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Abstract: In many multiple testing procedures, accurate modeling of the
p-value distribution is a key issue. Mixture distributions have been shown
to provide adequate models for p-value densities under the null and the
alternative hypotheses. An important parameter of the mixture model that
needs to be estimated is the proportion of true null hypotheses, which
under the mixture formulation becomes the probability mass attached to
the value associated with the null hypothesis. It is well known that in a
general mixture model, especially when a scale parameter is present, the
mixing distribution need not be identifiable. Nevertheless, under our setting
for mixture model for p-values, we show that the weight attached to the
null hypothesis is identifiable under two very different types of conditions.
We consider several examples including univariate and multivariate mixture
models for transformed p-values. Finally, we formulate an abstract theorem
for general mixtures and present other examples.
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1. Introduction

Many multiple testing procedures depend critically on the distribution of the
p-values associated with the multiple hypotheses. Following Storey (2002), the
p-value density can be represented as a mixture of a null component and an
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alternative component. Under ideal conditions, the null component is the uni-
form density. The density of a p-value under an alternative usually has no fixed
functional form, and hence non-parametric mixtures are useful to model this.
The tremendous flexibility of mixture models makes it an attractive modeling
tool; see McLachlan and Basford (1988) and Lindsay (1995). Tang et al. (2007)
successfully used mixtures of beta density to model the p-value density in the
independent case. Moreover, as argued in Ghosal et al. (2008), such mixtures
can, in addition, easily impose natural shape restrictions on p-value densities.
Recently, Ghosal and Roy (2011) have used skew-normal mixtures to model the
p-value density in the probit scale and used the mixture model to estimate the
proportion of true null hypotheses. The skew-normal mixture, in addition to
being very flexible, has the added advantage that it can be easily generalized to
the dependent situation to model the joint behavior of the p-values.

In order to study statistical procedures based on a mixture model, it is es-
sential to establish identifiability of the mixing measure. If F denotes a class of
distributions and M denotes a class of probability measures on F , then a mix-
ture of F is defined as any distribution expressible as Hµ(x) =

∫

F F (x)dµ(F )
for some µ ∈ M; see Lindsay (1995). The family of mixtures, {Hµ : µ ∈ M} is
called identifiable if for any µ, µ∗ ∈ M and Hµ = Hµ∗ imply µ = µ∗. If the class
of distributions is parameterized by a finite dimensional parameter θ ∈ Θ ⊂ R

k

as F (x) = Ψ(x; θ), then the mixing measure µ can be defined through a dis-
tribution G over the parameter space Θ and the mixture will be written as
HG(x) =

∫

θ
Ψ(x; θ)dG(θ). If Ψ(x; θ) admits a Lebesgue density ψ(x; θ), then

the corresponding G-mixture density is given by hG(x) =
∫

Θ
ψ(x; θ)dG(θ). We

say that a mixture hG of kernel ψ(·; θ) can be deconvoluted if it is possible to
uniquely recover G from hG.

Identifiability makes an inference problem meaningful, while the lack of it
may lead to absurd conclusions unless the issue is resolved by appropriate con-
straints. There is a large literature on identifiability of finite or countable mix-
tures, i.e., when the distribution G is supported only on at most countable num-
ber of points. Teicher (1961) and Yakowitz and Spragins (1968) provided suffi-
cient conditions for identifiability of finite mixtures. Patil and Bildikar (1966)
and Tallis (1969) investigated identifiability of countable mixtures; see Chandra
(1977), Chapter 3 of Titterington et al. (1985), Chapter 8 of Prakasa Rao (1992),
and Chapter 2 of Lindsay (1995) for a more complete list of references. The
study of identifiability for continuous G is more involved. The seminal papers
Teicher (1960) and Teicher (1961) provided some results on identifiability of gen-
eral mixtures. Blum and Susarla (1977) provided necessary and sufficient con-
ditions for identifiability of general mixtures in the one parameter case. They
used functional analytic methods to investigate identifiability. Tallis (1969) and
Tallis and Chesson (1982) gave conditions based on techniques from integral
equation theory. Nevertheless, most verification of identifiability proceed only
on a case-by-case basis.

