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Abstract: Use of redundant statistical model is often the case with practi-
cal data analysis. Redundancy widely investigated is inclusion of irrelevant
predictors which is resolved by setting their coefficients to zero. On the
other hand, it is also useful to consider overlapping parameters of which
the values are similar. Grouping by regarding a set of parameters as a single
parameter contributes to building intimate parameterization and increasing
estimation accuracy by dimension reduction.

The paper proposes a data adaptive automatic grouping of parame-
ters, which simultaneously enables variable selection that can yield sparse
solution, by applying the smooth-thresholding. The new procedure is ap-
plicable to several estimation equation-based methods, and is shown to
possess the oracle property. No convex optimization is needed for its imple-
mentation. Numerical examinations including large p small n situation are
performed. Proposed automatic grouping applies to interaction modeling
for Ohio wheeze data and for credit scoring data.
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1. Introduction

It is typical in regression modeling such as for economic, social and clinical
data that several kinds of predictors are sampled as many as possible to avoid
oversight of important factors. Redundancy widely investigated is inclusion of
irrelevant predictors which is resolved by setting the corresponding regression
coefficient zero using model selection or hypothesis testing, i.e., variable selection
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problem. On the other hand, it can be useful to consider redundancy caused by
inclusion of overlapping parameters where their regression coefficients are simi-
lar, which might come from functional reason. The similarity does not necessar-
ily require that the predictors are highly correlated because it may arise that
a latent factor common in the predictors influences the response although they
behave independently. Thus, the concept of overlapping parameters is different
from that of the grouping effect of [26] in terms of dealing with the association
to the response.

Consider a d-dimensional multiple regression model yi =
∑d

j=1 Xijθj+ǫi, i =
1, . . . , n, with regression coefficients θj , predictors Xij , and random error ǫi.
Suppose that there is a set of group indices Q ⊂ {1, . . . , d} such that θj = θk for
every pair of Q. Apparently, better estimation of θj for j ∈ Q is on regarding
them as a single parameter rather than as separate parameters provided that
we know Q. This is equivalent to consider the revised regression model of

yi = XjQαQ +
∑

j∈{1,...,d}\Q

Xijαj + ǫi, i = 1, . . . , n,

in which XiQ =
∑

j∈Q Xij , the grouped predictor, αQ is the corresponding
regression coefficient, and αj = θj for j ∈ {1, . . . , d} \Q. It in turn implies that
a careful consideration of the validity of introducing XiQ in the model is needed.
For example, simply adding continuous and categorical predictors sounds rather
odd, and scaling of predictors alters relationships between regression coefficients.
The simplest case is that the predictors are all binary and independent each
other, which turns out to be the problem of pooling categories in contingency
table. Even without the independence between predictors, the regression model
can represent additive effect by the number of falling under the category to
the response, which seems a reasonable model in practical statistical modeling.
Thus, we start with binary predictors in the following examples although the
application is not limited to binary predictors. Binary predictor often is useful in
handling categorical predictors as well as their interaction effect (See Section 5).

Since the overlapping parameters are unknown in advance, we need to in-
fer it from the data. Exhaustive search of possible combinations of parameters
is virtually impossible if the number of parameters is large. To address the
issue this paper develops an automatic grouping method by using contempo-
rary variable selection techniques [16, 26, 25, 18, 1, 4], enabling data adaptive
grouping of parameters as in Bondell and Reich [1]. The proposed method is
an extension of smooth-thresholding [18] that carries out simultaneous group-
ing and variable selection, i.e., zero parameter estimates are also produced. It
is shown that the method possesses model selection consistency [6, 25, 18] in
this context, termed the grouping consistency. Required optimization technique
in smooth-thresholding of Ueki [18] is Newton–Raphson-type method which
does not require convex programming, hence it is computationally efficient and
stable. L1-type penalization [1] is an alternative choice, but needs convex pro-
gramming. Smooth-thresholding is therefore more advantageous, particularly,
for estimation problem where iterative optimization is needed, such as the lo-
gistic regression and generalized estimating equation.
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Our method requires an initial estimate as in the adaptive lasso [25]. The
simplest choice is an unpenalized estimator when the number of parameters is
smaller than the sample sizes. When the model has larger number of parameters
than that of samples, we suggest to employ the elastic net as an initial estimate
that can handle the grouping effect [26]. The tuning parameters included are
selected by a BIC-type criterion [21, 20, 18]. Because the method is estimating
equation-based, it has wide applicability, e.g., for the generalized estimation
equation [14, 17] and the Buckley–James estimator [2, 13].

Our proposal is applicable to interaction modeling for categorical predictors.
The aim is similar to that of Choi, Li and Zhu [4] who propose a variable selec-
tion method for the model with the strong heredity constraint [9]. The model
obtained from their method is more interpretable, since it allows presence of
interaction only when the corresponding main effects exist. The strong heredity
constraint is appropriate in analyzing the designed experiments [3, 12]. However,
other interaction models may be plausible in other fields, e.g., where interaction
effect appears without main effect. In such situations, our method is useful ow-
ing to its flexibility for grouping of separate categories of interaction. Real data
examples given in Section 5 demonstrate our procedure in detail.

2. Methodology

2.1. Grouping by smooth-thresholding

Suppose that we have a dataset X = (X1, . . . , Xn) of size n from a distribu-
tion having a parameter vector θ∗ where θ∗ = (θ∗1 , . . . , θ

∗
d)

T is defined in Θ, a
subset of Rd. This paper considers estimation of θ∗ via estimating equations
u(θ) = 0, where u(θ) =

∑n
i=1 u(Xi; θ), and u(x; θ) = {uj(x; θ)}j=1,...,d are the

d-dimensional vector-valued estimating function for estimating θ∗. For example,
if u is the score function then it becomes the maximum likelihood estimation.
Hereafter we assume that u satisfies E{u(X ; θ∗)} = 0, E{u(X ; θ∗)2} < ∞, and
some suitable regularity conditions for consistency and asymptotic normality of
the full model estimator [e.g., 19, Ch. 5]. The additional assumption in this pa-
per is that the full model involves overlapping parameters redundantly. Specific
parameter structure underlying is given in Section 3.1. Turning to the exam-
ple in Section 1, the saturated model has d parameters, θ = (θ1, . . . , θd)

T , but
in reality consists of only d − |Q| + 1 intrinsic parameters such that θj = αQ

for j ∈ Q and θj = αj for otherwise. Notation | · | represents cardinality of
the set. Our purpose is to identify genuine relationship, which is of course
unknown, and simultaneously estimate it as accurately as possible. Smooth-
thresholding [18] intends to connect the estimating equations of several sub-
models smoothly.

