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1. Introduction

Estimating the covariance function of stochastic process is a fundamental is-
sue with many applications, ranging from geostatistics, financial series or epi-
demiology for instance (we refer to [23], [13] or [8] for general references for
applications). While parametric methods have been extensively studied in the
statistical literature (see [8] for a review), nonparametric procedures have only
recently received a growing attention. One of the main difficulty in this frame-
work is to impose that the estimator is also a covariance function, preventing the
direct use of usual nonparametric statistical methods. In this paper, we propose
to use a model selection procedure to construct a nonparametric estimator of
the covariance function of a stochastic process under general assumptions for
the process. In particular we will not assume Gaussianity nor stationarity.

Consider a stochastic process X(t) with values in R, indexed by t ∈ T , a
subset of Rd, d ∈ N. Throughout the paper, we assume that its covariance
function is finite, i.e σ (s, t) = cov (X (s) , X (t)) < +∞ for all s, t ∈ T and, for
sake of simplicity, zero mean E (X (t)) = 0 for all t ∈ T . The observations are
Xi (tj) for i = 1, . . . , N , j = 1, . . . , n, where the observation points t1, ..., tn ∈ T
are fixed, and X1, . . . , XN are independent copies of the process X .

Functional approximations of the processesX1,. . . ,XN from data (Xi(tj)) are
involved in covariance function estimation. When dealing with functional data
analysis (see, e.g., [20]), smoothing the processesX1,. . . ,XN is sometimes carried
out as a first step before computing the empirical covariance such as spline
interpolation for example (see for instance in [9]) or projection onto a general

finite basis. Let xi = (Xi (t1) , . . . , Xi (tn))
⊤
be the vector of observations at the

points t1, . . . , tn with i ∈ {1, . . . , N} . Let {gλ}λ∈M be a collection of possibly
independent functions gλ : T → R where M denote a generic countable set of
indices. Then, let m ⊂ M be a subset of indices of size |m| ∈ N and define the
n × |m| matrix G with entries gjλ = gλ (tj), j = 1, . . . , n, λ ∈ m. G will be
called the design matrix corresponding to the set of basis functions indexed by
m.
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In such setting, usual covariance estimation is a two-step procedure: first, for
each i = 1, . . . , N , fit the regression model

xi = Gai + ǫi (1.1)

(by least squares or regularized least squares), where ǫi are random vectors in
Rn, to obtain estimates âi = (âi,λ)λ∈m ∈ R|m| of ai where in the case of standard
least squares estimation (assuming for simplicity that G⊤G is invertible)

âi = (G⊤G)−1G⊤xi, i = 1, . . . , N.

Then, estimation of the covariance is obtained by computing the following esti-
mate

Σ̂ = GΨ̂G⊤, (1.2)

where

Ψ̂ =
1

N

N∑

i=1

âiâ
⊤
i = (G⊤G)−1G⊤

(
1

N

N∑

i=1

xix
⊤
i

)
G(G⊤G)−1. (1.3)

This corresponds to approximate the process X by a truncated process X̃i de-
fined as

X̃i (t) =
∑

λ∈m

âi,λgλ (t) , i = 1, . . . , N,

and to choose the empirical covariance of X̃ as an estimator of the covariance
of X , defined by

σ̂ (s, t) =
1

N

N∑

i=1

X̃i (s) X̃i (t) .

In this paper, we consider the estimator (1.2) as the least squares estimator
of the following matrix regression model

xix
⊤
i = GΨG⊤ +Ui, i = 1, . . . , N, (1.4)

whereΨ is a symmetric matrix andUi are i.i.d matrix errors. Fitting the models
(1.1) and (1.4) by least squares naturally leads to the definition of different
contrast and risk functions as the estimation is not performed in the same
space (R|m| for model (1.1) and R|m|×|m| for model (1.4)). By choosing an
appropriate loss function, least squares estimation in model (1.4) also leads to
the natural estimate (1.2) derived from least square estimation in model (1.1).
A similar estimate can be found in [11]. However, in this paper, we tackle the
problem of model selection, i.e. choosing an appropriate data-based subset of
indices m ∈ M, which is very distinct in model (1.1) and model (1.4). Indeed,
model selection for (1.1) depends on the variability of the vectors xi’s while
for (1.4) it depends on the variability of the matrices xix

