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Abstract: The use of penalization, or regularization, has become common
in high-dimensional statistical analysis, where an increasingly frequent goal
is to simultaneously select important variables and estimate their effects.
It has been shown by several authors that these goals can be achieved by
minimizing some parameter-dependent “goodness-of-fit” function (e.g., a
negative loglikelihood) subject to a penalization that promotes sparsity.
Penalty functions that are singular at the origin have received substantial
attention, arguably beginning with the Lasso penalty [62].

The current literature tends to focus on specific combinations of dif-
ferentiable goodness-of-fit functions and penalty functions singular at the
origin. One result of this combined specificity has been a proliferation in the
number of computational algorithms designed to solve fairly narrow classes
of optimization problems involving objective functions that are not every-
where continuously differentiable. In this paper, we propose a general class
of algorithms for optimizing an extensive variety of nonsmoothly penalized
objective functions that satisfy certain regularity conditions. The proposed
framework utilizes the majorization-minimization (MM) algorithm as its
core optimization engine. In the case of penalized regression models, the
resulting algorithms employ iterated soft-thresholding, implemented com-
ponentwise, allowing for fast and stable updating that avoids the need for
inverting high-dimensional matrices. We establish convergence theory un-
der weaker assumptions than previously considered in the statistical litera-
ture. We also demonstrate the exceptional effectiveness of new acceleration
methods, originally proposed for the EM algorithm, in this class of prob-
lems. Simulation results and a microarray data example are provided to
demonstrate the algorithm’s capabilities and versatility.
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1. Introduction

Variable selection remains an important and challenging issue in statistics. Mod-
ern methods, increasingly based on the principle of penalized likelihood esti-
mation and often used in high dimensional regression problems, attempt to
achieve this goal through an adaptive variable selection process that simulta-
neously permits estimation of regression effects. The literature on penalized
minimization of a “goodness-of-fit” function (e.g., negative loglikelihood), with
a penalty singular at the origin, has become vast and continues to proliferate
in part due to the consideration of specific combinations of goodness-of-fit and
penalty functions, the associated statistical properties of resulting estimators,
and the development of several combination-specific optimization algorithms,
[e.g., 21, 24, 51, 62, 74, 75, 78].

Our primary goal in this paper is to propose a unified optimization framework
that utilizes the Majorization-Minimization (MM) algorithm [e.g., 32, 38, 39] as
the primary optimization tool. The resulting class of algorithms is referred to as
MIST, an acronym for Minimization by Iterative Soft Thresholding. The MM
algorithm has been considered previously in solving specific classes of singularly
penalized likelihood estimation problems [e.g., 16, 33, 77]; to a large extent, this
work is motivated by these ideas. Important advantages of the proposed work
include the exceptional versatility of the class of MIST algorithms, their asso-
ciated ease of implementation and numerical stability, and the availability of a
fixed point convergence theory that permits weaker assumptions than existing
papers in this area. We emphasize that the focus of this paper is on the devel-
opment of a stable and versatile class of algorithms applicable to a wide variety
of singularly penalized estimation problems. In particular, the consideration of
asymptotic and oracle properties of estimators, as well as methods for effectively
choosing associated penalty parameters, are not focal points of this paper. A



E.D. Schifano et al./MM algorithms for nonsmooth problems 1260

reasonably comprehensive treatment of these results may be found in Johnson,
Lin and Zeng [34], where asymptotics and oracle properties for estimators de-
rived from a general class of penalized estimating equations are developed in
some detail.

The paper is organized as follows. In Section 2, we provide some general
background on the class of MM algorithms. Section 2.2, in particular, introduces
important notation and summarizes a set of useful sufficient conditions for local
convergence of general MM algorithms applied to a large and interesting class
of penalized optimization problems. In Section 3, we present a more specialized
version of the general algorithm and show how the minimization step of the
MM algorithm can be carried out using iterated soft-thresholding. In its most
general form, iterated soft-thresholding is required at each minimization step.
However, in the context of penalized estimation for the class of generalized
linear regression models, we further show that a judicious choice of majorization
function allows one to carry out this minimization step componentwise and in
one iteration. Simulation results are provided in Section 4 and an application
in survival analysis to Diffuse Large B Cell Lymphoma expression data [54] is
presented in Section 5. We conclude with a discussion in Section 6. Proofs and
other relevant results are collected in the Appendix.

2. Convergence of Majorization-Minimization algorithms

2.1. Review

A Majorization-Minimization (MM) algorithm is not really a single algorithm
but rather a term that more aptly describes a general principle for solving a dif-
ficult minimization problem by transferring this problem to a related surrogate
function that is much easier to minimize [39]. The acronym MM, as pointed
out in the rejoinder to the discussion of Lange, Hunter and Yang [39], can also
stand for “Minorization-Maximization” if one desires to maximize, rather than
minimize, an objective function. The Expectation Maximization (EM) algo-
rithm [18], originally developed in the context of missing data applications, is
an important special case of the class of minorization-maximization algorithms
[39]. As shown in Becker, Yang and Lange [6], the “optimization transfer” prin-
ciple that underlies its construction exists independently of the missing data
setting and leads to a powerful and general tool for constructing algorithms.
Lange, Hunter and Yang [39] attribute one of the earliest examples of this class
of algorithms to Ortega and Rheinboldt [50] as well as identify several later
statistically-oriented examples of algorithms falling into this class.

From this point onward, we consider the “Majorization-Minimization” form
of the MM algorithm. For simplicity of presentation, we develop all results for
the problem of unconstrained minimization; our results can be extended to
the problem of constrained minimization with minor changes to the proposed
algorithms and more substantial changes to certain regularity assumptions and
technical arguments. Let ξ(β) denote a real-valued objective function to be
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minimized for β = (β1, . . . , βp)
T in R

p. Let ξ[S](β,α) denote some real-valued
“surrogate” objective function, where α ∈ R

p is a bounded vector (i.e., a vector
with bounded elements) with the same dimension as β. Let

M(α) = arg min
β∈Rp

ξ[S](β,α); (1)

then, if ξ[S](β,α) majorizes ξ(β) for each α, i.e.,

ξ(β) = ξ[S](β,β) for each β and ξ[S](β,α) ≥ ξ[S](β,β) for β 6= α,

a MM algorithm for minimizing ξ(β) takes the following form:

1. Initialize the algorithm with β(0), a bounded vector;
2. For n ≥ 0, compute β

(n+1) =M(β(n)), iterating until convergence.

Since β(n+1) is the minimum of the surrogate function at β(n), the MM proce-
dure forces ξ(β) downhill at each iteration, i.e., ξ(β(n+1)) ≤ ξ(β(n)) for every
n ≥ 0.

Provided that the objective function, its surrogate and the mappingM(·) sat-
isfy certain regularity conditions, one can also establish “convergence” of this
algorithm. For example, Lange [38, Proposition 10.3.4] proves convergence of the
MM iteration sequence assuming, among other things, that the objective func-
tions ξ(β) and ξ[S](β,α) are twice continuously differentiable; see Lange [37,
Proposition 6] for related results on the generalized EM algorithm. However,
weaker statements of convergence are also possible in problems that lack this
degree of smoothness. For example, Lange, Hunter and Yang [39, Sec. 3] summa-

rize conditions under which any limit point of the sequence β(n+1) = M(β(n))
is also a stationary point of some continuous objective function ξ(β); see Lange
[38, Propositions 10.3.1–10.3.3] and Lange [37, Propositions 3-5] for related the-
oretical developments. Convergence, at least as ordinarily interpreted, can be
expected provided that ξ(β) has a unique minimum; however, more generally,
such “convergence” results do not necessarily imply that the MM iteration se-
quence itself converges to a unique limit.

This last observation is relevant to the convergence analysis of algorithms de-
signed to solve singularly penalized regression problems. Common and increas-
ingly important examples lacking the differentiability requirements of Lange
[38, Proposition 10.3.4] include all penalized regression problems involving the
lasso penalty [62], adaptive lasso penalty [74], elastic net penalty [75], and the
smoothly clipped absolute deviation (SCAD) penalty [21]. In order to properly
analyze algorithmic convergence in these settings, an appropriately general the-
ory of convergence is required. One such theory is developed in Appendix A.1
and complements existing convergence theory for the EM and MM algorithms
that may be found in Wu [68], Lange [37], Lange, Hunter and Yang [39], Tseng
[64], Lange [38] and Chrétien and Hero [11], among other places. Two important
contributions of these results include useful refinements of existing theory for
the EM and MM algorithms as well as a set of sufficient conditions that are rel-
atively straightforward to verify for the general class of penalized optimization
problems considered in the next section.
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2.2. Objective functions with nondifferentiable, separable penalties

In this section, we summarize convergence results for generic MM algorithms
that are intended to minimize an objective function of the form

ξ(β) = g(β) + p(β;λ) + λε‖β‖2, λ > 0, ε ≥ 0 (2)

where g(β) is a continuous “goodness of fit” function (e.g., a negative loglike-
lihood), p(β;λ) is a continuous but non-differentiable penalty function, and
‖ · ‖ denotes the usual Euclidean vector norm. Further regularity conditions will
be given below; as shown later, the resulting class of problems represented by
(2) contains the vast majority of penalized regression problems currently under
investigation in the statistics literature. It also covers numerous additional prob-
lems by expanding the class of permissible goodness-of-fit and penalty functions
in a substantial way.

We assume throughout that g(β) is convex with at least one bounded local
minimizer. This implies that g(β) is coercive [e.g., 38, Chapter 10]; that is, g(β)
becomes unbounded as ‖β‖ → ∞. The convexity of g(β) further implies that
g(β) is Lipschitz continuous on each compact subset of Rp (i.e., locally Lipschitz
continuous). It follows that ∇g(β) exists for almost all β. We further assume

p(β;λ) =

p∑

j=1

p̃(|βj |;λj), (3)

where the vector λ = (λT
1 , . . . ,λ

T
p )

T and λj denotes the block of λ associated
with βj . It is assumed that each λj has dimension greater than or equal to
one, that all blocks have the same dimension, and that the λj1 = λ for each
j ≥ 1. Evidently, the case where dim(λj) = 1 for j ≥ 1 simply corresponds to the
setting in which each coefficient is penalized in exactly the same way; permitting
the dimension of λj to exceed one allows the penalty to depend on additional
parameters (e.g., weights, such as in the case of the adaptive lasso considered
in Zou [74]). We are interested in problems with penalization; therefore, λ is
assumed bounded and strictly positive throughout this paper. Several specific
examples will be discussed below. For a bounded vector θ having λ > 0 as
its first element, and the remainder of θ collecting any additional parameters
used to define the penalty, the scalar function p̃(r; θ) is assumed to satisfy the
following condition:

(P1) p̃(r; θ) is a continuously differentiable concave function on (0,∞) with
p̃(0; θ) = 0; p̃′(r; θ) ≥ 0 for r > 0; and, p̃′(0+; θ) ∈ [W−1

θ ,Wθ] for some
finite Wθ > 0.

Evidently, (P1) implies that p̃′(r; θ) > 0 for r ∈ (0,Kθ), where Kθ > 0 may be
finite or infinite. The combination of the concavity and nonnegative derivative
conditions imply that the penalty increases away from the origin, but with a de-
creasing rate of growth that may become zero. The case where (3) is identically
zero for r > 0 is ruled out by the positivity of the right derivative at the origin;
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similarly, the concavity assumption also rules out the possibility of a strictly
convex penalty term. Neither of these restrictions is particularly problematic.
Our specific interest lies in the development of algorithms for estimation prob-
lems subject to a penalty singular at the origin. Were (3) absent, or replaced by
a strictly convex penalty term, the convexity of g(β) implies (2) can be mini-
mized directly using any suitable convex optimization algorithm, such as that
discussed in Theorem 3.2 below.

Under the conditions specified above, the objective function (2) is not nec-
essarily convex and may have multiple local minima. Theorem 2.1 establishes
local convergence of the indicated class of MM algorithms for minimizing ob-
jective functions of the form (2). A proof is provided in Appendix A.2, where
it is shown that the conditions imposed in the statement of the theorem are
sufficient conditions for the application of the general MM local convergence
theory summarized in Appendix A.1.

Theorem 2.1. Let g(·) and p(·;λ) satisfy the indicated assumptions.
Let h(β,α) ≥ 0 be a real-valued, continuous function of β and α that is con-
tinuously differentiable in β for each α and satisfies h(β,α) = 0 when β = α.
Let

q(β,α;λ) =

p∑

j=1

q̃(|βj |, |αj |;λj), (4)

where q̃(r, s; θ) = p̃(s; θ) + p̃′(s; θ)(r − s) for r, s ≥ 0. Assume S, the set of
stationary points for ξ(β), is both non-empty and finite, where the notion of a
stationary point is defined as in Clarke [12]. Then:

(i) ξ(β) in (2) is locally Lipschitz continuous.
(ii) q(β,α;λ)− p(β;λ) ≥ 0 for all β 6= α (possibly, identically zero).
(iii) ξ[S](β,α) ≡ ξ(β) + h(β,α) + q(β,α;λ)− p(β;λ) majorizes ξ(β) and the

MM algorithm derived from ξ[S](β,α) converges to a stationary point of
ξ(β) if ξ[S](β,α) is uniquely minimized in β for each bounded vector α

and at least one of h(β,α) or q(β,α;λ) − p(β;λ) is strictly positive for
each β 6= α.

For convenience, Table 1 summarizes the various function definitions that
will be used throughout the remainder of the paper.

Condition (iii) of Theorem 2.1 establishes convergence under the assumption
that ξ[S](β,α) strictly majorizes ξ(β) and has a unique minimizer in β for each
α. Such a uniqueness condition is shown by Vaida [66] to ensure convergence
of the EM and MM algorithms to a stationary point under more restrictive
differentiability conditions. Importantly, the assumption of globally strict ma-
jorization is only a sufficient condition for convergence; this condition is only
important insofar as it guarantees a strict decrease in the objective function at
every iteration. It is possible to relax this condition to locally strict majoriza-
tion, in which ξ[S](β,α) majorizes ξ(β), strict majorization being necessary only
in an open neighborhood containing M(α).
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Table 1

Function Definitions

Function Description

ξ(β) = g(β) + p(β;λ) + λε‖β‖2 objective function to be minimized
g(β) “goodness-of-fit” term
p(β;λ) =

∑
j p̃(|βj |;λj) nonsmooth penalty term

h(β,α) function used to majorize g(β)
q(β,α;λ) =

∑
j q̃(|βj |, |αj |;λj) function used to majorize p(β;λ)

ξ[S](β,α) = ξ(β) + h(β,α) + q(β,α;λ)− p(β;λ) surrogate objective function (majorizer)

m(β) = g(β) + λε‖β‖2 + h(β,α) smooth portion of ξ[S](β,α)

M(α) = arg minβ∈Rp ξ[S](β,α) minimization map for MM algorithm
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Fig 1. Four examples of penalties satisfying (P1).