In this paper, we are primarily concerned about identifiability issues of skew-
normal mixtures that are relevant in multiple hypothesis testing. The skew-
normal density q(y;µ, ω, λ) with location parameter µ, scale parameter ω and
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shape parameter λ is defined as

q(x;µ, ω, λ) = 2
1

ω
φ

(

x− µ

ω

)

Φ

(

−λx− µ

ω

)

, (1.1)

where φ denotes the standard normal density and the Φ denotes the correspond-
ing cumulative distribution function (c.d.f.). In (1.1), we have used a slight
reparameterization by switching the skewness parameter λ to −λ. The skew-
normal family of distributions and other related skewed distributions such as
skew-elliptical and skew-symmetric distributions, have recently become popular
tools for modeling and have found a wide variety of applications; see Genton
(2004). The skew-normal distribution was introduced by Azzalini (1985) and
generalized in the multivariate situation by Azzalini and Dalla Valle (1996) and
others. The potential of the skew-normal distribution as a flexible tool for mod-
eling increases many-fold when one considers mixtures of such distributions.
Ghosal and Roy (2011) considered mixtures of skew-normal distributions to
model probit-transformed p-value distribution arising in general multiple testing
problem. Clearly, under probit transformation, the null p-value density of stan-
dard uniform transforms into the standard normal density, which corresponds
to the parameter value (0, 1, 0) in the skew-normal family.

In general, mixtures may not be identifiable. For instance, location-scale mix-
ture of normal densities, one of the most commonly used mixtures, is not identi-
fiable; see Lindsay (1995), Page 54. This result renders the family of unrestricted
skew-normal mixtures non-identifiable as well. Even though the entire mixing
distribution may not be identifiable, some key features of it may be still iden-
tifiable. In multiple testing problems, a key estimand is the proportion of true
null hypotheses among all hypotheses that are being tested. In the context of
skew-normal mixture models for the probit transformed p-values, the true null
proportion corresponds to the weight given to the point (µ, ω, λ) = (0, 1, 0). We
present some conditions on the mixing distribution for univariate skew-normal
mixtures under which the point mass at (0, 1, 0) can be identified. Further we
extend the result to multivariate skew-normal mixtures, which are appropriate
tools for dependent p-values. Abstract generalizations with further examples are
also presented.

Our results on identifiability of the proportion of the true null hypotheses
are given under two very different scenarios for the range of parameters under
the alternative hypotheses. For the first type, the densities under the alternative
have tails thicker than that of the null density φ(x) and the null value (0, 1, 0)
is a boundary point for the possible parameter values under the alternative.
In this situation, we use a technique based on the characteristic function (c.f.)
to identify the proportion of true null hypotheses. For the second type of mix-
tures, the null value (0, 1, 0) is also a boundary point for the possible parameter
values under the alternative, but the densities under the alternative have tails
thinner than that of the null density φ(x). In this case, the ratios of the densi-
ties under the alternative and the null are studied to obtain the corresponding
identifiability results.
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2. Univariate skew-normal mixtures

We begin with an identifiability result for univariate skew-normal mixtures.
Consider a skew-normal mixture model with weight π0 attached to the distin-
guished value (0, 1, 0) corresponding to the standard normal distribution. In a
multiple testing problem, the mixture density may represent the overall density
of probit transformed p-values, where null hypotheses hold true randomly with
probability π0. The following describes a setting where the true null proportion
π0 is uniquely identified from such a mixture.

Theorem 2.1. Consider a skew-normal mixture of the type

f(x) = π0φ(x) + (1− π0)

∫

q(x;µ, ω, λ)dG(µ, ω, λ), (2.1)

where G is concentrated on the region

Θ1 = {(µ, ω, λ) : ω2 ≥ 1 + λ2, (ω, λ) 6= (1, 0)}.

