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1. Introduction

Due to ever-expanding methods for the acquisition and storage of information,
functional data is often encountered in scientific applications. A common prob-
lem in the field of functional data analysis is determining the relationship be-
tween a scalar outcome Y and a densely observed functional predictor X(t)
[18, 22, 9]. Increasingly, this problem is longitudinal in that both the functional
predictors and scalar outcomes are observed at several visits for each subject.
Bayesian approaches to cross-sectional and longitudinal functional regression
possess a number of advantages, including the ability to jointly model the ob-
served functions and scalar outcomes and easily constructed credible intervals
[5, 7]. However, these approaches require computationally expensive Markov
chain Monte Carlo (MCMC) simulations of joint posterior distributions. The
goal of this paper is to introduce a fast and scalable alternative to accommo-
date new types of data sets.

Variational approximations, now regularly used in computer science, are a
collection of techniques for deriving approximate solutions to inference prob-
lems [10, 11, 25]. They have a growing visibility in the statistics literature
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Fig 1. The functional predictor used in our diffusion tensor imaging application. The left and
middle panels show the functional predictors observed for individual subjects; the right panel
shows the collection of all observed functions.

[16, 19, 24]. In the Bayesian context, these methods are useful in approximat-
ing intractable posterior density functions. While this approximation sacrifices
some of MCMC’s accuracy, it provides large gains in terms of computational
feasibility, especially in large-data settings.

In this article, we derive an iterative algorithm for approximate Bayesian
inference in functional regression. Using this algorithm, inference on model pa-
rameters can be obtained several orders of magnitude faster than MCMC sam-
pling methods. Importantly, the construction of credible intervals for the func-
tional coefficient is straightforward. Moreover, this procedure retains the ability
to jointly model the predictor process and the scalar outcome. The computa-
tional advantage conveyed by the variational methods also allows resampling
techniques, such as the nonparametric bootstrap of subjects, to be used. Unlike
MCMC sampling, the variational approach cannot be made arbitrarily accurate.
However, simulations indicate that the quality of the approximation is high in
our setting. Our variational method is not designed to replace MCMC sampling,
but it is a useful additional inferential tool in that it provides near-instant and
highly accurate approximate posterior distributions. This will become increas-
ingly relevant as functional datasets become larger and more complex.

In particular, we develop variational Bayes methods for two functional regres-
sion models: the classic cross-sectional case, in which a single scalar outcome
and functional predictor are observed for each subject; and the more recent lon-
gitudinal case, in which scalar outcomes and functional predictors are observed
repeatedly for each subject. This methodology is based on a penalized approach
to functional regression that is flexible and widely applicable [6]. Although vari-
ational techniques typically incur initial algebraic and implementation costs, the
present article alleviates these considerations.

We apply the methods developed to a longitudinal neuroimaging study, in
which multiple sclerosis patients undergo both tests of cognitive ability and a
diffusion tensor imaging scan at each of several visits. From the diffusion tensor
imaging scans, we construct functional predictors that provide detailed quan-
titative information about major white matter fiber bundles (see Figure 1).
Because multiple sclerosis results in the degradation of cerebral white matter,
researchers hope to use the functional predictors and cognitive disability mea-
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sures to understand the progression of the disease. This study was previously
analyzed in [7].

In Section 2 we introduce variational Bayes and a penalized approach to
functional regression. Section 3 combines these ideas and develops a scalable
iterative algorithm for approximate Bayesian inference in functional regression.
The results of a simulation study are described in Section 4 and a real-data
analysis is performed in Section 5. We conclude the main text with a discussion
in Section 6. Appendices A and B contain algebraic derivations and expres-
sions used in the construction of the iterative algorithm. All code used in the
simulation study is available as a web-supplement to this article.

2. Background

In the following subsections we introduce variational approximations for Bayesian
inference and an approach to functional regression which uses penalized B-
splines to estimate the coefficient function.

2.1. Variational Bayes

Here we give an overview of variational Bayes; for a more complete treatment
see [19] and [3], Chapter 10.

Bayesian inference is based on the posterior density function

p(θ|y) =
p(y, θ)

p(y)

where θ ∈ Θ is the parameter vector, y is the observed data, p(y) is the marginal
likelihood of the observed data, and p(y, θ) is the joint likelihood of the data and
model parameters. The goal of the density transform approach is to approximate
the posterior density p(θ|y) by a function q(θ) for which the q-specific lower
bound on the marginal likelihood (defined below) is more tractable than the
marginal likelihood itself. The first step is to restrict q to a more manageable
class of densities and choose the element of that class with minimum Kullback-
Leibler distance from p(θ|y).

More concretely, let q be an arbitrary density function over Θ. Then

log p(y) ≥

∫
q(θ) log

{
p(y, θ)

q(θ)

}
dθ. (2.1)

with equality if and only if q(θ) = p(θ|y) almost everywhere [12]. It follows

that p(y) ≥ exp
∫
q(θ) log

{ p(y,θ)
q(θ)

}
dθ; we define the q-specific lower bound on

the marginal likelihood as

p(y; q) ≡ exp

∫
q(θ) log

{
p(y, θ)

q(θ)

}
dθ. (2.2)
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It can be shown that minimizing the Kullback-Leibler distance between q(θ)
and p(θ|y) is equivalent to maximizing p(y; q). Stated generally, the following
result holds.

Result 2.1. Let u and v be continuous random vectors with joint density
p(u,v). Then

supq

{∫
q(u) log

[
p(u,v)

q(u)
du

]}

is achieved by q∗(u) = p(u|v).

Next, we restrict q to a class of functions for which p(y; q) is more tractable
than p(y). While several restrictions are possible, here we focus on the product
density transform: we assume that for some partition {θ1, . . . , θL} of θ it is

possible to write q(θ) =
∏L

l=1 ql(θl). In the functional regression setting, the
posterior dependence of some subsets of the model parameters is weak and
the assumption that q factorizes provides accurate approximate inference. In
other settings where the posterior dependence of parameters is stronger, this
assumption may lead to poor approximations and inference due to the failure
to account for correlations between model parameters. There are three simple
strategies to gain insight into what sets of parameters are a-posteriori weakly
correlated: 1) theoretical work on asymptotic posterior correlations; 2) Bayesian
inference on smaller or simpler data sets; and 3) prior experience. If posterior
correlation is potentially problematic, a more flexible component density ql that
allows for this correlation could be used; however, this must be balanced against
the simplification desired in the approximating class of functions. While none
of the approaches above is infallible, when combined with powerful variational
approximations they can provide a valuable alternative to Bayesian inference.
The methods provided in this paper are intended as a reasonable and tractable
complement of and not replacement for Bayesian computations.

Combining the assumption that q factorizes over a partition of θ with Result
2.1, we can derive explicit solutions for each factor ql(θl), 1 ≤ l ≤ L, in terms
of the remaining factors. Solving for each factor in terms of the others leads to
an iterative algorithm for obtaining a solution for q. The explicit solution for
each ql(θl) is derived as follows. Assuming that q is subject to the factorization
restriction, it follows that

log p(y; q) =

∫ ( L∏

l=1

qi(θi)

)(
log p(y, θ)−

L∑

l=1

log qi(θi)

)
dθ1 . . . dθL

=

∫
q1(θ1)

(∫
log p(y, θ)q2(θ2) . . . qL(θL)dθ2 . . . dθL

)
dθ1

−

∫
q1(θ1) log q1(θ1)dθ1 + terms not involving q1

Define the joint density function p̃(y, θ1) to be

p̃(y, θ1) ≡
exp

∫
log p(y, θ)q2(θ2) · · · qM (θM )dθ2 · · · dθM∫ ∫ {

exp
∫
log p(y, θ)q2(θ2) · · · qM (θM ) dθ2 · · · dθM

}
dθ1dy
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so that

log p(y; q) =

∫
q1(θ1) log

[
p̃(y, θ1)

q1(θ1)

]
+ terms not involving q1.

Then, using Result 2.1, the optimal q1 is

q∗1(θ1) = p̃(θ1|y) =
p̃(y, θ1)∫
p̃(y, θ1)dθ1

∝ exp

[∫
log p(y, θ)q2(θ2) . . . qL(θL)dθ2 . . . dθL

]

= exp
[
Eθ−1 log p(y, θ)

]

where Eθ−1
log p(y, θ) is the expectation with respect to q2(θ2) . . . qL(θL). The

same argument for l in 1, . . . , L yields optimal densities satisfying

q∗l (θl) ∝ exp
[
Eθ−l

log p(y, θ)
]
∝ exp

[
Eθ−l

log p(θl|rest)
]

(2.3)

where rest ≡ {y, θ1, . . . , θl−1, θl+1, . . . , θL} is the collection of all remaining
parameters and the observed data. Solving for each factor in terms of the others
leads to an iterative algorithm for obtaining a solution for q. We update each
factor in turn until the change in p(y; q) is negligible.