The use of the MM algorithm and selection of (4) are motivated by the
results Zou and Li [77]; we refer the reader to Remark 3.1 below for further
comments in this direction. The assumptions on g(β) clearly cover the case of
the linear and canonically parametrized generalized linear models upon setting
g(β) = −ℓ(β), where ℓ(β) denotes the corresponding loglikelihood function.
Other prominent examples include estimation under the semiparametric Cox
regression model [14] and accelerated failure time models are also covered upon
setting g(β) to be either the negative logarithm of the partial likelihood function
[e.g., 2, Theorem VII.2.1] or the Gehan objective function [e.g., 25, 35].

The assumption (P1) on the penalty function covers a wide variety of popular
and interesting examples; see Figure 1 for illustration. For example, the lasso
[LAS; e.g., 62], adaptive lasso [ALAS; e.g., 74], elastic net [EN; e.g., 75], and
adaptive elastic net [AEN; e.g., 78] penalties are all recovered as special cases
upon considering the combination of (3) and the ridge-type penalty λε‖β‖2.
Specifically, with λj = (λ, ωj)

T for ωj ≥ 0, taking p̃(r;λj) = λωjr in (3) gives
LAS (ωj = 1, ε = 0), ALAS (ωj > 0, ε = 0), EN (ωj = 1, ε > 0) and the AEN
(ωj > 0, ε > 0) penalties. It is easy to see that selecting p̃(r;λj) = λωjr also
implies the equality of (3) and (4), a result relevant in both (ii) and (iii) of
Theorem 2.1 above.

The proposed penalty specification also covers the smoothly clipped absolute
deviation [SCAD; e.g., 21] penalty upon setting p̃(r;λj) = p̃S(r;λ, a) for each
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j ≥ 1, where p̃S(r;λ, a) is defined as the definite integral of

p̃′S(u;λ, a) = λ[I(u ≤ λ) +
(aλ− u)+
(a− 1)λ

I(u > λ)] (5)

on the interval 0 ≤ u ≤ r and some fixed value of a > 2 (e.g., a = 3.7).
The resulting penalty function is continuously differentiable and concave on
r ∈ [0,∞). The concavity of p̃S(·;λ, a) on [0,∞), combined with p̃S(0;λ, a) = 0
and the fact that p̃′S(0+;λ, a) is finite, implies for each r, s ≥ 0 that

p̃S(r;λ, a) ≤ p̃S(s;λ, a) + p̃′S(s;λ, a)(r − s), (6)

the boundary cases for r = 0 and/or s = 0 following from Hiriart-Urruty and
Lemaréchal [31, Remark 4.1.2, p. 21]. In other words, p̃S(r;λ, a) can be ma-
jorized by a linear function of r.

The lasso penalty, its variants, and SCAD have received the greatest atten-
tion in the literature. More recently, Zhang [71, 72] introduced the minimax
concave penalty (MCP), which similarly to SCAD may be defined in terms of
its derivative. Specifically, one takes p̃(r;λj) = p̃M (r;λ, a) for each j ≥ 1 in (3),
where p̃M (r;λ, a) is defined for some fixed a > 1 as the definite integral of

p̃′M (u;λ, a) =
(
λ−

u

a

)
+

(7)

on the interval 0 ≤ u ≤ r. Further examples of differentiable concave penalties
include the transformed L1 penalty p̃(r;λj) = p̃T (r;λ, δ) for

p̃T (r;λ, δ) = λ
δr

1 + δr
, δ > 0 (8)

[e.g., 26, 49]; and p̃(r;λj) = p̃Y (r;λ, δ) for

p̃Y (r;λ, δ) = λ log(δr + 1), δ > 0; (9)

[e.g., 5]. These penalties represent just a small sample of the set of possible
penalties satisfying (P1) that one might reasonably consider.

Remark 2.2. The SCAD and MCP penalties are not strictly concave and lead
to surrogate majorizers that fail to satisfy the globally strict majorization condi-
tion in (iii) of Theorem 2.1 unless h(β,α) is strictly positive whenever β 6= α;
see Remark 3.1 for further discussion and also Theorem 3.4 below.

3. Minimization by Iterative Soft Thresholding

3.1. A simple algorithm for convex objective functions

The class of MM algorithms suggested by Theorem 2.1 provides a very gen-
eral and useful framework for proposing new algorithms in penalized estimation
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problems, the key to which is a methodology for solving the minimization prob-
lem (1), a step repeated with each iteration of the MM algorithm. Successful
application requires the construction of a suitable majorizing function that can
be more easily minimized than the desired objective function. In this regard,
it is helpful to note that the problem of minimizing ξ[S](β,α) for a given α is
equivalent to minimizing

g(β) + λε‖β‖22 + h(β,α) +

p∑

j=1

p̃′(|αj |;λj)|βj | (10)

in β. In particular, if m(β) = g(β)+λε‖β‖2+h(β,α) is strictly convex for each
α, which clearly occurs if both g(β) and h(β,α) are convex in β and at least
one is strictly convex, then (10) is also strictly convex and the corresponding
minimization problem has a unique solution.

Remark 3.1. For ε = h(β,α) = 0 and g(β) = −ℓ(β) for ℓ(β) =
∑n

i=1 ℓi(β)
with ℓi(β) a twice continuously differentiable loglikelihood function, the ma-
jorizer used by the MM algorithm induced by the surrogate function (10) corre-
sponds (up to sign) to the minorizer employed in the LLA algorithm of Zou and
Li [77], an improvement on the so-called LQA algorithm proposed in Hunter
and Li [33]. Zou and Li [77, Proposition 1] assert convergence of their LLA
algorithm under imprecisely stated assumptions and are additionally unclear as
to the nature of the convergence results actually established. For example, while
Zou and Li [77, Theorem 1] demonstrate that the LLA algorithm does indeed
have an ascent property, their results do not establish the convergence of the
LLA solution sequence.

In contrast, Theorem 2.1 shows that strict majorization, under a few precisely
stated conditions, is sufficient to ensure local convergence of the resulting MM
algorithm to a stationary point of (2). In Section 3.2, it is further demonstrated
how a particular choice of h(β,α) yields a strict majorizer that permits both
closed form minimization and componentwise updating at each step of the MM
algorithm, even in the case of penalties that fail to be strictly concave.

Numerous methods exist for minimizing a differentiable convex objective
function [e.g., 10]. However, because (10) is not differentiable, such methods
do not apply in the current setting. Specialized methods exist for nonsmooth
problems of the form (10) in settings where g(β) has a special structure; a
well-known example here is LARS [19], which can be used to efficiently solve
lasso-type problems in the case where g(β) is replaced by a least squares objec-
tive function. Recently, Combettes and Wajs [13, Proposition 3.1; Theorem 3.4]
proposed a general class of fixed point algorithms for minimizing f1(h) + f2(h),
where fi(·), i = 1, 2 are each convex and h takes values in some real Hilbert space
H. Hale, Yin and Zhang [29, Theorem 4.5] specialize the results of Combettes
and Wajs [13] to the case where H is some subset of Rp and f2(h) =

∑p
j=1 |hi|.

The collective application of these results to the problem of minimizing (10)
generates an iterated soft-thresholding procedure with an appealingly simple
structure. Theorem 3.2, given below, states the algorithm along with conditions
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under which the algorithm is guaranteed to converge; a proof is provided in Ap-
pendix A.3. The resulting class of procedures, that is, MM algorithms in which
the minimization of (10) is carried out via iterated soft-thresholding, is here-
after referred to as MIST, an acronym for (M)inimization by (I)terated (S)oft
(T)hresholding. Two important and useful features of MIST include the absence
of high-dimensional matrix inversion and the ability to update each individual
parameter separately.

Theorem 3.2. Let p(·;λ) satisfy the assumptions of Section 2.2. Suppose m(β)
in Table 1 is strictly convex with a Lipschitz continuous derivative of order
L−1 > 0 for each bounded vector α. Then, for any such α and a constant
̟ ∈ (0, 2L), the unique minimizer of (10) can be obtained in a finite number of
iterations using iterated soft-thresholding:

1. Set n = 1 and initialize the algorithm with a bounded vector b(0).
2. Compute b(n) = S(b(n−1) − ̟∇m(b(n−1));̟τ ), where for any vectors

u,v ∈ R
p,

S(u;v) =

p∑

j=1

s(uj , vj) ej , (11)

ej denotes the jth unit vector for R
p,

s(uj, vj) = sign(uj)(|uj | − vj)+, (12)

is the univariate soft-thresholding operator, and τ = (p̃′(|α1|;λ1), . . . ,
p̃′(|αp|;λp))

T .
3. Stop if converged; else, set n = n+ 1 and return to Step 2.

Theorem 3.4 of Combettes and Wajs [13] shows that the update in Step 2
can be generalized to

b(n) = b(n−1) + δn

[
S
(
b(n−1) −̟n∇m(b(n−1));̟nτ

)
− b(n−1)

]
,

where ̟n ∈ (0, 2L) and δn ∈ (0, 1] is a suitable sequence of relaxation constants.
Judicious selection of these constants, possibly updated at each step, can im-
prove the convergence rate. In principle, the minimization algorithm of Theorem
3.2 can also be replaced with any other suitable minimization algorithm. For
example, since the penalty term appearing in (10) is in fact a separable convex
function of the parameters, one could instead employ the coordinate gradient
descent method recently proposed in Tseng and Yun [65]. An advantage of the
proposed approach is its computational simplicity; moreover, as will be seen in
Section 3.2, the proposed soft-thresholding update arises naturally in a wide
class of minimization problems of interest to statisticians.

Theorem 3.2 imposes the condition that the gradient ofm(β) is globally L−1-
Lipschitz continuous. The role of this condition, also imposed in Combettes and
Wajs [13, Proposition 3.1; Theorem 3.4], is to ensure that the update at each step
of the proposed algorithm is a contraction, thereby guaranteeing its convergence
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to a fixed point; see Schifano [57] for a proof of this result. However, in view of
the generality of the Contraction Mapping Theorem [e.g., 42, Theorem 10.2.1],
it is possible to relax the requirements on ∇m(β) provided that one selects a
suitable starting point. A useful extension is summarized in the corollary below;
one may prove this result in a manner similar to Theorem 4.5 of Hale, Yin and
Zhang [29]. As a reminder to the reader, the relevant optimization problem at
this stage involves a specified vector α having bounded elements.

Corollary 3.3. Let p(·;λ) satisfy the assumptions of Section 2.2 and let α

be given. Suppose m(β) is strictly convex and twice continuously differentiable
function of β ∈ Ω, where Ω ⊂ R

p is a convex, compact set. Then, there
exists a unique minimizer β∗ of (10) on Ω and the algorithm of Theorem
3.2 converges to β∗ in a finite number of iterations provided that b(0) ∈ Ω,
λ∗ = maxβ∈Ω λmax(β) < ∞ and ̟ ∈ (0, 2/λ∗), where λmax(β) denotes the
maximum eigenvalue of ∇2m(β).

Some useful insight into the form of the proposed thresholding algorithm can
be gained by considering the behavior of the penalty derivative term p̃′(r; θ). As
suggested earlier, (P1) implies that p̃′(r; θ) decreases from its maximum value
towards zero as r moves away from the origin. For some penalties (e.g., SCAD,
MCP), this derivative actually becomes zero at some finite value of r > 0, result-
ing in situations for which τj = p̃′(|αj |;λj) = 0 for at least one j. If this occurs
for component j, then jth component of the vector S

(
b(n) −̟∇m(b(n));̟τ

)

simply reduces to the jth component of the argument vector b(n)−̟∇m(b(n)).
In the extreme case where τ = 0, the proposed update reduces to b(n+1) =
b(n) − ̟∇m(b(n)), a steepest descent step; equivalently, the algorithm takes
an inexact Newton step in which the inverse hessian matrix is replaced by
̟Ip, Ip denoting the p × p identity matrix, and with step-size chosen to en-
sure that this update yields a contraction. Hence, if each of the components of
b(n) −̟∇m(b(n)) are sufficiently large in magnitude, the proposed algorithm
simply takes an inexact Newton step towards the solution; otherwise, one or
more components of this vector may be thresholded. Notably, replacing ̟Ip
with any diagonal matrix having bounded entries preserves the componentwise
nature of the proposed algorithm; alternative strategies that both adapt the
step size to each component and maintain the indicated convergence properties
are worthy of further investigation.

3.2. Penalized estimation for generalized linear models

The combination of Theorems 2.1, 3.2 and Corollary 3.3 lead to a useful and
stable class of algorithms with the ability to deal with a wide range of penalized
regression problems. In settings where g(β) is strictly convex and twice contin-
uously differentiable, one can safely assume that h(β,α) = 0 for all choices of
β and α provided that p̃′(r; θ) in (P1) is strictly positive for r > 0; important
examples of statistical estimation problems here include many commonly used
linear and generalized linear regression models, semiparametric Cox regression
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[14], and smoothed versions of the accelerated failure time regression model
[cf. 35]. The SCAD and MCP penalizations, as well as other penalties having
p̃′(r; θ) ≥ 0 for r > 0, can also be used; however, additional care is required. In
particular, and as pointed out in an earlier remark, if one sets h(β,α) = 0 for
all β and α then convergence of the resulting algorithm to a stationary point is
no longer guaranteed by the above results due to the resulting failure of these
penalties to induce strict majorization.