Then f uniquely determines π0.

Proof. Let f̂(t) =
∫

eitxf(x)dx denote the c.f. of f . If X has density q(x; 0, 1, λ),
then X can be represented as

X
d
= − λ√

1 + λ2
|Y0|+

1√
1 + λ2

Y1, (2.2)

where Y0, Y1 are independent standard normal; see Dalla Valle (2004), Proposi-
tion 1.2.3.

Note that E(eis|Y0|) = 2e−s2/2Φ(is) for all s ∈ R, where Φ is the unique entire
function which agrees with the standard normal c.d.f. on R. This may be shown
by evaluating 2

∫∞
0 eisyφ(y)dy by direct contour integration. Alternatively, by

observing that the half-normal distribution has finite moment generating func-
tion (m.g.f.) everywhere, E(ez|Y0|) is an entire function which agrees with the

function 2
∫∞
0 ezyφ(y)dy = 2ez

2/2Φ(z) for z ∈ R, and hence must agree every-
where on z ∈ C.

Thus the c.f of q(x; 0, 1, λ) is given by

q̂(t; 0, 1, λ) = e−t2/2Φ(−itλ/
√

1 + λ2).

Shifting the location by µ and scaling by ω, it follows that the c.f. of q(x;µ, ω, λ)
is

q̂(t;µ, σ, λ) = eitµ−ω2t2/2Φ(−itωλ/
√

1 + λ2).

Therefore, we obtain

et
2/2f̂(t) = π0 + (1− π0)

∫

Θ1

eitµ−(ω2−1)t2/2Φ

(

− itωλ√
1 + λ2

)

dG(µ, ω, λ). (2.3)
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We shall show that the second term in (2.3) goes to zero as |t| → ∞, identifying
π0 uniquely from f . It suffices to show that for every (µ, ω, λ) with ω2 ≥ 1+λ2,
(ω, λ) 6= (1, 0), we have

eitµ−(ω2−1)t2/2Φ

(

− itωλ√
1 + λ2

)

→ 0 as |t| → ∞ (2.4)

and the expression in (2.4) is uniformly bounded by a constant. If it can be
shown that

eitµ−(ω2−1)t2/2Φ(−itωλ/
√

1 + λ2)

is the c.f. of a continuous random variable, then (2.4) holds by the Riemann-
Lebesgue lemma while the second assertion holds by the absolute boundedness
of a c.f. by 1.

To complete the proof, we use the representation (2.2) for a general µ, ω:

X
d
= µ− ω

λ√
1 + λ2

|Y0|+ ω
1√

1 + λ2
Y1.

Since ω/
√
1 + λ2 ≥ 1 by the given condition, Y1 can be represented as Z1 +Z2,

where Z1 ∼ N(0, ω2

1+λ2 − 1), Z2 ∼ N(0, 1) and they are independent. Hence

eitµ−(ω2−1)t2/2Φ(−itωλ/
√
1 + λ2) is the c.f of the continuous random variable

µ− ωλ√
1+λ2

|Y0|+Z1; note that at least one of
ωλ√
1+λ2

|Y0| and Z1 is non-degenerate

since (ω, λ) 6= (1, 0).

Theorem 2.1 implies the following result for normal mixtures.

Corollary 2.2. A normal mixture of the type

f(x) = π0φ(x) + (1− π0)

∫

1

ω
φ

(

x− µ

ω

)

dG(µ, ω),

where G is concentrated on the region R× (1,∞), uniquely determines π0.

