 is the regression function. First, we note that without loss of generality,
we can assume that f0 is linear. If f0 is non-linear in the covariates, we consider
its projection Xβtrue onto the linear space {Xβ : β ∈ R

p}, i.e.,

Xβtrue := argmin
Xβ

‖f0 −Xβ‖2.

It is not difficult to see that all our results still hold if f0 is replaced by its
projectionXβtrue. The statistical implication is very relevant. The mathematical
argument is the orthogonality

XT (Xβtrue − f0) = 0.

For ease of notation, we therefore assume from now on that f0 is indeed linear:

f0 := Xβtrue.

Nevertheless, βtrue itself may not be sparse. Denote the active set of βtrue by

Strue := {j : βj,true 6= 0},
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which has cardinality strue := |Strue|. It may well be that strue is quite large,
but that there are many weak variables, that is, many very small non-zero
coefficients in βtrue. Therefore, the sparse object we aim to recover may not be
the “true” unknown parameter βtrue ∈ R

p of the linear regression, but rather
a sparse approximation. We believe that an extension to the case where f0

is only “approximately” sparse, better reflects the true state of nature. We
emphasize however that throughout the paper, it is allowed to replace the oracle
approximation b0 given below by βtrue. This would simplify the theory. However,
we have chosen not to follow this route because it generally leads to a large price
to pay in the bounds.

The sparse approximation of f0 that we consider is defined as follows. For a
set of indices S ⊂ {1, . . . , p} and for β ∈ R

p, we let

βj,S := βj l{j ∈ S}, j = 1, . . . , p.

Given a set S, the best approximation of f0 using only variables in S is

fS = XbS := arg min
f=XβS

‖f − f0‖2.

Thus, fS is the projection of f0 on the linear span of the variables in S. Our
target is now the projection fS0

, where

S0 := arg min
S⊂Strue

{

‖fS − f0‖22/n+ 7λ2init|S|/φ2(6, S)
}

.

Here, |S| denotes the size of S. Moreover, φ2(6, S) is a “restricted eigenvalue”
(see Section 4 for its definition), which depends on the Gram matrix Σ̂ and
on the set S. The constants are chosen in relation with the oracle result (see
Corollary 9.3). In other words, fS0

is the optimal ℓ0-penalized approximation,
albeit that it is discounted by the restricted eigenvalue φ2(6, S0). To facilitate
the interpretation, we require S0 to be a subset of Strue, so that the oracle is
not allowed to trade irrelevant coefficients against restricted eigenvalues. With
S0 ⊂ Strue, any false positive selection with respect to Strue is also a false positive
for S0.

We refer to fS0
as the “oracle”. The set S0 is called the oracle active set, and

b0 = bS0 are the oracle coefficients, i.e.,

fS0
= Xb0.

We write s0 = |S0|, and assume throughout that s0 ≥ 1.
Inferring the sparsity pattern, i.e. variable selection, refers to the task of

estimating the set of non-zero coefficients, that is, to have a limited number
of false positives (type I errors) and false negatives (type II errors). It can be
verified that under reasonable conditions with suitably chosen tuning parameter
λ, the “ideal” estimator

β̂ideal := argmin
β

{

‖Y −Xβ‖22/n+ λ2|{j : βj 6= 0}|
}

,



Adaptive and thresholded Lasso 695

has O(λ2s0) prediction error and O(s0) false positives (see for instance [2] and
[28]). With this in mind, we generally aim at O(s0) false positives (see also [38]),
yet keeping the prediction error as small as possible (see Corollary 3.1).

As regards false negative selections, we refer to Subsection 3.5, where we
derive bounds based on the ℓq-error.

3. Main results

3.1. Conditions

The behavior of the thresholded Lasso and adaptive Lasso depends on the tun-
ing parameters, on the design, as well as on the true f0, and actually on the
interplay between these quantities. To keep the exposition clear, we will use
order symbols. Our expressions are functions of n, p, X, and f0, and also of the
tuning parameters λinit, λthres, and λadap. For positive functions g and h, we
say that g = O(h) if ‖g/h‖∞ is bounded, and g ≍ h if in addition ‖h/g‖∞ is
bounded. Moreover, we say that g = Osuff(h) if ‖g/h‖∞ is not larger than a
suitably chosen sufficiently small constant, and g ≍suff h if in addition ‖h/g‖∞
is bounded.

Our results depend on restricted eigenvalues φ(L, S,N), minimal restricted
eigenvalues φmin(L, S,N), and minimal sparse eigenvalues φsparse(S,N) (which
we generally think of as being not too small), as well on maximal sparse eigen-
values Λsparse(s) (which we generally think of being not too large). The exact
definition of these constants is given in Section 4.

When using order symbols, we simplify the expressions by assuming that that

‖fS0
− f0‖22/n = O(λ2inits0/φ

2(6, S0)) (3.1)

(where φ(6, S0) = φ(6, S0, s0)), which roughly says that the oracle “squared
bias” term is not substantially larger than the oracle “variance” term. For ex-
ample, in the case of orthogonal design, this condition holds if the small non-zero
coefficients are small enough, or if there are not too many of them, i.e., if

∑

|βj,true|2≤7λ2
init

|βj,true|2 = O(λ2inits0).

We stress that (3.1) is merely to write order bounds for the oracle, bounds
with which we compare the ones for the various Lasso versions. If actually
the “squared bias” term is the dominating term, this mathematically does not
alter the theory but makes the result more difficult to interpret. We refer to
Subsection 7.1 for some exact expressions, which do not rely on assumption (3.1).

We will furthermore discuss the results on the set

T :=

{

4 max
1≤j≤p

|ǫTXj/n| ≤ λinit

}

,
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where Xj is the j-th column of the matrix X. For an appropriate choice of λinit,
depending on the distribution of ǫ, the set T has large probability. Typically,
λinit can be taken of order

√

log p/n.

The next lemma serves as an example, but the results can clearly be extended
to other distributions.

Lemma 3.1. Suppose that ǫ ∼ N (0, σ2I). Take for a given t > 0,

λinit = 4σ

√

2t+ 2 log p

n
.

Then

IP(T ) ≥ 1− 2 exp[−t].

The following conditions play an important role. Conditions A and AA for
thresholding are similar to those in [38] (Theorems 1.2, 1.3 and 1.4).

Condition A For the thresholded Lasso, the threshold level λthres is chosen
sufficiently large, in such a way that

[

1

φ2(6, S0, 2s0)

]

λinit = Osuff(λthres).

Condition AA For the thresholded Lasso, the threshold level λthres is chosen
sufficiently large, but such that

[

1

φ2(6, S0, 2s0)

]

λinit ≍suff λthres.

Condition B For the adaptive Lasso, the tuning parameter λadap is chosen
sufficiently large, in such a way that

[

Λsparse(s0)

φ3min(6, S0, 2s0)

]

λinit = Osuff(λadap).

Condition BB For the adaptive Lasso, the tuning parameter λadap is chosen
sufficiently large, but such that

[

Λsparse(s0)

φ3min(6, S0, 2s0)

]

λinit ≍suff λadap.

Remark 3.1. Note that our conditions on λthres and λadap depend on the φ’s
and Λ’s, which are unknown (since S0 is unknown). Indeed, our study is of
theoretical nature, revealing common features of thresholding and the adaptive
Lasso. Furthermore, it is possible to remove the dependence of the φ’s and Λ’s,
when one imposes stronger sparse eigenvalue conditions, along the lines of [34].
In practice, the tuning parameters are generally chosen by cross validation.
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The above conditions can be considered with a zoomed-out look, neglecting
the expressions in the square brackets ([· · · ]), and a zoomed-in look, taking
into account what is inside the square brackets. One may think of λinit as the
noise level (see e.g. Lemma 3.1, with the log p-term the price for not knowing
the relevant coefficients a priori). Zooming out, Conditions A and B say that
the threshold level λthres and the tuning parameter λadap are required to be at
least of the same order as λinit, i.e., they should not drop below the noise level.
Assumption AA and BB put these parameters exactly at the noise level, i.e.,
at the smallest value we allow. The reason to do this is that one then can have
good prediction and estimation bounds. If we zoom in, we see in the square
brackets the role played by the various eigenvalues. As they are defined only
later in Section 4, it is at first reading perhaps easiest to remember that the φ’s
can be small and the Λ’s can be large, but one hopes they behave well, in the
sense that the values in the square brackets are not too large.

3.2. The results

The next three theorems contain the main ingredients of the present work.
Theorem 3.1 is not new (see e.g. [6–8], [4], [18]), albeit that we replace the
perhaps non-sparse βtrue by the sparser b0 (see also [26]). Recall that the latter
replacement is done because it yields generally an improvement of the bounds.

Theorem 3.1. For the initial Lasso β̂init = β̂ defined in (1.1), we have on T ,

‖Xβ̂init − f0‖22/n =

[

1

φ2(6, S0)

]

O(λ2inits0),

and

‖β̂init − b0‖1 =

[

1

φ2(6, S0)

]

O(λinits0),

and

‖β̂init − b0‖2 =

[

1

φ2(6, S0, 2s0)

]

O(λinit
√
s0).

We also present here a bound for the number of false positives of the initial
Lasso. In this section, we confine ourselves to the following lemma. Here, Λ2

max

is the largest eigenvalue of Σ̂, which can generally be quite large.

Lemma 3.2. On T ,

|Ŝinit\S0| ≤
[

Λ2
max

φ2(6, S0)

]

O(s0).

The bound of Lemma 3.2 can be quite large. Under further conditions as
given in Lemma 8.1, the bound can sometimes be improved. See Subsection 5.3
for a lower bound in a situation where these further conditions fail.

The next theorem discusses thresholding. The paper [38] contains a careful
analysis of thresholding. It presents the results of Theorem 3.2, albeit under
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different conditions. The role of Theorem 3.2 in the present paper (with a rel-
atively short proof) is to make a comparison possible with the adaptive Lasso,
that is, it is invoked to prove similar bounds for the adaptive Lasso, as presented
in Theorem 3.3.

Theorem 3.2. Suppose Condition A holds. Then on T ,

‖Xβ̂thres − f0‖22/n =

[

Λ2
sparse(s0)

]

λ2thres
λ2init

O(λ2inits0),

and

‖b̂thres − b0‖1 =
[

Λsparse(s0)

φsparse(S0, 2s0)

]

λthres
λinit

O(λinits0),

and

‖b̂thres − b0‖2 =

[

Λsparse(s0)

φsparse(S0, 2s0)

]

λthres
λinit

O(λinit
√
s0),

and

|Ŝthres\S0| =
[

1

φ4(6, S0, 2s0)

]

λ2init
λ2thres

O(s0).

Theorem 3.3. Suppose Condition B holds. Then on T ,

‖Xβ̂adap − f0‖22/n =

[

Λsparse(s0)

φmin(6, S0, 2s0)

]

λadap
λinit

O(λ2inits0),

and

‖β̂adap − b0‖1 =

[

Λ
1/2
sparse(s0)

φ
3/2
min(6, S0, 2s0)

]
√

λadap
λinit

O(λinits0),

and

‖β̂adap − b0‖2 =

[

Λ
1/2
sparse(s0)φ

1/2
min(6, S0, 2s0)

φ2min(6, S0, 3s0)

]
√

λadap
λinit

O(λinit
√
s0),

and

|Ŝadap\S0| =
[

Λ2
sparse(s0)

φ4(6, S0, 2s0)

Λsparse(s0)

φmin(6, S0, 2s0)

]

λinit
λadap

O(s0).

Theorem 3.2 and 3.3 show how the results depend on the choice of the tuning
parameters λthres and λadap. The following corollary takes the choices of Condi-
tions AA and BB, as these choices give the smallest prediction and estimation
error.

Corollary 3.1. Suppose we are on T . Then, under Condition AA,

‖Xb̂thres − f0‖22/n =

[

Λ2
sparse(s0)

φ4(6, S0, 2s0)

]

O(λ2inits0), (3.2)

and

‖b̂thres − b0‖1 =

[

Λsparse(s0)

φsparse(S0, 2s0)φ2(6, S0, 2s0)

]

O(λinits0),
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and

‖b̂thres − b0‖2 =

[

Λsparse(s0)

φsparse(S0, 2s0)φ2(6, S0, 2s0)

]

O(λinit
√
s0),

and
|Ŝthres\S0| = O(s0). (3.3)

Similarly, under Condition BB,

‖Xβ̂adap − f0‖22/n =

[

Λ2
sparse(s0)

φ4min(6, S0, 2s0)

]

O(λ2inits0), (3.4)

and

‖β̂adap − b0‖1 =
[

Λsparse(s0)

φ3min(6, S0, 2s0)

]

O(λinits0),

and

‖β̂adap − b0‖2 =

[

Λsparse(s0)

φ2min(6, S0, 3s0)φmin(6, S0, 2s0)

]

O(λinit
√
s0),

and

|Ŝadap\S0| =
[

Λ2
sparse(s0)φ

2
min(6, S0, 2s0)

φ4(6, S0, 2s0)

]

O(s0). (3.5)

3.3. Comparison with the Lasso

At the zoomed-out level, where all φ’s and Λ’s are neglected, we see that the
thresholded Lasso (under Condition AA) and the adaptive Lasso (under Con-
dition BB) achieve the same order of magnitude for the prediction error as the
initial, one-stage Lasso discussed in Theorem 3.1. The same is true for their
estimation errors. Zooming in on the φ’s and the Λ’s, their error bounds are
generally larger than for the initial Lasso.

We will show in Subsection 5.3 that in certain examples the bound for
|Ŝinit\S0| of Lemma 3.2 cannot be improved, and also that the results of The-
orem 3.1 for the prediction and estimation error of the initial Lasso are sharp.
Therefore general message is that thresholding and the adaptive Lasso can have
similar prediction and estimation error as the initial Lasso, and are often far
better as regards variable selection. Of course, a careful comparison depends on
the restricted eigenvalues involved. We generally think of 1/φmin’s and Λsparse’s
being O(1), i.e., we stay at the zoomed-out level. For the case of very large
Λsparse, we refer to Lemma 3.3. If the minimal restricted eigenvalues are very
small, one actually enters a different regime, where the design is highly corre-
lated. This has its implications on the random part of the problem, leading for
example to a smaller order of magnitude for the tuning parameters. We refer to
[27] for some illustrations.

In the paper [34], one can find further conditions that ensure that also for
the initial Lasso, modulo φ’s and Λ’s, the number of false positives is of order
s0. These conditions are rather involved and also improve the bounds for the
adaptive and thresholded Lasso. In Subsection 8.3 we briefly discuss a condition
of similar nature as the one used in [34].
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3.4. Comparison between adaptive and thresholded Lasso

When zooming-out, we see that the adaptive and thresholded Lasso have bounds
of the same order of magnitude, for prediction, estimation and variable selection.