⊤
i ’s. One of the main

contributions of this paper is to show that considering model (1.4) enables to
handle a large variety of cases and to build an optimal model selection estimator
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of the covariance without too strong assumptions on the model. Moreover it will
be shown that considering model (1.4) leads to the estimator Ψ̂ defined in (1.3)
which lies in the class of non-negative definite matrices and thus provides a
proper covariance matrix Σ̂ = GΨ̂G⊤.

A similar method has been developed for smooth interpolation of covari-
ance functions in [6], but restricted to basis functions that are determined by
reproducing kernels in suitable Hilbert spaces and a different fitting criterion.
Similar ideas are also tackled in [19]. These authors deal with the estimation of
Σ within the covariance class Γ = GΨG⊤ induced by an orthogonal wavelet
expansion. However, their fitting criterion is not general since they choose the
Gaussian likelihood as a contrast function, and thus their method requires spe-
cific distributional assumptions. We also point out that computation of the
Gaussian likelihood requires inversion of GΨG⊤, which is not directly feasible
if rank (G) < n or some diagonal entities of the non-negative definite (n.n.d)
matrix Ψ are zero.

Hence, to our knowledge, no previous work has proposed to use the matrix
regression model (1.4) under general moments assumptions of the process X us-
ing a general basis expansion for nonparametric covariance function estimation.
We point out that the asymptotic behaviour will be taken with respect to the
number of replications N while the observation points ti, i = 1, . . . , n remain
fixed.

The paper falls into the following parts. The description of the statistical
framework of the matrix regression is given in Section 2. Section 3 is devoted
to the main statistical results. Namely we study the behavior of the estimator
for a fixed model in Section 3.1 while Section 3.2 deals with the model selection
procedure and provide the oracle inequality. Section 4 states a concentration
inequality that is used in all the paper, while some numerical experiments are
described in Section 5. The proofs are postponed to a technical Appendix.

2. Nonparametric model selection for covariance estimation

Recall that X = (X (t))t∈T is an R-valued stochastic process, where T denotes

some subset of Rd, d ∈ N. Assume that X has finite moments up to order 4,
and zero mean, i.e E (X (t)) = 0 for all t ∈ T . The covariance function of X is
denoted by σ (s, t) = cov (X (s) , X (t)) for s, t ∈ T and recall that X1, . . . , XN

are independent copies of the process X .
In this work, we observe at different points t1, . . . , tn ∈ T independent copies of

the process, denoted byXi (tj), with i = 1, . . . , N , j = 1, . . . , n. Set xi=(Xi (t1) ,

. . . , Xi (tn))
⊤ the vector of observations at the points t1, . . . , tn for each i =

1, . . . , N . The matrix Σ =E
(
xix

⊤
i

)
= (σ(tj , tk))1≤j≤n,1≤k≤n is the covariance

matrix of X at the observations points. Let x and S denote the sample mean
and the sample covariance (non corrected by the mean) of the data x1, . . . ,xN ,
i.e.

x=
1

N

N∑

i=1

xi, S =
1

N

N∑

i=1

xix
⊤
i .
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Our aim is to build a model selection estimator of the covariance of the process
observed with N replications but without additional assumptions such as sta-
tionarity nor Gaussianity. The asymptotics will be taken with respect to N , the
number of copies of the process.

