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Abstract: We prove that the Hodrick-Prescott Filter (HPF), a commonly
used method for smoothing econometric time series, is a special case of a
linear penalized spline model with knots placed at all observed time points
(except the first and last) and uncorrelated residuals. This equivalence then
furnishes a rich variety of existing data-driven parameter estimation meth-
ods, particularly restricted maximum likelihood (REML) and generalized
cross-validation (GCV). This has profound implications for users of HPF
who have hitherto typically relied on subjective choice, rather than estima-
tion, for the smoothing parameter. By viewing estimates as roots of an ap-
propriate quadratic estimating equation, we also present a new approach for
constructing confidence intervals for the smoothing parameter. The method
is akin to a parametric bootstrap where Monte Carlo simulation is replaced
by saddlepoint approximation, and provides a fast and accurate alternative
to exact methods, when they exist, e.g. REML. More importantly, it is also
the only computationally feasible method when no other methods, exact
or otherwise, exist, e.g. GCV. The methodology is demonstrated on the
Gross National Product (GNP) series originally analyzed by Hodrick and
Prescott (1997). With proper attention paid to residual correlation struc-
ture, we show that REML-based estimation delivers an appropriate smooth
for both the GNP series and its returns.
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1. Introduction

Penalized spline models provide a powerful tool for nonparametric smoothing.
The essence of the idea is to parametrically represent the nonparametric com-
ponent as a function of the explanatory variables via a family of flexible basis
functions (splines). Fitted values are chosen to minimize the residual sum of
squares, but with the addition of a term penalizing the smoothness of the fit
(the smoothing parameter). The origins of the method date back to, among
others, Parker and Rice (1985), who comment on the use of smoothing with (pe-
nalized) splines as an alternative to smoothing splines. Eilers and Marx (1996)
defined a closely associated class of P-splines based on B-spline bases. Brumback,
Ruppert and Wand (1999) introduce penalized splines on truncated polynomial
bases, and comment on an equivalent representation as a normal linear mixed
model. These semiparametric models have steadily gained in popularity follow-
ing the monographs by Eubank (1999), and Ruppert, Wand and Carroll (2003).
See also Ruppert, Wand and Carroll (2009) for an updated view of the sub-
ject.

One important reason for this popularity is the useful feature that the pe-
nalized spline can be cast as a linear mixed model, resulting in meaningful
expressions for parameters as best linear unbiased predictors. In this frame-
work, the smoothing parameter is expressible as a ratio of variance components.
Under the usual Gaussian assumptions, standard mixed model software can be
routinely used for estimation, a fact which opens the door for widespread usage.
In fact, penalized spline smoothing and its variants are now fairly common in
the physical and biological sciences.

The field of econometrics has been slow at catching up with these develop-
ments. Since the landmark working paper by Hodrick and Prescott (1981) who
proposed a method to extract the trend in econometric time series, the field has
hardly looked elsewhere for alternative smoothers. Following publication of this
work (Hodrick and Prescott, 1997), the so-called Hodrick-Prescott Filter (HPF)
is now routinely used, and has consequently been incorporated as a package
into E-views and standard statistical software such as SAS, Matlab, and R. One
problematic issue with implementation of HPF has been the fact that a subjec-
tive choice must be made for the value of the smoothing parameter (α), given
that the method minimizes residual sum of squares with a penalty on rough-
ness. Arguing heuristically, Hodrick and Prescott (1981) originally proposed the
value of α = 1, 600 for quarterly data, a suggestion that has heretofore been
unquestioningly adhered to by many practitioners.

Over the years, several adjustments and generalizations have been made to
the classical HPF. King and Rebelo (1993) discussed HPF from the perspective
of both time and frequency domain approaches, motivating it as a generaliza-
tion of exponential smoothing. Harvey and Jaeger (1993) were among the first to
warn users of strict adherence to HPF, arguing that this can “. . . lead investiga-
tors to report spurious cyclical behaviour . . . ”, advocating instead a structural
time-series modeling approach. Trimbur (2006) develops a Bayesian generaliza-
tion of HPF. Harvey and Trimbur (2008) again re-cast HPF in the state-space
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model framework, and by analyzing it in the frequency domain consider the ef-
fects of inappropriate smoothing and changing the observation interval. Schlicht
(2008) adapts HPF for series containing structural breaks or missing data. Kim,
Koh, Boyd, and Gorinevsky (2009) propose a version of HPF based on mini-
mizing absolute errors.

Rather fewer papers have focused on developing methods for estimating the
smoothing parameter, thus alleviating the burden of manual tuning. As far as we
can determine, Schlicht (2005), and Dermoune, Djehiche, and Rahmania (2008)
are the only real attempts in this direction. Both cast the problem as a state-
space model, and under the assumption of independent Gaussian errors derive
different estimators. Schlicht (2005) also proposes a method of moments estima-
tor. Greiner (2009) seems to be the first paper promoting the penalized spline
regression methodology in econometrics, thus veering away from automatic use
of HPF.