2.2. Penalized functional regression

Next we introduce penalized approaches to cross-sectional and longitudinal func-
tional regression [5, 6, 7].

In the cross-sectional case, we observe data of the form [Yi, Xi(t), zi] for sub-
jects 1 ≤ i ≤ I, where Yi is a continuous outcome,Xi(t) is a functional covariate,
and zi is a 1 × p vector of non-functional covariates. The linear functional re-
gression model is given by [4, 21]

Yi = ziβ +

∫ 1

0

Xi(t)γ(t)dt+ εYi

εYi ∼ N
(
0, σ2

Y

)
.

(2.4)

We call the parameter γ(t) the coefficient function. In practice, the predictor
functions Xi(t) are observed over a discrete grid, and often with error. That
is, we observe {Wi(tij) : tij ∈ [0, 1]} for 1 ≤ i ≤ I and 1 ≤ j ≤ Ji, where
Wi(tij) = Xi(tij) + εXi (tij) and εXi (tij) ∼ N

(
0, σ2

X

)
. The sampling scheme

on which the functional predictors are observed may take a variety of forms:
points may be equally or unequally spaced, sparse or dense at the subject level,
identical or different across subjects. For simplicity, we will assume that all
subjects are observed over the same grid {t1, . . . , tN} and are observed at an
equal number of visits J . Extensions to different grids and different number of
visits is straightforward, but with considerable increase in notational complexity.
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To estimate the parameters in model (2.4), we use the following two-stage
procedure. First, the predictor functions Xi(t) are expressed using a princi-
pal components (PC) decomposition. Second, the coefficient function γ(t) is
estimated using penalized B-splines. Smoothness of γ̂(t) is explicitly induced
via a mixed effects model. Specifically, let Σ̂X(s, t) be an estimator of the co-
variance operator Cov (Xi(s), Xi(t)) based on the available functional observa-
tions. Further, let

∑∞
k=1 λkψk(s)ψk(t) be the spectral decomposition of Σ̂X(s, t),

where λ1 ≥λ2 ≥ · · · are the non-increasing eigenvalues and ψ(t) = {ψk(t) :
k ∈ Z+} are the corresponding orthonormal eigenfunctions. An approxima-
tion for Xi(t), based on a truncated Karhunen-Loéve expansion, is given by

Xi(t) = µ(t) +
∑Kx

k=1 cikψk(t), where Kx is the truncation lag, the PC loadings

cik =
∫ 1

0 {Xi(t)− µ(t)}ψk(t)dt are uncorrelated random variables with variance
λk, and µ(t) is the mean function over all subjects and visits.

Next, we use a large cubic B-spline basis to smoothly estimate the coefficient
function γ(t) using a mixed effects model. Let φ(t) = {φ1(t), . . . , φKg

(t)} be
a cubic B-spline basis of dimension Kg. Then the integral in model (2.4) can

be written as
∫ 1

0
Xi(t)γ(t) dt = a +

∫ 1

0
c′iψ

T (t)φ(t)g dt = a+ c′iMg where a =∫ 1

0 µ(t)γ(t) dt, c
′
i = [ci1, . . . , ciKx

] is the row vector of subject i’s PC loadings,

and M is a Kx × Kg matrix with (k, l)th entry
∫ 1

0 ψk(t)φl(t) dt. Smoothness
of γ̂(t) is enforced by assuming a modified first order random walk prior on
the vector g [13]. That is, we assume gl ∼ N

(
gl−1, σ

2
g

)
for 2 ≤ l ≤ Kg and

let g1 ∼ N
(
0, 0.01σ2

g

)
. These are standard assumptions in Bayesian P-splines

modeling [23, 13]. Taken together, we jointly model the scalar outcome Yi and
the functional exposure Xi(t) using the following model:

Yi ∼ N
(
ziβ + c′iMg, σ2

Y

)
; σ2

Y ∼ IG (AY , BY )

Wi(t) ∼ N
(
µ(t) + c′iψ(t)

T , σ2
XI
)
; σ2

X ∼ IG (AX , BX)

c′i ∼ N(0,Λ) ; λk ∼ IG (Aλ, Bλ) for 1 ≤ k ≤ Kx

g ∼ N
(
0, σ2

gD
)
; σ2

g ∼ IG (Ag , Bg)

β ∼ N
(
0, σ2

βI
)

(2.5)

where β are treated as fixed parameters with diffuse priors,D is the covariance
matrix induced by the first order random walk prior, and Λ = diag[λ1, . . . , λKx

].
Inference for the functional regression model is based on the posterior density

p
(
g,C,β, σ2

Y , σ
2
X , σ

2
g , λ1, . . . , λKx

|Y ,W
)

(2.6)

where C is the matrix of PC loadings constructed by row-stacking the ci,
Y = {Yi}

I
i=1, and W is the matrix of observed predictor functions constructed

by row-stacking the Wi(t). Because the functional predictors Xi(t) are observed
with error, this model extends Bayesian inference for measurement error re-
gression problems to the functional setting. A directed acyclic graph depicting
model (2.5) is presented in Figure 2.
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Fig 2. Directed acyclic graph corresponding to the functional regression model (2.5). Shaded
nodes correspond to observed data, and unshaded nodes to model parameters. Arrows indi-
cate conditional dependence. The nodes for σ2

b
and b, shown as dashed lines, appear in the

longitudinal functional regression model (2.8) but not in the cross-sectional model (2.5).

In the longitudinal case, we observe data of the form [Yij , Xij(t), zij ] for
1 ≤ i ≤ I and 1 ≤ j ≤ Ji. Thus we observe a distinct functional predictor and
scalar outcome for each subject over several visits, and again note that in place
of the true functional predictors Xij(t) we often observe a measured-with-error
function Wij(t). The longitudinal functional regression model is given by [7]

Yij = Zib+ zijβ +

∫ 1

0

Xij(t)γ(t)dt + εYij

εYij ∼ N
(
0, σ2

Y

)
;

(2.7)

this differs from model (2.4) in the use of subject-specific random effects Zi to
account for correlation in the repeated outcomes at the subject level. Moreover,
longitudinal data sets tend to be much larger than cross-sectional data sets
because of the number of visits.

Given the advent of multiple observational studies collecting dense functional
data at multiple visits, the importance of longitudinal functional regression can-
not be understated. Unfortunately, with the exception of the work in [7], no other
approach can currently deal with the combination of subject-specific random ef-
fects and functional predictors necessary to capture the structure of the data.
While a wide array of functional regression methods exist, we contend that the
specific modeling choices described here made the extension not only possible,
but seamless. Estimation of the parameters in the longitudinal setting extends
naturally from the procedure outlined for the cross-sectional setting. Again, we
express the functional predictors using a PC basis and use a penalized B-spline
expansion for the coefficient function. The joint model for the outcome, Yij , and
exposure, Xij(t), becomes
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Yij ∼ N
(
Zib+ zijβ + c′ijMg, σ2

Y

)
; σ2

Y ∼ IG (AY , BY )

Wij(t) ∼ N
(
µ(t) + c′ijψ(t)

T , σ2
XI
)
; σ2

X ∼ IG (AX , BX)

c′ij ∼ N(0,Λ) ; λk ∼ IG (Aλ, Bλ) for 1 ≤ k ≤ Kx

g ∼ N
(
0, σ2

gD
)
; σ2

g ∼ IG (Ag, Bg)

b ∼ N
(
0, σ2

bI
)
; σ2

b ∼ IG (Ab, Bb)

β ∼ N
(
0, σ2

βI
)

(2.8)

Again, inference is based on the posterior density

p
(
g,C,β, b, σ2

Y , σ
2
X , σ

2
g, σ

2
b , λ1, . . . , λKx

|Y ,W
)

(2.9)

A directed acyclic graph of the longitudinal functional regression model appears
in Figure 2.

3. Variational approximations for penalized functional regression

We now combine the ideas introduced above to develop a scalable iterative
algorithm for approximate Bayesian inference in functional regression. We will
focus on the longitudinal functional regression model (2.8); the cross-sectional
case can be obtained as a special case by omitting the vector of subject-specific
random effects b. We pause briefly to introduce the following useful notation:
for a scalar random variables θ, let

µq(θ) ≡ Eq[θ] =

∫
θ0q(θ0) dθ0

σq(θ) ≡ Varq[θ] =

∫
(θ0 − E[θ])2q(θ0) dθ0

be the mean and variance with respect to the q distribution. For a vector pa-
rameter θ, we use the analogously defined µq(θ) and Σq(θ).