The conclusion is not unexpected since N(0, 1) may not be written as mix-
tures of N(0, ω2) with ω > 1. For the skew-normal family, the corresponding
natural lower bound for ω seems to be

√
1 + λ2, since this guarantees that the

variance of the distribution is more than 1.
For modeling probit transformed p-values, a more useful region for the mix-

ing parameter in the multiple testing context is the complementary region
ω <

√
1 + λ2. This is due to the fact that the conditions µ ≤ 0, 1 < ω <√

1 + λ2, λ > 0 ensure that the density of the original p-values is decreasing
[cf., Ghosal and Roy (2011)], which is a natural shape restriction in the test-
ing context. Indeed, the required condition rules out the normal case λ = 0.
For a precise characterization of the decreasing p-value density, see Theorem 2
of Ghosal and Roy (2011). The normal mixture model may, however, be use-
ful in the case when test statistics are modeled directly. A referee pointed out
that p-values for two sided tests can sometimes lose valuable information. If
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there is imbalance in the distribution of the direction of alternative in a two-
sided t-test, then that information can be retained by preserving the sign of
the t-statistic while considering the probit transform of the p-values. Since the
standard normal distribution is invariant under sign change, a mixture model
like in Corollary 2.2 may be appropriate for such signed transformed p-values.

For identifiability purposes, we can work with a larger set of parameters than
those ensuring a decreasing p-value density under the alternative. Identifiability
of π0 is guaranteed if the p-value density under the alternative attains the min-
imum value 0 as the p-values approach 1, since then the weight π0 attached to
the uniform can be easily identified from the height of the mixture density for
the original p-values at one; see Ghosal et al. (2008). For testing against a one-
sided alternative hypothesis in a monotone likelihood ratio family, the p-value
density at 1 is usually zero. One-sided alternatives will be relevant whenever
the direction of activity is known beforehand. For a two-sided alternative, the
p-value density under the alternative is generally not zero at 1, but is usually
a small number η. In the later situation, identifiability can hold only approx-
imately in the sense that the value of π0 can be asserted only within a range
of values of span η. The condition that p-value density at 1 is zero in terms
of probit transformed p-value x is equivalent to showing that the density ratio
∫

q(x;µ, ω, λ)dG(µ, ω, λ)/φ(x) → 0 as x → ∞. This motivates the following
result.

Theorem 2.3. Consider a skew-normal mixture of the type as in (2.1), where
G is concentrated on the region

Θ2 = {(µ, ω, λ) 6= (0, 1, 0) : µ ≤ 0, ω2 ≤ 1 + λ2, λ ≥ 0}.
Further assume that

∫

{λ>0} λ
−1dG(µ, ω, λ) < ∞ and

∫

{λ=0} ω
−1dG(µ, ω, λ) <

∞. Then f uniquely determines π0.

Proof. Since Φ(−t) ≤ (
√
2πt)−1e−t2/2 for all t > 0, a bound on the ratio of the

density q(x;µ, ω, λ) to φ(x) is given by

2ω−1 exp[−1

2
x2(ω−2 − 1) + xω−1µ− 1

2
ω−2µ2]Φ(−λω−1x+ λω−1µ)

≤ 2ω−1 exp[−1

2
x2{ω−2(1 + λ2)− 1}] ω

λx
≤ 2

λx
(2.5)

for all x > 0, assuming that λ > 0. The bound is G-integrable by assumption.
If λ = 0, the skewness factor is redundant and the density ratio is bounded by

ω−1 exp[−1

2
x2(ω−2−1)+xω−1µ− 1

2
ω−2µ2] ≤ ω−1 exp[−1

2
x2{ω−2−1}] ≤ ω−1,

which is also G-integrable by assumption.
If λ = 0, necessarily ω2 < 1 or µ < 0. In either case,

exp[−1

2
x2(ω−2 − 1) + xω−1µ] → 0 as x→ ∞.

For λ > 0, we use estimate (2.5) to reach the same conclusion. Therefore the
density ratio goes to 0 as x→ ∞ for any fixed (µ, ω, λ) ∈ Θ2.
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Remark 2.4. In the Bayesian context, a popular method of inducing prior
distribution on densities is using a mixture model and assigning a prior distri-
bution on the mixing distribution G. Ferguson (1983) and Lo (1984) pioneered
this idea for Bayesian density estimation. When G is given a Dirichlet process
prior [Ferguson (1973)] with E(G) = G0, the condition on G in Theorem 2.3
can be met by requiring that G0(Θ2) = 1,

∫

{λ>0} λ
−1dG0(µ, ω, λ) < ∞ and

∫

{λ=0} ω
−1dG0(µ, ω, λ) <∞.