At the zoomed-in level, the adaptive and thresholded Lasso also have very
similar bounds for the prediction error (compare (3.2) with (3.4)) in terms of
the φ’s and Λ’s. A similar conclusion holds for their estimation error. We remark
that our choice of Conditions AA and BB for the tuning parameters is motivated
by the fact that according to our theory, these give the smallest prediction and
estimation errors. It then turns out that the “optimal” errors of the two methods
match at a quite detailed level. However, if we zoom-in even further and look at
the definition of φsparse, φ, and φmin in Section 4, it will show up that the bounds
for the adaptive Lasso prediction and estimation error are (slightly) larger.

Regarding variable selection, at zoomed-out level the results are also com-
parable (see (3.3) and (3.5)). Zooming-in on the the φ’s and Λ’s, the adaptive
Lasso may have more false positives than the thresholded version.

A conclusion is that at the zoomed-in level, the adaptive Lasso has less fa-
vorable bounds as the refitted thresholded Lasso. However, these are still only
bounds, which are based on focussing on a direct comparison between the two
methods, and we may have lost the finer properties of the adaptive Lasso. In-
deed, the non-explicitness of the adaptive Lasso makes its analysis a non-trivial
task. The adaptive Lasso is a quite popular practical method, and we certainly
do not advocate that it should always be replaced by thresholding and refitting.

3.5. Bounds for the number of false negatives

The ℓq-error has immediate consequences for the number of false negatives: if

for some estimator β̂, some target b0, and some constant δupperq one has

‖β̂ − b0‖q ≤ δupperq

then the number of undetected yet large coefficients cannot be very large, in the
sense that

|{j : β̂j = 0, |b0j | > δ}|1/q ≤ δupperq

δ
.

Therefore, on T , for example
∣

∣

∣

∣

{

j : β̂j,init = 0,

[

1

φ2(6, S0, 2s0)

]√
s0λinit = Osuff(|b0j |)

}∣

∣

∣

∣

= 0.

Similar bounds hold for the thresholded and the adaptive Lasso (considering
now, in terms of the φ’s and Λ’s, somewhat larger |b0j |).

One may argue that one should not aim at detecting variables that the oracle
considers as irrelevant. Nevertheless, given an estimator β̂, it is straightforward
to bound ‖β̂ − βtrue‖q in terms of ‖β̂ − b0‖q: apply the triangle inequality

‖β̂ − βtrue‖q ≤ ‖β̂ − b0‖q + ‖b0 − βtrue‖q.
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Moreover, for q = 2, one has the inequality

‖b0 − βtrue‖22 ≤ ‖fS0
− f0‖22

nΛ2
min(Strue)

,

where Λ2
min(S) is the smallest eigenvalue of the Gram matrix corresponding

to the variables in S. One may verify that φ(6, Strue) ≤ Λmin(Strue). In other
words, choosing βtrue as target instead of b0 does in our approach not lead to
an improvement in the bounds for ‖β̂ − βtrue‖2.

3.6. Assuming beta-min conditions

Let us have a closer look at what conditions on the size of the coefficients
can bring us. We call such conditions beta-min conditions. We only discuss the
adaptive Lasso (for thresholding we refer to [38]).

We define

|b0|min := min
j∈S0

|b0j |.

Moreover, we let

|b0|2harm :=

(

1

s0

∑

j∈S0

1

|b0j |2
)−1

be the harmonic mean of the squared coefficients.
In Chapter 7 of [5], sparse eigenvalues are avoided altogether and results are

given under a condition which replaces the quantities |b0|min and |b0|harm we
consider here by a trimmed harmonic mean. This refinements require further
arguments. Therefore let us here only consider a simple version.

Condition C For the adaptive Lasso, take λadap sufficiently large, such that

|b0|harm = Osuff(λadap).

Condition CC For the adaptive Lasso, take λadap sufficiently large, but such
that

|b0|harm ≍suff λadap.

Remark 3.2. In Condition CC the choice for λadap is larger than in Condition
BB. We will see in Lemma 3.3 that beta-min conditions allow for a larger tuning
parameter λadap without paying a price in prediction error, but with a possible
gain in variable selection properties. In some examples, one can show that the
prediction optimal choice for the tuning parameter will be of the right order. In
practice one may use cross validation, although we have as yet no theoretical
guarantee that cross validation will mimic the theoretical values we consider.

Lemma 3.3. Suppose that for some constant δupper∞ , on T ,

‖β̂init − b0‖∞ ≤ δupper∞ .
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Assume in addition that
|b0|min > 2δupper∞ . (3.6)

Then under Condition C,

‖Xβ̂2
adap − f0‖22/n =

[

1

φ2(6, S0)

]

λ2adap
|b0|2harm

O(λ2inits0),

and

‖β̂adap − b0‖1 =

[

1

φ2(6, S0)

]

λadap
|b0|harm

O(λinits0),

and

‖β̂adap − b0‖2 =

[

1

φ2(6, S0, 2s0)

]

λadap
|b0|harm

O(λinit
√
s0),

and

|Ŝadap\S0| =
(

s0 ∨
[

Λ2
sparse(s0)

φ2(6, S0)φ4(6, S0, 2s0)

]

O

(

λ2inits0
|b0|2harm

)

)

∧
[

1

φ2(6, S0)φ4(6, S0, 2s0)

]

O

(

λ2inits
2
0

|b0|2harm

)

.

It is clear that by Theorem 3.1,

‖β̂init − b0‖∞ =

[ √
s0

φ2(6, S0)
∧ 1

φ2(6, S0, 2s0)

]

O(λinit
√
s0).

This can be improved under coherence conditions on the Gram matrix. To sim-
plify the exposition, we will not discuss such improvements in detail (see [20]).

Under Condition CC, the bound for the prediction error and estimation error
is again the smallest. We moreover have the following corollary.

Corollary 3.2. Assume the conditions of Lemma 3.3 and
[

1

φ2(6, S0)φ4(6, S0, 2s0)

]

λinits0 = Osuff(|b0|harm). (3.7)

Then on T ,
|Ŝadap\S0| = 0.

Asymptotics For the case of Gaussian errors ǫ ∼ N (0, σ2I), with σ2 ≍ 1,
one typically takes λinit ≍

√

log p/n (see Lemma 3.1). If we assume moreover
that the design is such that φ(6, S0, 2s0) ≍ 1 and all non-zero coefficients b0j are

in the same range, the beta-min condition we impose in (3.7) is s0
√

log p/n =
O(b0j ) for all j ∈ S0, that is, all non-zero coefficients should be not smaller than

s0
√

log p/n in order of magnitude.
We will see in Subsection 5.4 that in certain examples, the beta-min condition

(3.7), which roughly requires a separation of order
√
s0 between |β̂j,init|, j ∈ S0

and |β̂j,init|, j /∈ S0 (with, according to Theorem 3.1, for j /∈ S0, |β̂j,init| being
of order λinit

√
s0/φ

2(6, S0, 2s0)) is necessary for variable selection. It is clear
that with thresholding, one does not need this large separation. Thus, in the
beta-min context, thresholding wins from the adaptive Lasso.
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4. Notation and definition of generalized eigenvalues

We reformulate the problem in L2(Q), where Q is a generic probability measure
on some space X . (This is somewhat more natural in the noiseless case, which
we will consider in Section 7.) Let {ψj}pj=1 ⊂ L2(Q) be a given dictionary. For
j = 1, . . . , p, the function ψj will play the role of the j-th co-variable. The Gram
matrix is

Σ :=

∫

ψTψdQ, ψ := (ψ1, . . . , ψp).

We assume that Σ is normalized, i.e., that
∫

ψ2
jdQ = 1 for all j. In our final

results, we will actually take Σ = Σ̂, the (empirical) Gram matrix corresponding
to fixed design.

Write a linear function of the ψj with coefficients β ∈ R
p as

fβ :=

p
∑

j=1

ψjβj .

The L2(Q)-norm is denoted by ‖ · ‖, so that

‖fβ‖2 = βTΣβ.

Recall that for an arbitrary β ∈ R
p, and an arbitrary index set S, we use the

notation

βj,S = βj l{j ∈ S}.

We now present our notation for eigenvalues. We also introduce restricted
eigenvalues and sparse eigenvalues.

4.1. Eigenvalues

The largest eigenvalue of Σ is denoted by Λ2
max, i.e.,

Λ2
max := max

‖β‖2=1
βTΣβ.

We will also need the largest eigenvalue of a submatrix containing the inner
products of variables in S:

Λ2
max(S) := max

‖βS‖2=1
βT
SΣβS .

Its minimal eigenvalue is

Λ2
min(S) := min

‖βS‖2=1
βT
SΣβS .
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4.2. Restricted eigenvalues

A restricted eigenvalue is of similar nature as the minimal eigenvalue of Σ,
but with the coefficients β restricted to certain subsets of Rp. The restricted
eigenvalue condition we impose corresponds to the so-called adaptive version as
introduced in [29]. It differs from the restricted eigenvalue condition in [4] or
[18, 19]. This is due to the fact that we want to mimic the oracle fS0

, that is,
do not choose f0 as target, so that we have to deal with a bias term ‖fS0

− f0‖.
For a given S, our restricted eigenvalue condition is stronger than the one in [4]
or [18, 19]. On the other hand, we apply it to the smaller set S0 instead of to
Strue.

Define for an index set S ⊂ {1, . . . , p}, and for a set N ⊃ S and constant
L > 0, the sets of restrictions

R(L, S,N ) :=

{

β : ‖βN c‖1 ≤ L
√

|N |‖βN ‖2, max
j∈N c

|βj | ≤ min
j /∈N\S

|βj |
}

.

Definition: Restricted eigenvalue. For N ≥ |S|, we call

φ2(L, S,N) := min

{ ‖fβ‖2
‖βN ‖22

: N ⊃ S, |N | ≤ N, β ∈ R(L, S,N )

}

the (L, S,N)-restricted eigenvalue. The (L, S,N)-restricted eigenvalue condition
holds if φ(L, S,N) > 0.
For the case N = |S|, we write φ(L, S) := φ(L, S, |S|).
The minimal (L, S,N)-restricted eigenvalue is

φ2min(L, S,N) := min
N⊃S, |N |=N

φ2(L,N ).

It is easy to see that φmin(L, S,N) ≤ φ(L, S,N) ≤ φ(L, S) ≤ Λmin(S) for all
L > 0. It can moreover be shown that

φ2(L, S,N) ≥ min

{

‖fβ‖2 : N ⊃ S, |N | = N, ‖βN c‖2 ≤ L, ‖βN‖2 = 1

}

.

4.3. Sparse eigenvalues

We also invoke sparse eigenvalues, in line with the sparse Riesz condition occur-
ring in [34].

Definition: Sparse eigenvalues. For N ∈ {1, . . . , p}, the maximal sparse
eigenvalue is

Λsparse(N) = max
N : |N |=N

Λmax(N ).

For an index set S ⊂ {1, . . . , p} with |S| ≤ N , the minimal sparse eigenvalue is

φsparse(S,N) := min
N⊃S: |N |=N

Λmin(N ).
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One easily verifies that for any set N with |N | = ks, k ∈ N,

Λmax(N ) ≤
√
kΛsparse(s).

Moreover, for all L ≥ 0,

φsparse(S,N) = φ(0, S,N) ≥ φ(L, S,N).

See [5] for some further relations.

5. Some lower bounds for the (weighted) Lasso, and the case of
random design

This section complements the upper bounds of Section 3 with some examples
where the bounds (for the initial Lasso) cannot be improved. We also consider
necessary conditions for exact variable selection. We first present the irrepre-
sentable condition. Subsection 5.2 treats the case of random design. We will
then consider in Subsection 5.3 an example where the irrepresentable condition
does not hold, and where the Lasso has many false positives. We first consider
in Subsection 5.3.1 a simple situation, where the correlation pattern follows a
worst case scenario. A more realistic correlation pattern, as given in Subsection
5.3.2, requires rather refined arguments. Subsection 5.4 presents an example
where the adaptive Lasso needs the beta-min conditions of Corollary 3.2 for
exact variable selection, i.e., the bounds in this corollary are sharp.

5.1. The irrepresentable condition

For a symmetric (p× p) -matrix Σ, we define

Σ1,1(S) := (σj,k)j,k∈S ,

Σ2,1(S) := (σj,k)j /∈S,k∈S .

Let 0 ≤ θ ≤ 1. The θ-irrepresentable condition assumes

‖Σ̂2,1(Strue)Σ̂
−1
1,1(Strue)(τtrue)Strue

)‖∞ ≤ θ,

where τtrue is the sign-vector of βtrue. It is known that under beta-min conditions
the θ-irrepresentable condition with θ = 1 is necessary for the initial Lasso to
have no false positives, and that with θ sufficiently small it is also sufficient for
consistent variable selection in a proper asymptotic setting (see [23] and [36]).
The next lemma, from Chapter 7 in [5], presents a uniform θ-irrepresentable
condition giving a non-asymptotic result. See also Lemma 6.2 in [29] for the
noiseless case (where λǫ = 0).
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Lemma 5.1. Let
T := Tǫ := { max

1≤j≤p
2|ǫTXj | < λǫ}.

Suppose

sup
‖τStrue

‖∞≤1

‖Σ̂2,1(Strue)Σ̂
−1
1,1(Strue)τStrue

)‖∞ <
λinit − λǫ
λinit + λǫ

. (5.1)

Then on T ,
Ŝinit ⊂ Strue.

In order to keep the prediction error small, one chooses λǫ small while keeping
the probability of T = Tǫ large, and λinit of the same order as λǫ. In particular,
we throughout take λinit = 2λǫ. Then

λinit − λǫ
λinit + λǫ

=
1

3
.

5.2. Random design

LetXi be the i-th row ofX. The idea that follows is easiest understood when the
covariables Xi are i.i.d. copies of some random row vector X ∈ R

p with mean
zero and covariance matrix Σ := IEXTX . Let ‖Σ̂− Σ‖∞ := maxj,k |σ̂j,k − σj,k|.
Under e.g. exponential moment conditions (and also under weaker moment con-
ditions) it holds that for λX = O(

√

log p/n), one has ‖Σ̂ − Σ‖∞ ≤ λX on a
set TX with large probability. Looking at the definition of restricted eigenval-
ues, we see that they depend on the Gram matrix under consideration. It is
shown in [29] that Σ-restricted eigenvalue conditions imply Σ̂-restricted eigen-
value conditions when ‖Σ̂ − Σ‖∞ is small enough, depending on the sparsity
s = |S|. For example, for ‖Σ̂ − Σ‖∞ ≤ λX , where 32λXs/φ

2
Σ(L, S, 2s) ≤ 1, we

have φ2
Σ̂
(L, S, 2s) ≥ φ2Σ(L, S, 2s)/2. Similar statements can be made for min-

imal restricted eigenvalues and sparse eigenvalues. Thus, we can handle spar-
sity s of order s = Osuff(λ

−1
X φ2Σ(L, S, 2s)). With λX ≍

√

log p/n, this becomes

s = Osuff(
√

n/ log p)× φ2Σ(L, S, 2s).

Our conclusion is that Σ̂ in a rather general setting inherits (up to constants)
its generalized eigenvalues from those of Σ when the two matrices are close
enough. This can be applied to establish bounds for the prediction error.