As noted, inference in the longitudinal functional regression model is based
on the posterior density (2.9). Using variational Bayes, we approximate this
posterior density using

q
(
g,C,β, b, σ2

Y , σ
2
X , σ

2
g , σ

2
b , λ1, . . . , λKx

)

= q(g)q(C)q(β)q(b)q(σ2
Y , σ

2
X , σ

2
g , σ

2
b , λ1, . . . , λKx

) (3.1)

and by solving for each factor q(·) in terms of the remaining factors. The addi-
tional factorization

q(σ2
Y , σ

2
X , σ

2
g , σ

2
b, λ1, . . . , λKx

) = q(σ2
Y )q(σ2

X )q(σ2
g)q(σ

2
b)

Kx∏

j=1

q(λj)
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follows as a consequence of (2.3) and the structure of the current model as
shown in Figure 2 [3, Sec. 10.2.5]. We take advantage of this induced factoriza-
tion in deriving optimal densities for the variance components in the penalized
functional regression model.

To provide an example of how optimal densities are constructed, we derive
the optimal densities q∗(g) and q∗(σ2

g); derivations of these and for the other

parameters are provided in Appendix A. Recall that g ∼ N
(
0, σ2

gD
)
and σ2

g ∼
IG (Ag, Bg). According to (2.3), the optimal densities are given by

q∗(g) ∝ exp {E−g log p(g|rest)} and q∗(σ2
g) ∝ exp

{
E−σ2

g
log p(σ2

g |rest)
}

where rest includes both the observed data and all parameters not currently
under consideration.

Using the full conditional distribution p(g|rest) ∝ p(Y | β, b,C, g, σ2
Y )p(g |

σ2
g), the optimal density q∗(g) is

q∗(g) ∝ exp
{
E−g log p(Y | β, b,C, g, σ2

Y )p(g | σ2
g)
}

∝ exp

[
−
1

2
E−g

{
gT
(

1

σ2
Y

MTCTCM +
1

σ2
g

D−1

)
g

−2

((
Y T − βT zT − bTZT

)( 1

σ2
Y

CM

))
g

}]

∝ exp

{
−
1

2

(
g − µq(g)

)T
Σ−1

q(g)

(
g − µq(g)

)}

where

Σq(g) =
{
µq(1/σ2

Y
)M

T (µT
q(C)µq(C) + nΣq(C))M + µq(1/σ2

g)
D−1

}−1

,

µq(g) = Σq(g)

{
µq(1/σ2

Y
)

(
Y T − µT

q(β)z
T − µT

q(b)Z
T
)(
µq(C)M

)}T

.

(3.2)
Thus the optimal density q∗(g) is N(µq(g),Σq(g)). Similarly, the optimal density

q∗(σ2
g) is

q∗(σ2
g) ∝ exp

{
E−g log p(g | σ2

g)p(σ
2
g)
}

∝ (σ2
g)

−Ag−Kg/2−1 exp

{
−

1

σ2
g

E−σ2
g

(
Bg +

1

2
gTD−1g

)}
.

Thus q∗(σ2
g) is IG(Ag +Kg/2, Bq(σ2

g)
) where

Bq(σ2
g)

= Bg + 1
2

(
µT

q(g)D
−1µq(g) + tr

(
D−1Σq(g)

))
(3.3)

Note that, when q(σ2
g) = q∗(σ2

g), the term µq(1/σ2
g)

appearing in (3.2) is equal

to
Ag+Kg/2
B

q(σ2
g )

.
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Thus, the optimal densities q∗(g) and q∗(σ2
g) belong to parametric families

with the parameters explicitly determined by the distributions of the remaining
model parameters and the observed data. Similar derivations for the parameters
of the remaining optimal densities are derived in Appendix A. Taken together,
these solutions lead to Algorithm 1 for approximate Bayesian inference in the
functional linear regression setting.

Further, as shown in Appendix B, the q-specific lower bound on the marginal
log-likelihood has the form

log p(Y ,W ; q) =
1

2
log

(
|Σq(β)|

σ2p
β

)
−

1

2σ2
β

{
µT

q(β)µq(β) + tr
(
Σq(β)

)}

+
1

2
Eq∗ [log(|Σq(g)|)] +

Kx∑

k=1

nJ

2
log
(
(Σq(C))kk

)

+
1

2
Eq∗ [log(|Σq(b)|)]−

(
Ag +

Kg

2

)
log
(
Bq(σ2

g)

)

−
(
Ab +

n

2

)
log
(
Bq(σ2

b
)

)
−

(
AY +

nJ

2

)
log
(
Bq(σ2

Y
)

)

−

(
AX +

nJN

2

)
log
(
Bq(σ2

X
)

)

−

Kx∑

k=1

{(
Aλ +

nJ

2

)
log
(
Bq(λk)

)}
+ const.

where const. is an additive constant that remains unchanged in the iterations
of Algorithm 1. All parameters denoted A and B and indexed by a subscript
are hyperparameters of the inverse gamma prior distributions of the variance
components. The quantity log p(Y ,W ; q) is typically monitored for convergence
in place of p(Y ,W ; q). Note that, because several substitutions are made to
simplify the expression, this form for log p(Y ,W ; q) is only valid at the end of
each iteration of Algorithm 1, and only if the parameters are updated in the
order given.

Finally, posterior credible intervals are readily obtained for all model param-
eters. However, variational approximations in effect fit a parametric distribution
to a mode of the posterior density, which may have consequences when the pos-
terior is multi-modal or more diffuse than the approximating parametric distri-
bution; in such cases one could expect that credible intervals from variational
Bayes and MCMC sampling may not agree. This was not a problem in our sim-
ulations, where the agreement between the approximate and MCMC-sampled
posterior distribution is high, although in our application the variational credi-
ble intervals are slightly narrower than those from MCMC sampling.
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Algorithm 1 Iterative scheme for obtaining the parameters in the optimal den-
sities in the longitudinal functional regression model (2.8).

Initialize: Bq(σ2
g) . . . Bq(σ2

Y
) > 0, µq(C) = 0, µq(g) = 0, µq(β) = 0, Σq(g) = I,

Λq = I.
Cycle:

Σq(β) ←

{
µq(1/σ2

Y
)z

T z + 1
σ2
β

I

}−1

µq(β) ← Σq(β)

{
µq(1/σ2

Y
)

(
Y T − µT

q(b)
ZT − µT

q(g)
MµT

q(C)

)
z

}T

Σq(b) ←

{
µq(1/σ2

Y
)Z

TZ + µq(1/σ2
b
)I

}−1

µq(b) ← Σq(b)

{
µq(1/σ2

Y
)

(
Y T − µT

q(β)
zT − µT

q(g)
MµT

q(C)

)
Z

}T

Σq(C) ←

{
µq(1/σ2

Y
)M(µq(g)µ

T
q(g)

+Σq(g))M
T + µq(1/σ2

X
)ψ

Tψ +Λ−1
q

}−1

µT
q(C)

← Σq(C)

(
µq(1/σ2

Y
)Y µ

T
q(g)

MT

−µq(1/σ2
Y

)µq(β)zµ
T
q(g)

MTµq(1/σ2
Y

)Zµq(b)µ
T
q(g)

MT

+µq(1/σ2
X

)Wψ

)T

Σq(g) ←

{
µq(1/σ2

Y
)M

T (µT
q(C)

µq(C) + nΣq(C))M + µq(1/σ2
g)D

−1

}−1

µq(g) ← Σq(g)

{
µq(1/σ2

Y
)

(
Y T − µT

q(β)
zT − µT

q(b)
ZT

)(
µq(C)M

)}T

Bq(λk) ← Bλ + 1
2

(
(µk

q(C)
)T (µk

q(C)
) + n(Σq(C))kk

)
, 1 ≤ j ≤ Kx

Bq(σ2
X

) ← BX + 1
2

{∑I

i=1

∑J

j=1
‖(W ij − µq(c),ijψ

T )T ‖2

+(nJ)tr
(
ψTψΣq(C)

)}

Bq(σ2
b
) ← Bb + 1

2

(
µT

q(b)
µq(b) + tr

(
Σq(b)

))

Bq(σ2
g) ← Bg + 1

2

(
µT
q(g)

D−1µq(g) + tr
(
D−1Σq(g)

))

Bq(σ2
Y

) ← BY + 1
2

[
‖Y − zµq(β) −Zb− µq(C)Mµq(g)‖

2 + tr
(
zT zΣq(β)

)

−
(
µq(g)Mµq(C)

)T (
µq(g)Mµq(C)

)

+µT
q(g)

MT (µT
q(C)

µq(C) + (nJ)Σq(C))Mµq(g)

+tr

{
MT

(
µT

q(C)
µq(C) + (nJ)Σq(C)

)
MΣq(g)

}

+tr
{
ZTZΣq(b)

}]

until the increase in p(Y ,W ; q) is negligible.
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4. Simulations

In this section we undertake simulation exercises with two goals. First, we eval-
uate our approach’s overall ability to accurately estimate all coefficients in a
functional regression model. Second, we compare the individual approximate
posterior distributions q∗(θl) ≈ p(θl | rest) to those given by Markov-chain
Monte Carlo (MCMC) sampling in order to examine the quality of the varia-
tional approximation in the functional regression setting. We conduct separate
simulations for the cross-sectional and longitudinal situations. The MCMC sam-
pling was executed in WinBUGS and the variational Bayes approach was imple-
mented in R.