It is interesting to observe that the situations in Theorems 2.1 and 2.3 are
diametrically opposite in that in the former case, the c.f. under the alternative
has thinner tail than the c.f. under the null, while in the latter case, the density
under the alternative has thinner tail than that under the null. According to a
well-known “uncertainty principle” [Hardy (1933)], a function and its Fourier
transform cannot both have thinner tails than the standard normal. If the mixing
distributions gives weight to both Θ1 and Θ2, then neither the technique of
controlling the ratios of the c.f.’s, nor that of the ratios of the densities used in
the proofs, will work. This is the primary reason why we need G to give weights
only to one type of alternatives. The following remark clarifies the comment
further.

Remark 2.5. Consider a mixture

f(x) =
1

2
× 2φ(2x) +

1

2
× 1

2
φ(x/2) (2.6)

of two densities from the normal scale family, where one of the densities in the
mixture, 2φ(2x) has a thinner tail than the null density φ(x) and the other
density, 1

2φ(x/2) has thicker tail than φ(x). Then f can be written as a mixture
of N(0, 1) and a symmetric unimodal density, and hence the null proportion π0
may not be identified from f . More precisely, we may write

f(x) =
1

4
φ(x) +

3

4
h(x) (2.7)

for some symmetric unimodal density h.
Observe that g(x) = 2φ(2x) + 1

2φ(x/2) − 1
2φ(x) ≥ 0 for all x, and g′(x) > 0

for x < 0 and g′(x) < 0 for x > 0. Also note that
∫

g(x)dx = 3
2 . Therefore, with

the symmetric unimodal probability density h(x) = 2
3g(x), representation (2.7)

holds.

3. Multivariate skew-normal mixtures

In this section, we consider analogs of the results of the last section for multi-
variate skew-normal mixtures.

LetR be anm×m positive definite correlationmatrix and let λ= (λ1, . . . , λm)′

∈ Rm. Let ∆ = diag((1 + λ21)
−1/2, . . . , (1 + λ2m)−1/2). The standardized multi-

variate skew-normal density with matrix of correlation parameters R and skew-
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ness vector λ is given by

2

(2π)m/2 det(∆)
√

det(R+ λλ′)
exp[−1

2
x′∆−1(R+ λλ′)−1∆−1x]

×Φ

(

−λ′∆−1(R + λλ′)−1∆−1x√
1 + λ′R−1λ

)

.

When a location vector µ = (µ1, . . . , µm)′ and scale parameters ω1, . . . , ωm > 0
are introduced, a multivariate skew-normal density q(x;µ,D,λ,R) is given by

2

(2π)m/2 det(Γ)
√

det(R+ λλ′)
(3.1)

× exp[−1

2
(x− µ)′Γ−1(R+ λλ′)−1Γ−1(x− µ)]Φ

(

−λ′R−1Γ−1(x− µ)√
1 + λ′R−1λ

)

,

where D = diag(ω1, . . . , ωm) and Γ = D∆ = ∆D. A random vector X =
(X1, . . . , Xm)′ following the density q(x;µ,D,R,λ) can be represented as

Xj = µj + ωjZj,

Zj = − λj
√

1 + λ2j

|Y0|+
1

√

1 + λ2j

Yj , j = 1, . . . ,m, (3.2)

where Y0 ∼ N(0, 1) and independently (Y1, . . . , Ym)′ follows the m-variate nor-
mal distribution Nm(0,R) with mean vector 0 and variance-covariance matrix
R; see Dalla Valle (2004).