The full model estimator is a solution to the estimating equations uj(θ) =
0 (j = 1, . . . , d). According to [18], the smooth-thresholding modifies the above
estimating equations to

(1− δ̂j)uj(θ) + δ̂jθj = 0,
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for j = 1, . . . , d, where δ̂j = δ̂j(λ, δ) = min(1, λ/|θ̂inij |1+γ), θ̂inij is a suitable initial
estimate for θ∗j , and tuning parameters λ and γ. Note that the jth estimating

equation reduces to θj = 0 when δ̂j = 1, creating sparse solution, and that

δ̂j = 1 is equivalent to |θ̂inij |1+γ ≤ λ. The smooth-thresholding is closely related
to the adaptive lasso [18].

The procedure of [18] can be viewed as a weighted L2-penalization for L(θ)
where L represents the criterion to be minimized, which corresponds to u, with a
weighted L2-penalty function

∑d
j=1 ŵjθ

2
j /2 in which ŵj = δ̂j/(1− δ̂j). Enlarging

this perspective leads to a simple automatic grouping procedure as used in
Bondell and Reich [1] who employ L1-penalization. Instead of

∑d
j=1 ŵjθ

2
j /2, we

propose to use the penalty function

h(θ) =

d
∑

j=1

d
∑

k>j

ŵjk(θj − θk)
2/2,

where ŵjk = δ̂jk/(1− δ̂jk) and δ̂jk = δ̂jk(λ, δ) = min(1, λ/|θ̂inij − θ̂inik |1+γ); Other

choices of δ̂jk may be possible depending on the problem, such as the correlation
between jth and kth predictors. Analogously to variable selection, restriction
θj = θk is produced from δ̂jk = 1, which is equivalent to |θ̂inij − θ̂inik |1+γ ≤ λ,
i.e., L(θ) + h(θ) is minimized over the restricted space of

⋃

j<k

{θj = θk : |θ̂inij − θ̂inik |1+γ ≤ λ},

for given tuning parameters λ and γ. Although it may arise that δ̂12 = δ̂23 = 1
but δ̂13 < 1, restriction δ̂13 = 1 is automatically imposed owing to the fact that
there is only one free parameter under restrictions θ1 = θ2 and θ2 = θ3.

Furthermore, it is possible to engage variable selection as well as grouping.
To this end, introduce the 0th parameter θ0, which is always restricted to zero,
and construct h(θ) in the same manner with θ̂ini0 = 0. Then the penalty function
is modified as

h(θ) =

d
∑

j=0

d
∑

k>j

ŵjk(θj − θk)
2/2 =

d
∑

j=1

d
∑

k>j

ŵjk(θj − θk)
2/2 +

d
∑

k>0

ŵ0kθ
2
k/2, (2.1)

where ŵ0k = ŵk for each k, in which the second term is the penalty function of
[18] for variable selection.

2.2. Implementation

A simple algebra rewrites the penalty function in (2.1) to a more convenient
quadratic form

h(θ) = θT Ŵθ/2,

where Ŵ is d × d matrix having the kth diagonal entry of
∑d

j=0,j 6=k ŵjk and
off-diagonal (j, k)-entry of −ŵjk. Let Sfull = {1, . . . , d}, and denote the jth
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unit vector in d-dimensional Euclidean space by ej . We also represent the d-
dimensional zero vector by e0. Define the active set A by the complement of the
inactive set,

Ac = {k ∈ Sfull : there exists j ∈ Sfull ∪ {0} such that j < k and δ̂jk = 1},

i.e., the active set consists of indices smallest in each group. We also define d
row vectors R1, . . . , Rd where Rj ’s are eTj for j ∈ A and eTξ(j) for j ∈ Ac. Here

the function ξ(j) is defined as follows. Let f(j) = min(i ∈ Sfull ∪ {0} : δ̂ji = 1)
and define f (l)(j) = f{f (l−1)(j)} with f (0)(j) = f(j) for l = 0, 1, 2, . . . . Then we
define ξ(j) to be f (l)(j) satisfying f (l)(j) = f{f (l−1)(j)} for some non-negative
integer l. The collection of R1, . . . , Rd is denoted by the d×d matrix R, and the
set {θ ∈ Θ : θ = Rα} with an intrinsic parameter α ∈ Θ represents the resulting
parameter space whose dimensionality is |A|. Indeed, if jth column of R is zero
vector, which corresponds to the event where index j is included in Ac, αj does
not appear in Rα. Notably, θj = (Rα)j for j ∈ Ac with ξ(j) = 0 is exactly zero,
i.e., sparse solution.

Denote by RA the d × |A| matrix that consists of jth column vectors of R
for j ∈ A, and similarly, by αA the |A|-dimensional active parameter vector
and by ŴA the |A| × |A| sub-matrix of Ŵ . Note that each component of ŴA is
finite. Then, estimation for active parameters αA can be done by minimization
of L(RAαA) +αT

AŴAαA/2. By differentiating this with respect to αA, we have
the estimating equation

RT
Au(RAαA) + ŴAαA = 0, (2.2)

where Newton–Raphson-type procedures work effectively. The estimator in the
full model space Θ is given by θ̂λ,γ = RAα̂λ,γ,A with a solution α̂λ,γ,A to (2.2).
We could introduce other types of penalization that carry out automatic group-
ing instead of the smooth-thresholding, e.g., L1-penalty [1] and other penalties
including elastic net, adaptive lasso, and smoothed clipped absolute deviation,
following such a way of Johnson, Lin and Zeng [11]. However, we can suffer
from finding the solution if we use those penalties that require convex program-
ming. In contrast, the smooth-thresholding is free from this issue, which is an
advantage over other penalization methods.

2.3. Illustrative example

It may be somewhat difficult to imagine the mechanism that underlies our
grouping method. An application to simple estimation problem is thus help-
ful for illustrative purpose. Consider the loss function L(θ) = ||θ − x||2/2 with
a d-dimensional data vector x.

If we have ŵjk ∈ [0,∞) for all j and k, the matrix Ŵ defined in Section 2.2

is symmetric, thus so is I + Ŵ . Since, by definition, θT Ŵθ = 2h(θ) ≥ 0 for each
θ, we can see that I + Ŵ is invertible. The solution to (2.2) is thus written as

θ̂ = (I+Ŵ )−1x. The following result is helpful in understanding our procedure.
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Theorem 2.1. All elements of (I + Ŵ )−1 are non-negative.

If we further assume that ŵ0k = 0 for k = 1, . . . , d, we have Ŵ1 = 0 where 1
denotes the d-dimensional vector of ones. Using this fact, it can be readily seen
that (I+Ŵ )−11 = 1, implying that sum to unity for each rows. Thus, the linear
operator (I + Ŵ )−1 permits re-allocation of each component of data vector x.

In more general situations where ŵ0k ≥ 0, it holds that (I + Ŵ )1 = g where
g is the d-vector whose jth element is 1 + ŵ0j . Hence, (I + Ŵ )−1g = 1, which
states that the re-allocation mentioned above applies to the data xj/(1 + ŵ0j)
shrunken toward zero. The above argument justifies our grouping method.