The need to use an iterative algorithm for repeatedly minimizing (10) is
not unusual for the class of MM algorithms. However, it turns out that for
certain choices of g(β), a suitable choice of h(β,α) in Theorem 3.2 guarantees
both strict majorization and permits one to compute the minimizer of (10) in
closed form (i.e., in one step), resulting in a single soft-thresholding update
at each iteration. Below, we demonstrate how the MIST algorithm simplifies
in settings where g(β) corresponds to the negative loglikelihood function of a
canonically parametrized generalized linear regression model with a uniformly
bounded hessian matrix. The result applies to all penalties satisfying condition
(P1), including SCAD and MCP. A proof is provided in Appendix A.4.

Theorem 3.4. Let y be N × 1 and suppose the probability distribution of y

follows a generalized linear model with a canonical link and linear predictor
X̃β̃, where X̃ = [1N ,X] is N × (p+1) and β̃ = [β0,β

T ]T is (p+1)× 1 with β0
denoting an intercept. Define g(β̃) = −ℓ(β̃), where

ℓ(β̃) =

N∑

i=1

[yiη̃i − d(η̃i) + c(yi)]

is the corresponding loglikelihood, η̃ = X̃ β̃ with elements η̃i and E[yi] = d′(η̃i),
i = 1, . . . , N, for d(·) strictly convex and twice continuously differentiable.

Let λmax(β̃) denote the largest eigenvalue of −∇2ℓ(β̃) and assume that λ∗ =

max
β̃
λmax(β̃) <∞.

Let the penalty function be defined as in (3) and satisfy (P1); note that β0
remains unpenalized. Define

h(β̃, α̃) = ℓ(β̃)− ℓ(α̃)−∇ℓ(α̃)T (β̃ − α̃) +̟−1(β̃ − α̃)T (β̃ − α̃); (13)

where α̃ ≡ [α0,α
T ]T is (p + 1) × 1, and ̟ ∈ (0, 2/λ∗). Finally, suppose ξ(β̃),

defined in (2), satisfies ξ(β̃) > −∞ for β̃ ∈ R
p+1 and that its corresponding

set of stationary points, defined in the sense of Clarke [12], is non-empty, finite
and consists only of bounded local or global minima. Then:

1. Up to a constant independent of β̃, objective function ξ(β̃) in (2) is ma-
jorized by

ξ[S](β̃, α̃) = −ℓ(α̃)−∇ℓ(α̃)T (β̃−α̃)+̟−1(β̃−α̃)T (β̃−α̃)+

p∑

j=1

(τj |βj |+λεβ
2
j )

(14)
where τj = p̃′(|αj |;λj).



E.D. Schifano et al./MM algorithms for nonsmooth problems 1270

2. The functions g(β̃) = −ℓ(β̃), p(β;λ) and h(β̃, α̃) satisfy the regularity
conditions of Theorem 2.1; hence, an MM algorithm that uses (14) con-
verges to a minimizer of (2).

3. For each bounded vector α̃ ∈ R
p+1,

(a) the minimizer β̃
∗
of ξ[S](β̃, α̃) is unique and satisfies

β∗ =
1

1 +̟λε
S
(
α+

̟

2
[∇ℓ(α̃)]A,

̟

2
τ
)
,

β∗
0 = α0 +

̟

2
[∇ℓ(α̃)]0 (15)

where S(·; ·) is the soft-thresholding operator defined in (11) and A =
{1, . . . , p}.

(b) for each bounded vector κ̃ ≡ [κ0,κ
T ]T ∈ R

(p+1),

ξ[S](β̃
∗
+ κ̃, α̃) ≥ ξ[S](β̃

∗
, α̃) +̟−1 ‖κ̃‖2 . (16)

In view of previous results, the result in # 3 of Theorem 3.4 shows that the

resulting MM algorithm takes a very simple form: given the current iterate β̃
(n)

,

1. update the unpenalized intercept β
(n)
0 :

β
(n+1)
0 = β

(n)
0 +

̟

2

[
∇ℓ(β̃

(n)
)
]
0

2. update the remaining parameters β(n):

β(n+1) =
1

1 +̟λε
S
(
β(n) +

̟

2
[∇ℓ(β̃

(n)
)]A;

̟

2
τ (n)

)
, (17)

where τ (n) = (p̃′(|β
(n)
1 |;λ1), . . . , p̃

′(|β
(n)
p |;λp))

T .

The proposed algorithm can be easily generalized to accommodate additional
regression variables (besides the intercept) not subject to penalization. The

specific choice of function h(β̃, α̃) clearly serves two useful purposes: (i) it leads
to componentwise-soft thresholding; and, (ii) it leads to strict majorization,
as is required in condition (iii) of Theorem 2.1, allowing one to establish the
convergence of MIST for SCAD and other penalties having p̃′(r, θ) = 0 at some
finite r > 0.

An important class of problems to which these results apply is the setting of
penalized linear regression. Suppose that y has been centered to remove β0 from
consideration and that the problem has also been rescaled so that X, which is
now N×p, satisfies the indicated conditions. Then, Theorem 3.4 applies directly
with

−ℓ(β) =
1

2
‖y−Xβ‖

2
,

∇ℓ(β) = XT (y−Xβ),

h(β,α) = ̟−1‖β −α‖2 −
1

2
‖Xβ −Xα‖2,
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where ̟ is defined as in Theorem 3.4 with λ∗ set equal to the largest eigenvalue
of X′X. For the class of adaptive elastic net penalties (i.e., p̃(r;λj) = λωjr in
(3)), the resulting iterative scheme is exactly that proposed in De Mol, De Vito
and Rosasco [17, pg. 17], specialized to the setting of a Euclidean parameter.
In particular, we have τj = λωj and γj = 0 in Theorem 3.4, and the proposed
update reduces to

β(n+1) =
1

ν + 2λε
S
(
(νI −X′X) β(n) +X′y;λ

)
,

where ν = 2̟−1. Setting ν = 1 and ε = 0 yields the iterative procedure pro-
posed in Daubechies, Defreise and De Mol [16] provided X′X is scaled such that
I −X′X is positive definite. The MIST algorithm extends these iterative soft-
thresholding procedures to a much wider class of penalized estimation problems.

In an interesting unpublished paper, Mazumder, Friedman and Hastie [45]
propose the SparseNet algorithm, a coordinatewise descent algorithm for min-
imizing objective functions of the form (2) with g(β) = 1

2 ‖y−Xβ‖
2
, ε = 0

and p(β;λ) a family of penalty functions satisfying (3) and several additional
regularity conditions. Their specification includes the lasso, SCAD and MCP
penalties, as well as several other examples of nonconvex penalties. The full
SparseNet algorithm intends to generate the solution surface as a function of
the penalty parameter λ and a parameter γ indexing the penalty family (i.e., re-
stricted to a two dimensional grid). While the algorithm incorporates a number
of useful features, solutions are found for each (λ, γ) pair using a simple coordi-
nate descent algorithm. In the case of the lasso penalty (γ = ∞) and provided
X is column-standardized, this coordinate descent algorithm is almost identical
to the componentwise soft-thresholding algorithm proposed in Daubechies, De-
freise and De Mol [16] (hence MIST), the primary differences stemming from
the form of the iterative update (i.e., the use of a simultaneous update im-
plemented via componentwise soft-thresholding versus cyclical application of
the soft-thresholding operator). For other penalties, such as SCAD and MCP,
the coordinatewise updates utilized by SparseNet rely on so-called generalized
thresholding operators [cf. 59], departing more substantially from the iterated
soft-thresholding procedure used in the MIST algorithm. Mazumder, Friedman
and Hastie [45] provide an explicit proof of the convergence of the solution se-
quence obtained for a given (λ, γ) pair. The regularity conditions under which
these results are obtained appear to be similarly weak to those required by The-
orem 3.4 (i.e., applied to the penalized least squares problem). However, unlike
MIST, it not obvious how to extend the SparseNet algorithm to more general
choices of g(β) in the absence of reparameterizations that permit componentwise
separation of parameters.

The restriction to canonical generalized linear models in Theorem 3.4 is
imposed to ensure strict convexity of the negative loglikelihood. Our results
are easily modified to handle non-canonical generalized linear models, provided
the negative loglikelihood remains strictly convex in β̃ and the hessian can
be appropriately bounded. Interestingly, not all canonically parametrized gen-
eralized linear models satisfy the regularity conditions of Theorem 3.4. For
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example, in the classical setting of N independent Poisson observations with
E[Yi|X̃i] = Oi exp{x̃

T
i β̃} for a known set of scalar (log) offsets O1, . . . ,ON , we

have (i.e., up to irrelevant constants) ℓ(β̃) = −
∑N

i=1 fi(x̃
T
i β̃), where

fi(u) = Oie
u − yiu.

It is easy to see that ∇ℓ(β̃), hence ∇m(β̃), is locally but not globally Lipschitz
continuous; hence, it is not possible to choose a matrix C = ̟−1I such that
(14) everywhere majorizes ξ(β̃). Nevertheless, progress remains possible. For
example, Corollary 3.3 implies that one can still use a single update of the

form (17) provided that a suitable Ω, hence C and β̃
(0)
, can be identified.

Alternatively, using results summarized in Becker, Yang and Lange [6], one can

instead majorize −ℓ(β̃) for any bounded α̃ using

k(β̃, α̃) =

p∑

j=0

kj(βj ;αj)

for kj(βj ;αj) =

n∑

i=1

I{xij 6= 0} θij fi

(
xij
θij

(βj − αj) + x̃Ti α̃

)
,

where, for every i, θij ≥ 0 are any sequence of constants satisfying
∑p

j=0 θij = 1
and θij > 0 if xij 6= 0. Of importance here is the fact kj(βj ;αj) is a strictly
convex function of βj and does not depend on βk for k 6= j. One may now

take h(β̃, α̃) in Theorem 2.1 as being equal to k(β̃, α̃) + ℓ(β̃), leading to the
minimization of

ξ[S](β̃, α̃) ∝

p∑

j=1

[kj(βj ;αj) + λεβ2
j + p̃′(|αj |;λj)|βj |] + k0(β0, α0). (18)

In particular, componentwise soft-thresholding is replaced by componentwise
minimization of (18), the latter using any algorithm capable of minimizing a
continuous univariate convex function.

Remark 3.5. The Cox proportional hazards model [14], while not a generalized
linear model, shares the essential features of the generalized linear model utilized
in Theorem 3.4. In particular, the negative log partial likelihood, say g(β) =
−ℓp(β), is (under mild regularity conditions) strictly convex, twice continuously
differentiable, and has a bounded hessian [e.g., 2, 9]. Consequently, Theorem 3.4
and its proof are easily modified for this setting upon taking g(β) as indicated,
setting h(β,α) = ℓp(β)− ℓp(α)−∇ℓp(α)T (β−α) +̟−1‖β−α‖2, and taking
̟ ∈ (0, 2/λ∗) where λ∗ = maxβ λmax(β) < ∞ where λmax(β) is the largest
eigenvalue of −∇2ℓp(β).

3.3. Accelerating convergence

Similarly to the EM algorithm, the stability and simplicity of the MM algo-
rithm frequently comes at the price of an increased number of iterations be-
fore convergence. Numerous methods of accelerating the EM algorithm have
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been proposed in the literature; see McLachlan and Krishnan [46] for a review.
Recently, Varadhan and Roland [67] proposed a new method for EM called
SQUAREM, obtained by “squaring” an iterative Steffensen-type (STEM) ac-
celeration method. Both STEM and SQUAREM are structured for use with
iterative mappings of the form θn+1 = M(θn), n = 0, 1, 2, . . . , hence applicable
to both the EM and MM algorithms. Specifically, the acceleration update for
SQUAREM is given by

θn+1 = θn − 2γn(M(θn)− θn) + γ2n[M(M(θn))− 2M(θn) + θn]

= θn − 2γnrn + γ2nvn, (19)

where rn = M(θn) − θn and vn = (M(M(θn)) −M(θn)) − rn for an adaptive
steplength γn. Varadhan and Roland [67] suggest several steplength options,
with preference for the choice γn = −‖rn‖/‖vn‖. Roland and Varadhan [53]
provide a proof of local convergence for SQUAREM under restrictive conditions
on the EM mapping M(θ), while Varadhan and Roland [67] outline a proof
for global convergence for versions of SQUAREM that employ a back-tracking
strategy. We study the effectiveness of SQUAREM applied to the simplified
form of the MIST algorithm, hereafter denoted SQUAREM2, in Section 4.3.

4. Simulation results

The simulation results summarized below are intended to compare the estimates
of β obtained from existing methods to those obtained using the simplified MIST
algorithm of Theorem 3.4. In particular, we consider the performance of MIST
for the class of penalized linear and generalized linear models, demonstrating its
capability of recovering the solutions provided by existing algorithms when both
algorithms are forced to use the same set of “tuning” parameters (i.e., penalty
parameter(s), plus any additional parameters required to define the penalty
itself). In cases where multiple local minima can arise, we further show that
the MIST algorithm often tends to find solutions with lower objective function
evaluations in comparison with existing algorithms, provided these algorithms
utilize the same choice of starting value.

4.1. Example 1: Linear model

Let 1m and 0m respectively denote m-dimensional vectors of ones and zeros.
Then, following Zou and Zhang [78], we generated data from the linear regression
model

y = x′β∗ + ǫ (20)

where β∗ = (3 · 1T
q ,0

T
p−q)

T is a p-dimensional vector with intrinsic dimension
q = 3[p/9], ǫ ∼ N(0, σ2), and x follows a p-dimensional multivariate normal
distribution with zero mean and covariance matrix Σ having elements Σj,k =
ρ|j−k|, 1 ≤ k, j ≤ p. We considered σ ∈ {1, 3}, ρ ∈ {0.0, 0.5, 0.75} and p ∈
{35, 81} for N = 100 independent observations.



E.D. Schifano et al./MM algorithms for nonsmooth problems 1274

Penalized least squares estimation is considered for five popular choices of
penalty functions, all of which are currently implemented in the R software
language: LAS, ALAS, EN, AEN, and SCAD. The LAS, ALAS, EN and AEN
penalties are all convex and lead to unique solutions under mild conditions; the
SCAD penalty is concave and the resulting minimization problem is, depending
on the design matrix and choice of a, either convex or nonconvex [cf. 72]. The
SCAD examples considered here lead to non-convex objective functions, hence
may have multiple solutions. In each case, we used existing software for com-
puting solutions subject to these penalizations and compared those results to
the solutions computed using the MIST algorithm. For the MIST algorithm, ̟
was chosen to be 2/(λ∗ + .001) where λ∗ is the largest eigenvalue of X′X where
X is appropriately scaled to match the scaling of the existing algorithm.