4.1. Cross-sectional functional regression

We generate samples from the model

Yi = β1 + ziβ2 +

∫ 1

0

XS
i (t)γ(t)dt + εYi

εYi ∼ N
(
0, σ2

Y

)
. (4.1)

Here we assume I = {100, 500} subjects and generate zi ∼ Unif [−5, 5]. We take

σ2
Y = 5, β1 =

∫ 1

0
µ(t)γ(t)dt = 3.47, β2 = 3, and γ(t) = cos(2πt).

To generate our simulated functional predictors XS
i (t), we use the functional

predictors XA
i (t) from our scientific application in the following way. First, we

compute a functional principal components decomposition of the XA
i (t) with

eigenfunctions ψ1(t), ψ2(t), . . . and corresponding eigenvalues λ1, λ2, . . .. Recall
that the application predictors can be approximated using XA

i (s) = µ(t) +∑Kx

k=1 cikψk(t) where µ(t) is a population mean function, Kx is the truncation
lag and the cik are uncorrelated random variables with variance λk. Using this,
we construct simulated regressors

XS
i (t) = µ(t) +

Kx∑

k=1

cikψk(t) + εXi (t)

ci ∼ N(0, diag(λ1, . . . , λKx
)) ; εXi (t) ∼ N

(
0, σ2

X

)
.

This parametric construction of the simulated functional predictors is related to
the application predictors through the mean function µ(t), the eigenfunctions
ψk(t), and the variance components λk. As in our application, the simulated
predictors are observed on a grid of length 93.

We generate 100 such datasets for I = 100 and I = 500 and fit model
(4.1) using both MCMC simulation and the variational approximation approach.
For the MCMC simulation, we use chains of length 2500 with the first 1000
as burn-in. Representative examples of the MCMC model fits were inspected
using trace and autocorrelation plots to ensure that the posterior samples were
reasonable and that the comparison with variational Bayes was fair. To evaluate
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Table 1

Average integrated MSE for γ(t) and average MSE for the non-functional covariates β1, β2

estimated using the variational approximation, taken over 100 simulated datasets. For
I = 500, large outlier for the MCMC MSE were removed in the calculation of the average

γ(t) β1 β2

I = 100 VB .050 .071 .051
MCMC .054 .071 .051

I = 500 VB .046 .008 .001
MCMC .120 .008 .001

Table 2

The accuracy of the variational approximation to the MCMC-sampled posterior, expressed
as a percentage, for a subset of parameters in the cross-sectional functional regression

model (2.5)

Accuracy g5 g20 c1,1 c1,10 λ1,1 λ1,10 σ2
Y

I = 100 96.3 95.1 98.3 98.0 96.9 97.2 95.0
I = 500 86.7 82.6 97.6 97.8 97.6 88.3 96.3

the ability of the proposed approach to estimate the functional coefficient γ(t) we

use the mean squared error (MSE)
∫ 1

0 (γ̂(t)− γ(t))
2
dt. A comparison of MSEs

for the variational approach with the more computationally intensive MCMC
sampling is given in table 1. To provide context for this table, in the left panel
of Figure 3 we plot the estimated coefficient function resulting in the median
MSE for I = 100.

Interestingly, when I = 500 the MSEs for MCMC sampling contain several
large outliers, which raises the average MSE for the coefficient function in Ta-
ble 1. Upon inspection, it was found that these large values corresponded to
model fits in which the chains for g were bimodal. A large primary mode sur-
rounded the true parameter value but a smaller, more diffuse mode corresponded
to a model overfit. We refit these models using as initial parameter values the
estimates provided by the variational approach, which caused the bimodal be-
havior to disappear and brought the MSEs (and average MSE) down to levels
similar to the remaining model fits.

We also quantify the quality of the variational approximation to the MCMC-
sampled posterior by computing the accuracy for each parameter in the model

using Accuracy = 1−
|p(θl | rest)− q∗(θl)|

2
∈ [0, 1]; scores near 1 indicate a high

level of agreement between the two densities. Due to the large number of param-
eters in the model, we present only a subset of the average accuracies in Table 2.
As with the MSE, context for this table in given in Figure 3. The accuracy of g
is affected by the presence of outliers, attributable to the same bimodal MCMC
samples that caused the very large MSEs appearing in Table 1.

Due to the substantial decrease in computation time using variational Bayes
over MCMC methods, we are able to construct 95% bootstrap confidence inter-
vals by sampling subjects with replacement and refitting model (4.1) using the
variational approach. While credible intervals provided by MCMC or by a single
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Fig 3. The top left panel shows the estimated coefficient function corresponding to the median
MSE = 0.049, as well as variational and MCMC 95% credible intervals (dashed lines) and
the 95% bootstrap interval (shaded region). The top-right panel displays the coverage proba-
bilities of the credible intervals over the domain of the predictor (note there is perfect overlap
of the VB and MCMC coverage probabilities). The bottom panels show posterior densities
estimated by variational approximations and by MCMC sampling from the same simulated
dataset (shown in dashed and solid lines, respectively), and provide the accuracy of the ap-
proximation expressed as a percent.

variational fit are overly conservative, the bootstrap intervals are on average .46
times narrower and, averaged over the domain, have coverage probability 93.4%
for I = 100 and 93.6% for I = 500. The far right panel of Figure 3 displays
the coverage probabilities of the various credible and confidence intervals for
I = 500.

As demonstrated in Table 2 and Figure 3, the variational approximation
performs well in this functional regression setting, both in terms of low MSEs
and of agreement the with MCMC-sample posterior density. This stems from
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Table 3

Average integrated MSE for γ(t) and average MSE for the non-functional covariates β1, β2

estimated using the variational approximation, taken over 100 simulated datasets

γ(t) β1 β2

I = 100, J = 3 VB .026 .0003 .0002
MCMC .030 .0002 .0002

the low posterior dependence between the parameters, which is assumed in the
use of the density transform approach. Additionally, the use of the bootstrap
allows the construction of confidence intervals that are not overly conservative.

Importantly, even in this simulation the computational burden is greatly re-
duced through the use of variational approximations. For I = 100, the MCMC
sampling took on average 315 seconds, while the approximation was computed
in on average 0.04 seconds (Dual Core 3.06GHz Processor; 4 GB RAM; OS X
10.6.4). For I = 500, the respective times were 1614 and 0.2 seconds. Construct-
ing the bootstrap confidence intervals, based on 400 bootstrap samples, took on
average an additional 20 and 76 seconds for I = 100 and I = 500, respectively.

4.2. Longitudinal functional regression

Next, we generate samples from the model

Yij = β1 + zijβ2 + bi +

∫ 1

0

XS
ij(t)γ(t)dt + εYij

εYij ∼ N
(
0, σ2

Y

)
. (4.2)

We take I = 100 subjects with J = 3 visits per subject; random effects b are
N
(
0, σ2

b

)
with σ2

b = 5. Again, we generate zi ∼ Unif [−5, 5], take σ2
Y = 5, β1 =∫ 1

0
µ(t)γ(t)dt = 12.68, β2 = 3, and select γ(t) = cos(2πt). The functional pre-

dictors XS
ij(t) are constructed as above; we take cij ∼ N(0, diag(λ1, . . . , λKx

))
so that the PC loadings are not correlated within subjects.

We fit model (2.8) for 100 simulated datasets. As in the cross-sectional case,
we use chain lengths of 2500, with 1000 as burn-in, for the MCMC sampling.
In Table 3 we display the average MSE of the estimated functional and scalar
parameters and the subject-specific random effects. Again, the variational ap-
proximation performs as well as the MCMC sampling with a substantial differ-
ence in computation time: the MCMC sampling took on average 973 seconds,
while the approximation was calculated in on average .2 seconds.