2.4. Choice of initial estimate

Choice of initial estimate is in practice an important task. Theoretically, it
should be root-n consistent (see Section 3). Although the simplest choice is the
unpenalized full model estimator, when the number of parameters gets larger
than that of samples, automatic variable selection method is desirable since
the unpenalized estimators fail to perform. The lasso [16] however can not ap-
propriately handle the grouped predictor variables, whereas the elastic net [26]
can overcome this issue. Grouped predictor variables tend to appear in high-
dimensional data. Consequently, we recommend using the elastic net as the ini-
tial estimate, in particular, for high-dimensional data. Numerical experiments
given in Section 4 provide comparisons between the lasso and elastic net initial
estimates.

3. Analyzing the method

3.1. Oracle property

In this section, we analyze the theoretical properties of the proposed method
with respect to the oracle property [6, 25, 20, 21, 11, 18, 4]. In this section,
we assume regularity conditions under which the full model estimator based on
the estimating equations, u(θ) = 0, is consistent and asymptotically normally

distributed [e.g., 19, Ch.5]. We use the initial estimator θ̂ini possessing root-n
consistency to the true parameter vector θ∗. Before mentioning the theoretical
property we define A and R in Section 2.1 based on the true θ∗ instead of θ̂ini,
and they are denoted by A∗ and R∗. Using R∗, we define the intrinsic vector
α∗ such that θ∗ = R∗α∗

A∗ . Full information on parameterization is condensed
to a matrix R or R∗, and these are used to evaluate the model selection consis-
tency in this context, termed the grouping consistency. The following theorem
states existence of the tuning parameters that confers on the smooth-threshold
estimator as the same good performance as the oracle estimator.

Theorem 3.1. For any positive λ and γ such that n1/2λ → 0 and n(1+γ)/2λ →
∞ as n → ∞, we have grouping consistency, i.e. P (R = R∗) → 1.
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Provided that R = R∗ holds, the smooth-threshold estimating equation coin-
cides with the oracle one (A.2) given in Appendix. Then, the solution to (A.2)
denoted by α̂λ,γ,A∗ possesses an asymptotic normality:

Theorem 3.2. Under the same assumptions in Theorem 3.1, we have asymp-
totic normality, i.e. n1/2(α̂λ,γ,A∗ − α∗

A∗) is asymptotically normally distributed
with mean zero and the covariance matrix of the oracle estimator.

The next section argues choice of tuning parameters to maintain the group-
ing consistency even after tuning parameter selection. Noting that the theorem
holds for arbitrarily fixed γ > 0, pre-specification of γ is beneficial for saving
computation [20]. We use γ = 2 throughout our numerical examples, because, in
our numerical studies, other choices and data adaptive choice based on the BIC
result in comparable performance. Consequently, λ is the only tuning parameter
which we should determine.

3.2. Choice of tuning parameters

We propose the following BIC-type criterion to select the tuning parameter λ
for the smooth-threshold estimator:

BICλ = ℓ(θ̂λ) + dfλ log n, (3.1)

where dfλ = |A| and ℓ is a loss function such as the −2× loglikelihood function.
The selected λ minimizes the BIC. To consider properties of the BIC, we shall
prepare some notations. Denote the estimator based on the estimating function u
over a parameter space H ⊂ Θ by θ̂H, which is a d-dimensional vector. Likewise,
define θ̃H by ℓ(θ̃H) = infθ∈H ℓ(θ). Situations in which θ̂H 6= θ̃H occur when using

the Wald-type loss ℓw(θ) = (θ− θ̂full)
T v̂ar(θ̂full)(θ− θ̂full) [10, 20]. Denote ΘR =

{θ ∈ Θ : θ = Rα, for each α ∈ Θ} with a d× d matrix R such that Rjk ∈ {0, 1}

and
∑d

k=1 Rjk ∈ {0, 1}. The true parameter space is also represented by ΘR∗ .
We write ΘR∗ as Θ∗ for brevity. In addition, we impose some assumptions on ℓ
which are essentially the same as those given in [18].

Assumption 3.1. For each Θ 6⊃ Θ∗, we have lim infn→∞ n−1{ℓ(θ̃Θ)−ℓ(θ∗)}> 0.

Assumption 3.2. For each Θ ⊃ Θ∗, we have ℓ(θ̃Θ) − ℓ(θ∗) = Op(1) and

ℓ(θ̂Θ)− ℓ(θ∗) = Op(1) as n → ∞.

In the following, we give a justification for the use of the BIC. Define Λ =
{λ : λ > 0}. Recalling that λ ∈ Λ determines the matrix R, define the ideal
tuning parameter set by Ω∗ = {λ ∈ Λ : Θ∗ = ΘR}. For sufficiently large n, Ω∗ is
not empty because Ω∗ includes λ that satisfies n1/2λ → 0 and n(1+γ)/2λ → ∞
by Theorem 3.1. The overfitted tuning parameter set is defined by ΩO = {λ ∈
Λ : Θ∗ ⊂ ΘR, R

∗ 6= R} and the underfitted tuning parameter set by ΩU = {λ ∈
Λ : Θ∗ 6⊂ ΘR}.
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Theorem 3.3. Under Assumptions 3.1 and 3.2, for any λ∗ ∈ Λ such that
n1/2λ∗ → 0 and n(1+γ)/2λ∗ → ∞ with a fixed γ > 0, as n → ∞, it follows that

P

(

BICλ∗ < inf
λ∈ΩO∪ΩU

BICλ

)

→ 1.

The proof goes in much the same line as [18] and thus is omitted. The above
theorem states that the BIC selects tuning parameters such as in Theorems 3.1
and 3.2 rather than those in ΩO or ΩU for large n. It follows from the same
argument as in Wang, Li and Tsai [21, Section 3.3] that the BIC selects a
tuning parameter that yields the true model, i.e., the minimizer of the BIC
enters in Ω∗. As a result, BIC enables consistent model selection, which is a
justification for using the BIC as a tuning parameter selector. Even when a
unique loss function is absent, typically when we resort to generalized estimat-
ing equations and Buckley–James estimator, [10] gives a justification for the
Wald-type loss is based on a relationship to an approximate posterior prob-
ability conditional on the parameter estimates. Following [18], we prefer loss

functions satisfying θ̂H = θ̃H. Taking this into consideration, we can instead use
an alternative loss function, the score-type loss ℓs(θ) = u(θ)T v̂ar{u(θ̂full)}u(θ),

which is asymptotically equivalent to the Wald-type loss when θ = θ̂H because
u(θ̂H) ≈ ∇u(θ̂full)(θ̂H − θ̂full) for a sub-model H. The score-type loss ℓs is the

loss function such that θ̂H = θ̃H for a given H.

3.3. Shortcut in model selection

The smooth-thresholding brings a further advantage in choosing tuning param-
eters if we use the BIC for which the loss function ℓ yielding θ̂H = θ̃H for a given
H. We then do not need to prepare candidate tuning parameters, typically, us-
ing arbitrary discretization. This is because we know the degrees of freedom of
parameters, once tuning parameters and initial estimates are specified. Given γ,
arrange d(d−1)/2 pairs of |θ̂inij − θ̂inik |γ+1 in ascending order and denote them as
q1 ≤ · · · ≤ qK where K = d(d−1)/2, and define q0 = 0. Then, it is obvious that
the change of active or inactive set occurs at λ = qi for each i = 0, . . . ,K, which
in turn implies that the degree of freedom is constant for each λ ∈ [qi, qi+1).