As explained above, for variable selection the irrepresentable condition plays
a crucial role. Again, one may want to replace the empirical covariance matrix
Σ̂ by a population version Σ. Suppose that on the set Tǫ ∩ TX , we have for
some λ̃X ,

‖Σ̂− Σ‖∞‖β̂init − βtrue‖1 ≤ λ̃X .

Then the condition

sup
‖τStrue

‖∞≤1

‖Σ2,1(Strue)Σ
−1
1,1(Strue)τStrue

)‖∞ <
λinit − (λǫ + λ̃X)

λinit + (λǫ + λ̃X)
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suffices for the initial Lasso to have no false positives on Tǫ∩TX (see [5], Chapter
7). As we have seen (Theorem 3.1), on Tǫ, and with λinit = 2λǫ, we have

‖β̂init − b0‖1 = O(λinits0)/φ
2(6, S0)

(where φ2(6, S0) = φ2
Σ̂
(6, S0)). Suppose now that the approximation error ‖b0−

βtrue‖1 is also of this order. Then the Σ-irrepresentable condition has slightly
larger noise term λǫ + λ̃X (instead of λǫ), but the additional λ̃X is of order
λinitλX/φ

2(6, S0). So we can use the Σ-irrepresentable condition when again
the sparsity s0 is of order s0 = Osuff(λ

−1
X φ2(6, S0)).

5.3. An example illustrating that the Lasso can select too many

false positives

We consider now the case of equal correlation. Subsection 5.3.1 treats an ide-
alized setting, with “worst case” correlation pattern. Here, the Lasso selects all
p variables. However, the considered correlation pattern is a-typical (e.g. for
Gaussian errors it occurs with probability zero). In that sense, this idealized
case mainly serves as a first step towards the more realistic setting of Subsec-
tion 5.3.2. There, we show that for Gaussian errors, the Lasso selects at least an
order of magnitude struelogn false positives (see Theorem 5.1). To show this is
quite involved and requires refined concentration inequalities. We furthermore
believe that the lower bound strue logn is not sharp, i.e., that in fact the number
of false positives can be even larger.

Of course, one can get many false positives by choosing the tuning parameter
very small. We will however not do this, but allow for a value λinit of the order
max1≤j≤p |ǫTψj |/n, meaning that for instance for Gaussian errors the prediction
error satisfies the oracle bound strue log p/n.

5.3.1. Worst case correlation

We do not provide any proofs of the results in this section: they follow from
straightforward calculations.

Let P be a probability measure on X × R with marginal distribution Q on
X (possibly P is the empirical distribution Pn =

∑n
i=1 δ(Xi,Yi)/n). We study

a function Y ∈ L2(P ) satisfying Y = f0 + ǫ, where (as in Section 4) f0 =
∑p

j=1 βtrueψj , and where ψ1, . . . , ψp are given functions in L2(Q) (the latter

again playing the role of the covariables). The Gram matrix is Σ :=
∫

ψTψdQ,
where ψ := (ψ1, . . . , ψp). The L2(P ) inner product is denoted by (·, ·), and ‖ · ‖
is the L2(P )-norm. We let

β̂init := argmin
β

{

‖Y −
p
∑

j=1

ψjβj‖2 + 2λinit‖β‖1
}

.
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Note we replaced λinit by 2λinit. This will simplify the expressions. To make our
analysis more explicit, we throughout take λinit = 2λǫ, where

λǫ ≥ max
1≤j≤p

|(ǫ, ψj)|.

Let ι be a p-vector of all 1’s, and let

Σ := (1− ρ)I + ριιT ,

where 0 ≤ ρ < 1. This corresponds to

ψj =
√

1− ρψ̃j +
√
ρz, j = 1, . . . , p,

where ‖z‖ = 1, (ψj , z) = 0 for all j, and
∫

ψ̃T ψ̃dQ = I. In other words, the
covariables have a variable z in common, but are otherwise uncorrelated.

The (minimal restricted) eigenvalues are as follows.

Lemma 5.2. Let S be a set with cardinality s. We have

Λ2
max(S) = 1− ρ+ ρs.

Moreover for any L (and for s and p even),

φ2min(L, S, 2s) = φ2(L, S, 2s) = Λ2
min(S) = 1− ρ.

Thus, in this example, the maximal eigenvalue Λ2
max is equal to 1−ρ+ρp ≥ ρp,

i.e., it can be vary large.
It is easy to see that

sup
‖τStrue

‖∞≤1

‖Σ2,1(Strue)Σ
−1
1,1(Strue)(τ)Strue

)‖∞ =
ρstrue

1− ρ+ ρstrue
.

Therefore, to be able to construct an example with false positives, we assume
that

∆ :=
ρstrue

1− ρ+ ρstrue
− λinit − λǫ
λinit + λǫ

> 0.

Note that with the choice λinit = 2λǫ, this holds for ρ sufficiently large:

ρstrue
1− ρ+ ρstrue

>
1

3
iff ρ >

1

2strue + 1
.

Now, we will actually assume that ρ stays away from 1, that is, we exclude
the case

ρ = 1− o(1).

The reason is that for ρ in a neighborhood of 1, the design is highly correlated.
For such designs, a smaller order for the tuning parameter can be appropriate
(see [27]).
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Therefore, let us consider the range

2

2strue + 1
≤ ρ ≤ 1

2
.

We assume that

(ǫ, ψj) =

{

−λǫ j ∈ Strue

+λǫ j /∈ Strue

.

The latter can be seen as the “worst case” correlation pattern. Some other and
perhaps more typical correlation patterns (that increase the penalty on the true
positives and decrease the penalty on the true negatives) will lead to similar
conclusions but more involved calculations.

We further simplify the situation by assuming that

βj,true = β0, ∀ j ∈ Strue,

where β0 is some positive constant. It is easy to see that b0 = βtrue when β0 is
sufficiently larger than λinit, i.e., when λinit = Osuff(β0).

It is not difficult to see that the Lasso is also constant on Strue:

β̂j,init = β̂0, ∀ j ∈ Strue,

where β̂0 is some non-negative constant. Moreover,

β̂j,init = γ̂, ∀ j /∈ Strue,

where γ̂ is some other constant.
The next lemma presents the explicit solution for the initial Lasso. We also

give the order of magnitude of the terms.

Lemma 5.3. Suppose that

2

2strue + 1
≤ ρ ≤ 1

2
,

and that

β0 >

(

λinit + λǫ
(1− ρ+ ρstrue)

+
ρ(p− strue)∆(λinit + λǫ)

(1− ρ)(1 − ρ+ ρp)

)

.

We have

β̂0 − β0 = −
(

λinit + λǫ
(1− ρ+ ρstrue)

+
ρ(p− strue)∆(λinit + λǫ)

(1− ρ)(1 − ρ+ ρp)

)

≍ −λinit,

and

γ̂ =
∆(1 − ρ+ ρstrue)(λinit + λǫ)

(1− ρ)(1 − ρ+ ρp)
≍ λinit

1− ρ

strue
p

.

We also give the prediction, ℓ1- and ℓ2-error, and the number of false nega-
tives, and their order of magnitude.
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Lemma 5.4. Suppose the conditions of Lemma 5.3. We have

‖f̂init − f0‖2 =
(λinit + λǫ)

2strue
(1 − ρ+ ρstrue)

+
∆2
[

1− ρ+ ρstrue
]

(λinit + λǫ)
2(p− strue)

(1− ρ)(1− ρ+ ρp)

≍ λ2initstrue
1− ρ

and

‖β̂init − βtrue‖1 =
(λinit + λǫ)strue
(1− ρ+ ρstrue)

+
ρ(p− strue)strue∆(λinit + λǫ)

(1− ρ)(1− ρ+ ρp)

+
∆(1− ρ+ ρstrue)(p− strue)(λinit + λǫ)

(1− ρ)(1 − ρ+ ρp)
≍ λinitstrue

1− ρ
,

‖β̂init − βtrue‖2 =
(λinit + λǫ)

√
strue

(1− ρ+ ρstrue)
+
ρ(p− strue)

√
strue∆(λinit + λǫ)

2(1− ρ)(1 − ρ+ ρp)

+
∆(1− ρ+ ρstrue)

√
p− strue(λinit + λǫ)

(1− ρ)(1− ρ+ ρp)

≍ λinit
√
strue

1− ρ
,

and
|Ŝinit\Strue| = (p− strue).

Note that we kept 1/(1−ρ) in our order bounds, whereas admittedly, 1−ρ ≍ 1
in the range considered. Nevertheless, as 1− ρ plays the role of the φ2’s, we see
that the bounds we provide incorporate the φ’s in a reasonable way.

It follows that when ρ ≍ 1/strue, the result of Lemma 3.2 is sharp. Also for
ρ ≍ 1/strue the maximal sparse eigenvalue is ≍ 1. We can then apply Theorems
3.2 and 3.3. There, the thresholds λthres and λadap appear to be too large, as
γ̂ ≍ (strue/p)λinit/(1 − ρ). On the other hand, for p → strue e.g. Theorem 3.2
gives a bound for λthres which is arbitrarily close to the bound needed.

When ρ is of larger order than 1/strue the maximal sparse eigenvalue becomes
increasing in strue. Recall that Lemma 3.3 not necessarily needs sparse eigenvalue
conditions (but instead needs beta-min conditions).

5.3.2. A realistic example

The proofs for this subsection are in Section 9. We consider a situation where
p = n−1. The errors ǫ1, . . . , ǫn are assumed to be i.i.d. N (0, 1)-distributed. The
design is constructed as in the previous subsection: we let {ψ̃1, . . . , ψ̃n−1, z} be
n orthogonal vectors in R

n with length
√
n, and

ψj :=
√

1− ρψ̃j +
√
ρz, j = 1, . . . , n− 1,
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where 0 < ρ ≤ 1/2. The Gram matrix is then

Σ̂ = (1− ρ)I + ριιT ,

where ι is an (n− 1)-vector of 1’s.
Again, to simplify the expressions, we replace λinit by 2λinit, i.e., we consider

the Lasso

β̂init := argmin
{

‖Y −Xβ‖22/n+ 2λinit‖β‖1
}

.

First, we present the form of the solution of this minimization problem.

Lemma 5.5. Consider for some λǫ, the set

T :=

{

max
1≤j≤p

|ǫTψj |/n ≤ λǫ

}

,

and assume λinit ≥ C1λǫ and β0
j > Cλinit for all j ∈ Strue, with C1 > 1 and

C a sufficiently large positive constant depending only on C1. Then on T the
following holds. Firstly, Ŝinit ⊃ Strue. Moreover, all β̂j,init are non-negative, and

λinit|Ŝinit| −
∑

j∈Ŝinit

ǫTψj/n

is non-negative. Finally, when Ŝinit\Strue 6= ∅, for all j ∈ Ŝinit\Strue,

β̂j,init = ǫTψj/n− λinit (5.2)

+
ρ

1− ρ+ ρ|Ŝinit|

(

λinit|Ŝinit| −
∑

j∈Ŝinit

ǫTψj/n

)

.

We use concentration results for ǫTψj , j ∈ Sc
true, to establish the following

lower bound for the number of false positives:

Theorem 5.1. For some positive constants C5, C6, C7, C8 and C, and constant
0 < α < 1 not depending on n, with λinit = C5

√

logn/n, minj∈Strue
β0
j > Cλinit,

strue > C6, and
ρstrue

1− ρ+ ρstrue
> 1− 1

C7
,

it holds that with probability at least α,

|Ŝinit\Strue| ≥
strue logn

C8
.

5.4. The weighted irrepresentable condition

This subsection will show that, even in the noiseless case, exact variable selection
with the adaptive Lasso needs rather strong conditions. Let, as in Subsection
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5.3, Q be a probability measure on X , ψ1, . . . , ψp be a fixed dictionary in L2(Q)
and ‖ · ‖ be the L2(Q)-norm. The Gram matrix is Σ :=

∫

ψTψdQ. We write

fβ =

p
∑

j=1

βjψj , β ∈ R
p,

and denote the truth by
f0 = fβtrue

.

The weighted Lasso is

βweight := argmin
β

{

‖fβ − f0‖2 + λinitλweight‖Wβ‖1
}

,

whereW := diag(w) with w := (w1, . . . , wp) a vector of positive weights. We let
Sweight = {j : βj,weight 6= 0}.

As stated in Subsection 5.1, the initial Lasso essentially needs the irrepre-
sentable condition in order to have no false positives. Similar statements can
be made for the weighted Lasso. We let WS := diag({wj}j∈S), and τtrue :=
sign(βtrue). We say that the weighted θ-irrepresentable condition holds if

‖W−1
Sc
true

Σ2,1(Strue)Σ
−1
1,1(Strue)WStrue

(τtrue)Strue
‖∞ ≤ θ.

The reparametrization β 7→ γ :=W−1β leads to the following lemma, which
is the weighted variant of the third part of Lemma 6.2 in [29].

Lemma 5.6. Assume the beta-min condition

|βtrue|min > λweightλinit sup
‖τStrue

‖∞≤1

‖Σ−1
1,1(Strue)WStrue

τStrue
‖∞/2.

Suppose Sweight ⊂ Strue. Then the weighted θ-irrepresentable condition holds
with θ = 1.

We now consider conditions for the weighted irrepresentable condition to
hold. Let

wmin
Sc := min

j /∈S
wj .

Lemma 5.7. Suppose that

‖wS‖2 ≤ θΛmin(S)w
min
Sc . (5.3)

Then
sup

‖τS‖∞≤1

‖W−1
Sc Σ2,1(S)Σ

−1
1,1(S)WSτS‖∞ ≤ θ.

The next example shows that the result of Lemma 5.7 cannot be improved
without assuming further conditions. As a consequence, for exact variable selec-
tion, the adaptive Lasso needs a rather large lower bound on |βtrue|harm, where

|βtrue|2harm :=





1

strue

∑

j∈Strue

1

β2
j,true





−1
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is the harmonic mean of the squared coefficients. The corresponding upper
bound occurs in Corollary 3.2.

Example 5.1. Let Strue = {1, . . . , s}, with cardinality s := |Strue|, be the active
set, and write

Σ :=

(

Σ1,1 Σ1,2

Σ2,1 Σ2,2

)

.

We now will take a special (idealized) choice for Σ. We suppose that Σ1,1 := I
is the (s× s)-identity matrix, and

Σ2,1 := ρ(c2c
T
1 ),

with 0 ≤ ρ < 1, and with c1 an s-vector and c2 a (p − s)-vector, satisfying
‖c1‖2 = ‖c2‖2 = 1. Moreover, we suppose Σ2,2 is the ((p− s)× (p− s))-identity
matrix. Then Λmin(Strue) = 1 and the smallest eigenvalue of Σ is 1−ρ. Its largest
eigenvalue is 1+ρ. Take c1 = wStrue

/‖wStrue
‖2, and c2 = (0, . . . , 1, 0, . . .)T , where

the 1 is placed at argminj∈Sc
true

wj . Then, for τStrue
being a vector of all 1’s,

WStrue
τStrue

= wStrue
,

and
Σ2,1Σ

−1
1,1WStrue

= ρc2‖wStrue
‖2,

and hence the bound of Lemma 5.7 is, up to constants, sharp:

‖W−1
Sc
true

Σ2,1Σ
−1
1,1WStrue

τStrue
‖∞ = ρ‖wStrue

‖2/wmin
Sc
true

.