5. Application

In our scientific application, we analyze the association between measures of
intracranial white matter and cognitive decline in multiple sclerosis patients.
White matter is made up of myelinated axons, the long fibers used to transmit
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electrical signals in the brain, and is organized into bundles, or tracts. Major
examples of white matter tracts are the corpus callosum, the corticospinal tracts,
and the optic radiations. Here we focus on the corpus callosum, a collection of
white-matter fibers which connects the two hemispheres of the brain.

Myelin, the fatty insulation surrounding white matter fibers, allows electrical
signals to be propagated at high speeds along white matter tracts. Multiple
sclerosis is a demyelinating autoimmune disease that causes in lesions in the
white matter. These lesions disrupt electrical signals, and, over time, result in
severe disability in affected patients. To measure cognitive disability, we use
the Paced Auditory Serial Addition Test (PASAT), which assesses auditory
processing speed and calculation ability. In this test, a proctor reads aloud a
sequence of 60 numbers at three-second intervals, while the subject provides the
sum of the previous two numbers spoken. This test has scores between 0 and
60 indicating the number of correct sums provided by the subject; the score 60
indicates the highest level of cognitive ability [8].

To quantify white matter, we use diffusion tensor imaging, a magnetic reso-
nance imaging that measures the diffusivity of water in the brain. Because white
matter is organized in bundles, water tends to diffuse anisotropically along the
tract, which makes their reconstruction from MRI possible. By measuring diffu-
sivity along several gradients, diffusion tensor imaging is able to produce detailed
images of intracranial white matter [1, 2, 14, 17]. Moreover, continuous sum-
maries of individual white matter tracts, parameterized by distance along the
tract and called tract profiles, can be constructed from diffusion tensor images.
Here we study the fractional anisotropy tract profile of the right corticospinal
tract; this gives a measure of how anisotropic diffusion is along the tract.

Our study consists of 100 multiple sclerosis patients with between two and
eight visits each; a total of 334 visits were observed. Study participants had ages
between 21 and 71 years, and 63% were women. We fit model (2.8), using age and
gender as non-functional covariates and the mean diffusivity tract profile of the
corpus callosum as a functional predictor. We include subject-specific random
intercepts to account for the repeated observations at the subject level. The
model was fit using both the variational approximation and MCMC sampling;
the results are shown in Figure 4.

Previous studies have linked damage in the corpus callosum to cognitive de-
cline as measured by PASAT and other tests [15, 20]. However, these studies
lacked the spatial information present in the functional treatment here, which
proves to be important. From the estimated coefficient function and boot-
strapped confidence intervals, we see that the region from roughly 0 to .2 is
negatively associated with the PASAT outcome – that is, subjects with above-
average mean diffusivity in these regions tend to have lower PASAT scores. A
second region, from .65 to .8, is positively associated with the outcome. We
base inference on the bootstrapped intervals due to the overly conservative cov-
erage of the MCMC and variational Bayes credible intervals; however, there
is broad agreement between all intervals regarding the location of regions of
interest. Note the interpretation of the coefficient function is marginal, rather
than conditional on a subject’s random intercept. The random intercepts are
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Fig 4. Results of fitting model (2.8) to the diffusion tensor imaging dataset. The left panel
shows the estimated coefficient function; credible intervals for both methods are shown in
dashed lines, and the nonparametrically bootstrapped interval shown in grey; the right panel
shows the random intercepts predicted by both variational Bayes and MCMC sampling.

an important component of the model: a model including only random inter-
cepts explains roughly 80% of the outcome variability, while adding functional
and nonfunctional covariates raises this to 89%. Finally, age and gender were not
found to be statistically significant, but were retained as scientifically important
covariates. Their inclusion did not meaningfully affect the shape or significance
of the functional predictor.

There is broad agreement between the variational Bayes and MCMC model
fits: the point estimates of the coefficient and the random intercepts are very
similar, and the credible intervals indicate the same regions of significance. On
the other hand, the credible interval using MCMC is wider than that using
variational Bayes. As noted above, the variational method can result in narrower
confidence intervals if the approximating density is less diffuse than the MCMC-
sampled posterior which appears to be the case here. In this application, we
posit that the lesser importance of the functional predictors in comparison to
the random intercepts leads to increased posterior variability in the estimated
functional coefficient. Indeed, when we fit a model without the random subject-
specific intercept the confidence intervals for Bayesian and variational Bayesian
approximations became indistinguishable.

Also shown in Figure 4 as a grey band is the 95% bootstrap confidence
interval, constructed by nonparametrically resampling subjects and fitting the
longitudinal functional regression model using variational Bayes. Inference for
the coefficient function is largely unchanged based on the bootstrap interval
except in the region from .2 to .4, which does not appear to be significantly
associated with the outcome. Although the credible intervals using variational
Bayes are likely too narrow, the computational gain and accurate point estimates
provided by this method allow for the construction of bootstrap confidence
intervals, which performed much better in our simulations.
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6. Discussion

The variational Bayes approach to functional regression was motivated by a
pressing need for computationally feasible Bayesian inference in a large-data
setting. We have developed iterative algorithms for approximate inference in
both the cross-sectional and longitudinal regression settings, and analyzed a lon-
gitudinal neuroimaging study. The methods developed: 1) flexibly estimate all
parameters in the cross-sectional and longitudinal functional regression models;
2) accurately approximate the posterior distributions of all model parameters;
3) retain the advantages of Bayesian inference, including the ability to jointly
model the functional predictors and scalar outcomes and easily constructed
credible bands; 4) require orders of magnitude less computational effort than
MCMC techniques; and 5) allow the construction of nonparametric bootstrap
confidence intervals, which seem to have good coverage probabilities.

A few limitations of the variational Bayes method are apparent. While our
simulations indicate that variational techniques can be used with confidence in
the functional regression setting, the approximation cannot be made more ac-
curate by increasing computation time. Additionally, the iterative algorithms
are based on involved algebraic derivations; those needed for functional regres-
sion have been carried out here, but additional work may be needed to adapt
these algorithms to specific scientific settings. Lastly, the performance of cred-
ible intervals approximated using variational Bayes may not be satisfactory if
the posterior distribution is multimodal or more diffuse than the approximating
distribution, although the use of the nonparametric bootstrap can alleviate this
issue.

Future work may proceed in several directions. The adaptation of the ap-
proach to non-Gaussian outcomes will expand the class of applications in which
variational Bayes may be used for functional regression. Very large gains in com-
putation time may be found in functional magnetic resonance imaging or other
studies where the predictors are sampled at thousands or tens of thousands of
points. More generally, variational Bayes has potential applications in several
functional data analysis topics, including function-on-function regression and
the decomposition of populations of functions.

Appendix A: Derivations

In this appendix we derive the optimal densities q∗ for approximate Bayesian
inference in the longitudinal functional regression model. For the cross-sectional
case, one may omit the random effects b. We recall that, given a partition
{θ1, . . . , θL} of the parameter space θ, the explicit solution for q(θl), 1 ≤ l ≤ L,
has the form

q∗l (θl) ∝ exp
{
Eθ−l

log p(θl|rest)
}
; 1 ≤ l ≤ L (A.1)

where rest ≡ {y, θ1, . . . , θl−1, θl+1, . . . , θL}
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A.1. Optimal densities for g and σ2

g

Recall that g ∼ N
(
0, σ2

gD
)
and σ2

g ∼ IG (Ag, Bg). According to (A.1), the
optimal densities are given by

q∗(g) ∝ exp {E−g log p(g|rest)} and q∗(σ2
g) ∝ exp

{
E−σ2

g
log p(σ2

g |rest)
}
.

The full conditional distribution p(g|rest) appearing above is given by

p(g | rest) ∝ p(Y | β, b,C, g, σ2
Y )p(g | σ2

g)

∝ exp

[
−
1

2

{
1

σ2
Y

(Y − zβ −Zb−CMg)T (Y − zβ −Zb−CMg)

+
1

σ2
g

gTD−1g

}]

∝ exp

[
−
1

2

{
gT
(

1

σ2
Y

MTCTCM +
1

σ2
g

D−1

)
g

−2

((
Y T − βTzT −Zb

)( 1

σ2
Y

CM

))
g

}]
.