Regarding existing methods, we respectively used the lars [30] and elasticnet
[76] packages for computing solutions in the case of the LAS and EN penalties.
For the ALAS and AEN penalties, we used software kindly provided by Zou and
Zhang [78] that also makes use of the elasticnet package. The weights for the

AEN penalty are computed using ωj = |β̂EN
j |−γ , j = 1, . . . , p, where β̂

EN
is an

EN estimator and γ is a positive constant. Using EN-based weights in the AEN
fitting algorithm necessitates tuning parameter specification for both EN and
AEN. As in Zou and Zhang [78], the ℓ1 parameters λ (λ1 in their notation) are
allowed to differ, whereas the ℓ2 parameters ε (λ2 in their notation) are forced to
be the same. Evidently, setting ε = 0 (λ2 = 0) results in the ALAS solution. For
the SCAD penalty, we considered the estimator of Kim, Choi and Oh [36] (HD),
as well the one-step SCAD (1S) and LLA estimators of Zou and Li [77]. The
code for the first two methods was kindly provided by their respective authors;
the LLA estimator was computed using the R package SIS. The choice a = 3.7
was used for all implementations of SCAD.

We considered finding solutions using penalties in the set Λ = {0.1, 1, 5, 10, 20,
100}. In particular, for LAS and SCAD, λ = λ1 ∈ Λ. For EN, both λ = λ1 ∈ Λ
and λε = λ2 ∈ Λ. For simplicity, we fixed the weights for AEN for a given λ2 by

selecting the ‘best’ β̂
EN

among the six estimators involving λ = λ1 ∈ Λ based
on a BIC-like criteria. Likewise for ALAS, the weights were computing using

the ‘best’ β̂
LAS

among the six estimators involving λ = λ1 ∈ Λ. The parameter
γ for the ALAS and AEN penalties was respectively set to three and five for
p = 35 and p = 81.

For the strictly convex objective functions associated with the LAS, ALAS,
EN, and AEN penalties, we simply used a starting value of β(0) = 0p. For SCAD,
three different starting values for the MIST, HD, and LLA SCAD algorithms
were considered: β(0) = 0p, β

(0) = β̂ml (i.e., the unpenalized least squares

estimate), and β(0) = β̂1S,λ (i.e., the one-step estimate computed using the
penalty parameter λ). As in Zou and Li [77], the one-step estimator is computed

using β̂ml, an appropriate choice when N > p.
The convergence criteria used by the existing software packages were used

without alteration in this simulation study. The convergence criteria used for
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Table 2

Maximum average normed differences (×105) over B = 100 simulations for Examples 1
(Linear Model; LM) and 2 (Generalized Linear Model; GLM)

LM : σ = 1 LM : σ = 3 GLM

ρ 0 0.5 0.75 0 0.5 0.75 0 0.5 0.75
p = 35 q = 25
LAS 0.10 0.35 1.45 0.10 0.37 1.56 0.07 4.28 6.17

ALAS 0.03 0.14 0.64 0.05 0.21 1.00 1.84 2.86 3.76
EN 0.07 0.19 0.50 0.07 0.20 0.51 2.30 5.61 8.68

AEN 0.03 0.10 0.33 0.04 0.13 0.36 1.47 3.35 5.27
p = 81 q = 75
LAS 1.73 3.82 11.76 2.33 5.78 18.99 0.10 6.97 9.94

ALAS 0.12 0.38 1.58 0.35 1.03 4.39 1.34 2.55 3.30
EN 0.31 0.49 0.87 0.31 0.49 0.88 2.35 4.64 6.56

AEN 0.14 0.22 0.56 0.16 0.26 0.56 1.27 2.29 2.85
LAS = Lasso; ALAS = Adaptive Lasso; EN = Elastic Net; AEN = Adaptive Elastic Net

MIST were as follows: the algorithm stopped if either (i) the normed difference
of successive iterates was less than 10−6 (convergence of coefficients); or, (ii) the
difference of the objective function evaluated at successive iterates was less than
10−6 and the number of iterations exceeded 106 (convergence of optimization).
Due to the large number of comparisons and highly intensive nature of the
computations, we ran B = 100 simulations for each choice of ρ, σ, and p. We
report the results for the convex penalties in Table 2 and those for the SCAD
penalty in Tables 3 and 4.

In Table 2, we summarize the average normed difference between the solution
obtained using existing software and that obtained using MIST,

∥∥β̂exist−β̂mist

∥∥,
over the B = 100 simulations; in particular, we report in the two leftmost
panels the maximum value of this difference, computed across all combinations
of tuning parameters. These maximum differences (all of which are multiplied
by 105) are remarkably small for all (A)LAS and (A)EN penalties, indicating
that MIST recovers the same (unique) solutions as the existing algorithms.
Interestingly, the values for LAS are slightly larger than the rest, where the
maximum differences all resulted from the smallest value of λ considered (λ =
0.1). In these cases, the algorithm tended to stop using the objective function
criteria rather than the (stricter) coefficient criteria, resulting in slightly larger
differences on average.

The results for SCAD are reported in Tables 3 (p = 35) and 4 (p = 81) and
display (i) the average normed differences, multiplied by 103, for each combi-
nation of λ, ρ, σ, p and starting value; and, (ii) the proportion of simulated
datasets in which the MIST solution yields a lower or equivalent evaluation of
the objective function in comparison with the solution obtained using another
method for the indicated choice of starting value. We remark here that SCAD
penalties used in the existing implementations are multiplied by a factor of N,
i.e., p(β;λ) =

∑p
j=1Np̃S(|βj |;λ, a), so the MIST implementation incorporates

this factor of N as well. The results for λ = 100 are not shown, as the solution
was 0p in all cases. In comparison with the convex penalties, larger normed
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Table 3

Algorithm performance in Example 1 (LM: p = 35, N = 100) for SCAD penalty. The
column ‘avg’ is the average normed differences ×103 between the MIST solution and the
existing method’s solution; ‘prop’ is the proportion of MIST solutions whose objective
function evaluation was less than or equal to that of the existing method’s solution

σ = 1 σ = 3

β(0)
0p β̂ml β̂1S,λ 0p β̂ml β̂1S,λ

ρ method avg prop avg prop avg prop avg prop avg prop avg prop
λ = .1

0 HD 15.71 1.00 15.41 1.00 17.93 1.00 468.55 1.00 2076.40 1.00 55.17 1.00
1S 99.13 1.00 99.13 1.00 99.13 1.00 211.17 1.00 211.16 1.00 211.16 1.00
LLA 0.43 1.00 0.46 1.00 0.46 1.00 2.07 1.00 1.96 1.00 2.02 1.00

0.5 HD 7.07 0.99 10.72 1.00 2.04 1.00 269.85 0.97 218.94 0.94 130.76 0.98
1S 192.22 1.00 192.01 1.00 192.00 1.00 483.89 0.98 421.17 1.00 419.15 1.00
LLA 6.65 0.99 0.62 1.00 0.60 1.00 57.87 0.96 12.84 0.99 2.37 1.00

0.75 HD 29.25 0.99 105.39 0.92 66.83 0.96 2335.23 1.00 2758.43 0.98 2731.10 0.99
1S 575.09 1.00 488.09 1.00 486.19 1.00 1417.97 0.86 604.26 1.00 629.21 1.00
LLA 23.81 0.98 23.34 0.99 1.67 0.99 558.56 0.73 69.30 0.96 44.87 0.98

λ = 1
0 HD 6.22 1.00 22.87 1.00 19.99 1.00 9.44 1.00 35.16 1.00 14.65 1.00

1S 694.59 1.00 694.57 1.00 694.57 1.00 844.68 1.00 844.67 1.00 844.67 1.00
LLA 1.64 1.00 1.71 1.00 1.74 1.00 1.47 1.00 1.47 1.00 1.43 1.00

0.5 HD 300.62 0.98 34.09 1.00 115.76 0.98 303.98 0.96 140.26 1.00 94.90 1.00
1S 4489.01 1.00 4276.77 1.00 4261.64 1.00 3547.69 1.00 3254.16 1.00 3254.16 1.00
LLA 296.53 0.98 7.10 1.00 88.14 0.98 248.82 0.96 2.66 1.00 2.66 1.00

0.75 HD 3083.00 0.68 1980.40 0.89 1138.53 0.96 1476.59 0.84 1669.60 0.93 868.21 0.97
1S 7224.77 1.00 5491.09 1.00 5622.21 1.00 5682.04 0.96 3835.30 1.00 3748.35 1.00
LLA 2802.66 0.66 1121.80 0.85 293.50 0.96 1365.76 0.83 918.63 0.89 433.66 0.96

λ = 5
0 HD 18.18 1.00 18.18 1.00 18.18 1.00 17.73 1.00 17.73 1.00 17.73 1.00

1S 48.23 1.00 48.23 1.00 48.23 1.00 63.63 1.00 63.63 1.00 63.63 1.00
LLA 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

0.5 HD 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00
1S 3696.85 1.00 3696.85 1.00 3696.85 1.00 3751.96 1.00 3751.96 1.00 3751.96 1.00
LLA 0.02 1.00 0.09 1.00 0.08 1.00 0.03 1.00 0.14 1.00 0.08 1.00

0.75 HD 0.27 1.00 0.27 1.00 98.05 1.00 19.20 0.99 19.21 0.99 99.95 0.99
1S 3977.93 1.00 3977.93 1.00 4045.81 1.00 4170.49 1.00 4170.49 1.00 4180.79 1.00
LLA 0.27 1.00 0.45 1.00 98.35 1.00 19.00 0.99 19.20 0.99 100.05 0.99

λ = 10
0 HD 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

1S 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
LLA 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

0.5 HD 57.33 1.00 57.33 1.00 57.33 1.00 53.80 1.00 53.80 1.00 53.80 1.00
1S 501.86 1.00 501.86 1.00 501.86 1.00 497.87 1.00 497.87 1.00 497.87 1.00
LLA 0.01 1.00 0.03 1.00 0.01 1.00 0.01 1.00 0.04 1.00 0.01 1.00

0.75 HD 0.41 1.00 0.41 1.00 0.41 1.00 0.53 1.00 0.53 1.00 0.53 1.00
1S 4206.65 1.00 4206.65 1.00 4206.65 1.00 4261.12 1.00 4261.12 1.00 4261.12 1.00
LLA 0.09 1.00 0.30 1.00 0.14 1.00 0.07 1.00 0.36 1.00 0.10 1.00

λ = 20
0 HD 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

1S 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
LLA 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

0.5 HD 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
1S 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
LLA 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

0.75 HD 33.90 1.00 33.90 1.00 33.90 1.00 35.46 1.00 35.46 1.00 35.46 1.00
1S 47.21 1.00 47.21 1.00 47.21 1.00 46.90 1.00 46.90 1.00 46.90 1.00
LLA 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.06 1.00 0.00 1.00

HD=High Dimensional SCAD [36]; 1S=one-step & LLA=local linear approximation [77]

differences are observed, even when controlling for the use of the same starting
value. Such differences are a result of two important features of the SCAD opti-
mization problem: (i) the possible existence of several local minima; and, (ii) the
fact that the MIST, HD, and LLA algorithms each take a different path from
a given starting value towards one of these solutions. For example, while each
of the LLA, MIST, and HD algorithms involve majorization of the objective
function using a lasso-type surrogate objective function, both the majorization
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Table 4

Algorithm performance in Example 1 (LM: p = 81, N = 100) for SCAD penalty. The
column ‘avg’ is the average normed differences (×103) between the MIST solution and the

existing method’s solution; ‘prop’ is the proportion of MIST solutions whose objective
function evaluation was less than or equal to that of the existing method’s solution

σ = 1 σ = 3

β(0)
0p β̂ml β̂1S,λ 0p β̂ml β̂1S,λ

ρ method avg prop avg prop avg prop avg prop avg prop avg prop
λ = .1
0 HD 828.22 1.00 1211.97 1.00 962.10 1.00 4615.10 1.00 5414.49 1.00 5350.54 1.00

1S 753.85 1.00 753.84 1.00 753.84 1.00 2836.29 0.90 1314.46 1.00 1366.62 1.00
LLA 1.60 1.00 1.67 1.00 1.64 1.00 1181.62 0.76 382.17 0.82 223.32 0.94

0.5 HD 5992.88 1.00 6008.14 1.00 5994.86 1.00 8002.08 1.00 9530.30 1.00 9546.21 1.00
1S 1217.02 1.00 1202.01 1.00 1201.30 1.00 4619.22 0.88 1473.61 1.00 1403.36 1.00
LLA 24.78 0.97 1.33 1.00 8.50 0.99 2123.22 0.57 576.65 0.83 232.10 0.91

0.75 HD 12018.61 1.00 12042.97 1.00 12042.90 1.00 13582.93 1.00 16580.85 1.00 16569.80 1.00
1S 2492.18 1.00 2327.76 1.00 2330.54 1.00 8204.45 0.60 1215.98 1.00 1181.16 1.00
LLA 36.95 0.98 90.89 0.97 90.69 0.96 3517.93 0.50 607.08 0.78 252.75 0.89

λ = 1
0 HD 1421.70 1.00 3595.88 1.00 2296.03 1.00 1552.11 0.98 3258.39 1.00 2231.63 1.00

1S 7121.11 1.00 6977.35 1.00 6976.16 1.00 7485.99 1.00 7182.76 1.00 7182.76 1.00
LLA 50.48 0.99 64.69 0.99 4.59 1.00 231.48 0.97 107.36 1.00 140.97 1.00

0.5 HD 4505.31 0.93 6764.71 0.88 4973.51 0.98 4571.62 0.97 6473.05 0.89 6150.70 0.96
1S 11973.29 1.00 10301.59 1.00 10238.21 1.00 12411.82 1.00 9674.64 1.00 9781.43 1.00
LLA 1622.24 0.89 661.69 0.95 622.25 0.96 1682.66 0.89 1785.73 0.86 517.91 0.97

0.75 HD 11166.35 0.75 16786.90 0.57 11642.59 0.84 12834.39 0.81 14964.11 0.66 10110.16 0.90
1S 16953.51 1.00 9125.82 1.00 9225.76 1.00 17174.91 0.99 8828.81 1.00 8549.86 1.00
LLA 6379.56 0.50 4295.69 0.63 787.30 0.93 6904.11 0.52 3637.68 0.74 812.28 0.94