Therefore, minimizing BIC is equivalent to minimizing ℓ(θ̂λ) for λ over [qi, qi+1).

Since, by assumption, ℓ corresponds to the loss function in obtaining θ̂λ, qi is
the minimizer of ℓ(θ̂λ) for λ ∈ [qi, qi+1), because the smooth-threshold estima-

tor θ̂λ is a solution to the weighted ridge penalized minimization with respect
to the active parameters. Because ŵjk is monotone increasing in λ, smaller λ
alleviates the extent of penalization. Consequently, to seek the minimizer of BIC
in λ, it suffices to evaluate only at each λ = qi for i = 0, . . . ,K, implying that
we can find the exact minimizer of BIC with this shortcut procedure. It is also
noteworthy that the procedure is similar to that of [24].
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4. Numerical experiments

For our simulation studies, we evaluate the accuracy of grouping using the fol-
lowing measures. Let B be the index set of the group which the jth parameter
θ∗j belongs to, and define, for each j, proportion of correctly fused (PCF) with
the other members in its group, and that of incorrectly fused (PICF) with the
members in other groups across N simulations by

PCFj =
1

N

1

|B| − 1

N
∑

r=1

∑

i∈B\{j}

I(θ̂j,r = θ̂i,r) and

PICFj =
1

N

1

|Bc|

N
∑

r=1

∑

i∈Bc

I(θ̂j,r = θ̂i,r),

where θ̂i,r denotes the ith parameter estimate for rth simulation and Bc is the
complement of B. Here I(·) represents the indicator function. If the obtained
grouping is complete, the PCFs and PICFs are one and zero, respectively. For
zero parameters, we also define the proportions of correctly and incorrectly
setting zero by

PC0 =
1

N

1

|M|

N
∑

r=1

∑

i∈M

I(θ̂i,r = 0) and PIC0 =
1

N

1

|Mc|

N
∑

r=1

∑

i∈Mc

I(θ̂i,r = 0),

where M = {j ∈ Sfull : θ
∗
j = 0} and Mc is its complement.

On the other hand, the estimation performance is evaluated by the average
relative absolute error (ARAE) compared with the oracle estimator, ARAE(θ̂) =

N−1
∑N

r=1

∑d
j=1 |θ̂j,r − θ∗j |/

∑d
j=1 |θ̂

o
j,r − θ∗j | in N simulations. Here θ̂oj,r denotes

the oracle estimator of the jth parameter for rth simulation obtained under
which the genuine parameterization is in hand. The estimator is better if ARAE
is closer to unity.

4.1. Logistic regression model

We consider an example with binary response with 10 predictor variables in
which first two variables are quantitative and others are dichotomous X =
(X1, . . . , X10). Response variable Yi is sampled independently from Bernoulli
trial with success rate of 1/{1 + exp(−Xiβ

∗)}. We consider two models having
coefficients vector of

Model 1: β∗ = (−1.3, 0.5, 0, 0, 0, 4, 4, 0,−4,−4)T ,

Model 2: β∗ = (−1.3, 0.5, 1,−1,−3, 0, 4,−5,−2, 2)T , (4.1)

where first two of β∗ are assumed to be out of interest for grouping. Regarding
eight parameters remained, model 1 has two intrinsic parameters (−4, 0, 4),
while model 2 has eight different parameters with a zero parameter. Since
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Table 1

Results in logistic regression example. ARAE(θ̂), average relative absolute error of the
proposed automatic grouping method; ARAEini, average relative absolute error of the initial
estimator; AMD, average model dimension; pu0/p

c
0/p

o
0, Three proportions regarding zero

parameter identification (%); PCM, proportion of identifying correct model (%); Values in
parenthesis denote the standard error

Model n/ρ ARAE(θ̂) ARAEini AMD pu0/p
c
0/p

o
0 PCM

1 100/0 1.9(0.1) 6.5(0.45) 2.9(0.04) 5/67/28 37
100/0.5 2.2(0.14) 9.3(0.68) 3.1(0.04) 14/50/35 23
200/0 1.2(0.05) 3.1(0.14) 2.3(0.03) 0/91/ 9 75
200/0.5 1.7(0.1) 5.1(0.4) 2.6(0.04) 1/85/14 61

2 100/0 0.7(0.03) 1.1(0.01) 3.5(0.05) 84/11/5 0
100/0.5 0.7(0.03) 1.2(0.04) 3.4(0.05) 86/ 9/5 0
200/0 1.2(0.03) 1.1(0.01) 4.1(0.04) 74/21/5 0
200/0.5 1.2(0.03) 1.1(0.01) 3.8(0.05) 76/16/8 0

Table 2

Results in logistic regression example. PCFj/PICFj , proportion of correctly fused with the
other members in its group/proportion of incorrectly fused with the members in other groups
(%), for indices js to be grouped, where the corresponding coefficients under models 1 and 2

are presented; PC0/PIC0, proportion of correctly setting zero/proportion of incorrectly
setting zero (%)

n/ρ PCFj/PCIFj , j = 3, . . . , 10 PC0/PIC0

β∗
3 =0 β∗

4 =0 β∗
5 =0 β∗

6 =4 β∗
7 =4 β∗

8 =0 β∗
9 =−4 β∗

10 =−4
100/0 83/4 84/3 83/3 60/2 60/2 84/3 60/2 60/3 90/1
100/0.5 78/6 77/6 78/6 43/4 43/5 75/7 48/5 48/4 85/4
200/0 95/0 95/0 95/0 88/0 88/0 95/0 88/0 88/0 96/0
200/0.5 92/1 92/1 92/1 74/1 74/1 92/1 73/1 73/0 95/0

β∗
3 =1 β∗

4 =−1 β∗
5 =−3 β∗

6 =0 β∗
7 =4 β∗

8 =−5 β∗
9 =−2 β∗

10 =2
100/0 −/26 −/28 −/16 −/27 −/6 −/8 −/24 −/20 82/25
100/0.5 −/28 −/30 −/17 −/29 −/6 −/9 −/27 −/24 78/29
200/0 −/19 −/20 −/14 −/17 −/3 −/6 −/17 −/12 89/16
200/0.5 −/23 −/25 −/14 −/23 −/5 −/7 −/22 −/15 88/20

model 2 has no group, the grouping procedure is redundant and initial estimate
will be more efficient. On the other hand, the jth predictor variable Xij for ith
sample is generated in the following way. First, define latent variable Zi which
is 10-dimensional multivariate normal random variable with mean zero and co-
variance matrix whose (j, k)-entry is ρ|j−k|. Then define X1i = Z1i, X2i = Z2i

and Xij = I(Zij > 1), the latter corresponds to about 16% occurrence be-
ing exposed. The experiments validate all combinations of n ∈ {100, 200} and
ρ ∈ {0, 0.5}, where unpenalized logistic regression estimates are used as the
initial estimates.