Therefore the optimal density q∗(g) is

q∗(g)

∝ exp

[
−
1

2
E−g

{
gT
(

1

σ2
Y

MTCTCM +
1

σ2
g

D−1

)
g

−2

((
Y T − βT zT − bTZT

)( 1

σ2
Y

CM

))
g

}]

∝ exp

{
−
1

2

(
g − µq(g)

)T
Σ−1

q(g)

(
g − µq(g)

)}

where

Σq(g) =
{
µq(1/σ2

Y
)M

T (µT
q(C)µq(C) + nΣq(C))M + µq(1/σ2

g)
D−1

}−1

µq(g) = Σq(g)

{
µq(1/σ2

Y
)

(
Y T − µT

q(β)z
T − µT

q(b)Z
T
)(
µq(C)M

)}T

.

(A.2)
Thus the optimal density q∗(g) is N(µq(g),Σq(g)).

Further, the full conditional p(σ2
g |rest) is given by

p(σ2
g | rest) ∝ p(g | σ2

g)p(σ
2
g)

∝ (σ2
g)

−Kg/2 exp

{
−

1

2σ2
g

gTD−1g

}
× (σ2

g)
−Ag−1 exp

{
−

1

σ2
g

Bg

}

= (σ2
g)

−Ag−Kg/2−1 exp

{
−

1

σ2
g

(
Bg +

1

2
gTD−1g

)}
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so that the optimal density q∗(σ2
g) is

q∗(σ2
g) ∝ exp

{
−(Ag +Kg/2 + 1) log(σ2

g)−
1

σ2
g

E−σ2
g

(
Bg +

1

2
gTD−1g

)}
.

Thus q∗(σ2
g) is IG

(
Ag +Kg/2, Bq(σ2

g)

)
where

Bq(σ2
g)

= Bg + 1
2

(
µT

q(g)D
−1µq(g) + tr

(
D−1Σq(g)

))
(A.3)

Note that, when q(σ2
g) = q∗(σ2

g), the term µq(1/σ2
g)

appearing in (A.2) is equal

to
Ag+Kg/2
B

q(σ2
g)

.

A.2. Optimal densities for b and σ2

b

Recall that b ∼ N
(
0, σ2

bI
)
and σ2

b ∼ IG (Ab, Bb).

The full conditional distribution p(b|rest) is given by

p(b | rest) ∝ p(Y | β, b,C, g, σ2
Y )p(b | σ2

b)

∝ exp

[
−
1

2

{
1

σ2
Y

(Y − zβ − Zb−CMg)T (Y − zβ −Zb−CMg)

+
1

σ2
b

bT I−1b

}]

∝ exp

[
−
1

2

{
b
T

(
1

σ2
Y

ZTZ +
1

σ2
b

I

)
b

−2

((
Y T − βT zT − gTMTCT

)( 1

σ2
Y

Z

))
b

}]

Therefore, by (A.1), the optimal density q∗(b) is

q∗(b)

∝ exp

[
−
1

2
E−b

{
bT
(

1

σ2
Y

ZTZ +
1

σ2
b

I

)
b

−2

((
Y T − βTzT − gTMTCT

)( 1

σ2
Y

Z

))
b

}]
.

After taking the expectation above, the optimal density q∗(b) is N(µq(b),Σq(b))
where

Σq(b) =
{
µq(1/σ2

Y
)Z

TZ + µq(1/σ2
b
)I
}−1

µq(b) = Σq(b)

{
µq(1/σ2

Y
)

(
Y T − µT

q(β)z
T − µT

q(g)MµT
q(C)

)
Z
}T

.

(A.4)
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Further, the full conditional p(σ2
b |rest) is given by

p(σ2
b | rest) ∝ p(b | σ2

b)p(σ
2
b)

∝ (σ2
b)

−n/2 exp

{
−

1

2σ2
b

bTb

}
× (σ2

b)
−Ab−1 exp

{
−

1

σ2
b

Bb

}

= (σ2
b)

−Ab−n/2−1 exp

{
−

1

σ2
b

(
Bb +

1

2
bT b

)}

so that the optimal density q∗(σ2
b) is

q∗(σ2
b) ∝ exp

{
−(Ab + n/2 + 1) log(σ2

b)−
1

σ2
b

E−σ2
b

(
Bb +

1

2
b
T
b

)}
.

Thus q∗(σ2
b) is IG(Ab + n/2, Bq(σ2

b
)) where

Bq(σ2
b
) = Bb +

1
2

(
µT

q(b)µq(b) + tr
(
Σq(b)

))
(A.5)

Note that, when q(σ2
b) = q∗(σ2

b), the term µq(1/σ2
b
) appearing in (A.4) is equal

to Ab+n/2
B

q(σ2
b
)
.

A.3. Optimal densities for C and λj

Recall that cij ∼ N(0,Λ), where Λ = diag(λ1, . . . , λKx
) and λk ∼ IG (Aλ, Bλ)

for 1 ≤ k ≤ Kx. In the following, we continue to use cij as the PC loadings for
subject i at visit j and C as the matrix constructed by row-stacking the cij . We
additionally use µq(c),ij as the expected value of cij with respect to the q(C)
distribution and µq(C) as the matrix constructed by row-stacking the µq(c),ij .

Finally, let Λ−1
q = diag(µq(1/λ1), . . . , µq(1/λk))

The full conditional distribution p(C|rest) is given by

p(C | rest) ∝ p(Y | β, b,C, g, σ2
Y )p(W | C, σ2

X)p(C | Λ)

∝ exp

[
−
1

2
tr

{
1

σ2
Y

(
Y T − βTzT − bTZT − gTMTCT

)T

(
Y T − βT zT − bTZT − gTMTCT

)}]

× exp

[
−
1

2
tr

{
1

σ2
X

(
W T −ψCT

)T (
W T −ψCT

)}]

× exp

{
−
1

2
tr
(
CΛ−1CT

)}

∝ exp

[
−
1

2
tr

{
C

(
MggTMT

σ2
Y

+
ψTψ

σ2
X

+ Λ−1

)
CT

−2

(
Y gTMT

σ2
Y

−
zβgTMT

σ2
Y

−
ZbgTMT

σ2
Y

+
Wψ

σ2
X

)
CT

}]
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Therefore, by (A.1), the optimal density q∗(C) is

q∗(C)

∝ exp

[
−
1

2
E−C

[
tr

{
C

(
MggTMT

σ2
Y

+
ψTψ

σ2
X

+ Λ−1

)
CT

−2

(
Y gTMT

σ2
Y

−
zβgTMT

σ2
Y

−
ZbgTMT

σ2
Y

+
Wψ

σ2
X

)
CT

}]]

∝ exp




−
1

2




I∑

i=1

J∑

j=1

{
(cij)

T − (µq(c),ij)
T
}T

Σ−1
q(C)

{
(cij)

T − (µq(c),ij)
T
}








where

Σq(C) =
{
µq(1/σ2

Y
)M(µq(g)µ

T
q(g) +Σq(g))M

T + µq(1/σ2
X

)ψ
Tψ + Λ−1

q

}−1

µT
q(C) = Σq(C)

(
µq(1/σ2

Y
)Y µ

T
q(g)M

T − µq(1/σ2
Y
)µq(β)zµ

T
q(g)M

T−

µq(1/σ2
Y
)Zµq(b)µ

T
q(g)M

T + µq(1/σ2
X

)Wψ
)T

.

(A.6)
Thus the optimal density q∗(C) is a product of Normally distributed random
vectors sharing a common covariance matrix and with means the rows of µq(C).

In the derivation of the optimal density q∗(λk), 1 ≤ k ≤ Kx, we let C
k denote

the kth column of C and µk
q(C) denote the k

th column of µq(C). Further, we let

(Σq(C))kk denote the (k, k)th element of Σq(C). The full conditional p(λk|rest)
is given by

p(λk | rest) ∝ p(Ck | λk)p(λk)

∝ (λk)
−(nJ)/2 exp

{
−

1

2λk
(Ck)T (Ck)

}
× (λk)

−Aλ−1 exp

{
−

1

λk
Bλ

}

= (λk)
−Aλ−(nJ)/2−1 exp

{
−

1

λk

(
Bλ +

1

2
(Ck)T (Ck)

)}

so that the optimal density q∗(λk) is

q∗(λk) ∝ exp

{
−(Aλ + (nJ)/2 + 1) log(λk)−

1

λk
E−λk

(
Bλ +

1

2
(Ck)T (Ck

)}
.

Thus q∗(λk) is IG
(
Aλ + (nJ)/2, Bq(λk)

)
where

Bq(λk) = Bλ + 1
2

(
(µk

q(C))
T (µk

q(C)) + n(Σq(C))kk

)
(A.7)

Note that, when q(λk) = q∗(λk), the term (k, k)th entry of Λ−1
q appearing in

(A.6) is equal to Aλ+(nJ)/2
Bq(λk)

.
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A.4. Optimal density for β

Recall that β ∼ N(0, σ2
βI).