The primary goal of this paper is to demonstrate that HPF is in fact a
special case of penalized spline smoothing. To the best of our knowledge this
connection has not yet been made, although Schlicht (2005) comes very close.
Since a penalized spline can be cast as a linear mixed model, this then endows
HPF with a gamut of data-driven estimation methods. We believe these to
be hitherto unknown facts, and therefore aim to connect two diverging lines of
research: the penalized splines literature, currently numbering over 200 citations,
and the (few) estimation methods recently proposed for HPF, principally the
papers by Schlicht (2005) and Dermoune, Djehiche, and Rahmania (2008).

While point estimation is straightforward via maximum likelihood (ML), re-
stricted maximum likelihood (REML), Akaike’s information criterion (AIC),
or generalized cross-validation (GCV), testing or confidence interval construc-
tion for the all-important smoothing parameter in a penalized spline model is
more problematic. Crainiceanu and Ruppert (2004), and Crainiceanu, Ruppert,
Claeskens, and Wand (2005), develop both exact and asymptotic likelihood ratio
tests for ML and REML-based inference. The exact tests use spectral decom-
positions as the basis for fast simulation algorithms. By inverting these tests,
a grid search allows for the computation of corresponding confidence intervals.
Because of the substantial point mass at zero, Crainiceanu and Ruppert (2004)
report that the usual asymptotic χ2 distribution is a poor approximation in
small samples.

However fast these exact methods for ML and REML may be, Paige and
Trindade (2010) report that they are still relatively slow, with computation
times of the order of hours to obtain a single interval. Furthermore, there are no
known exact tests for AIC and GCV-based inference. The secondary goal of this
paper is therefore to further investigate the performance of a faster and more
general method to construct confidence intervals for the smoothing parameter
recently proposed by Paige and Trindade (2010), which is applicable under a
variety of criteria such as ML, REML, AIC, and GCV. This saddlepoint-based
bootstrap (SPBB) approach pivots a saddlepoint approximation to the distri-
bution function of the estimator, and as such is akin to a bootstrap percentile
method, where simulation is replaced by fast and accurate saddlepoint approx-
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imation. This decreases confidence interval computation time down to minutes,
rather than hours.

In the present paper it will be further demonstrated that the SPBB method
not only competes well with exact methods, e.g. ML and REML, but also offers
a computationally feasible alternative where no exact methods exist, e.g. GCV,
AIC, and REML with correlated errors, while also delivering a performance that
is nearly exact. The determination of an appropriate residual error correlation
structure for penalized spline models is an important issue if the data are of
a temporal nature (as in econometrics); see for example Opsomer, Wang, and
Yang (2001), and Krivobokova and Kauermann (2007). In this regard we will
follow closely the findings of Krivobokova and Kauermann (2007) concerning
the superiority of REML-based inference.

The remainder of the paper is organized as follows. An overview of penal-
ized spline models is provided in Section 2, where we highlight the linear mixed
model formulation and consequent representation of the smoothing parameter
as a ratio of variances. Section 3 presents a unified view of estimators for the
smoothing parameter as roots of equations that are quadratic forms in nor-
mal random variables. In this context, saddlepoint-based bootstrap inference is
possible, and we outline the method. The Hodrick-Prescott Filter (HPF) and
details of its equivalent formulation as a penalized spline model constitutes the
subject of Section 4. We conclude in Section 5 by revisiting the U.S. gross na-
tional product series originally analyzed by Hodrick and Prescott (1997), and
comparing a variety of data-driven penalized spline models to the classical HPF.

2. Penalized spline models

This section provides a concise summary of penalized spline regression. A more
detailed introduction to this material can be found in say, Ruppert et al. (2003),
and is needed here in order to make a seamless connection with HPF. For a
vector of responses y = [y1, . . . , yn]

′, consider the model

yi = µ(xi) + εi i = 1, . . . , n, (2.1)

where the mean µ(x) is a function of the explanatory variable x, and ε =
[ε1, . . . , εn]

′ ∼ (0,Σε) is a vector of zero-mean disturbances with covariance
matrix Σε = σ2

εR and correlation matrix R.
In semiparametric regression, a standard choice for µ(x) is to represent it

as B(x)θ, for some sufficiently flexible spline basis B(x) depending on knots
{κ1, . . . , κK}, and a vector of coefficients θ. A common choice of basis functions
is the penalized spline of degree p with respect to the truncated polynomial basis
B(x) =

[

1, x, . . . , xp, (x− κ1)
p
+, . . . , (x− κK)p+

]

. Defining the coefficient vector
θ = [β,u]′ = [β0, . . . , βp, u1, . . . , uK ]′, this leads to the representation for the
mean function

µ (xi) = β0 + β1xi + · · ·+ βpx
p
i +

K
∑

k=1

uk(xi − κk)
p
+, (2.2)
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where for any number a, (a)p+ is equal to ap if a is positive and zero other-
wise, and the knots {κk} are appropriately chosen over the domain of x. With
estimation of θ in mind, (2.1) can then be written in matrix form as

y = Xβ + Zu+ ε ≡ Bθ + ε, (2.3)

where B = [X,Z], and the design matrices X and Z have [1, xi, . . . , x
p
i ] and

[(xi − κ1)
p
+, . . . , (xi − κK)p+], respectively, as their ith rows.