λ = 5
0 HD 12.35 1.00 12.35 1.00 12.35 1.00 13.00 1.00 13.00 1.00 13.00 1.00

1S 1072.70 1.00 1072.70 1.00 1072.70 1.00 1114.13 1.00 1114.13 1.00 1114.13 1.00
LLA 0.01 1.00 0.05 1.00 0.01 1.00 0.01 1.00 0.07 1.00 0.01 1.00

0.5 HD 28.71 1.00 28.71 1.00 28.71 1.00 0.43 1.00 0.42 1.00 0.43 1.00
1S 6793.73 1.00 6793.73 1.00 6793.73 1.00 6831.01 1.00 6831.01 1.00 6831.01 1.00
LLA 0.38 1.00 0.54 1.00 0.49 1.00 0.43 1.00 0.58 1.00 0.57 1.00

0.75 HD 4998.08 0.88 4963.08 0.88 4292.65 0.97 5753.61 0.92 5772.76 0.95 5192.19 0.98
1S 11191.83 1.00 11188.02 1.00 12029.12 1.00 11917.77 1.00 11971.47 1.00 12485.14 1.00
LLA 1217.39 0.90 1252.65 0.89 1060.08 0.99 861.72 0.95 937.76 0.94 1018.59 0.98

λ = 10
0 HD 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

1S 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
LLA 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

0.5 HD 6.69 1.00 6.69 1.00 6.69 1.00 5.80 1.00 5.80 1.00 5.80 1.00
1S 2883.52 1.00 2883.52 1.00 2883.52 1.00 2906.35 1.00 2906.35 1.00 2906.35 1.00
LLA 0.03 1.00 0.20 1.00 0.03 1.00 0.02 1.00 0.20 1.00 0.02 1.00

0.75 HD 122.19 1.00 122.19 1.00 122.19 1.00 107.93 1.00 107.93 1.00 107.93 1.00
1S 8835.88 1.00 8835.88 1.00 8835.87 1.00 8874.85 1.00 8874.85 1.00 8874.84 1.00
LLA 0.08 1.00 0.54 1.00 0.32 1.00 0.10 1.00 0.53 1.00 0.35 1.00

λ = 20
0 HD 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

1S 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
LLA 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

0.5 HD 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
1S 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
LLA 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

0.75 HD 21.76 1.00 21.76 1.00 21.76 1.00 17.70 1.00 17.70 1.00 17.70 1.00
1S 3997.88 1.00 3997.88 1.00 3997.88 1.00 4014.29 1.00 4014.30 1.00 4014.29 1.00
LLA 0.05 1.00 0.43 1.00 0.06 1.00 0.07 1.00 0.38 1.00 0.08 1.00

HD=High Dimensional SCAD [36]; 1S=one-step & LLA=local linear approximation [77]

and minimization of the resulting surrogate function are carried out differently
in each case. In particular, the LLA algorithm, as implemented in SIS, majorizes
only the penalty term and adapts the lasso code in glmpath in order to minimize
the corresponding surrogate objective function at each step. The HD algorithm
is similar in spirit, but instead decomposes the penalty term into a sum of a
concave and convex function and utilizes the the algorithm of Rosset and Zhu
[55] to minimize the corresponding surrogate objective function. The MIST al-
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gorithm instead uses the same penalty majorization as the LLA algorithm, but
additionally majorizes the negative loglikelihood term in a way that permits
minimization of the surrogate function in a single soft-thresholding step. Each
procedure therefore takes a different path towards a solution, even when given
the same starting value.

We remark here that differences must also expected between any of LLA,
HD, MIST and 1S. From an optimization perspective, the one-step estimator
is the result of running just one iteration of the LLA algorithm, starting from
the unpenalized least squares estimator β̂ml [77]; hence, 1S only provides an
approximate solution to the desired minimization problem. All other methods
(LLA, MIST, HD) iterate until some local minimizer (or stationary point) is

reached. For example, when using either β̂ml or β̂1S,λ as the starting value,
MIST always found a solution that produced a lower evaluation of the objective
function in comparison to β̂1S,λ. However, when using the null starting value of
0p, the one-step estimator did occasionally result in a lower objective function
evaluation in cases involving smaller values of λ. This behavior is not terribly
surprising; with small λ, the one-step solution should generally be close to the
unpenalized least squares solution, as the objective function itself is likely to be
dominated by the least squares term.

Of all the SCAD algorithms considered here, MIST and LLA tended to find
the most similar solutions (i.e., have the smallest normed differences). For the
cases in which the LLA solution had lower objective function evaluations, all of
the MIST solutions were also LLA solutions; i.e., when starting the LLA algo-
rithm with the MIST solution, the algorithm terminated at the starting value
(i.e., the LLA solution coincides with the MIST solution). With the exception
of three of these cases, starting the MIST algorithm with the LLA solution also
resulted in the same behavior. The HD and MIST algorithms also generally
gave similar results, with one source of difference being the respective stopping
criteria used. The stopping criteria for HD, assessed in order, are as follows: (1)
‘convergence of optimization’: stop if the absolute value of the difference of the
objective evaluated at successive iterates is less than 10−6; (2) ‘convergence of
penalty gradient’: stop if the sum of the absolute value of the differences of the
derivative of the centered penalty evaluated at successive iterates is less than
10−6; (3) ‘convergence of coefficients:’ stop if the sum of the absolute value of
the differences of successive iterates is less than 10−6; and, (4) ‘jump-over’ cri-
teria: stop if the objective at the previous iterate plus 10−6 was less than the
objective at the current iterate. After careful analysis of the results, we assert
the following:

• The MIST solution usually has the same or a lower evaluation of the
objective function in comparison with HD, regardless of starting value.

• HD tends to have the most difficulty in cases of high predictor correlation,
a likely result of the fact that this algorithm relies on the variance of the
unpenalized least squares estimator, hence matrix inversion, to take steps
towards solution. In contrast, MIST requires no matrix inversion.
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On balance, the MIST algorithm performs as well or better than LLA and
HD in locating minimizers in nearly all cases. As suggested above, variation
in the solutions found can be traced to the path each algorithm takes towards
a solution and differences in stopping criteria. Remarkably, in cases when the
correlation among predictors was low, the choice of starting value made little
difference for MIST; either the same solution was found for all starting values or
none of the starting values dominated in terms of finding the lower or equivalent
objective evaluations. In settings involving higher correlation, however, using
either 0p or the 1S starting values tended to result in the lower evaluations of
the objective function in comparison with using the unpenalized least squares
solution. Similar behavior was observed for the LLA algorithm. In contrast, the
choice of starting value had a much larger impact on the performance of the
HD estimator; in particular, the use of 0p as a starting value typically resulted
in the lowest objective function evaluations when compared to using a non-null
starting value.

4.2. Example 2: Binary logistic regression

As in Example 1, we considered the LAS, ALAS, EN, AEN, and SCAD penal-
ties. There are at least two R packages that allow penalization using the LAS
and EN penalties: glmpath [51], which handles binomial and poisson regression
using a “predictor-corrector” method, and glmnet [24], which handles binomial
and multinomial regression using cyclical coordinate descent. Both methods can
be tuned to find the same solutions, so for ease of presentation we only consider
the results of glmnet for comparison in the tables and analysis below. The SIS
package [22] permits computations with the ALAS, AEN, and SCAD penalties
using modifications of the Park and Hastie [51] code. For SCAD, we compared
the results of MIST to the results from the one-step (1S) algorithm [GLM ver-
sion, 77] using the code provided from the authors and the LLA algorithm as
implemented in Fan et al. [22].

As before, we only considered comparing solutions that use the same combi-
nation of tuning parameters; for the present example, the set considered here is
Λ = {0.001, 0.01, 0.05, 0.1, 0.2, 1.00}, reflecting a need to accommodate the dif-
ferent scaling of the problem. The data generation scheme for this example was
loosely based on the simulation study found in Friedman, Hastie and Tibshirani
[24]. Binary response data were generated according to a logistic (rather than lin-
ear) regression model using pi = [1+exp(−x′

iβ
∗)]−1, i = 1, . . . , N = 1000, where

β∗ is a p−vector with elements βj = 3× (−1)j exp(−2(j−1)/200), j = 1, . . . , q,
q ∈ {25, 75}, and the remaining 100 − q components set to zero. Here, xi fol-
lows a p-dimensional multivariate normal distribution with zero mean and co-
variance Σ = 3−2P where the correlation matrix P is such that each pair of
predictors has the same population correlation ρ. We considered three such cor-
relations, ρ ∈ {0.0, 0.5, 0.75}. For the MIST algorithm, ̟ was selected to be
2/(λ∗ + 0.001) where λ∗ is the largest eigenvalue of X′WX where W = .25IN
where the design matrix X is appropriately scaled to match the scaling of the
existing algorithm.
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Table 5

Algorithm performance in Example 2 (GLM) for SCAD penalty. The column ‘avg’ is the
average normed differences (×103) between the MIST solution and the existing method’s

solution; ‘prop’ is the proportion of MIST solutions whose objective function evaluation was
less than or equal to that of the existing method’s solution

q = 25 q = 75

β(0)
0p β̂ml β̂1S,λ 0p β̂ml β̂1S,λ

ρ method avg prop avg prop avg prop avg prop avg prop avg prop
λ = .001

0 1S 26.50 0.27 0.39 1.00 0.39 1.00 31.70 0.42 0.22 1.00 0.18 1.00
LLA 18.55 0.68 0.15 1.00 0.13 1.00 17.31 0.76 0.22 1.00 0.11 1.00

0.5 1S 33.90 0.15 0.08 1.00 0.07 1.00 35.43 0.26 0.10 1.00 0.07 1.00
LLA 27.65 0.64 0.01 1.00 0.00 1.00 18.45 0.82 0.10 1.00 0.00 1.00

0.75 1S 56.29 0.04 0.06 1.00 0.05 1.00 42.85 0.23 0.05 1.00 0.04 1.00
LLA 46.48 0.71 0.05 1.00 0.00 1.00 26.05 0.82 0.04 1.00 0.00 1.00

λ = .01
0 1S 945.60 0.11 30.65 1.00 31.42 1.00 1318.20 0.02 8.61 1.00 8.61 1.00

LLA 416.15 0.64 5.49 0.93 1.86 0.99 406.62 0.72 0.98 1.00 0.49 1.00
0.5 1S 1082.65 0.00 23.60 1.00 22.97 1.00 1088.23 0.01 5.62 1.00 5.75 1.00

LLA 427.10 0.72 1.33 0.99 0.03 1.00 398.05 0.74 0.56 0.99 0.16 1.00
0.75 1S 1462.74 0.00 16.81 0.98 17.37 1.00 1629.73 0.00 5.53 0.99 4.97 1.00

LLA 548.07 0.79 1.71 0.97 0.82 1.00 578.09 0.79 1.73 0.99 0.06 1.00
λ = .05

0 1S 1845.64 0.99 501.45 1.00 530.14 1.00 9575.27 0.82 252.36 1.00 263.41 1.00
LLA 75.94 0.99 93.46 0.73 76.33 0.98 97.80 0.91 27.73 0.96 13.86 0.99

0.5 1S 4351.14 0.33 433.10 1.00 473.27 1.00 8323.46 0.98 171.08 1.00 181.11 1.00
LLA 394.16 0.60 125.51 0.74 74.17 0.94 106.69 0.87 15.59 0.96 9.10 1.00

0.75 1S 5041.69 0.97 359.74 1.00 379.26 1.00 7907.54 1.00 156.65 0.99 164.34 1.00
LLA 337.48 0.90 124.48 0.67 46.58 0.91 24.37 0.98 31.31 0.95 2.19 1.00

λ = .1
0 1S 4095.33 1.00 818.64 1.00 815.48 1.00 8626.86 1.00 834.01 1.00 832.92 1.00

LLA 0.00 1.00 0.04 1.00 15.14 1.00 0.00 1.00 73.78 0.89 149.55 0.98
0.5 1S 4330.64 1.00 660.87 1.00 682.83 1.00 7626.58 1.00 628.29 1.00 718.12 1.00

LLA 4.56 1.00 32.36 0.93 34.80 0.99 0.00 1.00 115.84 0.85 121.60 0.98
0.75 1S 4536.24 1.00 626.38 1.00 693.65 1.00 7457.80 1.00 550.76 1.00 618.94 1.00

LLA 0.00 1.00 81.21 0.87 87.10 0.99 0.00 1.00 88.95 0.86 62.41 0.98
λ = .2

0 1S 3712.07 1.00 2888.10 0.81 3712.07 1.00 4346.96 1.00 4346.96 1.00 4346.96 1.00
LLA 0.00 1.00 0.04 1.00 0.01 1.00 0.00 1.00 0.01 1.00 0.01 1.00

0.5 1S 3768.77 1.00 3167.21 0.98 3602.53 1.00 3781.29 1.00 3781.29 1.00 3781.29 1.00
LLA 0.00 1.00 42.80 0.99 70.75 1.00 0.00 1.00 0.01 1.00 0.01 1.00

0.75 1S 3825.82 1.00 2542.80 0.97 3076.24 1.00 4331.74 1.00 4331.74 1.00 4331.74 1.00
LLA 0.00 1.00 404.72 0.83 387.72 0.86 0.00 1.00 0.01 1.00 0.01 1.00

λ = 1
0 1S 54.18 1.00 54.18 1.00 54.18 1.00 61.54 1.00 61.54 1.00 61.54 1.00

LLA 0.00 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.02 1.00 0.00 1.00
0.5 1S 40.38 1.00 40.38 1.00 40.38 1.00 49.01 1.00 49.01 1.00 49.01 1.00

LLA 0.00 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
0.75 1S 32.85 1.00 32.85 1.00 32.85 1.00 38.36 1.00 38.36 1.00 38.36 1.00

LLA 0.00 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

1S=one-step & LLA=local linear approximation [77]

For the B = 100 simulations, the maximum (across different tuning parame-
ters) average normed difference of solutions between the existing and proposed
methods, multiplied by 105, are reported for each of the strictly convex cases
in the right-most panel of Table 2. As before, these maximums are generally
remarkably small, indicating that MIST recovers the same (unique) solutions as
the existing algorithms. The results for SCAD are reported in Table 5, which
displays the same information as in the corresponding tables from Example 1;
the HD comparisons are omitted here as the methodology and code were only
developed for the case of penalized least-squares. In the GLM setting, the 1S
estimator is computed by applying the LARS [19] algorithm to a quadratic ap-
proximation of the negative loglikelihood function evaluated at the MLE. In
contrast, both MIST and LLA utilize the exact objective function and iterate
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until a stationary point, usually a local minimizer, is found. As in the linear
model case, LLA uses glmpath to minimize the surrogate at each step, whereas
the MIST algorithm uses a single application of the soft thresholding operator
to minimize the surrogate function at each step.