The full conditional distribution p(β|rest) is given by

p(β | rest) ∝ p(Y | β, b,C, g, σ2
Y )p(β)

∝ exp

[
−
1

2

{
1

σ2
Y

(Y − zβ −Zb−CMg)T (Y − zβ −Zb−CMg)

+
1

σ2
β

βT I−1β

}]

∝ exp

[
−
1

2

{
β
T

(
1

σ2
Y

zTz +
1

σ2
β

I

)
β

−2

((
Y T − bTZT − gTMTCT

)( 1

σ2
Y

z

))
β

}]

Therefore, by (A.1), the optimal density q∗(β) is

q∗(β) ∝ exp

[
−
1

2
E−β

{
βT

(
1

σ2
Y

zTz +
1

σ2
β

I

)
β

−2

((
Y T − bTZT − gTMTCT

)( 1

σ2
Y

z

))
β

}]
.

After taking the expectation above, the optimal density q∗(β) is N(µq(β),Σq(β))
where

Σq(β) =
{
µq(1/σ2

Y
)z

T z + 1
σ2
β

I
}−1

µq(β) = Σq(β)

{
µq(1/σ2

Y
)

(
Y T − µT

q(b)Z
T − µT

q(g)MµT
q(C)

)
z
}T

.

(A.8)

A.5. Optimal density for σ2

X

Recall that the functional predictors are observed over a grid of length N . The
full conditional p(σ2

X |rest) is given by

p(σ2
X | rest) ∝ p(W | σ2

X)p(σ2
X )

∝




I∏

i=1

J∏

j=1

(σ2
X )−N/2 exp

{
−

1

2σ2
X

(Wij −Cijψ
T )(Wij −Cijψ

T )T
}



·

[
(σ2

X)−AX−1 exp

{
−

1

σ2
X

BX

}]

= (σ2
X)−AX−(nJN)/2−1 exp

{
−

1

σ2
X

(BX

+
1

2

I∑

i=1

J∑

j=1

(W ij −Cijψ
T )(W ij −Cijψ

T )T
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so that the optimal density q∗(σ2
X) is

q∗(σ2
X ) ∝ exp

{
−(AX + (nNJ)/2 + 1) log(σ2

X )

−
1

σ2
X


BX +

1

2
E−σ2

X

I∑

i=1

J∑

j=1

(W ij −Cijψ
T )(W ij −Cijψ

T )T







 .

Thus q∗(σ2
X ) is IG(AX + (nNJ)/2, Bq(σ2

X
)) where

Bq(σ2
X

) = BX +
1

2





I∑

i=1

J∑

j=1

‖(W ij − µq(c),ijψ
T )T ‖2 + (nJ)tr

(
ψTψΣq(C)

)




(A.9)
Note that, when q(σ2

X ) = q∗(σ2
X ), the term µq(1/σ2

X
) appearing in (A.6) is equal

to AX+(nJ)/2
B

q(σ2
X

)
.

A.6. Optimal density for σ2

Y

Finally, the full conditional p(σ2
Y |rest) is given by

p(σ2
Y | rest)

∝ p(Y | β, b,C, g, σ2
Y )p(σ2

Y )

∝ (σ2
Y )−(nJ)/2 exp

{
−

1

2σ2
Y

‖Y − zβ −Zb−CMg‖2
}

×(σ2
Y )−AY −1 exp

{
−

1

σ2
Y

BY

}

= (σ2
Y )−AY −(nJ)/2−1 exp

{
−

1

σ2
Y

(
BY +

1

2
‖Y − zβ −Zb−CMg‖2

)}

so that the optimal density q∗(σ2
Y ) is

q∗(σ2
Y ) ∝ exp

{
−(AY + (nJ)/2 + 1) log(σ2

Y )

−
1

σ2
Y

(
BY +

1

2
E−σ2

Y
‖Y − zβ −Zb−CMg‖2

)}
.

Next, we see that

E−σ2
Y

{
‖Y − zµq(β) −Zb− µq(C)Mµq(g)‖

2
}

= ‖Y − zµq(β) −Zb− µq(C)Mµq(g)‖
2

+E−σ2
Y

{
(zµq(β) − zβ)

T (zµq(β) − zβ)
}

+E−σ2
Y

{
(µq(C)Mµq(g) −CMg)T (µq(C)Mµq(g) −CMg)

}
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+E−σ2
Y

{
(Zµq(b) −Zb)

T (Zµq(b) −Zb)
}

= ‖Y − zµq(β) −Zb− µq(C)Mµq(g)‖
2 + tr

(
zTzΣq(β)

)

−
(
µq(g)Mµq(C)

)T (
µq(g)Mµq(C)

)

+µT
q(g)M

T (µT
q(C)µq(C) + (nJ)Σq(C))Mµq(g)

+tr
{
MT

(
µT

q(C)µq(C) + (nJ)Σq(C)

)
MΣq(g)

}

+tr
{
ZTZΣq(b)

}
. (A.10)

Thus q∗(σ2
Y ) is IG(AY + (nJ)/2, Bq(σ2

Y
)) where

Bq(σ2
Y
) = BY +

1

2

[
‖Y − zµq(β) −Zb− µq(C)Mµq(g)‖

2 + tr
(
zTzΣq(β)

)

−
(
µq(g)Mµq(C)

)T (
µq(g)Mµq(C)

)

+µT
q(g)M

T (µT
q(C)µq(C) + (nJ)Σq(C))Mµq(g)

+tr
{
MT

(
µT
q(C)µq(C) + (nJ)Σq(C)

)
MΣq(g)

}
+ tr

{
ZTZΣq(b)

}]

(A.11)

Note that, when q(σ2
Y ) = q∗

σ2
Y

(σ2
Y ), the term µq(1/σ2

Y
) appearing regularly above

is equal to AY +(nJ)/2
B

q(σ2
Y

)
.

Appendix B: Expression for p(Y,W ; q)

In this appendix we derive an expression for the lower bound of the log like-
lihood. This quantity is use to monitor convergence in Algorithm 1, and its
derivation takes advantage of the order of updates in the algorithm to simplify
the expression.

We have that log p(Y ,W ; q∗) =
∫
q(θ) log

(p(Y ,W ,θ)
q∗(θ)

)
dθ = Eq∗ [log p(Y ,W ,

θ)− log q∗(θ)]. Now,

Eq∗ [log p(Y ,W , θ)− log q∗(θ)]

= Eq∗
[
log p(Y | β, b,C, g, σ2

Y )
]
+ Eq∗

[
log p(W | C, σ2

X)
]

+Eq∗ [log p(β)− log {q∗(β)}] + Eq∗
[
log p(g | σ2

g)− log {q∗(g)}
]

+Eq∗
[
log p(b | σ2

b)− log {q∗(b)}
]
+ Eq∗ [log p(C | λ)− log {q∗(C)}]

+Eq∗
[
log p(σ2

g)− log
{
q∗(σ2

g)
}]

+ Eq∗
[
log p(σ2

b)− log
{
q∗(σ2

b)
}]

+Eq∗
[
log p(σ2

Y )− log
{
q∗(σ2

Y )
}]

+ Eq∗
[
log p(σ2

X )− log
{
q∗(σ2

X )
}]

+

Kx∑

k=1

Eq∗ [log p(λk)− log {q∗(λk)}] (B.1)
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The first term appearing in (B.1) is

Eq∗
[
log p(Y | β, b,C, g, σ2

Y )
]

= Eq∗

[
−
nJ

2
log(2π)−

1

2
log
(
| σ2

Y I |
)
−

1

2

1

σ2
Y

‖Y − zβ −Zb−CMg‖2
]

= −
nJ

2
log(2π)−

nJ

2
Eq∗ log(σ

2
Y )

−
1

2
µq(1/σ2

Y
)

{
‖Y − zµq(β) −Zb− µq(C)Mµq(g)‖

2 + tr
(
zTzΣq(β)

)

−
(
µq(g)Mµq(C)

)T (
µq(g)Mµq(C)

)

+µT
q(g)M

T (µT
q(C)µq(C) + (nJ)Σq(C))Mµq(g)

+tr
{
MT

(
µT

q(C)µq(C) + (nJ)Σq(C)

)
MΣq(g)

}
+ tr

{
ZTZΣq(b)

}}
.