In this paradigm θ is estimated by minimizing the penalized sum of squared
errors criterion

θ̂PS = argmin
θ

{

(y −Bθ)′R−1(y −Bθ) + αθ′Dθ
}

, (2.4)

where α = λ2p > 0 is a smoothing parameter controlling the balance between
fidelity to the data (α ≈ 0) and smoothness of the fit (α → ∞), and D is an
appropriately chosen non-negative definite penalty matrix. This leads to the
fitted values

θ̂PS =
(

B′R−1B + αD
)−1

B′R−1y, and ŷPS = Bθ̂PS ≡ Sαy, (2.5)

where Sα = B
(

B′R−1B + αD
)−1

B′R−1 is the smoothing matrix.
Brumback et al. (1999) discuss how a penalized spline can be represented as

a linear mixed model (LMM). This involves treating both u and ε in (2.3) as
random vectors

E

[

u
ε

]

=

[

0
0

]

, Cov

[

u
ε

]

=

[

Σu 0
0 Σε

]

, Σu = σ2
uG, Σε = σ2

εR. (2.6)

The best linear unbiased predictor (BLUP), or posterior Bayes estimate, of y
in this context is ỹ = Bθ̃, where

θ̃ = argmin
θ

{

(y −Bθ)′Σ−1
ε (y −Bθ) + u′Σ−1

u u
}

.

If we define α = σ2
ε/σ

2
u, and let G = IK and D = Jp+1,K , where Ja,b denotes a

diagonal matrix of dimension a+ b with the first a elements zero and the last b
elements one

Ja,b =

[

0 0
0 Ib

]

, (2.7)

we obtain that θ̃ = θ̂PS, i.e. the fitted penalized spline for the mean of y is
precisely the BLUP of y in the LMM defined above. In particular this means
that the optimal values (in the BLUP sense) for the smoothing parameters α
and λ are representable in terms of variance components as

λ = (σ2
ε/σ

2
u)

1/(2p), α = σ2
ε/σ

2
u = λ2p. (2.8)

Since the smoothing parameter α varies between 0 (no smoothing) and ∞
(maximum smoothing), it is difficult to assess how much structure is being
imposed on the data for intermediate values. One solution to this is to report the
degrees of freedom of the fit corresponding to α, dffit = tr(Sα). For a penalized
spline model of degree p with K knots it is easily shown that

dffit → p+ 1 +K, as α → 0, and dffit → p+ 1, as α → ∞.
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3. Inference for the smoothing parameter

The choice of smoothing parameter greatly affects the quality of the fitted values
in a penalized spline model. Ruppert et al. (2003) report that the number and
location of the knots is in general not as critical a choice. In this section we review
some of the more common methods of estimating the smoothing parameter, and
present a unified view of these methods where the estimator, α̂, is viewed as
the root (in α) of a quadratic estimating equation in normal random variables
(QEE),

Q (α) ≡ y′Aαy,

where y is a multivariate normal vector, and Aα a conformable matrix depend-
ing on α. This leads to the saddlepoint-based bootstrap method of inference
for smoothing parameter α introduced by Paige and Trindade (2010). We give
only a brief outline of the approach here, but with sufficient detail to permit a
straightforward extension to the case of correlated residuals.

The LMM formulation of a penalized spline model suggests that a natural
choice for α is given by relation (2.8), provided the variance components are
known. In practice, the latter can be estimated via any of the many methods
devised in the LMM literature over the years, the most popular being maximum
likelihood (ML) and restricted maximum likelihood (REML). (See e.g. Chris-
tensen, 1996, Chap. 12, for details on variance component estimation in LMMs.)
Thus data-driven selection of the smoothing parameter is straightforward us-
ing statistical software, and REML estimates are generally preferable (Harville,
1977).

The REML criterion involves assuming y|u ∼ N(Xβ + Zu, σ2
εR), and u ∼

N(σ2
uG). Reparametrizing with σ2

u = σ2
ε/α and partial differentiation with re-

spect to σ2
ε and β, leads to a profile -2 REML log-likelihood to be minimized in

α and R; see for example equation (6) in Krivobokova and Kauermann (2007).
When both G = IK and R = In, Paige and Trindade (2010) show that differ-
entiation of this criterion leads to a QEE for REML inference on α. A simple
generalization of these calculations leads to the following QEE for a given arbi-
trary correlation R

QREML (α) = (n− p) ˙̂σ2
α +

{

−tr
[

VαV̇
−1
α

]

+ tr
[

(

X ′V −1
α X

)−1
X ′V̇ −1

α X
]}

σ̂2
α,

(3.1)

where Vα = R + ZZ ′/α, σ̂2
α = (y − Xβ̂α)

′V −1
α (y − Xβ̂α)/(n − p), β̂α =

(X ′V −1
α X)−1X ′V −1

α y, and V̇ −1
α and ˙̂σ2

α denote first derivatives with respect
to α. (Details of this calculation are provided in Appendix A.) This REML
QEE can thus be used to make inference about the BLUP-optimal penalized
spline smoothing parameter suggested by the ratio of variances in (2.8).