We now first present some heuristics concerning the consequences for the adap-
tive Lasso, and then provide a detailed exact example. The adaptive Lasso aims
at weights

wj =
1

|βj,true|
, j ∈ Strue.

Then

‖wStrue
‖2 =

√
strue

|βtrue|harm
.

The θ-irrepresentable condition with θ = 1 then requires

|βtrue|harm ≥ ρ
√
strueδ∞,

where

δ∞ :=
1

wmin
Sc

= ‖1/wSc
true

‖∞.

Therefore for exact variable selection, one needs |βtrue|harm to be an order of
magnitude

√
strue larger than δ∞. This condition also shows up in Corollary 3.2.

Let us consider in more detail the special case with p = s + 1, ρ = 1/2
and βj,true = β0 for all j ∈ Strue, where β0 is a positive constant. Then c1 =
(1, . . . , 1)/

√
s, and c2 = 1. Straightforward calculations show that when ρ >
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1/
√
s, and λinit = Osuff(β0), the initial Lasso βinit (for the noiseless case, see

(7.2) for its definition) will select variable (s+ 1), and

βs+1,init =
ρ
√
s− 1

1− ρ2
λinit ≍

√
sλinit.

Furthermore,

βj,init = β0
j − 1− ρ/

√
s

1− ρ2
λinit, j ∈ Strue.

Hence, with

wj =
1

|βj,init|
, ∀ j,

we have
δ∞ ≍ √

sλinit,

and for β0 > 2λinit,
‖wStrue

‖2 ≍
√
s/β0.

It follows from the weighted irrepresentable condition (Lemma 5.6) that under
the beta-min condition λinitλadap = O(β2

0), we need the lower bound

sλinit = Osuff(β0)

for exact variable selection with the adaptive Lasso. This corresponds to the
upper bound of Corollary 3.2, so that the bounds are sharp.

6. Conclusions

We present some comparable bounds for the adaptive Lasso and the thresholded
Lasso with refitting and we also compare them to the ordinary Lasso. The
framework of our analysis allows for misspecified linear models whose best linear
projection is not necessarily sparse and with possibly small non-zero regression
coefficients, i.e., many weak variables. This setting is much more realistic than
the usual high-dimensional framework where the model is true with only a few
but strong variables.

Estimating the support S0 of the non-zero coefficients is a hard statistical
problem. The irrepresentable condition, which is essentially a necessary condi-
tion for exact recovery of the non-zero coefficients by the one-step Lasso, is much
too restrictive in many cases. In this paper, our main focus is on having O(s0)
false positives while achieving good prediction and estimation. This is inspired
by the behavior of the “ideal” ℓ0-penalized estimator.

We have examined thresholding the Lasso with least squares refitting and the
adaptive Lasso. Our main conclusion is that both methods can have about the
same prediction and estimation error as the one-stage ordinary Lasso, and that
both gain over the one-stage Lasso in the sense of having less false positives. We
provide additional support of this point by also proving a lower bound for the
one-stage Lasso with respect to false positive selections. Moreover, according to
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our theory (and not exploiting the fact that the adaptive Lasso mimics thresh-
olding and refitting using an “oracle” threshold), thresholding with least squares
refitting and the adaptive Lasso perform equally well, even when considered at
a rather fine scale. Our bounds for the adaptive Lasso are more sensitive to
small (minimal) restricted eigenvalues or small minimal sparse eigenvalues, or
large sparse maximal eigenvalues. Both thresholded and adaptive Lasso benefit
from a situation with large non-zero coefficients of the oracle, i.e., from beta-min
conditions. For exact variable selection, the adaptive Lasso however needs more
severe beta-min conditions than thresholding.

We do not give a full account of the tightness of our bounds for both two-step
methods. One can however construct (idealized) examples where the bounds are
sharp in order of magnitude (as a function of λinit and s0). Moreover, the thresh-
olded Lasso allows a rather direct analysis, and we believe there is little room for
improvement of the bounds for this method. The analysis of the adaptive Lasso
is more involved. Our comparison to thresholding might not do justice to the
adaptive Lasso. Indeed, we have not fully exploited the finer oracle properties
of the adaptive Lasso.

In practice the tuning parameters are often chosen by cross validation, which
may correspond to a choice giving the smallest prediction error. It is not within
the scope of this paper to prove that with cross validation, thresholding and
the adaptive Lasso again have comparable theoretical performance, although
we do believe this to be typically the case. As for the computational aspect,
we observe the following. For the solution path for all λadap, the adaptive Lasso

needs O(n|Ŝinit|min(n, |Ŝinit|)) essential operation counts. The same order of op-
eration counts is needed when computing the thresholded Lasso for the whole
solution path over all λthres. Therefore, the two methods are also computation-
ally comparable.

7. The noiseless case

Consider a fixed target f0 = fβtrue
∈ L2(Q). Let S ⊂ {1, . . . , p} and let fS :=

argminf=fβS
‖fβS

− f0‖ be the projection of f0 on the |S|-dimensional linear

space spanned by the variables {ψj}j∈S . We denote the coefficients of fS by bS ,
i.e.,

fS =
∑

j∈S

ψjb
S
j = fbS .

The oracle set S0 is defined by trading off dimension against fit, namely

S0 := arg min
S⊂Strue

{

‖fS − f0‖2 + 3λ2init|S|
φ2(2, S)

}

, (7.1)

where the constants are now from Theorem 7.1 (or its Corollary 9.1). We call
fS0

the oracle, and we let b0 := bS0 , i.e., fS0
= fb0 . Also, we let s0 := |S0| and

assume s0 ≥ 1.
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For simplicity, we assume throughout that

‖fS0
− f0‖2 = O(λ2inits0/φ

2(2, S0)),

which roughly says that the approximation error does not overrule the penalty
term.

The initial Lasso is

βinit := argmin
β

{

‖fβ − f0‖2 + λinit‖β‖1
}

. (7.2)

We assume that the tuning parameter λinit is set at some fixed value. Of course,
in the noiseless case, the optimal - in terms of prediction error - value for λinit
is λinit = 0. However, in the noisy case, a strictly positive lower bound for λinit
is dictated by the noise level. Write

finit := fβinit
, Sinit := {j : βj,init 6= 0}, δinit := ‖finit − f0‖. (7.3)

Let for δ > 0,
Sδ
init := {j : |βj,init| > δ}.

Then fSδ
init

= f
bS

δ
init

is the refitted Lasso after thresholding at δ. Note that we

express explicitly the dependence of the thresholded estimator on the threshold
level, which we now call δ (instead of λthres as we did in the introduction).
The reason for this is that the analysis of the adaptive Lasso will go via the
thresholded Lasso with a choice of the threshold δ that trades off prediction
error against estimation error (see (9.8) in the proof of Theorem 7.4).

The adaptive Lasso is

βadap := argmin
β







‖fβ − f0‖2 + λinitλadap

p
∑

j=1

|βj |
|βj,init|







.

The second stage tuning parameter λadap is again assumed to be strictly positive.
We denote the resulting adaptive variants of (7.3) by

fadap := fβadap
, Sadap := {j : βj,adap 6= 0}, δadap := ‖fadap − f0‖.

As the initial and adaptive Lasso are special cases of the weighted Lasso,
many of the results in Subsections 7.2, 7.3 and 7.4 are consequences of those
for the weighted Lasso as studied in Subsection 7.1. As in Subsection 5.4, the
weighted Lasso is defined as

βweight := argmin
β







‖fβ − f0‖2 + λinitλweight

p
∑

j=1

wj |βj |







,

where the {wj}pj=1 are non-negative weights. We set fweight := fβweight
, Sweight :=

{j : βj,weight 6= 0}. Moreover, we define

‖wS‖22 :=
∑

j∈S

w2
j , w

min
Sc := min

j /∈S
wj .
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By the reparametrization β 7→ γ := Wβ, where W = diag(w1, . . . , wp), one
sees that the weighted Lasso is a standard Lasso with Gram matrix

Σweight :=W−1ΣW−1.

We emphasize however that Σweight is generally not normalized, i.e., generally
diag(Σweight) 6= I.

7.1. The weighted Lasso

We first present a bound for the prediction and estimation error and then con-
sider variable selection.

Theorem 7.1. Let S be an index set with cardinality s := |S|, satisfying for
some constants M ≥ 0 and L > 0,

wmin
Sc ≥M/L, ‖wS‖2/

√
s ≤M.

Then for all β, we have

‖fweight − f0‖2 ≤ 2‖fβS
− f0‖2 +

6λ2initλ
2
weightM

2s

φ2(2L, S)
.

Moreover, for all β, we have

√
s‖(βweight)S − βS‖2 + ‖(βweight)Sc‖1/L ≤ 3‖fβS

− f0‖2
λinitλweightM

+
3λinitλweightMs

φ2(2L, S)
.

Finally, it holds for all β, that

‖βweight − βS‖2 ≤ 6(L ∨ 1)‖fβS
− f0‖2

λinitλweightM
√
s0

+
6LλinitλweightM(s+ s0)

φ2(2L, S, s+ s0)
√
s0

.

We will apply the above theorem with S the set of the smaller weights.

Corollary 7.1. Fix some arbitrary δ > 0, and let

Sδ
weight ⊃ {j : wj < 1/δ}, (Sδ

weight)
c ⊃ {j : wj > 1/δ}.

The indices j with wj = 1/δ can be put in either Sδ
weight or in its complement.

Suppose that for some α ≥ 0,

|Sδ
weight\S0| ≤ αs0.

Taking S = Sδ
weight, L = 1 and M = 1/δ in Theorem 7.1, we get that for all β,

‖fweight − f0‖2 ≤ 2‖fβ
Sδ
weight

− f0‖2 +
6λ2initλ

2
weight(1 + α)s0

δ2φ2min(2, S0, (1 + α)s0)
.
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Moreover,

‖βweight − βSδ
weight

‖1 ≤
3δ‖fβ

Sδ
weight

− f0‖2

λinitλweight
+

3λinitλweight(1 + α)s0
δφ2(2, S0, (1 + α)s0)

,

and

‖βweight − βSδ
weight

‖2 ≤
6δ‖fβ

Sδ
weight

− f0‖2
√
s0λinitλweight

+
6λinitλweight(2 + α)

√
s0

δφ2min(2, S0, (2 + α)s0)
.

In the case α = 0, one may replace in the last bound, φ2min(2, S0, (2 + α)s0) =
φmin(2, S0, 2s0) by φ(2, S0, 2s0).

Our next theme is variable selection. The Karush-Kuhn-Tucker (KKT) con-
ditions (see [3]) can be invoked to derive Lemma 7.1 below, where we use the
notation

‖(1/w)S‖22 :=
∑

j∈S

1

w2
j

.

Lemma 7.1. It holds that

|Sweight\S0|2 ≤ 4Λ2
max(Sweight\S0)

‖fweight − f0‖2
λ2weight

‖(1/w)Sweight\S0
‖22

λ2init
. (7.4)

If |Sweight\S0| > s0, we have

|Sweight\S0| ≤ 8Λ2
sparse(s0)

‖fweight − f0‖2
λ2weights0

‖(1/w)Sweight\S0
‖22

λ2init
.

7.2. The initial Lasso

Recall that
δinit := ‖finit − f0‖.

For q ≥ 1, we define
δq := ‖βinit − b0‖q.

Theorem 7.2. The prediction error of the initial Lasso has

δ2init =

[

1

φ2(2, S0)

]

O(λ2inits0),

and its estimation error has

δ1 =

[

1

φ2(2, S0)

]

O(λinits0), δ2 =

[

1

φ2(2, S0, 2s0)

]

O(λinit
√
s0).

The initial estimator has number of false positives

|Sinit\S0| =
[

Λ2
max(Sinit\S0)

φ2(2, S0)

]

O(s0).
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Considering the variable selection result, it is clear that Λ2
max(Sinit\S0) ≤

Λ2
max. Without further conditions, this cannot be refined, and the eigenvalue

Λ2
max can be quite large (yet having the minimal eigenvalue of Σ bounded away

from zero). Therefore, the result of Theorem 7.2 needs further conditions for
good variable selection properties of the initial Lasso.

7.3. Thresholding the initial estimator

Variable selection results by thresholding are not difficult to obtain:

|Sδ
init\S0|1/q ≤ δq

δ
.

Hence, for δ ≥ δ1/s0 ∧ δ2/
√
s0, we get for q ∈ {1, 2},

|Sδ
init\S0| ≤ s0. (7.5)

If the coefficients of the oracle are sufficiently large, thresholding will improve
the prediction and estimation error. Here, we do not impose such minimal size
conditions. The estimation error of the thresholded Lasso is then still easy to
assess. Our bound for the prediction error, however, now depends on maximal
sparse eigenvalues.

At this stage, we invoke the noiseless counterparts of Conditions A and AA.
Condition a We have λinit/φ

2(2, S0) = Osuff(δ).
Condition aa We have λinit/φ

2(2, S0, 2s0) ≍suff δ.

Theorem 7.3. Assume Condition a. Then

‖fSδ
init

− f0‖2 = Λ2
sparse(s0)

[

δ2

λ2init

]

O(λ2inits0),

‖bSδ
init − b0‖2 =

Λsparse(s0)

φsparse(S0, 2s0)

[

δ

λinit

]

O(λinit
√
s0),

and

|Sδ
init\S0| =

[

1

φ4(2, S0, 2s0)

][

λ2init
δ2

]

O(s0).

The expressions for the prediction and estimation error lead to favoring the
choice λinit/φ

2(2, S0, 2s0) ≍suff δ of Condition aa, which yields

‖fSδ
init

− f0‖2 =

[

Λ2
sparse

φ4(2, S0, 2s0)

]

O(λ2inits0),

‖bSδ
init − b0‖2 =

[

Λsparse(s0)

φsparse(S0, 2s0)φ2(2, S0, 2s0)

]

O(λinit
√
s0),

and
|Sδ

init\S0| = O(s0).
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7.4. The adaptive Lasso

Observe that the adaptive Lasso is somewhat more reluctant than thresholding
and refitting: the latter ruthlessly disregards all coefficients with |βj,init| ≤ δ
(i.e., these coefficients get penalty ∞), and puts zero penalty on coefficients
with |βj,init| > δ. The adaptive Lasso gives the coefficients with |βj,init| ≤ δ a
penalty of at least λinit(λadap/δ) and those with |βj,init| > δ a penalty of at most
λinit(λadap/δ). (Looking ahead, we will actually need to choose λadap ≥ δ in the
noisy case, see Theorem 3.3.)

Recall
δadap := ‖fadap − f0‖.