Tables 1 and 2 summarize the result of numerical experiments repeated 500
times. The oracle estimators for models 1 and 2 are the logistic regression estima-
tor through the parameterization of β = β(α) = (α1, α2, 0, 0, 0, α3, α3, 0, α4, α4)

T

and β(α) = (α1, α2, α3, α4, α5, 0, α6, α7, α8, α9)
T . The third and fourth columns

in Table 1 give ARAE(θ̂) and ARAEini = ARAE(θ̂ini), respectively. The fifth
column provides the average model dimension (AMD) where the parameters
out of interest are excluded, hence, the ideal model dimensions are 2 and 7 for
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models 1 and 2, respectively. The sixth column presents three quantities, pc0, p
o
0,

and pu0 : p
c
0 is the proportions whether all zero parameters are correctly set zero,

and set nonzero for all nonzero parameters; po0 is proportion whether all nonzero
parameters are correctly set nonzero but not all zero parameters are correctly
set zero; pu0 equals to 1− pc0 − po0, i.e., other cases. The seventh column (PCM)
presents the proportion of identifying correct model which accounts for whether
true zero parameters are set zero exactly. Table 2 presents the PCFs and PICFs
defined above for each coefficients, which inform performance of grouping in
detail. In addition, PC0 and PIC0 are shown.

For simulations under model 1, the fact that the ARAEs shown in Table 1 for
the proposed grouping method are all less than those of initial estimator empha-
sizes improvement to the unpenalized estimator. Table 2 illustrates success both
in zero parameter identification and in grouping, particularly, for larger sample
size setting, which coincides with the theoretical results given in Section 3.

On the other hand, PCFjs are not defined since there is no group for model 2,
and are denoted by “−” in Table 2. The initial estimator works well in model 2,
which is shown in Table 1 through ARAEinis whose values are close to unity.
ARAEs for the proposed grouping method are comparable to ARAEinis, insist-
ing the advantage of our method. Table 2 also implies that the missclassification
rate can be reduced by increasing the number of samples.

4.2. Generalized estimating equation

The second example applies to the generalized estimating equation, where each
sample of size n has four sets of observation together with 10 predictor variables
same as those in the previous example. Response vector Yi is independently
generated from 4-dimensional multivariate normal of N(Xiβ

∗, V ) where V is
the covariance matrix whose (j, k)-element is 0.667|j−k|, i.e., AR(1) working
correlation is specified. We use two models given in equation (4.1).

The experiments validate all combinations of n ∈ {100, 200}, and ρ ∈ {0, 0.5}
where unpenalized estimates of generalized estimating equation, where working
correlation is correctly specified, are used for the initial estimates. Tables 3 and 4
summarize the numerical experiments repeated 500 times. Simulations in the
current example result in more accurate grouping and estimation performance
compared with those in the logistic regression example. Although the score-
type loss is preferable to the Wald-type loss as stated in Section 3.2, the results
of model selection were almost the same. Therefore, we show the result for
score-type loss only. Moreover, Tables 3 and 4 also report the improvement of
performance as the increase of sample size.

4.3. Large p small n situation

In this section we consider a large p and small n situation in normal linear model,
where n and p represent the number of samples and parameters, respectively.
We use p = 10n dichotomous predictor variables X = (X1, . . . , X10n). As in the
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Table 3

Results in generalized estimating equation example. ARAE(θ̂), average relative absolute
error of the proposed automatic grouping method; ARAEini, average relative absolute error

of the initial estimator; AMD, average model dimension; pu0/p
c
0/p

o
0, Three proportions

regarding zero parameter identification (%); PCM, proportion of identifying correct
model (%); Values in parenthesis denote the standard error

Model n/ρ ARAE(θ̂) ARAEini AMD pu0/p
c
0/p

o
0 PCM

1 100/0 1.7(0.07) 3.4(0.1) 2.6(0.04) 0/73/27 62
100/0.5 1.7(0.06) 3.5(0.09) 2.6(0.04) 0/72/28 60
200/0 1.4(0.05) 3.2(0.08) 2.3(0.03) 0/84/16 77
200/0.5 1.4(0.04) 3.6(0.1) 2.3(0.03) 0/86/14 80

2 100/0 1.1(0.01) 1.1(0.01) 6.7(0.03) 2/ 93/5 67
100/0.5 1.2(0.02) 1.2(0.01) 6.6(0.03) 3/ 88/9 59
200/0 1.0(0.01) 1.2(0.01) 7.0(0.01) 0/ 99/1 96
200/0.5 1.0(0.00) 1.1(0.01) 7.0(0.01) 0/100/0 95

Table 4

Results in generalized estimating equation example. PCFj/PICFj , proportion of correctly
fused with the other members in its group/proportion of incorrectly fused with the members
in other groups (%), for indices js to be grouped, where the corresponding coefficients under
models 1 and 2 are presented; PC0/PIC0, proportion of correctly setting zero/proportion of

incorrectly setting zero (%)

n/ρ PCFj/PCIFj , j = 3, . . . , 10 PC0/PIC0

β∗
3 =0 β∗

4 =0 β∗
5 =0 β∗

6 =4 β∗
7 =4 β∗

8 =0 β∗
9 =−4 β∗

10 =−4
100/0 85/0 85/0 84/0 87/0 87/0 84/0 88/0 88/0 89/0
100/0.5 83/0 84/0 83/0 86/0 86/0 84/0 88/0 88/0 88/0
200/0 90/0 92/0 91/0 94/0 94/0 92/0 94/0 94/0 94/0
200/0.5 92/0 92/0 92/0 95/0 95/0 92/0 96/0 96/0 95/0

β∗
3 =1 β∗

4 =−1 β∗
5 =−3 β∗

6 =0 β∗
7 =4 β∗

8 =−5 β∗
9 =−2 β∗

10 =2
100/0 −/2 −/2 −/2 −/1 −/0 −/0 −/3 −/2 95/0
100/0.5 −/3 −/3 −/2 −/2 −/0 −/0 −/4 −/2 91/1
200/0 −/0 −/0 −/0 −/0 −/0 −/0 −/0 −/0 99/0
200/0.5 −/0 −/0 −/0 −/0 −/0 −/0 −/0 −/0 100/0

preceding examples, Zij is defined as I(Xij > 1) for j = 1, . . . , 10n with latent
variable Xi of 10n-dimensional multivariate normal distribution. Continuous
response variables Y are sampled from the multivariate linear regression model
of yi = Xiβ

∗+ǫi with independent and identical random error ei from N(0, σ0),
where β∗ is 10n-dimensional coefficient vector. The following two models are
considered:

Model 3: β∗ = (4, 4,−4,−4, 0T10n−4)
T ,

Model 4: β∗ = (4,−5,−2, 2, 0T10n−4)
T ,

where 010n−4 is the zero vector of (10n−4)-dimension. Model 3 has three intrin-
sic parameters (−4, 0, 4), while model 4 has five intrinsic parameters. Excluding
zero parameters, the ideal model dimensions are 2 and 4, respectively. In both
models, we expect that 10n− 4 zero components are exactly set zero. Since the
ordinary least-squares break down in large p small n situation, we use penalized
regression methods, the lasso and elastic net, for the initial estimates. As we
mentioned in Section 2.3, the elastic net is expected to work better in high-
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Table 5

Results in large p small n example. θ̂ini, initial estimator used; ARAE(θ̂), average relative
absolute error of the proposed automatic grouping method; ARAEini, average relative

absolute error of the initial estimator; AMD, average model dimension; pu0/p
c
0/p

o
0, Three

proportions regarding zero parameter identification (%); PCM, proportion of identifying
correct model (%); Values in parenthesis denote the standard error

Model n/σ/ρ θ̂ini ARAE(θ̂) ARAEini AMD pu0/p
c
0/p

o
0 PCM

3 100/1/0 lasso 11.6(1.75) 17.2(3.24) 5.1(0.17) 0/24/76 22
enet 5.1(0.61) 35.8(6.34) 3.3(0.13) 2/62/37 49

100/1/0.5 lasso 7.8(0.70) 12.8(0.87) 5.0(0.17) 0/30/70 29
enet 5.8(0.78) 27.3(1.92) 3.6(0.13) 10/61/29 36

100/2/0 lasso 8.4(0.69) 11.8(0.76) 4.7(0.15) 7/21/72 16
enet 7.6(0.62) 15.7(1.07) 3.1(0.13) 35/30/36 20

100/2/0.5 lasso 10.2(1.42) 13.5(1.65) 4.7(0.16) 20/17/62 12
enet 11.1(1.89) 17.1(1.86) 3.3(0.15) 46/18/36 12

200/1/0 lasso 5.2(0.47) 10.4(0.60) 3.9(0.14) 0/45/55 43
enet 2.7(0.32) 25.0(1.51) 2.5(0.09) 0/79/21 76

200/1/0.5 lasso 6.7(0.64) 12.4(0.80) 4.5(0.17) 0/40/60 40
enet 2.7(0.30) 29.8(2.04) 2.8(0.11) 0/82/18 70

200/2/0 lasso 7.4(1.10) 13.3(1.06) 4.0(0.14) 0/42/58 40
enet 6.0(1.31) 19.7(1.70) 3.6(0.13) 0/50/50 45

200/2/0.5 lasso 6.7(0.79) 12.5(0.98) 4.3(0.14) 0/38/62 32
enet 5.7(0.59) 17.9(1.41) 3.9(0.13) 7/44/48 30

4 100/1/0 lasso 5.2(0.30) 6.6(0.25) 5.9(0.13) 7/14/78 14
enet 6.4(0.35) 11.9(0.43) 4.0(0.12) 64/ 8/28 8

100/1/0.5 lasso 6.2(0.40) 8.3(0.47) 5.4(0.14) 29/ 7/64 6
enet 8.9(0.75) 13.1(0.75) 3.0(0.13) 92/ 0/8 0

100/2/0 lasso 5.1(0.22) 5.7(0.22) 3.5(0.15) 81/ 2/17 2
enet 5.4(0.24) 6.6(0.25) 2.4(0.11) 98/ 0/2 0

100/2/0.5 lasso 5.9(0.24) 6.6(0.26) 2.6(0.13) 94/ 0/6 0
enet 6.5(0.28) 7.4(0.29) 1.7(0.11) 98/ 1/2 0

200/1/0 lasso 4.3(0.25) 6.2(0.23) 5.0(0.10) 18/22/60 22
enet 3.5(0.26) 12.9(0.48) 4.8(0.10) 14/36/50 36

200/1/0.5 lasso 4.3(0.29) 7.3(0.35) 5.7(0.11) 7/14/79 14
enet 5.7(0.37) 14.7(0.68) 4.3(0.15) 56/22/22 22

200/2/0 lasso 4.1(0.18) 6.0(0.22) 4.2(0.11) 45/ 9/46 8
enet 4.8(0.23) 7.8(0.30) 3.5(0.11) 67/ 4/29 4

200/2/0.5 lasso 5.1(0.23) 6.7(0.23) 3.6(0.12) 74/ 4/22 4
enet 5.6(0.26) 8.2(0.28) 2.7(0.12) 94/ 0/6 0

dimensional data, particularly, when grouped parameters exist, i.e., model 3.
This is validated by the simulation studies through comparisons with the lasso
and elastic net initial estimates, where ridge tuning parameter of 1 for elastic
net is used throughout, whereas the tuning parameter for L1 is chosen by the
BIC both in the lasso and elastic net. Fixed choice for ridge parameter is unac-
ceptable in practical data analysis, but it is only for illustrative purposes. We
mention how to choose the ridge parameter, in practice, through credit scoring
data example in Section 5.2. Our simulation studies validate all combinations of
n ∈ {100, 200}, σ ∈ {1, 2}, and ρ ∈ {0, 0.5} for models 3 and 4. Tables 5 and 6
show the results of numerical experiments repeated 200 times. Notably, group-
ing with the elastic net initial estimate is better than that with the lasso initial
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Table 6

Results in large p small n example. θ̂ini, initial estimator used; PCFj/PICFj , proportion of
correctly fused with the other members in its group/proportion of incorrectly fused with the

members in other groups (%), for indices js to be grouped, where the corresponding
coefficients (nonzero only) under models 1 and 2 are presented; PC0/PIC0, proportion of

correctly setting zero/proportion of incorrectly setting zero (%)