Other methods for estimating α in a penalized spline model also typically
involve the minimization of some criterion function. Two of the more common
include Generalized Cross-Validation (GCV), and Akaike’s Information Crite-
rion (AIC). In Paige and Trindade (2010) it was also shown that differentiation
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in α of their respective criterion functions yield QEEs, respectively

QGCV (α) = y′
[

(In − Sα)Ṡα

{

1− n−1tr(Sα)
}

− n−1(In − Sα)
2tr(Sα)

]

y,

(3.2)
and

QAIC (α) = y′
[

(In − Sα)Ṡα − n−1(In − Sα)
2tr(Sα)

]

y, (3.3)

where Sα is the smoothing matrix defined in (2.5).
In Paige, Trindade, and Fernando (2009) we proposed an easy to implement

parametric bootstrap percentile method of confidence interval (c.i.) construc-
tion for a generic model parameter, α, by indirectly saddlepoint approximating
the distribution of an estimator that is representable as the root of a QEE.
We termed this the saddlepoint-based bootstrap (SPBB) method. Adaptation of
SPBB for penalized spline inference is discussed in Paige and Trindade (2010),
and the method can therefore be used for making (approximate) inference on
the smoothing parameter α via any one of the above criteria: ML, REML, AIC,
or GCV.

As described in Paige and Trindade (2010), exact finite sample inference on
α is also possible by inverting either the likelihood ratio test (LRT) or restricted
likelihood ratio test (RLRT), corresponding to ML and REML based inference,
respectively (Crainiceanu et al., 2005). This method (which is applicable only
when R = In) is computationally intensive and, like SPBB, involves performing
a grid search for the endpoints of the c.i. At each grid value, a large sample
must be drawn from the exact distribution of the LRT/RLRT statistic in order
to (empirically) calculate the p-value. Note however that the SPBB method
provides a quite general solution to the problem of inference, and in particular
is able to furnish a c.i. when no (computationally feasible) competing method,
exact or otherwise, exists, for example GCV and AIC.

Krivobokova and Kauermann (2007) report that REML is less sensitive to
misspecification of the residual correlation structure than either AIC or GCV.
In addition, REML permits a more accurate assessment of this correlation, by
careful inspection of residual autocorrelation (ACF) and partial autocorrelation
(PACF) plots. For these reasons, and when residual correlation is an issue, we
will confine our attention to REML. In such cases, we assume (as do Krivobokova
and Kauermann, 2007) that R has a Toeplitz structure, corresponding to the
autocorrelation of a stationary autoregressive moving average (ARMA) process.
Finally, note that no version of the above exact LRT/RLRT test has been de-
vised when R 6= In, so that in this case SPBB-REML is the only computationally
feasible method to construct a c.i. for α.

4. Connections with the Hodrick-Prescott Filter

As discussed in the Introduction, Hodrick and Prescott (1997) proposed a method
to estimate the trend in time series data that is now known as the Hodrick-
Prescott Filter (HPF). This smoothing technique views the series yt as the sum



R.L. Paige and A.A. Trindade/The Hodrick-Prescott Filter as a penalized spline 863

of a trend µt and residual component εt,

yt = µt + εt, t = 1, . . . , n.

For smoothing parameter α, the trend is then fitted by minimizing the penalized
sum of squares

ŷHP = arg min
µ∈Rn

{

n
∑

t=1

(yt − µt)
2 + α

n
∑

t=1

(µt − 2µt−1 + µt−2)
2

}

= arg min
µ∈Rn

{(y − µ)′(y − µ) + αµ′∆′
2∆2µ}

= (In + α∆′
2∆2)

−1y, (4.1)

where y = (y1, . . . , yn)
′, µ = (µ1, . . . , µn)

′, and ∆2 is the (n − 2) × n second
order differencing matrix

∆2(i, j) =



















1, j = i, i = 1, . . . , n− 2,

−2, j = i+ 1, i = 1, . . . , n− 2,

1, j = i+ 2, i = 1, . . . , n− 2,

0, otherwise.

The form of the solution in (4.1) has been heuristically compared to that of
a cubic smoothing spline with equi-spaced knots

ŷCS = arg min
µ∈Rn

{

(y − µ)′(y − µ) + α

∫ n

1

(

µ
(2)
t

)2

dt

}

, (4.2)

since ∆2µ is the natural discretized version of the second derivative of µt ap-
pearing in the integrand of (4.2). (See for example the help file for the function
hpfilter in Matlab, version 7.8.0, R2009a, Econometrics Toolbox). However as
far as we can deduce, an exact equivalence has not firmly been established. In
fact, the HPF solution is exactly equivalent to (is a special case of) the solution
(2.4) obtained from a penalized spline of degree p = 1, equi-spaced knots at
points 2, . . . , n− 1, R = In, and D = J2,n−2 as defined by (2.7). We state this
fact in the following theorem, and prove it in Appendix B.