The noiseless versions of Conditions B and BB are:
Condition b We have

λinit

[

φmin(2, S0, 2s0)Λsparse(s0)

φ4(2, S0, 2s0)

]

= Osuff(λadap).

Condition bb We have

λinit

[

φmin(2, S0, 2s0)Λsparse(s0)

φ4(2, S0, 2s0)

]

≍suff λadap.

Note the slight discrepancy with the noisy versions: the noiseless versions are
somewhat better. This is due to the fact that we also will need to choose λadap
large enough to handle the noise.

Theorem 7.4. Assume Condition b. Then

δ2adap =

[

Λsparse(s0)

φmin(2, S0, 2s0)

]

λadap
λinit

O(λ2inits0),

and

‖βadap − b0‖1 =

[

Λ
1/2
sparse(s0)

φ
3/2
min(2, S0, 2s0)

]
√

λadap
λinit

O(λinits0),

and

‖βadap − b0‖2 =

[

Λ
1/2
sparse(s0)φ

1/2
min(2, S0, 2s0)

φ2min(2, S0, 3s0)

]
√

λadap
λinit

O(λinit
√
s0),

and

|Sadap\S0| =
Λ2
sparse(s0)

φ4(2, S0, 2s0)

[

Λsparse(s0)

φmin(2, S0, 2s0)

]

λinit
λadap

O(s0).

Considering the bounds for the prediction and estimation error leads to favoring
the choice of Condition bb, giving

δ2adap =

[

Λ2
sparse(s0)

φ4(2, S0, 2s0)

]

O(λ2inits0),
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‖βadap − b0‖1 =

[

Λsparse(s0)

φmin(2, S0, 2s0)φ2(2, S0, 2s0)

]

O(λinits0),

‖βadap − b0‖2 =

[

Λsparse(s0)φmin(2, S0, 2s0)

φ2min(2, S0, 3s0)φ2(2, S0, 2s0)

]

O(λinit
√
s0),

and

|Sadap\S0| =
Λ2
sparse(s0)

φ2min(2, S0, 2s0)
O(s0).

8. Adding noise

After introducing the notation (Subsection 8.1), we will give the extension of
the results for the weighted Lasso to the noisy case1 (see Theorem 8.1). Once
this is done, results for the initial Lasso, its thresholded version, and for the
adaptive Lasso, follow in the same way as in Subsections 7.2, 7.3 and 7.4. The
new point is to take care that the tuning parameters are chosen in such a way
that the noisy part due to variables in Sc

0 are overruled by the penalty term. In
our situation, this can be done by taking λinit, as well as λadap ≥ λinit sufficiently
large.

We provide the result for the noisy weighted Lasso in Subsection 8.2. The-
orems 3.1, 3.2 and 3.3 follow from this and from some further results for the
noisy case (their proofs are in Subsection 9.5). In Section 8.3, we look at more
restrictive sparse eigenvalue conditions in the spirit of [34].

8.1. Notation for the noisy case

Consider an n-dimensional vector of observations

Y = f0 + ǫ.

where f0 := (f0(X1), . . . , f
0(Xn))

T , with X1, . . . , Xn co-variables in some space
X . Let {ψj}pj=1 be a given dictionary.

The regression f0, the dictionary {ψj}, and fβ :=
∑

ψjβj are now considered
as vectors in R

n. The norm we use is the normalized Euclidean norm

‖f‖ := ‖f‖n := ‖f‖2/
√
n : f ∈ Rn,

induced by the inner product

(f, f̃)n :=
1

n

n
∑

i=1

fif̃i, f, f̃ ∈ R
n.

1Of separate interest is a direct comparison of the noisy initial Lasso with the noisy ℓ0-
penalized estimator. Replacing f0 by Y in Corollary 9.1 in Subsection 9.3 (and dropping the
requirement S ⊂ Strue) gives

‖Y − f̂init‖
2

n ≤ 2min
S

{

‖Y − f̂S‖
2

n +
3λ2

init
|S|

φ2(2, S)

}

.
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In other words, the probability measure Q is now Q := Qn =
∑n

i=1 δXi
/n, the

empirical measure of the co-variables X1, . . . , Xn. With some abuse of notation,
we also write

‖Y − f‖2n := ‖Y − f‖22/n,
and

(ǫ, f)n :=
1

n

n
∑

i=1

ǫif(Xi).

The design matrix X is

X = (ψ1, . . . , ψp).

We write the eigenvalues involved as before, e.g., Λmax is the largest eigenvalue
of the empirical Gram matrix Σ̂ := XTX/n, and φ2(L, S,N) is the (L, S,N)-
restricted eigenvalue of Σ̂. The projections in L2(Qn) are also written as before,
i.e.

fS := XbS := arg min
f=XβS

‖f − f0‖n.

The ℓ0-sparse projection fS0
=
∑

j∈S0
b0j is now defined with a larger constant

(7 instead of 3) in front of the penalty term, and a larger constant (L = 6 instead
of L = 2) in the restrictions of the restricted eigenvalue condition:

S0 := arg min
S⊂Strue

{

‖fS − f0‖2n +
7λ2init|S|
φ2(6, S)

}

(compare with formula (7.1)).
The weighted Lasso is

β̂weight = argmin
β

{

‖Y − fβ‖2n + λinitλweight

p
∑

j=1

wj |βj |
}

. (8.1)

Let
f̂weight := fβ̂weight

, Ŝweight := {j : β̂j,weight 6= 0}.

The initial and adaptive Lasso are defined as in Section 1. We write f̂init :=
fβ̂init

and f̂adap := fβ̂adap
, with active sets Ŝinit := {j : β̂j,init 6= 0} and Ŝadap :=

{j : β̂j,adap 6= 0}, respectively. Let

δ̂2init := ‖fβinit
− f0‖2n,

be the prediction error of the initial Lasso, and and, for q ≥ 1,

δ̂q := ‖β̂init − b0‖q

be its ℓq-error. Denote the prediction error of the adaptive Lasso by

δ̂2adap := ‖fβ̂adap
− f0‖2n.
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The least squares estimator using only variables in S is also written with a
“hat”:

f̂S = fb̂S := arg min
f=fβS

‖Y − fβS
‖n.

A threshold level will be denoted by δ, instead of λthres as we do in Section
1. The reason is again that we need to explicitly express dependence on the
threshold level. We define, for any threshold δ > 0,

Ŝδ
init := {j : |β̂j,init| > δ}.

The refitted version after thresholding, based on the data Y, is f̂Ŝδ
init

.

To handle the (random) noise, we define the set

T :=

{

max
1≤j≤p

4|(ǫ, ψj)n| ≤ λinit

}

.

This is the set where the (empirical) correlations between noise and design is
“small”.

Here λinit is chosen in such a way that

IP(T ) ≥ 1− α

where (1− α) is the confidence we want to achieve.

8.2. The noisy weighted Lasso

Theorem 8.1. Suppose we are on T . Let S be a set with cardinality s = |S|,
which satisfies for some positive L and M

λweight(w
min
Sc ∧M) ≥ 1,

and
wmin

Sc ≥M/L, ‖wS‖2/
√
s ≤M.

Then for all β,

‖f̂weight − f0‖2n ≤ 2‖fβS
− f0‖2n +

14λ2initλ
2
weightM

2s

φ2(6L, S)
,

and

√
s‖(β̂weight)S − βS‖2 + ‖(β̂weight)Sc‖1/L ≤ 5‖fβS

− f0‖2n
λinitλweightM

+
7λinitλweightMs

φ2(6L, S)
,

and
‖β̂weight − βS‖2

≤ 10L‖fβS
− f0‖2n

Mλinitλweight
√
s0

+
14Lλ2initλ

2
weightM(s+ s0)

φ2(6L, S, s+ s0)λinitλweight
√
s0
.
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Moreover, under the condition λweightw
min
Sc ≥ 1,

|(Ŝweight ∩ Sc)\S0|2

≤ 16Λ2
max((Ŝweight ∩ Sc)\S0)

‖f̂weight − f0‖2n
λ2weight

‖(1/w)Ŝweight\S0
‖22

λ2init
.

When |(Ŝweight ∩ Sc)\S0| > s0, this implies

|(Ŝweight ∩ Sc)\S0| ≤ 32Λ2
sparse(s0)

‖f̂weight − f0‖2n
λ2weights0

‖(1/w)Ŝweight\S0
‖22

λ2init
.

8.3. Another look at the number of false positives

Here, we discuss a refinement, assuming a condition corresponding to the one
used in [34].

Condition D It holds for some s∗ ≥ s0, that

D(s∗, s0) :=

{

Λ2
sparse(s∗)s0
φ2(6, S0)s∗

}

= Osuff(1).

Lemma 8.1. Suppose we are on T . Then under Condition D,

|Ŝinit\S0| =
[

Λ2
sparse(s∗)

φ2(6, S0)

](

1− D(s∗, s0)

Osuff(1)

)−1

O(s0).

Moreover, under Condition B,

|Ŝadap\S0| = Λsparse(s∗)

[

Λsparse(s0)

φmin(6, S0, 2s0)φ4(6, S0, 2s0)

]1/2
√

λinit
λadap

O(s0)

+

[

Λsparse(s0)φ
2(6, S0)

φmin(6, S0, 2s0)φ4(6, S0, 2s0)

]

D(s, s∗)
λinit
λadap

O(s0).

Under Condition BB, this becomes

|Ŝadap\S0| =
[

Λsparse(s∗)
φ(6, S0)

][

φ2min(6, S0, 2s0)φ
2(6, S0)

φ2(6, S0, 2s0)

]1/2

O(s0) (8.2)

+

[

φ2min(6, S0, 2s0)φ
2(2, S0)

φ4(6, S0, 2s0)

]

D(s∗, s0)O(s0).

Under Condition D, the first term in the right hand side of (8.2) is generally
the leading term. We thus see the adaptive Lasso replaces the potentially very
large constant

(

1− D(s∗, s0)
Osuff(1)

)−1
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in the bound for the number of false positives of the initial Lasso by

[

φ2min(6, S0, 2s0)φ
2(6, S0)

φ4(6, S0, 2s0)

]1/2

,

a constant which is close to 1 if the φ’s do not differ too much.
Admittedly, Condition D is difficult to interpret. On the one hand, it wants

s∗ to be large, but on the other hand, a large s∗ also can render Λsparse(s∗)
large. We refer to [34] for examples where Condition D is met.

9. Proofs

We present five subsections, containing respectively the proofs for Subsection
5.3.2, for Subsection 5.4, Section 7, Section 8, and finally Section 3.

9.1. Proofs for Subsection 5.3.2 with the realistic example giving a

lower bound for the Lasso

Proof of Lemma 5.5. By the Karush-Kuhn-Tucker (KKT) conditions (see [3]),
for ψ = (ψ1, . . . , ψp),

Σ̂(β̂init − β0) = −λinitτ̂init + ψT ǫ/n,

where ‖τ̂init‖∞ ≤ 1 and for j ∈ Ŝinit, τ̂j,init = sign(β̂j,init). It follows that

(1 − ρ)(β̂init − β0) = (1 − ρ)Σ̂−1

(

−λinitτ̂init + ψT ǫ/n

)

= −λinitτ̂init + ψT ǫ/n+ aι,

with

a =
ρ

1− ρ+ ρp

(

λinitι
T τ̂init − ιTψT ǫ/n

)

.

Because β0
j is positive and sufficiently large, we know that all β̂j,init with

j ∈ Strue are strictly positive.
We now show that when a ≥ 0, then all β̂j,init with j ∈ Ŝinit\Strue are positive.

Fix some j ∈ Ŝinit\Strue. We then have |τ̂j,init| = 1. If β̂j,init < 0, we must have
τ̂j,init = −1. So we get

0 > (1− ρ)β̂j,init = λinit + ψT
j ǫ/n+ a ≥ a.

When a ≥ 0 this is a contradiction.
Similarly, suppose that τ̂j,init = 1 for some j ∈ Sc

true. Then

0 < (1− ρ)β̂j,init = −λinit + ψT ǫ/n+ a ≤ a.
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So then a > 0. It follows that a can only be negative if all β̂j,init with j /∈ Strue

are negative.
Let us consider the case a < 0 further, and show it cannot be. Write

wj = λinit + ǫTψj/n.

Because |ǫTψj |/n < λinit for all j, it holds that wj > 0. Furthermore,

a =
ρ

1− ρ+ ρŝ

[

∑

j∈Strue

wj −
∑

j∈Ŝ\Strue

wj

]

.

For j ∈ Ŝinit\Strue

0 > (1− ρ)β̂j,init = wj + a,

so that

0 >
∑

j∈Ŝ\Strue

wj +
ρ(ŝ− strue)

1− ρ+ ρŝ

[

∑

j∈Strue

wj −
∑

j∈Ŝ\Strue

wj

]

=
ρ

1− ρ+ ρŝ

[

(ŝ− strue)
∑

j∈Strue

wj + (1− ρ+ ρs)
∑

j∈Ŝ\Strue

wj

]

≥ 0.

This is a contradiction, and hence a ≥ 0. The result now follows from writing
down the KKT solution given that the β̂j ’s are all strictly positive for j ∈ Ŝinit

(and zero outside Ŝinit).

We now consider more precisely to what extent false positives contribute to
a better fit to the data.

Lemma 9.1. Assume the conditions of Lemma 5.5. Define for all j,

wj := λinit − ǫTψj/n,

and for all index sets S,

w̄S :=
∑

j∈S

wj/|S|.

Then on T , Ŝinit\Strue maximizes over all N ⊂ Sc
true, the expression

∑

j∈N
(wj − w̄N )2

+
(1− ρ)struew̄

2
Strue

+ (1− ρ)Nw̄2
N + ρNstrue(w̄Strue

− w̄N )2

1− ρ+ ρ(strue +N)
,

under the restriction that for all j ∈ N ,

ρstruew̄Strue
− (1− ρ+ ρstrue)w̄N > (1− ρ+ ρ(strue +N))(wj − w̄N ). (9.1)
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Here N := |N |.
Alternatively, on T , Ŝinit\Strue maximizes over all N ⊂ Strue the expression

+
1− ρ+ ρstrue

ρ

[

1− 1− ρ+ ρstrue
1− ρ+ ρ(strue +N)

]

(w̄Strue
− w̄N )2 +

∑

j∈N
(wj − w̄N )2

(9.2)

− (1− ρ)(N − strue)w̄
2
Strue

− 2(1− ρ)Nw̄Strue
w̄N

1− ρ+ ρ(strue +N)

under the restriction (9.1) for all j ∈ N .

We note that restriction (9.1) is needed to ensure that the solution (5.2) for

β̂j,init is indeed strictly positive.

Proof of Lemma 9.1. Let us use the short-hand notation S := Strue, s = strue,
Ŝ = Ŝinit, N̂ := Ŝ\S, and N̂ = |N̂ |, and write λ := λinit, and β̂ = β̂init.
Moreover, let

w̄1 := w̄S , w̄2 := w̄N̂ .