In the multiple hypothesis testing situation considered by Ghosal and Roy
(2011), null or alternative hypotheses hold true independently of each other
with probability π0 and 1 − π0 respectively. Let H1, . . . , Hm stand for hypoth-
esis indicators, where 0 stands for a true null and 1 for a false null. For any
H = (H1, . . . , Hm), let µH (respectively, λH) be the vector obtained from µ

(respectively, λ) by replacing the jth component by 0 whenever Hj = 0. Simi-
larly, let DH (respectively, ∆H , ΓH) be the diagonal matrix obtained from D

(respectively, ∆, Γ) by replacing the jth diagonal entry by 1 whenever Hj = 0.
Given all hypothesis indicators H1, . . . , Hm, the joint density of probit p-values
(X1, . . . , Xm)′ is assumed to be q(x;µH ,DH ,λH ,R), and (µj , ωj, λj) are i.i.d.
following a joint distribution G. The correlation matrix R is kept fixed in the
mixing. Thus the multivariate skew-normal mixture density f can be written as

πm
0 φm(x;0,R) +

∑

(H1,...,Hm) 6=(0,...,0)

πm−nH

0 (1− π0)
nH (3.3)

×
∫

q(x;µH ,DH ,λH ,R)
m
∏

j=1

dG(µj , ωj , λj),

where nH stands for the number of false null hypotheses.
Below, we use the following orderings: for vectors x,y, let x < y or x ≤ y

stand for componentwise ordering and for matrices, let A ≥ B mean that A−B

is non-negative definite while A > B stand for A ≥ B and A 6= B.



Identifiability in mixture models 337

Theorem 3.1. Consider a skew-normal mixture of the type (3.3), where G
is concentrated on a region Θ1 such that ΓHRΓH > R for all H 6= 0 and

(µ,ω,λ) ∈ Θm
1 . Then f uniquely determines π0.

Proof. We use the c.f. based argument as in the case of univariate mixtures
and apply to every term in the sum (3.3) by showing that the ratio of c.f’s
exp(‖t‖2/2)q̂(t;µH ,DH ,λH ,R) → 0 as ‖t‖ → ∞ along a line. For a given
sequence H of hypotheses indicators, a random variable X having density
q(x;µH ,DH ,λH ,R) can be represented using (3.2) as

X
d
= µH − |Y0|ΓHλH + ΓHY ,

Clearly, X is the convolution of Nm(0,R) with another variable since the
variance-covariance matrix of ΓHY is ΓHRΓH ≥ R. It remains to show that
the other variable in the convolution is continuous. Then the Riemann-Lebesgue
lemma will apply on t approaching infinity along at least one line.

If at least one λi 6= 0 for some i with Hi = 1, then the first term |Y0|ΓHλH

is non-degenerate. If all λi = 0, the skew-normal density is reduced to a normal
and ΓHY contains a Nm(0,ΓHRΓH −R) variable, which is a non-degenerate
normal variable.

Remark 3.2. The condition ΓHRΓH > R for all H in particular implies that
ω2
i > 1 + λ2i for all i. These two conditions are, of course, equivalent in the

independent case.

As in the univariate case, identifiability can be established under a diametri-
cally opposite condition on parameters using density considerations.

Theorem 3.3. Consider a multivariate skew-normal mixture of the type as in

(3.3), where G is concentrated on a region Θ2 such that

(R + λHλ′
H
)−1Γ−1

H
µH ≤ 0,ΓH(R+ λHλ′

H
)ΓH < R (3.4)

for all H and (µ,ω,λ) ∈ Θm
2 . Further assume that

∫

ω−1
√
1 + λ2dG(µ, ω, λ) <

∞. Then f uniquely determines π0.