2.1. Notations and preliminary definitions

First, define specific matrix notations. We refer to [18] or [14] for definitions
and properties of matrix operations and special matrices. As usual, vectors in
Rk are regarded as column vectors for all k ∈ N. For any matrix A, A⊤ is the
transpose of A, tr (A) is the trace of A, ‖A‖ is the Frobenius matrix norm

defined as ‖A‖2 = tr
(
AA⊤), λmax (A) is the maximum eigenvalue of A, and

ρ (A) is the spectral norm of A, that is ρ (A) = λmax (A) for A a n.n.d matrix.
In the following, we will consider matrix data as a natural extension of the

vectorial data, with different correlation structure. For this, we introduce a nat-
ural linear transformation, which converts any matrix into a column vector. The
vectorization of a k×n matrix A = (aij)1≤i≤k,1≤j≤n is the kn×1 column vector
denoted by vec (A), obtained by stacking the columns of the matrix A on top
of one another. That is vec(A) = [a11, . . . , ak1, a12, . . . , ak2, . . . , a1n, . . . , akn]

⊤.
For a symmetric k × k matrix A, the vector vec (A) contains more in-

formation than necessary, since the matrix is completely determined by the
lower triangular portion, that is, the k(k + 1)/2 entries on and below the
main diagonal. Hence, we introduce the symmetrized vectorization, which cor-
responds to a half-vectorization, denoted by vech(A). More precisely, for any
matrix A = (aij)1≤i≤k,1≤j≤k , define vech(A) as the k(k + 1)/2 × 1 column
vector obtained by vectorizing only the lower triangular part of A. That is
vech(A) = [a11, . . . , ak1, a22, . . . , an2, . . . , a(k−1)(k−1), a(k−1)k, akk]

⊤. There ex-
ist a unique linear transformation which transforms the half-vectorization of a
matrix to its vectorization and vice-versa called, respectively, the duplication
matrix and the elimination matrix. For any k ∈ N, the k2 × k (k + 1) /2 dupli-

cation matrix is denoted by Dk, 1k = (1, . . . , 1)
⊤ ∈ Rk and Ik is the identity

matrix in Rk×k.
If A =(aij)1≤i≤k,1≤j≤n is a k × n matrix and B =(bij)1≤i≤p,1≤j≤q is a p× q

matrix, then the Kronecker product of the two matrices, denoted by A⊗B, is
the kp× nq block matrix

A⊗B =




a11B . . . a1nB
. . .
. . .
. . .

ak1B . . . aknB



.

For any random matrix Z =(Zij)1≤i≤k,1≤j≤n, its expectation is denoted by

E (Z) = (E (Zij))1≤i≤k,1≤j≤n. For any random vector z =(Zi)1≤i≤k, let V (z) =

(cov (Zi, Zj))1≤i,j≤k be its covariance matrix. With this notation, V (x1) =

V (xi) = (σ (tj , tk))1≤j≤n,1≤k≤n is the covariance matrix of X .
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Let m ∈ M, and recall that to the finite set Gm = {gλ}λ∈m of functions gλ :
T → R we associate the n×|m|matrixG with entries gjλ = gλ (tj), j = 1, . . . , n,

λ ∈ m. Furthermore, for each t ∈ T , we write Gt = (gλ (t) , λ ∈ m)⊤. For k ∈ N,
Sk denotes the linear subspace of Rk×k composed of symmetric matrices. For
G ∈Rn×|m|, S (G) is the linear subspace of Rn×n defined by

S (G) =
{
GΨG⊤ : Ψ ∈Sm

}
.

Let SN (G) be the linear subspace of RnN×n defined by

SN (G) =
{
1N ⊗GΨG⊤ : Ψ ∈Sm

}
= {1N ⊗ Γ : Γ ∈S (G)}

and let VN (G) be the linear subspace of Rn2N defined by

VN (G) =
{
1N ⊗ vec

(
GΨG⊤

)
: Ψ ∈Sm

}
= {1N ⊗ vec (Γ) : Γ ∈S (G)} .

All these spaces are regarded as Euclidean spaces with the scalar product asso-
ciated to the Frobenius matrix norm.

2.2. Model selection approach for covariance estimation

The approach that we will develop to estimate the covariance function σ is based
on the following two main ingredients: first, we consider a functional expansion
X̃ to approximate the underlying process X and take the covariance of X̃ as an
approximation of the true covariance σ.

For this, let m ∈ M and consider an approximation to the process X of the
following form:

X̃ (t) =
∑

λ∈m

aλgλ (t) , (2.1)

where aλ are suitable random coefficients. For instance if X takes its values in
L2(T ) (the space of square integrable real-valued functions on T ) and if (gλ)λ∈M
are orthonormal functions in L2(T ), then one can take

aλ =

∫

T

X(t)gλ(t)dt.