n/σ/ρ θ̂ini PCFj/PCIFj , j = 1, . . . , 4 PC0/PIC0

β∗
1 = 4 β∗

2 = 4 β∗
3 = −4 β∗

4 = −4
100/1/0 lasso 39/0 39/0 43/0 43/0 100/0

enet 69/0 69/0 71/1 71/0 100/0
100/1/0.5 lasso 40/0 40/0 40/0 40/0 100/0

enet 52/0 52/5 54/4 54/0 100/3
100/2/0 lasso 39/2 39/3 40/2 40/3 100/3

enet 52/14 52/17 56/18 56/19 100/17
100/2/0.5 lasso 30/4 30/13 27/11 27/4 100/8

enet 42/14 42/28 40/31 40/11 100/21
200/1/0 lasso 60/0 60/0 61/0 61/0 100/0

enet 91/0 91/0 90/0 90/0 100/0
200/1/0.5 lasso 50/0 50/0 48/0 48/0 100/0

enet 78/0 78/0 80/0 80/0 100/0
200/2/0 lasso 57/0 57/0 61/0 61/0 100/0

enet 61/0 61/0 69/0 69/0 100/0
200/2/0.5 lasso 50/0 50/0 46/0 46/0 100/0

enet 48/0 48/2 48/4 48/0 100/2
β∗
1 = 4 β∗

2 = −5 β∗
3 = −2 β∗

4 = 2
100/1/0 lasso −/0 −/0 −/4 −/4 100/2

enet −/5 −/0 −/41 −/47 100/23
100/1/0.5 lasso −/4 −/0 −/19 −/22 100/11

enet −/28 −/5 −/57 −/82 100/43
100/2/0 lasso −/16 −/4 −/62 −/65 100/37

enet −/31 −/10 −/81 −/83 100/51
100/2/0.5 lasso −/35 −/14 −/78 −/88 100/54

enet −/62 −/30 −/75 −/95 100/66
200/1/0 lasso −/0 −/0 −/9 −/9 100/5

enet −/0 −/0 −/4 −/10 100/4
200/1/0.5 lasso −/0 −/0 −/3 −/3 100/2

enet −/3 −/0 −/15 −/54 100/18
200/2/0 lasso −/2 −/0 −/27 −/32 100/15

enet −/9 −/0 −/47 −/53 100/27
200/2/0.5 lasso −/13 −/1 −/46 −/67 100/32

enet −/28 −/6 −/50 −/90 100/44

estimate in model 3, while the result reverses in most cases of model 4. The
grouping effect of elastic net may explain this observation. Remarkably, from
the fact that the ARAEs are less than those of initial estimate, the automatic
grouping is likely to improve the estimation accuracy.

5. Application to real data

5.1. Ohio wheeze data

We first analyze the Ohio data which is a subset of the six cities study, a lon-
gitudinal study of the health effects of air pollution [22]. The dataset contains
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Table 7

Results for Ohio wheeze data. Coeffull, coefficients estimated under full model; Pfull,
P -value for the hypothesis that the coefficient is zero; CoefAVS, coefficients estimated by
Ueki’s (2009) automatic variable selection; Group code, number of groups created by the
proposed method (“Not grouped” indicates predictors out of interest of grouping); CoefAG,

coefficients estimated by the proposed automatic grouping

Predictors Coeffull Pfull CoefAVS Group code CoefAG

age = 7, smoke = 0 0.13 0.45 0 0 0
age = 8, smoke = 0 0.05 0.78 0 0 0
age = 10, smoke = 0 −0.34 0.06 −0.4 1 −0.38
age = 7, smoke = 1 0.18 0.48 0 0 0
age = 8, smoke = 1 0.46 0.05 0.27 2 0.32
age = 9, smoke = 1 0.32 0.18 0 2 0.32
age = 10, smoke = 1 −0.03 0.9 0 0 0
Intercept −1.8 <0.001 −1.69 Not grouped −1.72

complete records on 537 children from Steubenville, Ohio, each of whom was
examined annually at ages 7 through 10. This dataset was previously analyzed
by Zeger, Liang and Albert [23] and Fitzmaurice and Laird [7]. The repeated
binary response is the wheezing status (1 = yes, 0 = no) of a child at each
occasion. Maternal smoking was categorized as 1 if the mother smoked reg-
ularly and 0 otherwise. Previous studies that treat the age as a continuous
variable found weak effect of maternal smoking. We re-analyzed the data by
treating the age as a qualitative variable for four categories of ages 7, 8, 9, and
10 as in Fitzmaurice and Laird [7]. This strategy creates eight interactions be-
tween age and smoking status. Applying the generalized estimating equations
with binomial model and exchangeable working correlation generated the re-
sult given in Table 7, where baseline is set to I(age = 9, smoke = 0). P -values
obtained imply weak difference from the baseline for I(age = 10, smoke = 0)
and I(age = 8, smoke = 1). Variable selection of [18] selects the model having
only these two variables. However, our automatic grouping additionally identi-
fies an interaction I(age = 9, smoke = 1), which has not ever been specified.
The model obtained implies presence of interactions between maternal smoking
and age different effect from baseline. Both Wald- and score-type losses in BIC
leaded to the identical conclusion. This example points out that the grouping
can detect variables that are missed by variable selection alone.

5.2. Credit scoring data

We apply the developed grouping method to the credit-scoring data analyzed
in [5]. The dataset consists of 1000 consumers’ credits from a southern German
bank, and the aim is to model the probability that a client will not pay back
the credit. The response variable is “creditability” which is given in dichoto-
mous (y = 0 for creditworthy, y = 1 for not creditworthy), and 20 factors are
available. We fit logistic regression model. According to [5], we analyzed seven
risk factors, H1: running account (trichotomous, no/good/bad), H3: duration
of credit in months (metrical), H4: amount of credit in DM (metrical), H5:



324 M. Ueki and Y. Kawasaki

payment of previous credits (dichotomous, good/bad), H6: intended use (di-
chotomous, private/professional), H7 and H8: dummies for gender and marital
status (dichotomous, man/woman, and live alone/not live alone). We consider
second order interactions only for categorical factors, H1, H5, H6, H7, and H8

in the following way. Define dummy predictors that represent interaction be-
tween H1 and H5 by X1 = I(H1 = no, H5 = bad), X2 = I(H1 = good, H5 =
good), X3 = I(H1 = good, H5 = bad), X4 = I(H1 = bad, H5 = good), and
X5 = I(H1 = bad, H5 = bad), thereby we have (3 × 2 − 1) = 5 dummy predic-
tors, in which I(H1 = no, H5 = good) is set to baseline. This strategy leads to
4× (3 × 2 − 1) = 20 dummy predictors of interactions (H1, H5), (H1, H6), and
(H1, H7); Similarly we have 3× (2×2−1) = 9 dummy predictors of interactions
(H5, H6), (H5, H7), and (H5, H8); Consequently 20+9+6+3 = 38 dummy pre-
dictors are created in total. The logistic regression model at the start, including
H3, H4, and intercept, which are out of interest of grouping, is

logit{P (y = 1|X)} = β0 +

38
∑

j=1

Xjβj +H3β39 +H4β40.

Although an initial estimate is needed to apply our method, singularity
incurred failure of standard logistic regression estimation, instead, the ridge-
penalized logistic regression is utilized. Subsequently, smooth-thresholding ap-
plies to the ridge-penalized loglikelihood function of L(β) = ℓ(β) + λ2||β||2,
where λ2 is the ridge penalty and ℓ is the loglikelihood function of the logistic
regression model. Since different λ2s lead to different models, we chose λ2 that
minimizes the BIC value of the final model resulted from grouping for given
λ2. This strategy resulted in the model given in Table 8, showing that three
groups coded by 1, 2, and 3, were appeared; each group is interpreted as ef-
fective factors measuring creditworthy, not creditworthy, and less creditworthy,
respectively, by considering magnitude of estimated coefficients. Predictors not
shown in Table 8 are concluded to be irrelevant by the assignment of zero coeffi-
cient. Table 8 further provides the outputs of standard logistic regression based
on the grouped predictors for form’s sake, implying that three predictors are all
significant although the P -value is not reliable because they are computed after
model selection.

Appendix

Proof of Theorem 2.1

For the proof, Farkas’ lemma is useful, which is familiar in convex analysis [see,
e.g., 15].