Proof. We shall show that for every H , the ratio

∫

Θm

2

q(x;µH ,DH ,λH ,R)

φm(x;0,R)

m
∏

j=1

dG(µj , ωj, λj)

converges to 0 as ‖x‖ tends to infinity along some line. We establish this by
showing that

(i) q(x;µH ,DH ,λH ,R)/φm(x;0,R) is uniformly bounded by a G-integrable
function;

(ii) for every fixed (µH ,ωH ,λH), q(x;µH ,DH ,λH ,R)/φm(x;0,R) → 0 as
‖x‖ tends to infinity along some line.
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For (i), observe that

q(x;µH ,DH ,λH ,R)

φm(x;0,R)

=
2
√

det(R)

det(ΓH)
√

det(R+ λHλ′
H
)

× exp[−1

2
{(x− µH)′Γ−1

H
(R+ λHλ′

H
)−1Γ−1

H
(x− µH)− x′R−1x}]

×Φ

(

−λ′
H
R−1Γ−1

H
(x− µH)

√

1 + λ′
H
R−1λH

)

≤ 2
m
∏

j=1

max

(

√

1 + λj

ωj
, 1

)

× exp[−1

2
x′{Γ−1

H
(R+ λHλ′

H
)−1Γ−1

H
−R−1}x]

× exp[µ′
H
Γ−1
H

(R+ λHλ′
H
)−1Γ−1

H
x− 1

2
µ′

H
Γ−1
H

(R + λHλ′
H
)−1Γ−1

H
µH ]

≤ 2

m
∏

j=1

(

1 +

√

1 + λj

ωj

)

whenever x ≥ 0, by the given conditions. By assumption,

∫ m
∏

j=1

√

1 + λj

ωj

m
∏

j=1

dG(µj , ωj, λj) =

(
∫

√
1 + λ

ω
dG(µ, ω, λ)

)m

<∞,

proving (i).
Now to prove (ii), fix any (µ,ω,λ) ∈ Θm

2 . Since

(R+ λHλ′
H
)−1 = R−1 − R−1λHλ′

H
R−1

1 + λ′
H
R−1λH

, (3.5)

(R+ λHλ′
H
)−1Γ−1

H
µH ≤ 0 on Θm

2 and λH ≥ 0, we have that

λ′
H
R−1Γ−1

H
µH ≤ R−1λHλ′

H
R−1

1 + λ′
H
R−1λH

Γ−1
H

µH (3.6)

=
λ′
H
R−1λH

1 + λ′
H
R−1λH

λ′
H
R−1Γ−1

H
µH ≤ 0.

Choose x = aΓHR1, where 1 = (1, . . . , 1)′ and a→ ∞. Then λHR−1Γ−1
H

x =
aλ′

H
1 → ∞ unless λH = 0. Hence for λH 6= 0, in view of (3.6) and Φ(−t) ≤

(
√
2πt)−1e−t2/2 for all t > 0, we obtain the bound

q(x;µH ,DH ,λH ,R)

φm(x;0,R)
≤ C exp[−1

2
x′{Γ−1

H
(R+λHλ′

H
)−1Γ−1

H
−R−1}x] 1

a
→ 0,

where C stands for a constant (depending on (µ,ω,λ) ∈ Θm
2 ). Thus, (ii) holds

in this case.
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If λH = 0, we can ignore the skewness factor in the expression for skew-
normal density, i.e., the density becomes a normal density. Further, ∆H = I,
i.e., ΓH = DH . As ΓHRΓH < R, there exists ξ such that ξ′(D−1

H
R−1D−1

H
−

R−1)ξ > 0. Choosing x = aξ and letting a→ ∞, we obtain (ii).

Remark 3.4. The ideal opposite of the condition in Theorem 3.1 is given
by ΓHRΓH < R for all H 6= 0, which is weaker than the condition as-
sumed in Theorem 3.3. Using (3.5), it is possible to prove assertion (ii) in the
proof only under ΓHRΓH < R. However, it seems that ensuring positivity
of λ′

H
R−1Γ−1

H
(x − µH) for some x not depending on the latent parameter

(µ,ω,λ) is a challenge. The positivity is essential in applying the estimate of
Mills ratio Φ(−t) ≤ t−1φ(t). A successful substitution of Φ(−t) will allow the
resulting exponential factor to combine with the factor already present, thus
leading to ordering condition ΓHRΓH < R in view of (3.5). In the special case
when R−1 is a positive operator, i.e., R−1x ≥ 0 for all x ≥ 0, the condition
ΓHRΓH < R will suffice in (3.4). Further, the condition on µ can be simplified
to µ ≤ 0.