By definition, β̂ has

‖Y −Xβ̂‖22/n+ 2λ‖β̂‖1 − 2λ‖β0‖1 − ‖ǫ‖22/n

at its minimum value. We consider this expression now in detail. First note that
on T , it is equal to

(β̂Ŝ − β0
Ŝ
)T Σ̂1,1(Ŝ)(β̂Ŝ − β0

Ŝ
)− 2ǫTX(β̂ − β0)

+2λ‖β̂‖1 − 2λ‖β0‖1,

since by Lemma 5.5, Ŝ ⊃ S. Here, we use the notation β̂Ŝ = {β̂j}j∈Ŝ and

β0
Ŝ
= {β0

j }j∈Ŝ .
Also by Lemma 5.5, on T ,

β̂Ŝ − β0
Ŝ
= −Σ̂−1

1,1(Ŝ)wŜ ,

where wŜ = {wj}j∈Ŝ . So

Σ̂1,1(Ŝ)(β̂Ŝ − β0
Ŝ
) = −wŜ ,

and therefore

(β̂Ŝ − β0
Ŝ
)T Σ̂1,1(Ŝ)(β̂Ŝ − β0

Ŝ
) = wT

Ŝ
Σ̂−1

1,1(Ŝ)wŜ .

We further see that on T ,

2ǫTX(β̂ − β0) = 2
∑

j∈Ŝ

(ǫTψj/n)(−wj + a).
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Since β̂j ≥ 0,

‖β̂‖1 =
∑

j∈Ŝ

β̂j.

Similarly

‖β0‖1 =
∑

j∈Ŝ

β0
j ,

where we again used Ŝ ⊃ S. Therefore

−2ǫTX(β̂ − β0) + 2λ‖β̂‖1 − 2λ‖β0‖1

= −2
∑

j∈Ŝ

(ǫTψj/n)(β̂j − β0
j ) + 2λ

∑

j∈Ŝ

(β̂j − β0
j )

= 2
∑

j∈Ŝ

wj(β̂j − β0
j ) = 2wT

Ŝ
(β̂Ŝ − β0

Ŝ
) = −2wT

Ŝ
Σ−1

1,1(Ŝ)wŜ .

We thus derived that

‖Y −Xβ̂‖22/n+ 2λ‖β̂‖1 − 2λ‖β0‖1 − ‖ǫ‖22/n = −wT
Ŝ
Σ−1

1,1(Ŝ)wŜ

= − 1

1− ρ

[

∑

j∈Ŝ

w2
j −

ρ

1− ρ+ ρŝ
(sw̄1 + N̂w̄2)

2

]

. (9.3)

Write

∑

j∈Ŝ

w2
j =

∑

j∈S

(wj − w̄1)
2 +

∑

j∈N̂

(wj − w̄2)
2 + sw̄2

1 + N̂w̄2
2 .

The expression in the square brackets in (9.3) then becomes

∑

j∈S

(wj − w̄1)
2 +

∑

j∈N̂

(wj − w̄2)
2 + sw̄2

1 + N̂w̄2
2 −

ρ

1− ρ+ ρŝ
(sw̄1 + N̂w̄2)

2

=
∑

j∈S

(wj − w̄1)
2 +

∑

j∈N̂

(wj − w̄2)
2

+
(1−ρ+ρ(s+ N̂))sw̄2

1 +(1−ρ+ρ(s+ N̂))N̂w̄2
2 − ρ(s2w̄2

1 + N̂2w̄2
2 +2sN̂w̄1w̄2)

1− ρ+ ρ(s+ N̂)

=
∑

j∈S

(wj − w̄1)
2 +

∑

j∈N̂

(wj − w̄2)
2

+
(1− ρ)sw̄2

1 + (1− ρ)N̂w̄2
2 + ρsN̂(w̄1 − w̄2)

2

1− ρ+ ρŝ
.

This proves the first result.
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For the second result, we introduce

w̄0 := w̄1 − w̄2.

Then
(1 − ρ)sw̄2

1 + (1− ρ)N̂w̄2
2 + ρsN̂(w̄1 − w̄2)

2

1− ρ+ ρŝ

=
(1− ρ)ŝw̄2

1 − 2(1− ρ)N̂w̄1w̄0 + (1 − ρ+ ρs)N̂w2
0

1− ρ+ ρŝ

=
(1− ρ)ŝw̄2

1 − 2(1− ρ)N̂w̄1w̄0

1− ρ+ ρŝ
+

1− ρ+ ρs

ρ

[

1− 1− ρ+ ρs

1− ρ+ ρŝ

]

w̄2
0 .

From Lemma 5.5, in particular the restriction (9.1) for all j ∈ N , it can be
seen that if there are false positives j, the corresponding error terms ǫTψj/n
cannot vary much, i.e., they have to be concentrated around their average. We
will consider two types of concentration.

Definition 1. Let v1, . . . , vm be real-valued random variables. We say that a
probability concentration inequality holds for v1, . . . , vm if for some constant
bm, and constants u and 0 < θ < 1 not depending on m, one has

IP

(

max
1≤j≤m

vj ∈ [bm − u, bm + u]

)

> θ.

The value u = um can also be taken dependent on m, with um → 0 as
m→ ∞. Then possibly θ = θm will also tend to zero. This leads to the following.

Definition 2. Let v1, . . . , vm be real-valued random variables. We say that a
density concentration inequality holds for v1, . . . , vm if for some constant bm,
um > 0 and θm, one has

IP( max
1≤j≤m

vj ∈ [bm − um, bm + um]) ≥ θm.

Lemma 9.2. For m ≤ n − 1 sufficiently large, and 0 < θ < 1 and t > 0 not
depending on m, the following concentration inequality holds for v1, . . . , vm with
vj = ǫT ψ̃j/

√
n,

bm =
√

2 logm− log logm+ log(4π)

2
√
2 logm

,

and um = t/
√
2 logm.

Proof of Lemma 9.2. We note that v1, . . . , vm are i.i.d. N (0, 1)-distributed. The
lemma follows from a result from extreme value theory, which says that for
v1, . . . , vm, . . . a sequence of i.i.d. N (0, 1)-distributed random variables,

√

2 logm

(

max
1≤j≤m

vj −
√

2 logm+
log logm+ log(4π)

2
√
2 logm

)

converges weakly to a Gumbel distribution, see for example [14].
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We get more refined results if in fact um decreases faster than t/
√
2 logm,

when θ = θm does not decrease fast. We do not elaborate on this.
By repeated application of the concentration result, one can show that with

positive probability, there are many vj := ǫT ψ̃j/
√
n, j ∈ Sc

true, which are almost
as large as maxj∈Sc

true
vj . We call this an applied concentration result. The idea

is to divide the set Sc
true into 2N sets S1, . . . , S2N of size ≍ n/N . Within each

set Sk, we apply Lemma 9.2 to the random variables vj , j ∈ Sk. We then get 2N
random variables maxj∈Sk

vj . With positive probability, at least half of them
are in the set [bm − um, bm + um], where m ≍ n/N and bm and um are as in
Lemma 9.2.

Applied Concentration Result Define n0 := n− 1− strue. Let N ≤ n0/2
be an integer with

log⌊n0/(2N)⌋ ≥ 1

2
logn.

Let vj := ǫT ψ̃j/
√
n, j = 1, . . . , n− 1, and vn := ǫT z/

√
n. Define

cn :=
√

2(1− ρ) log⌊n0/(2N)⌋ − (1− ρ)(log log⌊n0/(2N)⌋+ log(4π))

2
√

2 log⌊n0/(2N)⌋
+
√
ρvn.

There exist constants C2 > 0 and 0 < α0 < 1 not depending on n, such that
for tn = C2/

√
logn, there is with probability at least α0 as set N ⊂ Sc

rue with
cardinality N , such that for all j ∈ N ,

cn − tn ≤ ǫTψj/
√
n ≤ cn + tn. (9.4)

We are now ready to show that there are sets N that satisfy the restriction
(9.1) for all j ∈ N .

Lemma 9.3. Let λǫ = λǫ,n, be a positive constant depending on n, and C1, C3, C4

be positive constants such that with probability at least 1 − α1, where α1 < α0,
with α0 given in the Applied Concentration Result,

max
1≤j≤p

|ǫTψj |/n ≤ λǫ,

∣

∣

∣

∣

∑

j∈Strue

ǫTψj/n

∣

∣

∣

∣

≤ 1

2(1 + C4)
λinitstrue.

Take
λinit ≥ C1λǫ.

Define n0 := n− 1− strue. Let N ≤ n0/2 be an integer with

log⌊n0/(2N)⌋ ≥ 1

2
logn.

and

N <
strue

√
n lognλinit

4(1 + C4)C2
.

Assume moreover that for tn and cn given in the Applied Concentration Result
with such a value for N , with probability at least 1− α2, where α2 < α0 − α1,

cn − tn ≥ √
nλinit/C3,
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and that
ρstrue

1− ρ+ ρstrue
>

(

1 + C1

C1

)(

C3 − 1

C3

)

.

Assume finally that β0
j > Cλinit for all j ∈ Strue with C a sufficiently large

positive constant depending only on C1. Then with probability at least α0−α1−
α2, there is a set N ⊃ Strue with size N satisfying the restriction (9.1) of Lemma
9.1 for all j ∈ N .

Proof of Lemma 9.3. We have to show that for all j ∈ N ,

ǫTψj/n− λinit

+
ρ

1− ρ+ ρ(strue +N)

(

λinit(N + strue)−
∑

j∈N∪Strue

ǫTψj/n

)

is strictly positive. That is, we have to show that for all such j,

Bj := ǫTψj/n− λinit

+
ρ

1− ρ+ ρ(N + strue)

(

λinitstrue −
∑

j∈Strue

ǫTψj/n+ λinitN −
∑

j∈N
ǫTψj/n

)

is strictly positive. Inserting the assumed bounds and the Applied Concentration
Result gives

Bj ≥ [cn/
√
n− tn/

√
n− λinit]

+
ρ
(

λinitstrue − 1
2(1+C4)

λinitstrue +N [λinit − cn/
√
n+ tn/

√
n]
)

1− ρ+ ρ(N + strue)

− 2ρNtn/
√
n

1− ρ+ ρ(N + strue)
.

This can be reorganized to

(

1− ρ+ ρ(N+ strue)

)

Bj ≥ λinitρstrue− (1− ρ+ ρstrue)[λinit− cn/
√
n+ tn/

√
n]

− ρ

2(1 + C4)
λinitstrue − 2ρtnN/

√
n

:= λinitρstrue − (I + II + III),

where
I = (1 − ρ+ ρstrue)[λinit − cn/

√
n+ tn/

√
n],

and
II =

ρ

2(1 + C4)
λinitstrue,

and
III = 2ρtnN/

√
n.
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Clearly,

λinitρstrue − (I + II + III) ≥ λinitρstrue − (1 + C4)max{I/C4, II + III},

Now we verify that

λinitρstrue > (1 + C4)max{I/C4, II + III}.

Since II+ III < 2II if II > III and else II+ III ≤ 2III, it is enough to show
that

λinitρstrue >
1 + C4

C4
I =

1 + C4

C4
(1− ρ+ ρstrue)[λinit − cn/

√
n+ tn/

√
n],

and
λinitρstrue ≥ 2(1 + C4)II = λinitρstrue,

and
λinitρstrue > 2(1 + C4)III = 4(1 + C4)ρtnN/

√
n.

The first follows from cn/
√
n− tn/

√
n ≥ λinit/C3, and our condition

ρstrue
1− ρ+ ρstrue

>

(

1 + C4

C4

)(

C3 − 1

C3

)

.

The second is immediate. For the last one, we use

N < strue

√
nλinit

4(1 + C4)tn
.

Finally, we have all ingredients to prove the main result of Subsection 5.3.2.

Proof of Theorem 5.1. Let N̂ := Ŝinit\Strue. We write (9.2) with general N ⊂
Strue with cardinality N , as I + II + III. So N̂ is a maximizer of I + II + III.

The first term is

I =
1− ρ+ ρstrue

ρ

[

1− 1− ρ+ ρstrue
1− ρ+ ρ(strue +N)

]

(w̄Strue
− w̄N )2.

We argue as follows. It holds that w̄Strue
− λinit = O(1/

√
n). Moreover, in view

of the concentration results, w̄N −λinit can be as large as ≍
√

(logn− logN)/n.
With such a w̄N , we get

(w̄Strue
− w̄N )2 ≍

(

logn− logN

n

)

.

The expression

[

1− 1− ρ+ ρstrue
1− ρ+ ρ(strue +N)

](

logn− logN

n

)
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is maximized as a function of N for N ≍ strue logn. The first term with this
maximizing value is ≍ strue logn/n.

The second term II =
∑

j∈N (wj − w̄N )2 will generally be small when N is

small. Note that n
∑

j∈N (wj − w̄N )2/(1−ρ) is a χ2-random variable with N−1
degrees of freedom. Therefore, it is not difficult to show that

∑

j∈N
(wj − w̄N )2 ≤ (N − 1)(1− ρ)

n
+OIP

(

√

|N | log p
n

)

,

uniformly over all N ⊂ Sc
true. Hence, if N is small, it will also be small (and if

N is large there is chance that it will be large). We see that with values of N =
|N | substantially smaller than strue logn the second term will be substantially
smaller than strue logn/n. Therefore, there is no gain in the second term by
choosing a smaller value than ≍ strue logn for N .

As for the third term

III = − (1− ρ)(N − strue)w̄
2
Strue

− 2(1− ρ)Nw̄Strue
w̄N

1− ρ+ ρ(strue +N)
,

this is of order
O(w̄2

Strue
+ |w̄Strue

w̄N |).
But both |w̄Strue

| as well as |w̄N | are with large probability at most λinit ≍
√

logn/n. Hence, when strue is large enough, this will not be the dominant
term.

Thus, one sees that the overall maximizer N̂ will choose N large, whenever
feasible. As shown in Lemma 9.3, for an appropriate C8, values

N =
struelogn

C8

are with positive probability indeed feasible.

9.2. Proofs for Subsection 5.4 on the weighted irrepresentable

condition

Proof of Lemma 5.6. This is the weighted variant of the first part of Lemma 6.2
in [29].

Proof of Lemma 5.7. We define, as in [29], the adaptive restricted regression

ϑadaptive(S) := max
β∈R(1,S,|S|)

|(fβSc , fβS
)|

‖fβS
‖2 .

Here, (f, f̃) denotes the inner product between f and f̃ as elements of L2(Q).
We will show that

sup
‖τS‖∞≤1

‖W−1
Sc Σ2,1(S)Σ

−1
1,1(S)WSτS‖∞ ≤ ‖wS‖2

√

|S|wmin
Sc

ϑadaptive(S). (9.5)
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It is moreover not difficult to see that ϑadaptive(S) ≤
√

|S|/Λmin(S), so then
the proof of Lemma 5.7 is done.

Define
βS := Σ−1

1,1(S)WSτS .