Theorem 4.1. For a time series y = (y1, . . . , yn)
′ observed at equi-spaced time

points t = 1, . . . , n ≥ 4, consider a penalized smoothing spline model of degree
p = 1, explanatory variable time xt = t, and K = n − 2 knots at {κk = k},
k = 2, . . . , n− 1, given by

yt = β0 + β1t+

n−1
∑

k=2

uk(t− k)+ + εt, t = 1, . . . , n.

If the parameter vector θ = [β′,u′]′ = [β0, β1, u2, . . . , un−1]
′ is estimated by

minimizing

θ̂PS = argmin
θ

{(y −BPSθ)
′(y −BPSθ) + αu′u} ,
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where the model is expressible in LMM matrix form as

y = XPSβ + ZPSu+ ε ≡ BPSθ + ε,

with ε ∼ (0, σ2
εIn), u ∼ (0, σ2

εIK/α), BPS = [XPS, ZPS], and

XPS =







1 1
...

...
1 n






, ZPS =



















0 0 · · · 0
0 0 · · · 0
1 0 · · · 0
2 1 · · · 0
...

...
. . .

...
n− 2 n− 3 · · · 1



















,

then the penalized spline solution thus obtained,

ŷPS = BPSθ̂PS = BPS(B
′
PSBPS + αJ2,n−2)

−1B′
PSy,

where J2,n−2 is as defined in (2.7) with a = 2 and b = n− 2, coincides with the
HPF solution in (4.1), i.e. ŷPS = ŷHP.

In Appendix C we provide some R code for fitting these models using two
different packages: SemiPar for penalized splines, and mFilter designed specif-
ically for HPF. The reader can verify here that the fit from mFilter coincides
with that from SemiPar with the degree and knots as specified by Theorem 4.1.
Note that these packages automatically assume R = In and G = IK , as is
needed for equivalence of the penalized spline and HPF solutions.

Hodrick and Prescott (1997) came close to such a result, noting that under the
assumption of normal identically and independently distributed random trend
and residual components with variances σ2

u and σ2
ε respectively, the conditional

expectation of the trend given the observations would solve (4.1) with α =
σ2
ε/σ

2
u, the inverse of the signal-to-noise ratio. But as we note in the proof,

Schlicht (2005) is the first to make the connection that HPF can be formulated
as a LMM. However, Schlicht (2005) calls this a “stochastic model” and does
not seem to be aware that it is in fact a LMM. Apart from the usual maximum
(Gaussian) likelihood, he proposes also a method of moments estimate for the
variance components. A succession of econometrics papers have built on this,
proposing new methods of estimation, e.g. Dermoune et al. (2008). However,
there is a vast existing body of work on the estimation of fixed and random
components in LMMs, see for example Christensen (1996).

Finally, we note that HPF is a type of polynomial mixed model spline; a
penalized spline. Two other important polynomial mixed model splines that have
been proposed in the literature are smoothing splines, and P-splines. These are
similar in form; all involve a parametric part that models the mean function as
a linear combination of basis functions and a vector of parameters, and a non-
parametric part that penalizes some measure of smoothness of the fitted mean
function. Welham, Cullis, Kenward, and Thompson (2007) show that there is a
connection between these three types of splines, so that the solution obtained
from one type with a given penalty, is identical to that for another type with
an appropriately transformed penalty.
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5. Application and Monte Carlo study

We consider the quarterly United States Gross National Product (GNP) for
the period 1947.1 to 1993.4 (billions of dollars). The (seasonally adjusted) data,
available from the Bureau of Economic Analysis of the U.S. Department of
Commerce, was analyzed in the landmark paper by Hodrick and Prescott (1997),
who suggested the default choice of α = 1, 600 for smoothing quarterly data. As
is typical of macroeconomic series, the time series considered, {yt}, are actually
the natural logarithms of GNP (log GNP), and consists of 189 observations.
The first differences, {yt − yt−1}, the log returns, will then correspond to a
growth rate. The overwhelming linear trend in log GNP obscures any underlying
fluctuations, and, as did Hodrick and Prescott (1997), we will remove it by fitting
the penalized spline model of Theorem 4.1 with α = ∞, corresponding to a linear
least-squares fit. Henceforth, all allusions to log GNP correspond to the resulting
detrended data, which show a clear cyclical pattern, as was already noted by
Hodrick and Prescott (1997) who warned “against interpreting...as a cycle of
long duration”. The two series are displayed in the top panels of Figure 1, and
can be viewed as two different starting points for plausibly stationary time series
modeling.

As discussed in Section 4, Hodrick and Prescott (1997) proposed a method
to smooth such data that is now known as HPF, and a penalized spline model
with degree and knots as specified by Theorem 4.1 is therefore applicable. In
this context any one of the estimation methods for the smoothing parameter
α can be used, and we will focus on REML and GCV, providing data-driven
alternatives to the α = 1, 600 choice (which we will term the HPF smooth). We
will also construct corresponding c.i.’s for the point estimates of α, using both
exact and SPBB methods in the case of REML with uncorrelated residuals, and
SPBB only in the case of REML with correlated residuals or GCV (since no
known exact method exists in these cases). Finally, we will shed some light on
the quality of the results by simulating from the model fitted to the log returns.