In this example, the starting value carried even greater importance in com-
parison with the linear model setting. In particular, in the case of MIST, the
combination of a 0p starting value and small penalty parameter led to solutions
with objective function evaluations that were substantially larger in comparison
with those obtained using either β̂ml and β̂1S,λ. Such behavior may be directly
attributed to the fact that the ML and 1S starting values either minimize or
nearly minimize the negative loglikelihood portion of the objective function, the
dominant term in the objective function when λ is “small.” In contrast, a 0p

starting value led to the best performance for “large” λ; upon reflection, this is
also not very surprising, since large penalties induce greater sparsity and 0p is
the sparsest possible solution.

There were a few settings in which the 1S estimator resulted in a lower
objective function evaluation in comparison with applying MIST started at β̂ml.
This reflects the fact that several local minima can exist for non-convex penalties
like SCAD. In addition, and as was observed before, using the 1S solution as
a starting value always led to MIST finding a solution with a lower evaluation
of the objective function in comparison with that provided by the 1S solution.
Regarding the use of LLA, which also requires a starting value specification,
we again examined the cases for which LLA resulted in lower objective function
evaluations. For these cases, all MIST solutions were LLA solutions, and all LLA
solutions were MIST solutions with the exception of one. Hence, both methods
find valid, if often different, solutions, a behavior that we again attribute to the
differences in paths taken towards a solution.

4.3. Effectiveness of convergence acceleration

We explored the effectiveness of SQUAREM2, defined in Section 3.3, when ap-
plied to several simulated datasets taken from the previous two simulation stud-
ies. Table 6 indicates the relative reduction in elapsed time (‘RRT’) and numbers
of MM updates, i.e., invocations of mapping M(·), required for the original and
SQUAREM2-accelerated algorithms to converge for five randomly chosen sim-
ulation datasets across the five penalty functions. The SQUAREM2 algorithm
converged without difficulty in these cases and required substantially fewer MM
updates than the original algorithm; the percent reduction in time was as high
as 96%. We remark here that the regularity conditions imposed in Roland and
Varadhan [53] and Varadhan and Roland [67], particularly smoothness con-
ditions, are not satisfied in this particular class of examples. Hence, while the
simulation results are certainly very promising, the question of convergence (and
its associated rate) of SQUAREM2 in this class of problems continues to remain
an interesting open problem.
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Table 6

Acceleration from SQUAREM2 applied to simplified MIST algorithm for five randomly
selected simulation datasets. The relative reduction in elapsed time is given by ‘RRT’, while

the number of MM updates are given for the original MIST implementation and
SQUAREM2 implementation in ‘# orig’ and ‘# sm2’, respectively. Parameter Θ in the top

portion of the table collects the dimension and noise information for the linear model
examples, i.e., Θ = (p, σ)

LAS ALAS EN AEN SCAD

Dataset RRT #orig #sm2 RRT #orig #sm2 RRT #orig #sm2 RRT #orig #sm2 RRT #orig #sm2

LM

Θ=(35, 1)
62 0.67 260 62 0.81 169 44 0.63 46 26 0.82 42 23 0.91 485 68
71 0.76 221 59 0.75 163 41 0.67 49 29 0.62 44 29 0.83 302 65
86 0.67 271 68 0.70 149 44 0.67 51 29 0.75 43 26 0.93 987 104
95 0.86 317 74 0.88 187 41 0.92 49 29 0.73 46 26 0.90 500 71
88 0.88 330 68 0.87 162 41 0.78 51 29 0.77 45 26 0.90 528 77

Θ= (81, 3)
62 0.90 2059 242 0.89 589 92 0.65 68 35 0.75 64 29 0.88 594 101
71 0.93 1426 164 0.93 838 83 0.76 77 32 0.70 71 32 0.94 2608 215
86 0.90 1351 212 0.92 956 98 0.59 77 38 0.79 69 32 0.92 1038 110
95 0.93 1500 167 0.86 367 71 0.67 72 35 0.74 68 29 0.90 663 92
88 0.92 1547 185 0.90 716 101 0.60 70 32 0.68 66 32 0.92 1798 203

GLM

q = 25
62 0.93 4928 431 0.96 6227 272 0.89 3201 359 0.93 3316 236 0.95 22044 1442
71 0.92 4195 416 0.95 5045 239 0.90 2796 281 0.94 2843 170 0.95 16225 1052
86 0.92 4488 470 0.95 5449 242 0.92 2971 257 0.93 3044 206 0.95 20133 1193
95 0.93 4553 374 0.94 5419 341 0.92 3059 269 0.95 3096 152 0.95 15250 1064
88 0.92 5212 527 0.95 6850 371 0.91 3237 314 0.94 3393 203 0.96 26477 1367

q = 75
62 0.88 4334 674 0.91 3573 377 0.85 3055 575 0.90 2435 293 0.95 88994 5687
71 0.91 3805 446 0.92 3046 281 0.85 2761 536 0.89 2194 281 0.94 82615 5588
86 0.87 3615 602 0.91 2900 329 0.87 2653 434 0.92 2110 185 0.93 42652 3686
95 0.89 3870 554 0.90 3121 380 0.90 2820 338 0.89 2264 314 0.94 40002 3095
88 0.88 4177 641 0.94 3395 251 0.87 2972 482 0.91 2415 242 0.94 77484 5885

5. Example: Genes associated with lymphoma patient survival

Diffuse large-B-cell lymphoma (DLBCL) is an aggressive type of non-Hodgkins
lymphoma and is one of the most common forms of lymphoma occurring in
adults. Rosenwald et al. [54] utilized Lymphochip DNA microarrays, special-
ized to include genes known to be preferentially expressed within the germinal
centers of lymphoid organs, to collect and analyze gene expression data from
240 biopsy samples of DLBCL tumors. For each subject, 7399 gene expression
measurements were obtained. The expression profiles along with correspond-
ing patient information can be downloaded from their supplemental website
http://llmpp.nih.gov/DLBCL/. Since the original profiles had some missing ex-
pression measurements, we used the dataset subsequently analyzed by Li and
Gui [40] which estimated the missing values using a nearest neighbor approach.
During the time of followup, 138 patient deaths were observed with median
death time of 2.8 years.

Rosenwald et al. [54] used hierarchical clustering to group the genes into four
gene-expression signatures: Proliferation (PS), which includes cell-cycle control
and checkpoint genes, and DNA synthesis and replication genes; Major Histo-
compatibility Complex ClassII (MHC), which includes genes involved in anti-
gen presentation; Lymph Node (LNS), which includes genes encoding for known
markers of monocytes, macrophages, and natural killer cells; and Germinal Cen-
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ter B (GCB), which includes genes that are characteristic of germinal center B
cells; see Alizadeh et al. [1] for more information on gene signatures. Based on
the gene clusters, they built a Cox proportional hazards model [14, 15] to predict
survival outcomes in the DLBCL patients. Subsequently, this dataset has been
analyzed numerous times, typically to evaluate methods related to subgroup
identification and/or survival prediction [e.g., 4, 20, 27, 28, 40, 41, 63].

Here, we instead focus on the performance of two different penalties, namely
SCAD and MCP, with regard to the identification of genes associated with
DLBCL survival. The simulation results of Zhang [71, 72] suggest that MCP
has superior selective accuracy over the SCAD penalty, at least for the case of
a linear model. There, selection accuracy was measured as the proportion of
simulation replications with correct classification of both the zero and non-zero
coefficients, with MCP outperforming SCAD in all simulation settings.

To illustrate the utility and flexibility of the MIST algorithm, we reanalyzed
the DLBCL data, fitting a penalized Cox regression model respectively using
SCAD and MCP penalty functions, and running these procedures in combi-
nation with the Iterative Sure Independence Screening procedure [ISIS, 23] in
order to ensure that the dimension of the parameter space was maintained at
a manageable level. For SCAD, we considered both the 1S and LLA estima-
tors. The existing optimization functions provided in the SIS package for the
ISIS procedure were used for the 1S estimator, whereas relevant modifications
to the ISIS code were made in order to accommodate the fully iterative LLA
and MCP estimators. Optimization at each step of the ISIS algorithm in the
case of the MCP penalty utilized the MIST algorithm, as we are aware of no
other algorithm capable of fitting the Cox regression model subject to MCP
penalization. The default settings in the SIS package were used to determine
the maximum number of predictors ([ n

4 logn
] = 10) and to define the additional

ISIS parameters (e.g., use of the unpenalized MLE as a starting value, ranking
method, tuning parameter selection) for all three analyses (1S-SCAD, LLA-
SCAD, MIST-MCP). The parameter a was set to 3.7 for all analyses; hence,
only the selection of λ required any tuning.

Table 7 displays the 11 genes identified by at least one of the three analyses.
The x’s in a given column indicate the genes with non-zero coefficients result-
ing from the corresponding penalization. The final column provides references
for genes previously linked to DLBCL in the literature. Genes belonging to the
original Rosenwald et al. [54] gene expression signatures are indicated with par-
enthetical initials. Note that the references provided are not meant to be an
exhaustive list, but instead intend to demonstrate the relevance of certain genes
and/or their altered expression levels in DLBCL survival.

Interestingly, the LLA-SCAD andMIST-MCP penalizations selected the same
subset of genes, having a nearly complete overlap with those selected from the
1S-SCAD penalization. The number of genes selected in each case is 10, the max-
imum specified by ISIS; 9 of these were shared across the three penalizations.
According to NCBI Entrez Gene search (http://www.ncbi.nlm.nih.gov/), many
of these genes are biologically relevant. For example, CDK7 codes for a protein
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Table 7

Genes associated with DLBCL survival with SCAD (one-step=1S and LLA) and MCP
penalizations, sorted by the gene order in the original data set. ID refers to the unique

Lymphochip identification number. The x’s in a given column indicate the genes identified
by the corresponding penalization

ID Name (Symbol) SCAD MCP References
1S LLA

27774 cyclin-dependent kinase 7 (CDK7) x x x [54] (PS), [43], [7, 8]
31242 acidic 82 kDa protein mRNA (DNTTIP2) x x x [7, 8]
31981 septin 1 (SEPT1) x x x [54] (PS), [41], [60]

[58], [73], [4], [7, 8]
29652 BUB3 budding uninhibited by

benzimidazoles 3 (BUB3)
x x x [54] (PS)

27731 major histocompatibility complex, x x x [54] (MHC), [41]
class II, DR alpha (HLA-DRA) [27, 28], [61], [8]

24376 ESTs, Weakly similar to A47224 x x x [54] (GCB), [3], [41]
thyroxine-binding globulin precursor [27, 28], [4], [61]

[7, 8]
22162 delta sleep inducing peptide,

immunoreactor (TSC22D3)
x x [44]

23862 (AI568329) ESTs x x x
24271 integrin, alpha L (ITGAL) x [44]
33358 (AA830781) x x x [41], [8]
32679 KIAA0084 protein (RFTN1) x x x [28], [58], [73], [4]

[7, 8]

that regulates cell cycle progression and is represented in the Proliferation Sig-
nature, although reported under a different Lymphochip ID as this gene was
spotted multiple times on the array. Also members of the Proliferation Signa-
ture are SEPT1, coding for a protein involved in cytokinesis, and BUB3, coding
for a mitotic checkpoint protein. DNTTIP2 regulates transcriptional activity of
DNTT, a gene for a protein expressed in a restricted population of normal and
malignant pre-B and pre-T lymphocytes during early differentiation. HLA-DRA,
a member of the MHC Signature, plays a central role in the immune system and
is expressed in antigen presenting cells, such as B lymphocytes, dendritic cells,
macrophages. From the GCB Signature, the ESTs weakly similar to thyroxine-
binding globulin precursor is highly cited. Additionally, RFTN1 plays a pivotal
role in regulating B-cell antigen receptor-mediated signaling [56].

The gene AI568329, selected by all methods, is not described in the original
dataset and its function is unknown. Similarly, although cited at least twice, a
description for AA830781 is also unavailable. Both of these genes may be related
to lymphoma or risk of death from lymphoma, as it is possible that these genes
(and potentially others) were selected because of coexpression or correlation
with other relevant genes. Interestingly, the two genes not commonly identified
across the three penalizations were both cited in Martinez-Climent et al. [44].
They found altered gene expression of TSC22D3 and ITGAL (both involved in
a variety of immune phenomena) in one case who initially presented with follicle
center lymphoma and subsequently transformed to DLBCL.
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The results of this analysis demonstrate equivalence in selection performance
between MCP and LLA-SCAD for the case of Cox proportional hazards model.
Increasing the maximum number of predictors to 21 again resulted in equiva-
lent selection performance between MCP and LLA-SCAD, with 21 predictors
ultimately selected (results not shown). The 1S estimator also resulted in the
selection of 21 predictors, but with increased dissimilarity between MCP/LLA-
SCAD and 1S: only 13 of the 21 genes were selected by all three methods. It
should be noted that Zhang [71, 72] did not use any form iterative variable
selection (e.g., ISIS) in his comparisons between SCAD and MCP for the case
of the linear model; in addition, Zhang [71, 72] fixed values for both penalty
parameters in his simulations and also did not use a = 3.7. The use of ISIS, the
methodology used for selecting λ, and the use of a = 3.7 [e.g., 23] in both the
MCP and SCAD penalties may all play a role in the results summarized above.