4. Abstraction and further examples

The basic idea behind the two types of identifiability theorems can be put in
an abstract form for an arbitrary parametric family in Rm forming a univariate
mixture model of Section 2. Abstraction of the multivariate mixture model of
Section 3 will be more challenging, and will possibly depend on the availability
of a decomposition like (3.2). For the purpose of simplicity and transparency of
the conditions imposed, below we restrict to the univariate situation.

Let hθ(x), θ ∈ Θ, be a parametric family of densities with c.f. ĥθ(t) and
let θ0 be a distinguished point in Θ. Consider a mixture of the type f(x) =
π0hθ0(x) + (1− π0)

∫

hθ(x)dG(θ).

Theorem 4.1. Let θ0 6∈ Θ1 ⊂ Θ and G be concentrated on Θ1. Suppose that

ĥθ(t)/ĥθ0(t) → 0 as ‖t‖ → ∞ and |ĥθ(t)/ĥθ0(t)| ≤ B(θ) for all θ ∈ Θ1, where
∫

Θ1

B(θ)dG(θ) <∞. Then f uniquely identifies π0.

Let θ0 6∈ Θ2 ⊂ Θ and G be concentrated on Θ2. Suppose that hθ(x)/hθ0(x) →
0 as ‖x‖ → ∞ along some line, and |hθ(x)/hθ0(x)| ≤ B(θ) for all x on that

line, where
∫

Θ1

B(θ)dG(θ) <∞. Then f uniquely identifies π0.

The proof of the theorem follows from the arguments used in the proofs of
Theorems 2.1 and 2.3.

Example 4.2. Let hθ be the gamma family with shape parameter θ and scale
parameter 1. Let θ0 = 1 and Θ1 = (1,∞). Then f(x) = π0hθ0(x) + (1 −
π0)
∫∞
1 hθ(x)dG(θ) uniquely identifies π0.

To prove, observe that ĥθ(t) = (1− it)−θ. Thus, for any θ > 1,

|ĥθ(t)/ĥ1(t)| = |(1 − it)−(θ−1)| = (1 + t2)(1−θ)/2 ≤ 1,
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and (1+ t2)(1−θ)/2 → 0 as |t| → ∞. Observe that (1− it)−(θ−1) is the c.f. of the
gamma density with shape parameter θ − 1 > 0. Therefore, the ratio of c.f.s is
uniformly bounded by 1 and converges to 0 as |t| → ∞ by the Riemann-Lebesgue
lemma as well.

For θ0 = 1, Θ2 = (0, 1), f(x) = π0hθ0(x) + (1 − π0)
∫ 1

0
hθ(x)dG(θ) also

uniquely identifies π0. To see this, observe that hθ(x)/h1(x) = xθ−1/Γ(θ) ≤
xθ−1, since 1/Γ(θ) ≤ 1 for all 0 < θ < 1. If x ≥ 1, then xθ−1 ≤ 1 and xθ−1 → 0
as x→ ∞.

Example 4.3. Let hθ be the Cauchy scale family hθ(x) = [πθ(1 + x2/θ2)]−1,

θ > 0. Let θ0 = 1 and observe that ĥθ(t) = e−θ|t|.

If Θ1 = (1,∞), then ĥθ(t)/ĥ1(t) = e−(θ−1)|t|. Clearly e−(θ−1)|t| is bounded
by 1 and tends to 0 as |t| → ∞. Note that the ratio is also the c.f. of the Cauchy
density with scale parameter θ − 1 > 0.

If Θ2 = (0, 1), the ratio of densities is given by θ−1(1+x2)/(1+x2/θ2) → 0 as
|x| → ∞ and the ratio is uniformly bounded by θ−1. Thus if

∫

θ−1G(dθ) < ∞,
then f uniquely identifies π0.
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