Analysis of smoothed GNP. From the ACF plots displayed in the bot-
tom panels of Figure 1, it is apparent that taking the autocorrelation structure
of the residuals (R) into account will be much more important in log GNP
than in the returns. For log GNP, the REML and GCV methods with uncorre-
lated residuals (REML-IID, GCV-IID) result in essentially identical estimates,
e.g. α̂REML-IID = 0.16. When implemented on an Intel Xeon 3.00GHz proces-
sor with 5.16GB of RAM, the exact method of Crainiceanu et al. (2005) took
approximately 8 hours to produce a 95% Exact-REML-IID c.i., whereas the
SPBB-REML-IID and SPBB-GCV-IID c.i.’s were determined in approximately
10 minutes. Results are summarized in Table 1, where we omit SPBB-REML-
IID since it is similar to Exact-REML-IID. The resulting smoothed fits appear
in Figure 2, where it is apparent that REML-IID (and the virtually identical
GCV-IID) severely underfits the data. As expected, the HPF smooth is remark-
ably good.

Inspection of residual ACF/PACF plots from the REML-IID fit reveals,
as suspected, substantial autocorrelation. This is in line with the findings of
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Fig 1. Time series and sample autocorrelation function (ACF) plots of the detrended log
GNP data (left panels) and log returns of GNP (right panels).

Krivobokova and Kauermann (2007), that data-driven methods such as GCV,
AIC, and REML tend not to perform well unless this correlation is taken into
account (although REML is less sensitive to misspecification thereof). As they
suggest, we re-fit via REML with a plausible correlation structure gleaned by
inspection of the residual ACF/PACF. In fact, the ACF/PACF of the original
log GNP suggests an integrated model such as ARIMA(2,1,0). Such a model
for the data may also fit the residuals, but may not be parsimonious. A search
over all low-order ARMA(p, q) models (p + q ≤ 5) in order to identify a sim-
ple model for R, reveals that an AR(3) delivers the lowest value of AIC (for
the overall fitted LMM; see Krivobokova and Kauermann, 2007, for details on
how to fit this with the R function lme). The corresponding fitted value of α
(at 337.3 now much larger than in the IID case) and its accompanying SPBB-
REML-AR(3) c.i. is shown in Table 1. The resulting smoothed data appear in
Figure 2. The REML-IID (and GCV-IID) methods produce virtually no smooth-
ing at all, while REML-AR(3) is visibly indistinguishable from the HPF smooth.
Note that the amount of structure imposed on log GNP by these models cor-
responds to minimum and maximum possible values of dffit between p + 1 = 2
and p+ 1 +K = 189.

The results are different for the (qualitatively very different) log returns of
GNP which exhibits little autocorrelation. To fit the noise, we limited our search
to low-order ARMA(p, q) models with p + q ≤ 1. An AR(1) delivered the low-
est value of AIC, but the smoothed results showed no visibly distinguishable
difference from IID fits. We therefore proceeded with R = In throughout. The
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Table 1

Comparison of Exact vs. saddlepoint-based bootstrap (SPBB) point and 95% interval
estimates for the smoothing parameter α based on a linear penalized spline model fitted to

each of the log GNP and log returns of GNP datasets. Optimality criteria used were
restricted maximum likelihood (REML) and generalized cross-validation (GCV), assuming
uncorrelated residuals (IID). SPBB-REML-AR(3) assumes an AR(3) correlation structure
for the residuals. The right-most column gives equivalent values for α on the dffit scale

defined in Section 2

Dataset Method α 95% Estimate dffit 95% Estimate
(lower, point, upper) (lower, point, upper)

Log Exact-REML-IID (0.07, 0.16, 0.32) (101.3, 120.7, 144.9)
GNP SPBB-GCV-IID (0.04, 0.15, 0.59) (85.9, 123.0, 159.4)

SPBB-REML-AR(3) (97.6, 337.3, 871.4) (10.5, 13.4, 19.8)
Log Exact-REML-IID (8, 595, 65, 302, 330, 436) (3.8, 5.2, 7.9)
Returns SPBB-REML-IID (5, 572, 65, 302, 463, 185) (3.5, 5.2, 8.7)
of GNP SPBB-GCV-IID (6, 022, 79, 164, ∞) (2.0, 5.0, 8.6)
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Fig 2. The detrended log GNP data and its smoothed values, with smoothing parameter esti-
mated via HPF (solid), REML-AR(3) (dashed, indistinguishable from HPF), and REML-IID
(dotted, indistinguishable from GCV-IID).

α estimates in Table 1 clearly suggest that substantially more smoothing is
needed to adequately reveal the trend in the log returns. This is reflected in
much smaller dffit values. Figure 3 shows that now it is GCV and REML (in-
distinguishable) that deliver the most smoothing, and HPF the least. Note that
the HPF smooth α = 1, 600 setting corresponds to dffit values of 11.6 and 11.5,
respectively, for log GNP and log returns of GNP.