Then

‖W−1
Sc Σ2,1(S)Σ

−1
1,1(S)WSτS‖∞ = sup

‖γSc‖1≤1

|γTScW−1
Sc Σ2,1(S)Σ

−1
1,1(S)WSτS |

= sup
‖WScβSc‖1≤1

|βT
SΣ2,1(S)βS | = sup

‖WScβSc‖1≤1

|(fβSc , fβS
)|

≤ sup
‖βSc‖1≤1/wmin

Sc

|(fβSc , fβS
)|

= sup
‖βSc‖1≤‖wS‖2‖βS‖2/wmin

Sc

|(fβSc , fβS
)|

‖wS‖2‖βS‖2

= sup
‖βSc‖1≤‖wS‖2‖βS‖2/wmin

Sc

|(fβSc , fβS
)|

‖fβS
‖2

‖fβS
‖2

‖wS‖2‖βS‖2
.

But

‖fβS
‖2

‖wS‖2‖βS‖2
=

τTS WSΣ
−1
1,1(S)WSτS

√

τTS W
2
SτS

√

τTS WSΣ
−2
1,1(S)WSτS

‖WSτS‖2
‖wS‖2

≤ 1.

We conclude that

‖W−1
Sc Σ2,1(S)Σ

−1
1,1(S)WSτS‖∞ ≤ sup

‖βSc‖1≤‖wS‖2‖βS‖2/wmin
Sc

|(fβSc , fβS
)|

‖fβS
‖2

=
‖wS‖2

√

|S|wmin
Sc

ϑadaptive(S).

9.3. Proofs for Section 7: the noiseless case

9.3.1. Proofs for Subsection 7.1: the noiseless weighted Lasso

Proof of Theorem 7.1. Take

wmin
Sc ≥M/L, ‖wS‖2/

√
s ≤M.

We have

‖fweight − f0‖2 + λinitλweight

p
∑

j=1

wj |βj,weight|
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≤ ‖fβS
− f0‖2 + λinitλweight

∑

j∈S

wj |βj |,

and hence

‖fweight − f0‖2 + λinitλweightw
min
Sc ‖(βweight)Sc‖1

≤ ‖fβS
− f0‖2 + λinitλweight

∑

j∈S

wj |βj,weight − βj |

≤ ‖fβS
− f0‖2 + λinitλweightM

√
s‖(βweight)S − βS‖2.

Let N ⊃ S, |N | = N . Then

‖(βweight)N c‖1 ≤ ‖(βweight)Sc‖1,

and

‖(βweight)S − βS‖2 ≤ ‖(βweight)N − βS‖2,
√
s ≤

√
N.

Therefore,

‖fweight − f0‖2 + λinitλweightw
min
Sc ‖(βweight)N c‖1

≤ ‖fβS
− f0‖2 + λinitλweightM

√
N‖(βweight)N − βS‖2.

Case i). If

‖fβS
− f0‖2 ≤ λinitλweightM

√
N‖(βweight)N − βS‖2,

we get

‖fweight − f0‖2 + λinitλweightw
min
Sc ‖(βweight)N c‖1 (9.6)

≤ 2λinitλweightM
√
N‖(βweight)N − βS‖2.

It follows that

‖(βweight)N c‖1 ≤ 2L
√
N‖(βweight)N − (β)S‖2.

But then, by the definition of restricted eigenvalue, and invoking the triangle
inequality,

‖(βweight)N − βS‖2 ≤ ‖fweight − fβS
‖/φ(2L,N )

≤ ‖fweight − f0‖/φ(2L,N ) + ‖fβS
− f0‖/φ(2L,N ).

This gives

‖fweight − f0‖2 + λinitλweightw
min
Sc ‖(βweight)N c‖1

≤ 2λinitλweightM
√
N‖fweight − f0‖/φ(2L,N )

+2λinitλweightM
√
N‖fβS

− f0‖/φ(2L,N )

≤ 1

2
‖fweight − f0‖2 + ‖fβS

− f0‖2 +
3λ2initλ

2
weightNM

2

φ2(2L,N )
.
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Hence,

‖fweight − f0‖2 + 2λinitλweightw
min
Sc ‖(βweight)N c‖1

≤ 2‖fβS
− f0‖2 +

6λ2initλ
2
weightNM

2

φ2(2L,N )
.

Case ii) If

‖fβS
− f0‖2 > λinitλweightM

√
N‖(βweight)N − βS‖2,

we get

‖fweight − f0‖2 + λinitλweightw
min
Sc ‖(βweight)N c‖1 ≤ 2‖fβS

− f0‖2.

The first result of the theorem now follows from taking N = S.
For the second result, we add in Case i), λinitλweightM

√
N‖(βweight)N −βS‖2

to the left and right hand side of (9.6):

‖fweight − f0‖2 + λinitλweightM
√
N‖(βweight)N − βS‖2

+λinitλweightw
min
Sc ‖(βweight)N c‖1

≤ 3λinitλweightM
√
N‖(βweight)N − βS‖2.

The same arguments now give

λinitλweightM
√
N‖(βweight)N − βS‖2 + λinitλweightw

min
Sc ‖(βweight)N c‖1 ≤

‖fweight − f0‖2 + 3‖fβS
− f0‖2 +

3λ2initλ
2
weightNM

2

φ2(2L,N )
.

In Case ii), we have

λinitλweightw
min
Sc ‖(βweight)N c‖1 ≤ 2‖fβS

− f0‖2,

and also
λinitλweightM

√
N‖(βweight)N − βS‖2 < ‖fβS

− f0‖2.
So then

λinitλweightM
√
N‖(βweight)N − βS‖2 + λinitλweightw

min
Sc ‖(βweight)N c‖1

< 3‖fβS
− f0‖2.

Taking N = S gives the second result.
For the third result, we let N be the set S, complemented with the s0 largest

- in absolute value - coefficients of (βweight)Sc . Then φ(2L,N ) ≤ φ(2L, S, s+s0).
Moreover, N ≥ s0. Thus, from the second result, we get

λinitλweightM
√
s0‖(βweight)N − βS‖2 + λinitλweightM‖(βweight)N c‖1/L
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≤ 3‖fβS
− f0‖2 +

3λ2initλ
2
weight(s0 + s)M2

φ2(2L, S, s+ s0)
.

Moreover, as is shown in Lemma 2.2 in [29] (with original reference [10], and
[11]),

‖(βweight)N c‖2 ≤ ‖(βweight)Sc‖1/
√
s0

≤
3L‖fβS

− f0‖2 + 3Lλ2initλ
2
weight(s+ s0)M

2/φ2(2L, S, s+ s0)

λinitλweightM
√
s0

.

So then
‖βweight − βS‖2 ≤ ‖(βweight)N − βS‖2 + ‖(βweight)N c‖2

≤
6(L ∨ 1)‖fβS

− f0‖2 + 6Lλ2initλ
2
weight(s+ s0)M

2/φ2(2L, S, s+ s0)

M
√
s0λinitλweight

.

We now turn to the proof of Lemma 7.1. An important characterization of the
solution βweight can be derived from the Karush-Kuhn-Tucker (KKT) conditions
(see [3]).

Weighted KKT-conditions We have

2Σ(βweight − βtrue) = −λweightλinitWτweight.

Here, ‖τweight‖∞ ≤ 1, and moreover

τj,weightl{βj,weight 6= 0} = sign(βj,weight), j = 1, . . . , p.

Proof of Lemma 7.1. By the weighted KKT conditions, for all j

2(ψj , fweight − f0) = −λinitλweightwjτj,weight.

Hence,
∑

j∈Sweight\S0

4|(ψj , fweight − f0)|2 ≥ λ2initλ
2
weight‖wSweight\S0

‖22

≥ λ2initλ
2
weight|Sweight\S0|2/‖(1/w)Sweight\S0

‖22.
On the other hand

∑

j∈Sweight\S0

|(ψj , fweight − f0)|2 ≤ Λ2
max(Sweight\S0)‖fweight − f0‖2.

Thus, we arrive at inequality (7.4):

|Sweight\S0|2 ≤ 4Λ2
max(Sweight\S0)

‖fweight − f0‖2
λ2weight

‖1/wSweight\S0
‖2

λ2init
.

Clearly,

Λ2
max(Sweight\S0) ≤ Λ2

max ∧
( |Sweight\S0|

s0
+ 1

)

Λ2
sparse(s0).
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9.3.2. Proofs for Subsection 7.2: the noiseless initial Lasso

We first present the corollaries of Theorem 7.1 and Lemma 7.1 when we apply
them to the case where all the weights are equal to one.

Corollary 9.1. For the initial Lasso, wj = 1 for all j, so we can apply Corollary
7.1 with δ = 1 and Sδ

weight = S0. Let

δ2oracle := ‖fS0
− f0‖2 + 3λ2init|S0|

φ2(2, S0)
.

We have

δ2init ≤ 2‖fS0
− f0‖2 + 6λ2init|S0|

φ2(2, S0)
= 2δ2oracle.

The estimation error can be bounded as follows:

δ1 ≤ 3‖fS0
− f0‖2/λinit +

3λinit|S0|
φ2(2, S0)

≤ 3δ2oracle/λinit,

and

δ2 ≤
[

φ2(2, S0)

φ2(2, S0, 2s0)

]

6δ2oracle
λinit

√
s0
.

Moreover, application of Lemma 7.1 bounds the number of false positives:

|Sinit\S0| ≤ 4Λ2
max(Sinit\S0)

δ2init
λ2init

.

Proof of Theorem 7.2. This is now a direct consequence of Corollary 9.1.

9.3.3. Proofs for Subsection 7.3: the noiseless thresholded Lasso

We first provide some explicit bounds.

Lemma 9.4. We have

‖(βinit)Sδ
init

− b0‖1 ≤ 2δ1 + δs0,

and
‖(βinit)Sδ

init
− b0‖2 ≤ 2δ2 + δ

√
s0,

and
‖fSδ

init
− f0‖ ≤ ‖f(βinit)Sδ

init

− f0‖

≤ ‖fS0
− f0‖+

√

⌈

δ22
δ2s0

+ 1

⌉

Λsparse(s0)(2δ2 + δ
√
s0),

and, for δ ≥ δ2/
√
s0,

‖bSδ
init − b0‖2 ≤

‖fSδ
init

− f0‖
φsparse(S0, 2s0)

.
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Proof of Lemma 9.4. To obtain the first result, we use

‖(βinit)Sδ
init

− b0‖1 = ‖(b0 − βinit)Sδ
init

‖1 + ‖(b0)S0\Sδ
init

‖1.

Now,
‖(b0 − βinit)Sδ

init
‖1 ≤ δ1

Moreover

‖(b0)S0\Sδ
init

‖1 ≤ ‖(b0 − βinit)S0\Sδ
init

‖1 + ‖(βinit)S0\Sδ
init

‖1

≤ ‖(b0 − βinit)S0\Sδ
init

‖1 + δs0 ≤ δ1 + δs0.

Hence
‖(βinit)Sδ

init
− b0‖1 ≤ 2δ1 + δs0.

The ℓ2-error of the second result follows by the same arguments.
The first inequality of the third result follows from the definition of fSδ

init
as

projection, and the second follows from the triangle inequality, where we invoke
that

|Sδ
init\S0| ≤

δ22
δ2

so that

|Sδ
init| ≤

δ22
δ2

+ s0,

and thus

Λ2
max(S

δ
init) ≤

⌈

δ22
δ2s0

+ 1

⌉

Λ2
sparse(s0).

The final result follows from

Λmin(S
δ
init ∪ S0) ≥ φsparse(S0, |Sδ

init\S0|+ s0) ≥ φsparse(S0, 2s0).

Proof of Theorem 7.3. Inserting the bound δ2 = O(λinit
√
s0/φ

2(2, S0, 2s0)) (see
Theorem 7.2), and ‖fS0

−f0‖ = O(λinit
√
s0/φ

2(2, S0)), we get for λinit/φ
2(2, S0) =

O(δ), δ ≥ δ2/
√
s0,

‖fSδ
init

− f0‖2 = Λ2
sparse(s0)

[

1

φ4(2, S0, 2s0)
+

δ2

λ2init

]

O(λ2inits0),

‖bSδ
init − b0‖2 =

Λsparse(s0)

φsparse(S0, 2s0)
×

[

1

φ2(2, S0, 2s0)
+

δ

λinit

]

O(λinit
√
s0),

and

|Sδ
init\S0| =

[

λ2init
δ2φ4(2, S0, 2s0)

]

O(s0).
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9.3.4. Proofs for Subsection 7.4: the noiseless adaptive Lasso

We use that when δ ≥ δ2/
√
s0, then S

δ
init\S0 ≤ s0. Application of Corollary 7.1

then gives

Corollary 9.2. We have, for all δ ≥ δ2/
√
s0, and all β

δ2adap ≤ 2‖fβ
Sδ
init

− f0‖2 +
12λ2initλ

2
adaps0

δ2φ2min(2, S0, 2s0)
,

and

‖βadap − βSδ
init

‖1 ≤
3δ‖fβ

Sδ
init

− f0‖2

λinitλadap
+

6λinitλadaps0
δφ2min(2, S0, 2s0)

,

and

‖βadap − βSδ
init

‖2 ≤
6δ‖fβ

Sδ
init

− f0‖2
√
s0λinitλadap

+
18λinitλadap

√
s0

δφ2min(2, S0, 3s0)
,

and, from Lemma 9.4,

‖f(βinit)Sδ
init

− f0‖2 ≤ 2‖fS0
− f0‖2 + 36Λ2

sparse(s0)δ
2s0.

Furthermore, from Lemma 7.1 ,

|Sadap\S0|2 ≤ 4Λ2
max(Sadap\S0)

δ2adap
λ2adap

δ22
λ2init

.

If |Sadap\S0| > s0, we have

|Sadap\S0| ≤ 8Λ2
sparse(s0)

δ2adap
λ2adaps0

δ22
λ2init

∧ 2Λmax
δadap
λadap

δ2
λinit

.

Remark 9.1. We note that in the above corollary, the use of the ℓ2-error δ2
is invoked for the variable selection result: with the weights wj = 1/|βj,init|, we
have

|Sadap\S0|2 ≤ ‖wSadap\S0
‖22‖(1/w)Sadap\S0

‖22 ≤ ‖wSadap\S0
‖22δ22 .

The theory can also be developed using only the ℓ1-error δ1, by applying an
alternative version of Lemma 7.1 based on the inequality

|Sadap\S0|3 ≤ ‖wSadap\S0
‖22‖(βinit)Sadap\S0

‖21 ≤ ‖wSadap\S0
‖22δ21 .

This alternative route yields qualitatively the same results under e.g. sparse
eigenvalue conditions. To avoid too many cases, we do not elaborate this.

Remark 9.2. A further observation is that the above corollary is an obstructed
oracle inequality, where the oracle is restricted to choose the index set as a
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thresholded set of the initial Lasso. Concentrating on prediction error, it leads
to defining the “oracle” threshold as

δ0 := arg min
δ≥δ2/

√
s0

{

‖fSδ
init

− f0‖2 +
12λ2initλ

2
adaps0

δ2φ2min(2, S0, 2s0)

}

. (9.7)

This oracle has active set Sδ0
init, with size |Sδ0

init| = O(s0). Our following con-
siderations however will not be based on this optimal threshold, but rather on
thresholds that allow a comparison with the results for the thresholded initial
Lasso. This means that we might loose here some further favorable properties
of the adaptive Lasso.