6. Discussion

This paper proposed a versatile and general algorithm capable of dealing with
a wide variety of nonsmoothly penalized objective functions, including but not
limited to all presently popular combinations of goodness-of-fit and penalty
functions. In particular, the MIST algorithm utilizes a judicious choice of ma-
jorization to generate a MM algorithm that applies soft-thresholding compo-
nentwise and which, in certain settings, allows one to minimize the majorizing
function in a single iteration. We established a suitable convergence theory, as
well as new results on the convergence of rather general MM algorithms. In the
case of penalized least squares, our results are complementary to convergence re-
sults obtained for coordinate descent algorithms designed for use with the lasso
penalty [cf. 45, 65, 69]. In general, while the minimizers obtained at each step
of the MIST algorithm are not necessarily coordinatewise minima of the desired
objective function, the MIST algorithm continues to drive the objective func-
tion steadily downhill, converging to a local minimizer. We further demonstrated
the remarkable effectiveness of the simple SQUAREM2 acceleration procedure
in these problems as tool for accelerating the slow but steady convergence of the
proposed class of algorithms. Beyond specification of the penalty parameter(s)
λ, virtually no effort was expended in tuning or otherwise specializing the MIST
algorithm for solving a given problem. At the expense of greater analytical work,
the rate of convergence for the standard MIST algorithm can itself be improved.

The simulation results of this paper highlight the fact that nonconvex penal-
ties tend to endow the corresponding objective function with multiple local
minima. The resulting sensitivity of computational algorithms to the choice of
starting value, while known, has not been especially emphasized in the liter-
ature on penalized estimation. In this regard, the computationally attractive
one-step method of Zou and Li [77] provides a useful choice of starting value for
fully iterative SCAD-based algorithms. In addition to being unique under mild
regularity conditions, it is also easily generalized to other nonconvex penalties,
such as MCP, and yields estimators with attractive asymptotic properties. Un-
fortunately, its utility for identifying starting values is limited to settings where
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N > p because the justification for the 1S estimator relies heavily on the use of
the unpenalized MLE as a starting value.

SparseNet [45] provides an interesting addition to the class of methods able
to deal with non-convex penalty functions in the case of penalized least squares.
The implementation of this methodology using the MCP penalty [71, 72] appears
to hold particular promise as a tool for variable selection. As indicated earlier,
the core optimization procedure used within SparseNet is a form of iterated
thresholding and is developed with a particular focus on the linear model. It
would be interesting to explore the possibility of extending SparseNet to the
class of generalized linear models and related problems (e.g., Cox regression),
with one obvious approach being to replace the coordinate descent algorithm
with the MIST algorithm.

The simulated examples in this paper only consider settings with N > p,
in part to ensure that the goodness-of-fit function g(β) remains strictly con-
vex. While the MIST algorithm has not yet been extensively tested in settings
where N ≪ p, preliminary results show that the algorithm continues to find
reasonable solutions when given a reasonable starting value, but tends to con-
verge at a slower rate in comparison with N > p. As suggested by Table 6, the
SQUAREM2 acceleration procedure can produce dramatic gains even as N gets
close to p; the problem of tuning the algorithm, the development of acceleration
procedures and the problem of selecting suitable starting values in problems with
multiple local minima, particularly in settings where p > N but the number of
“important” predictors p0 ≪ N , are left for future work. Two important and
unresolved challenges in such problems include rigorously justifiable methods
for determining good starting values and penalty parameter(s).

Appendix A

This appendix is divided into several sections. Section A.1 reviews and extends
the convergence theory for the EM algorithm established in Wu [68]; the ex-
tension utilizes results of Meyer [47] to establish stronger convergence results
for general MM algorithms. Section A.2 contains the proof of Theorem 2.1 and
makes direct use of these results. Finally, Sections A.3 and A.4 respectively con-
tain the proofs of Theorems 3.2 and 3.4, establishing the convergence of iterated
soft thresholding when used to minimize (10) and convergence of the proposed
class of MIST algorithms in the case of the generalized linear model.

A.1. Local convergence of MM algorithms in nonsmooth problems

Using convergence theory for algorithms derived from point-to-set maps devel-
oped by Zangwill [70], Wu [68] established some general convergence results for
the EM algorithm under a range of conditions. In what follows, the key con-
vergence result of Zangwill [70] is restated; this result, given in Theorem A.1
and adapted from Wu [68], is stated in a form convenient for use with the MM
algorithm and provides for a very general (and comparatively weak) form of



E.D. Schifano et al./MM algorithms for nonsmooth problems 1287

convergence. We then draw on stronger convergence results due to Meyer [47] in
order to establish a more useful convergence theory for MM algorithms designed
to minimize nondifferentiable objective functions; this result is stated in Theo-
rem A.3. Finally, we provide a set of sufficient regularity conditions that ensure
the validity of the conditions of both theorems in a wide class of statistical
estimation problems.

Let ξ(β) be the real-valued function to be minimized, where β ∈ B.While the
focus of this paper is on B = R

p, the development below assumes only that B is
some (possibly proper) subset of Rp and that B0 ⊂ B is a compact subset. Let
M : B → B denote the map (1), where ξ[S](·, ·) is any function that majorizes
ξ(β) for β ∈ B. In general, M(·) is a point-to-set map, and therefore a set. We
say that β̄ is a generalized fixed point of M(·) if β̄ ∈M(β̄); we say that β̄ is a
fixed point ofM(·) if M(β̄) = {β̄} (i.e., a singleton). Theorem A.1 below states
Theorem A of Zangwill [70] for the case of the MM algorithm.

Theorem A.1. Suppose ξ(β) is a continuous, real-valued function of β ∈ B

that is uniformly bounded below. Assume β(0) ∈ B is a bounded vector and that
ξ(β(0)) < ∞. Let the sequence {β(n), n ≥ 0} be generated as follows: β(n+1) ∈

M(β(n)), where M(·) is the point-to-set map (1). Let S ⊂ B denote a specified
non-empty solution set. Suppose that

Z1. Each β
(n) ∈ B0, n ≥ 0;

Z2. M(·) is closed and non-empty for β ∈ Sc;
Z3. The following two conditions hold:

(i) ξ(β) ≤ ξ(α) for each α ∈ S and any β ∈M(α);

(ii) ξ(β) < ξ(α) for each α 6∈ S and any β ∈M(α).

One may then draw the following conclusions:

M1. The sequence {β(n), n ≥ 0} has at least one limit point in S; in addition,
the set of all such points, say S0, satisfies S0 ⊆ S.

M2. Each limit point β̄ ∈ S0 satisfies limn→∞ ξ(β(n)) = ξ(β̄).
M3. Each limit point β̄ ∈ S0 is a generalized fixed point of M(·).

Remark A.2. Assumptions [Z1]-[Z3] are imposed in Wu [68]. The assumption

[Z1] implies that {β(n), n ≥ 0} is a bounded sequence, ensuring the existence
of at least one limit point. Further comments on [Z2] will be made below, as it
is possible to impose reasonable sufficient conditions that ensure this condition.
The assumption [Z3] enforces the descent property at each update, as would be
expected in any EM, GEM or MM algorithm. An equivalent formulation of [Z3]
follows [e.g., 47, p. 114]:

Z3′. For each α ∈ B and β ∈M(α) :

(i) ξ(β) < ξ(α) if α 6∈ M(α) (i.e., a strict decrease occurs at points α

that are not generalized fixed points);

(ii) ξ(β) ≤ ξ(α) if α ∈M(α) (i.e., if α is a generalized fixed point, it is
possible to observe no change in the objective function).
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Conclusion [M1] means the limit of any convergent subsequence β(nj) lies in
S; hence, the above theorem guarantees convergence of subsequences, but does
not ensure global convergence of the iteration sequence. Subsequential conver-
gence permits, for example, oscillatory behavior in the limit sequence. Meyer
[47, 48] offers several refinements of Theorem A.1, strengthening the statements
of convergence. His results, adapted for the MM algorithm, follow below; in par-
ticular, see Theorem 3.1, Corollary 3.2, and Theorems 3.5 and 3.6 of Meyer [47].

Theorem A.3. Let the conditions of Theorem A.1 hold. Define the conditions:

Z4. For each α ∈ B and any β ∈ M(α), we have ξ(β) < ξ(α) whenever
M(α) 6= {α} (i.e., a strict decrease in the objective function occurs at
any point α that is not a fixed point);

Z5. there exists an isolated point β̄
∗
such that M(β̄

∗
) = {β̄

∗
} (i.e., a true

fixed point).

Suppose [Z1]-[Z4] hold. Then, in addition to results [M1]-[M3] of Theorem
A.1, the following conclusions hold:

M4. Each limit point β̄ ∈ S0 satisfies M(β̄) = {β̄}, and is therefore a fixed
point of M(·);

M5. limn→∞ ‖β(n)−β(n+1)‖ = 0, in which case one either has (i) convergence

of β(n) to a limit; (ii) the set of limit points of β(n) forms a continuum,

hence β(n) fails to converge;
M6. If the number of fixed points having any given value of ξ(·) is finite, then

{β(n), n ≥ 0} converges to one of these fixed points;

M7. If the sequence {β(n), n ≥ 0} has an isolated fixed point β̄, then β(n) → β̄.
If β̄ is also an isolated local minimum of ξ(·) on B0, then there exists an

open neighborhood Bǫ ⊆ B0 of β̄ such that β(n) → β̄ if β(0) ∈ Bǫ.

Suppose instead that [Z1-Z3] and [Z5] hold. Then, in addition to results [M1]-
[M3] of Theorem A.1, the following conclusion can be drawn:

M8. If β̄
∗
is a limit point of the sequence {β(n), n ≥ 0}, then β

(n) → β̄. If β̄
∗

is also an isolated local minimum of ξ(·) on B0, then there exists an open

neighborhood Bǫ ⊆ B0 of β̄
∗
such that β(n) → β̄

∗
if β(0) ∈ Bǫ.

Remark A.4. Assumption [Z4] strengthens [Z3] by imposing the condition that
the iteration scheme is strictly monotonic; as such, all generalized fixed points
of M(·) are also fixed points, a situation that permits stronger statements of
convergence results. Assumption [Z5] imposes the somewhat weaker assumption
that there exists at least one isolated fixed point of the iteration sequence; simi-
larly to [M7], [M8] implies that the iteration converges to this point. Two further
consequences of these results are (i) one may take S to be the set of fixed points
of M(·); and, (ii) all solutions to the minimization problem minβ∈B ξ(β) are in
fact fixed points of M(·), hence contained within S [47, pp. 110-11].

Conclusions [M1]-[M7] essentially mirror those in Vaida [66, Theorems 1-3],
who obtains strong convergence results for the EM and MM algorithms un-
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der continuous differentiability assumptions on the objective and majorization
functions and the additional condition that ξ[S](β,α) has a unique global min-
imizer in β for each α ∈ S, where S is the (assumed finite) set of stationary
points of ξ(β). This uniqueness condition, reflected in [Z4], provides a verifiable
convergence condition that is often satisfied in statistical applications.

Sufficient conditions that ensure [Z1]-[Z4], but weaker than conditions im-
posed in Vaida [66], are now provided. In particular, suppose that the objective
function, its surrogate and the mapping M(·) satisfy the following regularity
conditions:

R1. ξ(β) is locally Lipschitz continuous for β ∈ B and there exists at least one
b0 ∈ B such that L(ξ(b0)) = {b ∈ B : ξ(b) ≤ ξ(b0)} is compact. Assume
that the set of stationary points S of ξ(β) is a finite set, where the notion
of a stationary point is defined as in Clarke [12].

R2. ξ(β) = ξ[S](β,β) for each β ∈ B.
R3. ξ[S](β,α) > ξ[S](β,β) for β 6= α, β,α ∈ B.
R4. ξ[S](β,α) is continuous for (α,β) ∈ B × B and locally Lipschitz in β for

β near α.
R5. M(β) is a singleton set consisting of one bounded vector for each β ∈ B.

The above conditions do not imply that the objective function ξ(β) is dif-
ferentiable everywhere. Condition [R1] does imply that ξ(β) is bounded below
on B, that ∇ξ(β) exists for almost all β, and that the set of global minimizers
of ξ(β) on B is non-empty and bounded. Conditions [R2] and [R3] imply that
ξ[S](β,α) strictly majorizes ξ(β) and, in addition,

ξ[S](β,α) = ξ(β) + ψ(β,α), (21)

where ψ(β,α) := ξ[S](β,α)−ξ(β) satisfies ψ(β,α) > 0 forα 6= β and ψ(β,β) =
0. Assumptions [R4] and [R5] imply that the map M(β) is continuous, hence
bounded on compact sets [52, Proposition 3.2]. Conditions [R1], [R4], and [R5]
further imply that (21) is bounded below for (α,β) ∈ B × B and that ψ(β̄,α)
is uniquely minimized at α = β̄ for any fixed point β̄.

Suppose conditions [R1]-[R5] hold. As commented earlier, [R4] and [R5] imply
thatM(β) is a continuous point-to-point map; hence,M(·) is closed [e.g., 42, pp.
203-204], establishing [Z2]. Propositions A.6 and A.7, given below and proved
under [R1]-[R5] in Schifano [57], establish [Z1], [Z3] and [Z4]. An important
consequence of the sufficient conditions [R1]-[R5] is that the set of fixed points
for the mapping M(·) also coincides with the set of stationary points for ξ(·);
see Proposition A.8.

Remark A.5. Condition [R1] refers to Clarke [12] for the definition of a sta-
tionary point; see also Theorems 2.1 and 3.4. Because ξ(β) is assumed to be lo-
cally Lipschitz continuous, a point β∗ is a stationary point in the sense of Clarke
if 0 ∈ ∂ξ(β∗), where ∂ξ(β) denotes the Clarke subdifferential of ξ(β) [12, Propo-
sition 2.3.2]. The condition that 0 ∈ ∂ξ(β∗) is a necessary but not sufficient con-
dition for ∇ξ(β∗) = 0. That is: if ∇ξ(β∗) = 0, then ∂ξ(β∗) = {∇ξ(β∗)} = {0};
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however, ∇ξ(β∗) need not exist in order for 0 ∈ ∂ξ(β∗). In general, the assump-
tion that S is finite does not mean that the gradient exists at any of these points;
in view of Proposition A.8, conditions [R1]-[R5] also do not imply an equiva-
lence between the existence of an isolated fixed point of M(·) and differentiability
of M(·) at that point.