The second term is

Eq∗
[
log p(W | C, σ2

X)
]

= Eq∗




n∑

i=1

J∑

j=1

(
−N

2
log(2π)−

N

2
log
(
σ2
X

)
−

1

2

1

σ2
X

‖
(
W ij −Cijψ

T
)T

‖2
)


= −
nJN

2
log(2π)−

nJN

2
Eq∗ log(σ

2
X )

−
1

2
µq(1/σ2

X
)




n∑

i=1

J∑

j=1

‖(W ij − µq(c),ijψ
T )T ‖2 + (nJ)tr

(
ψ

T
ψΣq(C)

)

 .

Next, we have

Eq∗ [log p(β)− log {q∗(β)}]

= Eq∗

[
1

2
log

(
|Σq(β)|

σ2p
β

)
−

1

2σ2
β

βTβ +
1

2
(β − µq(β))

TΣ−1
q(β)(β − µq(β))

]

=
1

2
log

(
|Σq(β)|

σ2p
β

)
−

1

2σ2
β

{
µT

q(β)µq(β) + tr
(
Σq(β)

)}
+
p

2
.

The fourth term is given by

Eq∗
[
log p(g | σ2

g)− log {q∗(g)}
]

= Eq∗

[
1

2
log

(
| Σq(g) |

| σ2
gD |

)
−

1

2

1

σ2
g

gTD−1g +
1

2
(g − µq(g))

TΣ−1
q(g)(g − µq(g))

]

=
1

2
log(| Σq(g) |)−

Kg

2
Eq∗ [log σ

2
g ]−

1

2
log(|D |)

−µq(1/σ2
g)
1

2

{
µT

q(g)D
−1µq(g) + tr

(
D−1Σq(g)

)}
+
Kg

2
.
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Further, we have

Eq∗ [log p(C | Λ)− log {q∗(C)}]

= Eq∗

[
Kx∑

k=1

{
nJ

2
log

(
(Σq(C))kk

λk

)
−

1

2

1

λk
CT

kCk

+
1

2

(
(Ck)− (µk

q(C))
T
)T

(Σ−1
q(C))kk

(
(Ck)− (µk

q(C))
T
)}]

=

Kx∑

k=1

nJ

2
log
{
(Σq(C))kk

}
−

Kx∑

k=1

nJ

2
Eq∗ log(λk)

−

Kx∑

j=1

1

2
µq(1/λk)

(
(µk

q(C))
T (µk

q(C)) + (nJ)(Σq(C))kk

)
+

(nJ)Kx

2
.

The sixth term in (B.1) is

Eq∗
[
log p(b | σ2

b)− q∗(b)
]

= Eq∗

[
1

2
log

(
| Σq(b) |

| σ2
bI |

)
−

1

2

1

σ2
b

b
T
b+

1

2
(b− µq(b))

TΣ−1
q(b)(b− µq(b))

]

=
1

2
Eq∗ [log(| Σq(b) |)]−

n

2
Eq∗ [log σ

2
b ]

−µq(1/σ2
b
)

1

2

[
µT

q(b)µq(b) + tr
(
Σq(b)

)]
+
n

2
.

Next,

Eq∗
[
log p(σ2

g)− log
{
q∗(σ2

g)
}]

=
Kg

2
Eq∗ log(σ

2
g) + µq(1/σ2

g)

(
Bq(σ2

g)
−Bg

)
+Ag log (Bg)− log {Γ (Ag)}

−

(
Ag +

Kg

2

)
log
(
Bq(σ2

g)

)
+ log

{
Γ

(
Ag +

Kg

2

)}
.

Additionally, the eighth term in (B.1) is

Eq∗
[
log p(σ2

b)− log
{
q∗(σ2

b)
}]

=
n

2
Eq∗ log(σ

2
b) + µq(1/σ2

b
)

(
Bq(σ2

b
) −Bb

)
+Ab log (Bb)− log {Γ (Ab)}

−
(
Ab +

n

2

)
log
(
Bq(σ2

b
)

)
+ log

{
Γ
(
Ab +

n

2

)}
.

Next, we have

Eq∗
[
log p(σ2

Y )− log
{
q∗(σ2

Y )
}]

=
nJ

2
Eq∗ log(σ

2
Y ) + µq(1/σ2

Y
)

(
Bq(σ2

Y
) −BY

)
+AY log (BY )− log {Γ (AY )}

−
(
AY +

n

2

)
log
(
Bq(σ2

Y
)

)
+ log

{
Γ
(
AY +

n

2

)}
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The tenth term is

Eq∗
[
log p(σ2

X )− log
{
q∗(σ2

X )
}]

=
nJN

2
Eq∗ log(σ

2
X ) + µq(1/σ2

X
)

(
Bq(σ2

X
) −BX

)
+AX log (BX)

− log {Γ (AX)} −

(
AX +

nJN

2

)
log
(
Bq(σ2

X
)

)
+ log

{
Γ

(
AX +

nJN

2

)}

Finally, for 1 ≤ k ≤ Kx

Eq∗ [log p(λk)− log {q∗(λk)}]

=
nJ

2
Eq∗ log(λk) + µq(1/λK)

(
Bq(λk) −Bλ

)
+Aλ log (Bλ)− log {Γ (Aλ)}

−

(
Aλ +

nJ

2

)
log
(
Bq(λk)

)
+ log

{
Γ

(
Aλ +

nJ

2

)}

We combine the above factors noting that many terms cancel. For exam-
ple, the terms −nJ

2 Eq∗ log(σ
2
Y ) and nJ

2 Eq∗ log(σ
2
Y ) appear in Eq∗ [log p(Y |

β, b,C, g, σ2
Y )] and Eq∗

[
log p(σ2

Y )− log
{
q∗(σ2

Y )
}]

respectively. Moreover, we
can make substitutions for terms appearing in the updates given in Algorithm 1
and again simplify the expression. An example is to combine −µq(1/σ2

g)
Bg and

−µq(1/σ2
g)

1
2

[
µT

q(g)D
−1µq(g)+tr

(
D−1Σq(b)

)]
and substitute for −µq(1/σ2

g)
Bq(σ2

g)
;

this term cancels with another appearing in Eq∗
[
log p(σ2

g)− log
{
q∗(σ2

g)
}]
. Thus

we have

log p(Y ,W ; q)

=
−nJ

2
log(2π) +

−nJN

2
log(2π)

1

2
log

(
|Σq(β)|

σ2p
β

)

−
1

2σ2
β

{
µT

q(β)µq(β) + tr
(
Σq(β)

)}
+
p

2

+
1

2
log(| Σq(g) |)] +

Kg

2
+

Kx∑

k=1

nJ

2
log
(
(Σq(C))kk

)
+
nJKx

2

+
1

2
log(| Σq(b) |) +

n

2

+Ag log (Bg)− log (Γ (Ag))−

(
Ag +

Kg

2

)
log
(
Bq(σ2

g)

)

+ log

{
Γ

(
Ag +

Kg

2

)}

+Ab log (Bb)− log (Γ (Ab))−
(
Ab +

n

2

)
log
(
Bq(σ2

b
)

)
+ log

{
Γ
(
Ab +

n

2

)}

+AY log (BY )− log (Γ (AY ))−

(
AY +

nJ

2

)
log
(
Bq(σ2

Y
)

)

+ log

{
Γ

(
AY +

nJ

2

)}
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+AX log (BX)− log (Γ (AX))−

(
AX +

nJN

2

)
log
(
Bq(σ2

X
)

)

+ log

{
Γ

(
AX +

nJN

2

)}

+

Kx∑

k=1

[
Aλ log (Bλ)− log (Γ (Aλ))−

(
Aλ +

nJ

2

)
log
(
Bq(λk)

)

+ log

{
Γ

(
Aλ +

nJ

2

)}]

Using const. to represent an additive constant that is not affected by updates
in Algorithm 1, we have

log p(Y ,W ; q)

=
1

2
log

(
|Σq(β)|

σ2p
β

)
−

1

2σ2
β

{
µT

q(β)µq(β) + tr
(
Σq(β)

)}

+
1

2
Eq∗ [log(|Σq(g)|)] +

Kx∑

k=1

nJ

2
log
(
(Σq(C))kk

)
+

1

2
Eq∗ [log(|Σq(b)|)]

−

(
Ag +

Kg

2

)
log
(
Bq(σ2

g)

)
−
(
Ab +

n

2

)
log
(
Bq(σ2

b
)

)

−

(
AY +

nJ

2

)
log
(
Bq(σ2

Y
)

)

−

(
AX +

nJN

2

)
log
(
Bq(σ2

X
)

)
−

Kx∑

k=1

{(
Aλ +

nJ

2

)
log
(
Bq(λk)

)}
+ const.
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