Proof of Theorem 7.4. Corollary 9.2 combined with Lemma 9.4 gives that for
all δ ≥ δ2/

√
s0,

δ2adap ≤ 4‖fS0
− f0‖2 + 72Λ2

sparse(s0)δ
2s0 +

12λ2initλ
2
adaps0

δ2φ2min(2, S0, 2s0)
.

Using moreover that ‖βadap − b0‖q ≤ ‖βadap − βSδ
init

‖q + ‖βSδ
init

− b0‖q and the

bound of Lemma 9.4, we get for δ ≥ δ2/
√
s0,

‖βadap − b0‖1 ≤ 3δs0 +
6δ‖fS0

− f0‖2
λinitλadap

+
108Λ2

sparse(s0)δ
3s0

λinitλadap
+

6λinitλadaps0
δφ2min(2, S0, 2s0)

,

and

‖βadap − b0‖2 ≤ 3δ
√
s0 +

12δ‖fS0
− f0‖2√

s0λinitλadap

+
216Λ2

sparse(s0)δ
3√s0

λinitλadap
+

18λinitλadap
√
s0

δφ2min(2, S0, 3s0)
.

Finally, again for δ ≥ δ2/
√
s0,

|Sadap\S0| ≤

8Λ2
sparse(s0)δ

2
2

λ2initλ
2
adap

(

4‖fS0
− f0‖2
s0

+ 72Λ2
sparse(s0)δ

2 +
12λ2initλ

2
adap

δ2φ2min(2, S0, 2s0)

)

.

By Corollary 9.1,
δ2√
s0

= O

(

λinit
φ2(2, S0, 2s0)

)

.

Taking

δ2 ≍ λinitλadap
φmin(2, S0, 2s0)Λsparse(s0)

, (9.8)

the requirement that δ ≥ δ2/
√
s0 is fulfilled if take

λinit

[

φmin(2, S0, 2s0)Λsparse(s0)

φ4(2, S0, 2s0)

]

= Osuff(λadap),
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that is, if Condition b holds. We then obtain

δ2adap =

[

Λsparse(s0)

φmin(2, S0, 2s0)

]

O(λinitλadaps0),

‖βadap − b0‖1 =

[

Λ
1/2
sparse(s0)

φ
3/2
min(2, S0, 2s0)

]

O(
√

λinitλadaps0),

‖βadap − b0‖2 =

[

Λ
1/2
sparse(s0)φ

1/2
min(2, S0, 2s0)

φ2min(2, S0, 3s0)

]

O(
√

λinitλadaps0),

and

|Sadap\S0| =
Λ2
sparse(s0)

φ4(2, S0, 2s0)

[

Λsparse(s0)

φmin(2, S0, 2s0)

]

λinit
λadap

O(s0).

9.4. Proofs for Section 8: the noisy case

Theorem 8.1 gives bounds for prediction error, estimation error and the number
of false positives of the noisy weighted Lasso.

Proof of Theorem 8.1. We can derive the prediction and estimation results in
the same way as in Theorem 7.1, adding now the noise term:

‖f̂weight − f0‖2n + λinitλweight

p
∑

j=1

wj |β̂j,weight|

≤ 2(ǫ, f̂weight − fβS
)n + ‖fβS

− f0‖2n + λinitλweight

∑

j∈S

wj |βj |

≤ λinit‖β̂weight − βS‖1/2 + ‖fβS
− f0‖2n + λinitλweight

∑

j∈S

wj |βj |

and hence, using λweightw
min
Sc ≥ 1,

‖f̂weight − f0‖2n + λinitλweightw
min
Sc ‖β̂Sc‖1/2

≤ ‖fβS
− f0‖2n +

[

λint/2 + λinitλweight‖wS‖2/
√
s

]√
s‖β̂weight − βS‖2.

Now insert wmin
Sc ≥M/L, 1 ≤ λweightM and ‖wS‖2/

√
s ≤M :

‖f̂weight − f0‖2n + λinitλweightM‖β̂Sc‖1/(2L)

≤ ‖fβS
− f0‖2n +

[

λinit/2 + λinitλweightM

]√
s‖β̂weight − βS‖2

≤ ‖fβS
− f0‖2n + 3λintλweightM

√
s‖β̂weight − βS‖2/2.
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The rest of the proof for the prediction and estimation error can therefore carried
out in the same way is the proof of Theorem 7.1.

As for variable selection, we use as in Lemma 7.1 the weighted KKT condi-
tions: for all j

2(ψj , f̂weight − f0)n − 2(ψj , ǫ)n = −λinitλweightwj τ̂j,weight,

where ‖τ̂weight‖∞ ≤ 1 and τ̂j,weightl{β̂j,weight 6= 0} = sign(β̂j,weight). Invok-
ing λweightw

min
Sc ≥ 1, we know that for all j ∈ Sc, λweightwj ≥ 1. Moreover,

2|(ǫ, ψj)n ≤ λinit/2 by the definition of T . Therefore,

∑

j∈Ŝweight∩Sc\S0

2|(ψj , f̂weight − f0)n|2 ≥ λ2initλ
2
weight‖wŜweight∩Sc\S0

‖22/4.

One can now proceed as in Lemma 7.1.

9.4.1. Proof of Lemma 8.1 with the more involved conditions

To prove this lemma, we actually need some results from Section 3 and an
intermediate result in their proof. One may skip the present proof at first reading
and first consult the next subsection (Subsection 9.5).

The bound for the number of false positives of the initial lasso follows from
the inequality

|Ŝinit\S0| ≤
Λ2
max(Ŝinit\S0)

φ2(6, S0)
O(s0).

This follows from Theorem 8.1, and from inserting the bound of Theorem 3.1
for δ̂init. One can then proceed by applying the inequality

Λ2
max(Ŝinit\S0) ≤

( |Ŝinit\S0|
s∗

+ 1

)

Λ2
sparse(s∗). (9.9)

The result for the adaptive Lasso can be derived from

|Ŝadap\S0|2 ≤ Λ2
max(Ŝadap\S0)

φ4(6, S0, 2s0)

[

Λsparse(s0)

φmin(6, S0, 2s0)

]

λinit
λadap

O(s0).

This follows from (9.11) (which can be found at the end of the proof of Theorem

3.3), invoking Condition B, and applying the bound of Theorem 3.3 for δ̂adap,

and the bound of Theorem 3.1 for δ̂2. Insert again (9.9) to complete the proof.

9.5. Proofs for Section 3

9.5.1. Proof of the probability inequality of Lemma 3.1

This follows easily from the probability bound IP(|Z| ≥
√
2t) ≤ 2 exp[−t] for a

standard normal random variable Z.
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9.5.2. Proof of Theorem 3.1 and Lemma 3.2: the noisy initial Lasso

Theorem 3.1 and Lemma 3.2 are simplified formulation of Corollary 9.3 below.
This corollary follows from Theorem 8.1 by taking L = 1 and S = S0.

Corollary 9.3. Let

δ2oracle := ‖fS0
− f0‖2n +

7λ2init|S0|
φ2(6, S0, 2s0)

.

We have on T ,

δ̂2init ≤ 2δ2oracle.

Moreover, on T ,

δ̂1 ≤ 5δ2oracle/λinit,

and

δ̂2 ≤ 10δ2oracle/(λinit
√
s0).

Also, on T ,

|Ŝinit\S0| ≤ 16Λ2
max(Ŝinit\S0)

δ̂2init
λ2init

.

9.5.3. Proof of Theorem 3.2: the noisy thresholded Lasso

The least squares estimator f̂Ŝδ
init

using only variables in Ŝδ
init (i.e., the projection

of Y = f0 + ǫ on the linear space spanned by {ψj}j∈Ŝδ
init

) has similar predic-

tion properties as fŜδ
init

(the projection of f0 on the same linear space). This is

because, as is shown in the next lemma, their difference is small.

Lemma 9.5. Let δ ≥ δ̂2/
√
s0. Then on T ,

‖f̂Ŝδ
init

− fŜδ
init

‖2n ≤ λ2inits0
2φ2sparse(S0, 2s0)

.

Proof of Lemma 9.5. This follows from

‖f̂Ŝδ
init

− fŜδ
init

‖2n ≤ 2(ǫ, f̂Ŝδ
init

− fŜδ
init

)n,

and

2(ǫ, f̂Ŝδ
init

− fŜδ
init

)n ≤ λinit‖b̂Ŝ
δ
init − bŜ

δ
init‖1/2

≤ λinit
√
2s0‖b̂Ŝ

δ
init − bŜ

δ
init‖2/2 ≤ λinit

√
2s0‖f̂Ŝδ

init
− fŜδ

init
‖n/(2φsparse(S0, 2s0)).

Proof of Theorem 3.2. The bound for ‖(β̂init)Ŝδ
init

− b0‖2 ≤ 2δ̂2 + δ
√
s0 can be

derived in the same way as in Lemma 9.4. The same is true for the bound



Adaptive and thresholded Lasso 745

‖fŜδ
init

− f0‖n ≤ ‖f(β̂init)Ŝδ
init

− f0‖n

≤ ‖fS0
− f0‖n +

√

⌈

δ̂22
δ2s0

+ 1

⌉

Λsparse(s0)(2δ̂2 + δ
√
s0).

Assumption A together with Lemma 9.5 complete the proof for the bounds for
prediction and estimation error, with the ℓ1-bound being a simple consequence
of the thus derived ℓ2-bound. Also, the variable selection result follows from

|Ŝδ
init\S0| ≤

δ̂22
δ2
,

and Assumption A.

9.5.4. Proof of Theorem 3.3: the noisy adaptive Lasso

We first apply Theorem 8.1 to the adaptive Lasso.

Corollary 9.4. Suppose we are on T . Take λadap ≥ δ ≥ δ̂2/
√
s0. Apply The-

orem 8.1, with S := Ŝδ
init, M = δ and L = 1, and invoke that |Ŝδ

init| ≤ 2s0
and that φ2(6, Ŝδ

init, |Ŝδ
init|) ≥ φ2min(6, S0, 2s0) and φ2(6, Ŝδ

init, s0 + |Ŝδ
init|) ≥

φ2min(6, S0, 3s0). This then gives, for all δ ≥ δ̂2/
√
s0, and all β

δ̂2adap ≤ 2‖fβ
Ŝδ
init

− f0‖2n +
28λ2initλ

2
adaps0

δ2φ2min(6, S0, 2s0)
,

and

‖β̂adap − βŜδ
init

‖1 ≤
5δ‖fβ

Ŝδ
init

− f0‖2n
λinitλadap

+
14λinitλadaps0
δφ2min(6, S0, 2s0)

,

and

‖β̂adap − βŜδ
init

‖2 ≤
10δ‖fβ

Ŝδ
init

− f0‖2n
√
s0λinitλadap

+
42λinitλadap

√
s0

δφ2min(6, S0, 3s0)
.

Moreover

|(Ŝadap ∩ (Ŝδ
init)

c)\S0| ≤ s0 + 32Λsparse(s0)
δ̂2adap
λ2adaps0

δ̂22
λ2init

∧ 4Λmax
δ̂adap
λadap

δ̂2
λinit

.

Proof of Theorem 3.3. By the same arguments as used in Lemma 9.4, for δ ≥
δ̂2/

√
s0,

‖f(β̂init)Ŝδ
init

− f0‖n ≤ ‖fS0
− f0‖2n + 3

√
2Λ2

sparse(s0)δ
2s0,

and ‖(β̂init)Ŝδ
init

− b0‖2 ≤ 3δ
√
s0. The prediction and estimation results now

follow from Corollary 9.4 combined with Condition B.
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We apply Corollary 9.4 with

δ2 =
λinitλadap

φmin(6, S0, 2s0)Λsparse
. (9.10)

Condition B requires that
[

Λsparse(s0)

φ3min(6, S0, 2s0)

]

λinit = Osuff(λadap).

This ensures that δ ≥ δ̂2/
√
s0 on the set T . Moreover, equation (9.10) gives that

λadap ≥ δ as soon as

λadap ≥
[

1

φmin(6, S0, 2s0)Λsparse(s0)

]

λinit,

which is also ensured by Condition B.
The variable selection result follows from: for δ ≥ δ̂2/

√
s0,

|Ŝadap\S0| ≤ |(Ŝadap ∩ (Ŝδ
init)

c\S0|+ |Ŝδ
init\S0| ≤ |(Ŝadap ∩ (Ŝδ

init)
c\S0|+ s0.

(9.11)

9.5.5. Proof of Lemma 3.3, where coefficients are assumed to be large

On T , for j ∈ S0, |β̂j,init| > δ̂∞, and |β̂j,init| > |b0j |/2, since |b0j | > 2δ̂∞. Moreover,

for j ∈ Sc
0, |β̂j,init| ≤ δ̂∞. Let

M2 =
4

s0

∑

j∈S0

1

|b0j |2
.

So
‖wS0

‖22/s0 ≤M2.

Note that M ≤ 1/δ̂∞. Since wmin
Sc
0

≥ 1/δ̂∞, the condition λadapM ≥ 1 implies

λadapw
min
Sc
0

≥ 1.

Apply Theorem 8.1 to the adaptive Lasso with S = S0, and β = b0:

δ̂2adap ≤ 2‖fS0
− f0‖2n +

14λ2initλ
2
adapM

2s0

φ2(6, S0)
= O

(

λ2initλ
2
adapM

2s0

φ2(6, S0)

)

,

and

‖β̂adap − b0‖1 ≤ 5‖fS0
− f0‖2n

λinitλadapM
+

7λinitλadapMs0
φ2(6, S0, )

= O

(

λinitλadapMs0
φ2(6, S0)

)

,

and

‖β̂adap−b0‖2 ≤ 10‖fS0
− f0‖2n

M
√
s0λinitλadap

+
28λinitλadapM

√
s0

φ2(6, S0, 2s0)
= O

(

λinitλadapM
√
s0

φ2(6, S0, 2s0)

)

.
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Also, when |Ŝadap\S0| > s0, it holds that

|Ŝadap\S0| ≤ 32Λ2
sparse(s0)

‖f̂adap − f0‖2n
λ2adaps0

‖(1/w)Ŝadap\S0
‖22

λ2init

≤ 32Λ2
sparse(s0)

‖f̂adap − f0‖2n
λ2adaps0

δ̂22
λ2init

= Λ2
sparse(s0)O

(

λ2initM
2s0

φ2(6, S0)φ4(6, S0, 2s0)

)

.

Alternatively, for any size of Ŝadap\S0,

|Ŝadap\S0|2 ≤ 16Λ2
max(Ŝadap\S0)

‖f̂adap − f0‖2n
λ2adap

δ̂22
λ2init

= |Ŝadap\S0|O
(

λ2initM
2s20

φ2(6, S0)φ4(6, S0, 2s0)

)

.
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