Proposition A.6. Let n ≥ 0 be given and suppose β(n) ∈ B is a bounded
vector. Then, β(n+1) =M(β(n)) ∈ B is bounded, and is unique. In addition, for
n ≥ 0,

ξ[S](β(n+1),β(n)) ≤ ξ[S](β(n),β(n)) <∞ (22)

and

ξ(β(n+1))− ξ(β(n)) ≤ −ψ(β(n+1),β(n)) ≤ 0, (23)

where the second inequality is strict unless β(n+1) =M(β(n)) = β(n).

Proposition A.7. Let β(0) ∈ B be a bounded vector and set ξ(n) = ξ(β(n))
for n ≥ 0. Then, {ξ(n), n ≥ 0} is a bounded, monotone decreasing sequence and

β(n) ∈ L(ξ(0)) ⊂ B for every n ≥ 0, where L(ξ(0)) is a compact set.

Proposition A.8. Under [R1]-[R5], the set of fixed points for the mapping
M(·) coincides with the set of stationary points for ξ(·), where the notion of a
stationary point is defined as in Clarke [12].

Proof of Proposition A.8:

Let β̄ be a fixed point ofM(·). Since ξ[S](β,α) is locally Lipschitz continuous
for β near α for each bounded α, the relation β̄ =M(β̄) is equivalent to

0 ∈ ∂ξ[S](β, β̄)|β=β̄,

where the right-hand side denotes the Clarke subdifferential of ξ[S](β, β̄) with
respect to β, evaluated at β = β̄. Using Proposition 2.3.3 of Clarke [12, p. 38],

∂ξ[S](β, β̄)|β=β̄ ⊂ ∂ξ(β̄) ⊕ ∂ψ(β, β̄)|β=β̄,

where the right-hand side denotes the set consisting of all elements a+ b, where
a ∈ ∂ξ(β̄) and b ∈ ∂ψ(β, β̄)|β=β̄. It follows that β̄ is a stationary point of ξ(β)

if ∂ψ(β, β̄)|β=β̄ = {0}, since in this case we have ∂ξ[S](β, β̄)|β=β̄ = ∂ξ(β̄) and

hence that 0 ∈ ∂ξ(β̄).
To establish that ∂ψ(β, β̄)|β=β̄ = {0}, we recall that ψ(β,α) is locally Lip-

schitz continuous in β for β near α and additionally satisfies ψ(β,β) = 0 and
ψ(β,α) > 0 for α 6= β As stated earlier, conditions [R1], [R4], and [R5] fur-
ther imply that (21) is bounded below for (α,β) ∈ B × B and that ψ(β̄,α) is
uniquely minimized at α = β̄ for any fixed point β̄. Hence, ∂ψ(β, β̄)|β=β̄ = {0}
as desired.
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A.2. Proof of Theorem 2.1

The assumptions stated in the theorem immediately yield that ξ(β) is locally
Lipschitz continuous for each bounded λ > 0, hence (i) is satisfied; in addi-
tion, the stated assumptions imply ξ(β) is also coercive, hence attains a global
minimum interior to R

p.
To show (ii), we first write

q(β,α;λ)− p(β;λ) =

p∑

j=1

[p̃(|αj |;λj) + p̃′(|αj |;λj)(|βj | − |αj |)− p̃(|βj |;λj)] .

This difference is obviously equal to zero whenever β = α. For β 6= α, we shall
separately consider the case where p̃(r;λj) is linear versus nonlinear.

First, suppose that p̃(r; θ) = a1 + a2r, where a1 ≥ 0 and a2 > 0 and each
may depend on θ. It then follows immediately that

p̃(|αj |;λj) + p̃′(|αj |;λj)(|βj | − |αj |)− p̃(|βj |;λj)

= (a1 + a2|αj |) + a2(|βj | − |αj |) − (a1 + a2|βj |) = 0.

Thus, the claimed equality between (3) and (4) holds in this case.
Now, suppose that p̃(r; θ) is nonlinear in r. Under (P1), we claim that (4)

strictly majorizes p(β;λ) provided the derivative of the penalty p̃′(·,λj) is
strictly positive. To see this, observe that concavity (e.g., see (6)) implies the
inequality

q̃(r, s; θ)− p̃(r; θ) = −1 [p̃(r; θ)− p̃(s; θ)− p̃′(s; θ)(r − s)] ≥ 0,

with equality holding if and only if r = s and p′(s; θ) > 0. For penalties such
that their derivatives are nonnegative, i.e., p′(s; θ) ≥ 0, we obtain the same
inequality as above, with equality additionally holding for r and s sufficiently
large. Therefore,

q(β,α;λ)− p(β;λ) =

p∑

j=1

[q̃(|βj |, |αj |;λj)− p̃(|βj |;λj)] ≥ 0,

and (ii) is established.
Define ψ(β,α) = h(β,α) + q(β,α;λ) − p(β;λ) so that ξ[S](β,α) ≡ ξ(β) +

ψ(β,α). In order to establish the majorization property specified in (iii), we
begin by noting that our assumptions on g(β), h(β,α), and p̃(·; θ) imply that
ξ[S](β,α) and ψ(β,α) are both continuous in β and α. Our assumptions further
imply that ψ(β,α) ≥ 0; if at least one of h(β,α) or q(β,α;λ)−p(β;λ) is strictly
positive for β 6= α, then ψ(β,α) > 0 for α 6= β and ψ(β,β) = 0. Therefore,
the objective function ξ(β) is strictly majorized by ξ[S](β,α) = ξ(β)+ψ(β,α).

In order to establish the convergence of the corresponding MM algorithm
in (iii), it suffices to prove that the assumptions of the theorem and conse-
quent assertions established thus far are sufficient to ensure that Conditions
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[R1]-[R5] of Appendix A.1 are met, in which case Theorem A.3 applies directly.
The result (i), combined with the fact that ξ(β) attains a global minimum
and the assumption that its corresponding set of stationary points is also fi-
nite, immediately establishes [R1]; as proved above, [R2] and [R3] also hold. If
ψ(β,α) = h(β,α) + q(β,α;λ) − p(β;λ) is continuous in α and β and locally
Lipschitz continuous in β near α, then (i) implies that [R4] also holds. By as-
sumption, h(β,α) is continuous in α and continuously differentiable in β, hence
locally Lipschitz in β. Continuity of q(β,α;λ)−p(β;λ) in both α and β is also
immediate. Hence, [R4] holds provided that q(β,α;λ)− p(β;λ) is locally Lips-
chitz continuous in β near α. To see that this is the case, we note that (24) is
a linear combination of functions in βj of the form p̃′(|αj |;λj)|βj | − p̃(|βj |;λj),
where | · | and −p̃(·;λ) are both convex, hence locally Lipschitz. Since both the
sum and composition of two locally Lipschitz functions are locally Lipschitz,
the result now follows. Finally, [R5] is ensured by [R1]-[R4] and the condition
in (iii) that ξ[S](β,α) is uniquely minimized in β for each α.

A.3. Proof of Theorem 3.2

Under the stated conditions and for any bounded α, m(β) = g(β) + h(β,α) +
λε‖β‖2 is strictly convex with a Lipschitz continuous derivative of order L−1 >
0; in addition,

∑p
j=1 p̃

′(|αj |;λj)|βj | is also convex in β. Hence, for each bounded

α there exists a unique solution β∗ = β∗(α) when minimizing (10).
In the notation of Combettes and Wajs [13], we may identify the Hilbert

space H with R
p, f2(β) with m(β) and f1(β) with

∑p
j=1 p̃

′(|αj |;λj)|βj |. The
assumptions of the theorem ensure that the regularity conditions of Proposition
3.1 and Theorem 3.4 of Combettes and Wajs [13] are met. In particular, because
m(β) is strictly convex, Proposition 3.1 guarantees the existence of a unique so-
lution to the desired optimization problem as well as provides the relevant fixed
point mapping; Theorem 3.4 establishes the convergence of the corresponding
iterative scheme to this unique solution.

Proposition 3.1 and Theorem 3.4 of Combettes and Wajs [13] each rely on
the gradient of f2(β) and the “proximity operator” of f1(β). In the present
setting, Example 2.20 in Combettes and Wajs [13] shows that the proximity
operator for

∑p
j=1 p̃

′(|αj |;λj)|βj | is exactly S(·; τ ); see Step 2. The algorithm
summarized in the statement of the theorem is now just a specific instance of
that described in the Theorem 3.4 with (in their notation) an = bn = 0 and
λn = 1 for every n.

Hale, Yin and Zhang [29, Theorem 4.5] undertake a detailed study of the
proposed algorithm for the special case of a convex, differentiable f2(β) and
f1(β) =

∑p
j=1 |βj |. In this case, they prove that the algorithm converges in a

finite number of iterations. A minor extension of their arguments may be used
to establish the same result for the algorithm described here.
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A.4. Proof of Theorem 3.4

First, we note that assumptions of this theorem are sufficient to ensure that
ξ(β̃) is locally Lipschitz continuous on R

p+1. To establish (1.), note that the

choice of h(β̃, α̃) in (13) with appropriately chosen ̟ guarantees majorization

of −ℓ(β̃) since our assumptions imply that ∇2(−ℓ(β̃)) can be suitably bounded
on R

p+1 [e.g., 38, Chapter 6]. As shown earlier, penalties of the form (3) sat-
isfying assumption (P1) can also be linearly majorized. Hence, (14) majorizes

ξ(β̃). Turning to (2.), observe that (14) is a strictly convex function of β̃; this

follows from the fact that
∑p

j=1(τj |βj | + λεβ2
j ) is convex and that −ℓ(β̃) is

strictly convex and twice differentiable. In addition, the function h(β̃, α̃) ≥ 0 is

continuous in both β̃ and α̃, twice continuously differentiable in β̃ for each α̃,
and has h(β̃, α̃) = 0 when β̃ = α̃ and is strictly positive otherwise. As a result,

and in combination with (1.), (14) strictly majorizes ξ(β̃). Since all conditions
of Theorem 2.1 are now satisfied, the stated convergence result for the MM
algorithm immediately follows.

The result (3.) establishes the form of the update used at each iteration of
the MM algorithm; its proof is an easy consequence of the results in Combettes
and Wajs [13]. Observe that ξ[S](β̃, α̃) is separable in βj for j = 0, . . . , p; hence,
minimization over Rp+1 may be done component-wise. To be more precise, ig-
noring the leading term −ℓ(α̃) in ξ[S](β̃, α̃), the desired minimization problem
corresponds to minimizing

f0(β0) +

p∑

j=1

(f1j(βj) + f2j(βj)) ,

where f0(β0) = [−∇ℓ(α̃)]0(β0 − α0) +̟−1(β0 − α0)
2 and, for j ≥ 1, f1j(βj) =

τj |βj | and f2j(βj) = [−∇ℓ(α̃)]j (βj − αj) +̟−1(βj − αj)
2 + λεβ2

j .
Consider first βj for j ≥ 1. Observe that f2j(βj) is twice continuously dif-

ferentiable and strictly convex in βj . Then, using Examples 2.16 and 2.20 and
Proposition 3.1 of Combettes and Wajs [13], it follows immediately that the
minimizer of f1j(βj) + f2j(βj) is given by

β∗
j =

1

ζ + 2λε
s
(
[∇ℓ(α̃)]j + ζαj , τj

)
(24)

where ζ = 2̟−1. Proceeding similarly, and noting that f0(β0) is both strictly
convex and twice continuously differentiable, we obtain the solution β∗

0 =
([∇ℓ(α̃)]0 + ζα0)/ζ. This proves (15); a direct proof of these results is also
provided in Schifano [57].

Turning to (16), take β̃ + κ̃ for any bounded vectors β̃ ∈ R
(p+1) and κ̃ =

(κ0,κ
T )T ∈ R

(p+1). Define γj = p̃(|αj |;λj) − p̃′(|αj |;λj)|αj | for j = 1, . . . , p.
Then, following arguments similar to those in Daubechies, Defreise and De Mol
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[16, Proposition 2.1], we may write

ξ[S](β̃ + κ̃, α̃) = ξ[S](β̃, α̃) + (
ζ

2
+ λε)κ′κ+

ζ

2
κ20 + κ0(ζβ0 − ζα0 − [∇ℓ(α̃)]0)

+

p∑

j=1

[τj(|βj + κj | − |βj |)+ κj((d+ 2λε)βj − ζαj − [∇ℓ(α̃)]j)] .

Consider β̃ = β̃
∗
≡ [β∗

0 ,β
∗T ]T where β̃

∗
defined in (15), and define sets J =

{1, 2, . . . , p}, J0 = {j ∈ J : β∗
j = 0} and J1 = J \J0. Noting that β∗

j satisfies
(ζ + 2λε)β∗

j − ζαj − [∇ℓ(α)]j = −τjsign(β
∗
j ) for j ∈ J1, and noting that ζβ∗

0 −
ζα0 − [∇ℓ(α̃)]0 = 0, we have (after some simplification)

ξ[S](β̃
∗
+ κ̃, α̃)− ξ[S](β̃

∗
, α̃) = (

ζ

2
+ λε)κ′κ+

ζ

2
κ20

+
∑

j∈J0

[τj |κj | − κj(ζαj + [∇ℓ(α)]j)]

+
∑

j∈J1

[
τj(|β

∗
j + κj | − |β∗

j |)− κjτjsign(β
∗
j )
]
.

For j ∈ J0, |ζαj + [∇ℓ(α̃)]j | ≤ τj , so that τj |κj | − κj(ζαj + [∇ℓ(α̃)]j) ≥ 0.
For j ∈ J1, there are two cases, corresponding to the sign of β∗

j . First consider
β∗
j > 0, then

τj(|β
∗
j + κj | − |β∗

j |)− κjτjsign(β
∗
j ) = τj(|β

∗
j + κj | − (β∗

j + κj)) ≥ 0.

If β∗
j < 0, then

τj(|β
∗
j + κj | − |β∗

j |)− κjτjsign(β
∗
j ) = τj(|β

∗
j + κj |+ (β∗

j + κj)) ≥ 0.

Thus, ξ[S](β̃
∗
+ κ̃, α̃)− ξ[S](β̃

∗
, α̃) ≥ ( ζ2 + λε)κ′κ+ ζ

2κ
2
0 ≥ ζ

2 κ̃
′κ̃, since λε ≥ 0,

hence guaranteeing a unique minimum, and proving the proposition.
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