Lemma A.1 (Farkas). For given n × m matrix A and x ∈ Rn, the following
statements (i) and (ii) are equivalent: (i). For any θ ∈ Rm such that Aθ = x,
we have θ ≥ 0. (ii). For any y ∈ Rn such that AT y ≤ 0, we have xT y ≤ 0. Here
≤ and ≥ for vectors means component-wise inequalities, i.e., x ≤ 0 means that
xj ≤ 0 holds for every component.
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Table 8

Results for credit scoring data. Survived predictors, interactions that are survived by the
proposed automatic grouping; Group code, number of groups created by the proposed method

(“Not grouped” indicates predictors out of interest of grouping; group 0 means the
parameters set to zero); CoefAG, coefficients estimated by the proposed method, where those
in identical group are omitted; CoefSLR, recalculated parameter estimates by the standard
logistic regression based on grouped predictors obtained from our method; PSLR, output of

P -value corresponding to CoefSLR

Survived predictors Group code CoefAG CoefSLR PSLR

H1 = good, H5 = good 1 −0.39 −0.37 <0.001
H1 = good, H6 = private 1
H1 = good, H7 = man 1
H1 = good, H7 = woman 1
H1 = good, H8 = not live alone 1
H1 = no,H5 = bad 2 0.7 0.76 0.003
H5 = bad,H6 = professional 2
H1 = no,H6 = private 3 0.3 0.33 <0.001
H1 = no,H6 = professional 3
H1 = bad,H7 = woman 3
H1 = no,H7 = woman 3
H1 = no,H8 = live alone 3
H5 = bad,H7 = woman 3
H5 = bad,H8 = live alone 3
H6 = professional,H7 = man 3
H6 = professional,H8 = live alone 3
Intercept Not grouped −1.71 −1.82 <0.001
H3 Not grouped 0.032 0.034 <0.001
H4 Not grouped 0.000028 0.000029 0.38

To prove the theorem statement, it suffices to show that (I+ Ŵ )−1ej ≥ 0 for
each j = 1, . . . , d, where ej is d-vector whose jth element is unity, zero otherwise.

Farkas’ lemma is applied for θ = A−1x in which A = I+Ŵ and x = ej. For any
y such that AT y ≤ 0, we may only have to show that xT y ≤ 0, or equivalently,
yj = eTj y ≤ 0.

Inequalities AT y = (I + Ŵ )y ≤ 0 are represented component-wisely as,


1 + ŵi0 +

d
∑

k≥1,k 6=i

ŵik



 yi −
d

∑

k=1,k 6=i

ŵikyk ≤ 0, (A.1)

for i = 1, . . . , d. Assume without loss of generality that y1 is the maximum
among y1, . . . , yd and let a =

∑d
k>1 ŵ1k. It follows from (A.1) that

0 ≥ (1 + ŵ10 + a)y1 −
d

∑

k>1

ŵ1kyk ≥ (1 + a)y1 − y1a = y1,

implying y ≤ 0. The proof is completed.

Proof of Theorem 3.1

First we consider pairs that have a common parameter value. We abbreviate
Sfull simply as S. Let B = {(j, k) ∈ S2 : θ∗j = θ∗k, j < k} where S2 = {(j, k) ∈
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S × S : j < k}, and let M = {j ∈ S : θ∗j = 0}. First, by the triangle inequality

we have {λ1/(1+γ) < max(max(j,k)∈B |θ̂inij − θ̂inik |,maxj∈M |θ̂inij |)} ⊂ {λ1/(1+γ) <

2maxj∈S |θ̂inij − θ∗j |}. This argument and root-n consistency of θ̂ini yield that

P{min(min(j,k)∈B δ̂jk,minj∈M δ̂0j) < 1} ≤ P (λ1/(1+γ) < 2maxj∈S |θ̂inij − θ∗j |) ≤
∑

j∈S P (|θ̂inij − θ∗j | > 0.5λ1/(1+γ)) ≤ 0.5dλ1/(1+γ)O(n−1/2). The right-hand side

tends to zero as λn(1+γ)/2 → ∞.
Second we consider pairs that have different parameter values. Let C =

{(j, k) ∈ S2 : θ∗j 6= θ∗k, j < k}, and let N = {j ∈ S : θ∗j 6= 0}. We have for any ǫ >

0 and, P (max(j,k)∈C δ̂jk > n−1/2ǫ) = P (λn1/2/ǫ > min(j,k)∈C |θ̂
ini
j − θ̂inik |1+γ) ≤

P{(λn1/2/ǫ)1/(1+γ) > min(j,k)∈C |θ
∗
j − θ∗k| −max(j,k)∈C |θ̂

ini
j − θ̂inik − θ∗j + θ∗k|} ≤

∑

j∈A∗ P{2|θ̂inij − θ∗j | > min(j,k)∈C |θ
∗
j − θ∗k| − (λn1/2/ǫ)1/(1+γ)}. The right-

hand side tends to zero as λn1/2 → 0 using root-n consistency of θ̂ini. Thus
max(j,k)∈C δ̂jk = op(n

−1/2). Similar argument concludes that maxj∈N δ̂0j =

op(n
−1/2). These in turn imply that P{max(max(j,k)∈C δ̂jk,maxj∈N δ̂0j) < 1} →

1. Consequently, the statement is proved.

Proof of Theorem 3.2

Let R∗
A∗ be RA evaluated at A∗ and R∗ instead of A and R. From Theorem 3.1,

the smooth-threshold estimating equations for j ∈ A∗ coincide with (2.2) in
which RA is replaced by R∗

A∗ . Let d0 = |A∗|. By rearranging,

R∗T
A∗ u(R∗

A∗αA∗) + Ŵ ∗αA∗ = 0, (A.2)

where Ŵ ∗ is the d0 × d0 sub-matrix of Ŵ corresponding to the index set A∗,
and each components of Ŵ ∗ are finite. The first term corresponds to the ora-
cle estimating equation, while the second term is the penalty term. Note that
∑

j,k∈A∗ |(Ŵ ∗)jk| ≤
∑

j∈A∗ |(Ŵ ∗)jj |+
∑

j,k∈A∗,j 6=k |(Ŵ
∗)jk|. Since it holds that

|(Ŵ ∗)jj | = ŵ0j +
∑

k∈A∗,k 6=j ŵjk ≤ wmaxd0, and that |(Ŵ ∗)jk| = ŵjk ≤ wmax,

in which wmax = maxj,k∈A∗∪{0},j 6=k ŵjk . Therefore we have
∑

j,k∈A∗ |(Ŵ ∗)jk| ≤

d20wmax + d0(d0 − 1)wmax = 2d20wmax. By ŵjk = δ̂jk/(1− δ̂jk) and the argument

in the proof of theorem 3.1, we have wmax = op(n
−1/2). Hence the Ŵ ∗ is asymp-

totically negligible; similar arguments can be found in [8]. Consequently we have
the statement.
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