Simulation results from models fitted to GNP. To assess the quality
of the exact vs. SPBB c.i.’s for α in the log returns of GNP, we simulated 103

replicates from the REML-fitted penalized spline model over the same design
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Fig 3. The log returns of GNP data and its smoothed values, with smoothing parameter
estimated via GCV-IID (solid), REML-IID (dashed, indistinguishable from GCV-IID), and
HPF (dotted).

Table 2

Empirical comparison of Exact vs. saddlepoint-based bootstrap (SPBB) 95% c.i.’s for the
smoothing parameter α based on 1,000 simulations from the penalized spline model fitted via

REML to the log returns of GNP. Optimality criteria used were restricted maximum
likelihood (REML) and generalized cross-validation (GCV). The underage, coverage, and
overage probabilities represent the proportion of simulations where the true α fell below,

between, and above the c.i. endpoints, respectively

Estimation Median Underage Coverage Overage
Method C.I. Length Prob. Prob. Prob.

Exact-REML 374,800 0.000 0.981 0.019
SPBB-REML 466,300 0.023 0.977 0.000
SPBB-GCV ∞ 0.016 0.984 0.000

points. The c.i. upper bounds were declared infinite if they exceeded 109. The
results appear in Table 2. The Exact-REML method seems to yield somewhat
shorter intervals than SPBB-REML, although both methods had some infinite
c.i.’s (about 7%). All GCV c.i.’s had an infinite upper bound, and 19 of them
also had zero as the lower bound. The frequency of c.i.’s with an infinite upper
bound suggests that a linear fit (unsmoothed) is plausible with 95% confidence
according to the GCV criterion (and gives further credence to the upper bound
of α = ∞ on Table 1). The similarity in empirical coverage probabilities validates
the soundness of the SPBB method, providing a faster alternative to Exact-
REML, and furnishing the only computationally feasible method to construct a
c.i. in the case of GCV.



R.L. Paige and A.A. Trindade/The Hodrick-Prescott Filter as a penalized spline 869

Discussion. The main message from these two analyses is that blind usage
of HPF for econometric smoothing is unnecessary, and may not always deliver
the most appropriate fit, even for the quarterly time series data that it was
“designed” for. With the insight provided by Theorem 4.1 of this paper that
HPF corresponds to a linear penalized spline with knots placed at time points
2, . . . , n−1 and uncorrelated residuals, we advocate a more structured approach
by paying close attention to the amount of smoothing (α) and residual auto-
correlaton structure (R). The choice of degree of polynomial (p) and number
of knots (K) is not so crucial (Ruppert et al., 2003), since the asymptotic dis-
tribution of a penalized spline does not depend on p or K, provided the latter
increases sufficiently rapidly (Li and Ruppert, 2008, Wang, Shen, and Ruppert,
2010). With these choices in place, it is then a straightforward matter to use
established data-driven methods for estimating all parameters, including the
smoothing parameter. Among these, the use of REML is particularly recom-
mended, given the findings by Krivobokova and Kauermann (2007) that it is
less sensitive to misspecification of R than either GCV or AIC (although more
research needs to be done on this topic). Finally c.i.’s can, if desired, be con-
structed using SPBB, thus giving a range of plausible smoothed fits.

Appendix A: Derivation of REML QEE (3.1)

From equation (6) in Krivobokova and Kauermann (2007), the -2 log REML
criterion to be minimized in α and R (we continue to assume G = IK in order
to make the standard connection between the penalized spline solution and the
BLUP) is

Lα(α,R) = (n− p) log(σ̂2
α) + log |Vα|+ log |X ′V −1

α X |.

Standard matrix differentiation with respect to α then leads to equation (3.1),
when the following basic expressions are used:

• V̇α = −ZZ ′/α2, V̇ −1
α = −V −1

α V̇αV
−1
α .

• Wα = X(X ′V −1
α X)−1X ′V −1

α , Ẇα = X(X ′V −1
α X)−1X ′V −1

α .

• ˙̂σ2
α = y′

[

(In −Wα)
′V̇ −1

α (In −Wα)− 2Ẇ ′
αV

−1
α (In −Wα)

]

y/(n− p).

Appendix B: Proof of Theorem 4.1

Schlicht (2005) makes the fundamental connection that HPF can be formulated
as the LMM

y = XHPβ + ZHPu+ ε ≡ BHPθ + ε,

with the n× (n− 2) matrix ZHP = ∆′
2(∆2∆

′
2)

−1, and XHP is any n× 2 matrix
satisfying the conditions: (i) ∆2XHP = 0 and (ii) X ′

HPXHP = I2. By then mak-
ing the BLUP assumptions (2.6), with additionally [u′, ε′] being multivariate
normal, G = IK , and R = In, he notes that an estimate of α = σ2

ε/σ
2
u can

thus be obtained via maximum likelihood. However, Schlicht (2005) calls this
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a “stochastic model” and does not seem to be aware that it is in fact a LMM.
Nevertheless, the solution can be expressed in two equivalent ways: the classical
HPF solution

ŷHP = (In + α∆′
2∆2)

−1y, (B.1)

and, in light of the LMM expression above, it is also the BLUP of y, so we must
have

ŷHP = BHP(B
′
HPBHP + αJ2,n−2)

−1B′
HPy. (B.2)

The equivalence of (B.1) and (B.2) is essentially proved in Theorem 1 of Schlicht
(2005). Now, the penalized spline solution is independent of the choice of basis
functions used, provided the X matrix corresponds to a basis of the same degree
and the Z matrix to the same knot locations (Ruppert et al., 2003). Specifically,
defining the n×n invertible matrix L = B−1

PSBHP, and denoting L−T = (L′)−1 =
(L−1)′, we have

ŷHP = BHP[B
′
HPBHP + αJ2,n−2]

−1B′
HPy

= BPSL
[

L′
(

B′
PSBPS + αL−TJ2,n−2L

−1
)

L
]−1

L′B′
PSy

= BPSLL
−1

[

B′
PSBPS + αL−T J2,n−2L

−1
]−1

L−TL′B′
PSy

= BPS [B
′
PSBPS + αKn]

−1
B′

PSy

= . . .

= BPS(B
′
PSBPS + αJ2,n−2)

−1B′
PSy

= ŷPS

Equivalence will then follow if we can show in the intermediate step above that

Kn ≡ L−TJ2,n−2L
−1 = J2,n−2. (B.3)

To this end, decompose L−1 into the following block structure (with dimensions
specified by the subscripts)

L−1 =

[

A2,2 B2,n−2

Cn−2,2 Dn−2,n−2

]

.

We then have that

Kn = L−TJ2,n−2L
−1

=

[

A′
2,2 C′

n−2,2

B′
2,n−2 D′

n−2,n−2

] [

02,2 02,n−2

0n−2,2 In−2

] [

A2,2 B2,n−2

Cn−2,2 Dn−2,n−2

]

=

[

C′C C′D
D′C D′D

]

,

and thus it suffices to show that (i) C = 0n−2,2, and (ii) D = In−2, in order to
establish (B.3). To this end, note that BHP and B−1

PS have the block structures,
BHP = [XHP, ZHP], and

B−1
PS =

[

E2,n−2

Pn−2,2

]

≡





2 −1 0 · · · 0
−1 1 0 · · · 0

∆2



 , (B.4)
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where we can take the form of XHP = [x1,x2] as suggested by Schlicht (2005),
with the n-vectors x1 and x2 as

x1 = [1, . . . , 1]′/c1, and x2 = [(1− (n+ 1)/2) , . . . , (n− (n+ 1)/2)]′ /c2,

where the normalizing constants c1 =
√
n and c2 =

√
3n3 − 3n/6 ensure that

x′
ixi = 1, i = 1, 2. Now note that if C = 0n−2,2 and D = In−2 of L−1 are as

specified in (i) and (ii), then the form of L will also have the same structure for
the lower blocks, and vice-versa, i.e.

L−1 =

[

A2,2 B2,n−2

Cn−2,2 Dn−2,n−2

]

⇐⇒ L =

[

Ã2,2 B̃2,n−2

Cn−2,2 Dn−2,n−2

]

,

where Ã2,2 and B̃2,n−2 can easily be deduced from standard matrix results (but
are not needed here). Consequently, it suffices to show (i) and (ii) for L. The
form of L = B−1

PSBHP is easier to deal with, since B−1
PS has the sparse structure

noted in (B.4). Therefore, block-multiplying B−1
PS and BHP, gives

L = B−1
PSBHP =

[

E
∆2

]

[XHP, BHP] =

[

EXHP EZHP

∆2XHP ∆2ZHP

]

.

Now it is easy to see that C = ∆2XHP and D = ∆2ZHP = ∆2∆
′
2(∆2∆

′
2)

−1 =
In−2, so that (ii) follows immediately. To show (i), note that the (i, 1) and (i, 2)
entries of C, i = 1, . . . , n− 2, are

C(i, 1) = (1 − 2 + 1)/c1 = 0

C(i, 2) = [2i− (n+ 1)− 4(i+ 1) + 2(n+ 1) + 2(i+ 2)− (n+ 1)]/(2c2) = 0.

Hence, (i) and (ii) follow, which establishes (B.3), and this proves that ŷHP =
ŷPS.

Appendix C: R code

With the vector of responses assigned to y, the HPF fitted penalized spline for
quarterly data (α = 1, 600) using the SemiPar package is obtained with the
following code. Note that the spar parameter corresponds to λ = α1/(2p), as
defined in (2.8).

library(SemiPar)

n=length(y); x=seq(1,n);

hpf1=spm(y~f(x, basis="trunc.poly", degree=1, knots=seq(2,n-1),

spar=sqrt(1600)))

With the package mFilter that is specifically designed for HPF, the correspond-
ing code is as follows.

library(mFilter)

hpf2=hpfilter(y, type="lambda", freq=1600)

The fitted values from the two fits, hpf1 and hpf2, will be identical.
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