Several basis can thus be considered, such as a polynomial basis on Rd, Fourier
expansion on a rectangle T ⊂ Rd (i.e. gλ (t) = ei2π〈ωλ,t〉, using a regular grid of
discrete set of frequencies

{
ωλ ∈ Rd, λ ∈ m

}
that do not depend on t1, . . . , tn).

One can also use, as in [9], tensorial product of B-splines on a rectangle T ⊂ Rd,
with a regular grid of nodes in Rd not depending on t1, . . . , tn or a standard
wavelet basis on Rd, depending on a regular grid of locations in Rd and discrete
scales in R+. Another class of natural expansion is provided by Karhunen-Loeve
expansion of the process X (see [1] for more references).
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Therefore, it is natural to consider the covariance function ρ of X̃ as an
approximation of σ. Since the covariance ρ can be written as

ρ (s, t) = G⊤
s ΨGt, (2.2)

where, after reindexing the functions if necessary, Gt = (gλ (t) , λ ∈ m)
⊤
and

Ψ =(E (aλaµ)) , with (λ, µ) ∈ m×m.

Hence we are led to look for an estimate σ̂ of σ in the class of functions of the
form (2.2), with Ψ ∈ R|m|×|m| some symmetric matrix. Note that the choice of
the function expansion in (2.1), in particular the choice of the subset of indices
m, will be crucial in the approximation properties of the covariance function
ρ. This estimation procedure has several advantages: it will be shown that an
appropriate choice of loss function leads to the construction of symmetric n.n.d
matrix Ψ̂ (see Proposition 3.1) and thus the resulting estimate

σ̂ (s, t) = G⊤
s Ψ̂Gt,

is a covariance function, so the resulting estimator can be plugged in other
procedures which requires working with a covariance function. We also point
out that the large amount of existing approaches for function approximation of
the type (2.1) (such as those based on Fourier, wavelets, kernel, splines or radial
functions) provides great flexibility to the model (2.2).

Secondly, we use the Frobenius matrix norm to quantify the risk of the covari-
ance matrix estimators. Recall that Σ =(σ (tj, tk))1≤j,k≤n is the true covariance

matrix while Γ =(ρ (tj , tk))1≤j,k≤n will denote the covariance matrix of the ap-

proximated process X̃ at the observation points. Hence

Γ = GΨG
⊤
. (2.3)

Comparing the covariance function ρ with the true one σ over the design points
tj , implies quantifying the deviation of Γ from Σ. For this consider the following
loss function

L (Ψ) = E

∥∥∥xx⊤ −GΨG⊤
∥∥∥
2

,

where x=(X (t1) , . . . , X (tn))
⊤ and ‖.‖ is the Frobenius matrix norm. Note that

L (Ψ) =
∥∥∥Σ−GΨG⊤

∥∥∥
2

+ C,

where the constant C does not depend on Ψ. The Frobenius matrix norm pro-
vides a meaningful metric for comparing covariance matrices, widely used in
multivariate analysis, in particular in the theory on principal components anal-
ysis. See also [5], [22] and references therein for other applications of this loss
function.
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To the loss L corresponds the following empirical contrast function LN , which
will be the fitting criterion we will try to minimize

LN (Ψ) =
1

N

N∑

i=1

∥∥∥xix
⊤
i −GΨG⊤

∥∥∥
2

.

We point out that this loss is exactly the sum of the squares of the residuals
corresponding to the matrix linear regression model

xix
⊤
i = GΨG⊤ +Ui, i = 1, . . . , N, (2.4)

with i.i.d. matrix errorsUi such that E (Ui) = 0. This remark provides a natural
framework to study the covariance estimation problem as a matrix regression
model. Note also that the set of matrices GΨG⊤ is a linear subspace of Rn×n

when Ψ ranges over the space of symmetric matrices Sm.
To summarize our approach, we finally propose following two-step estimation

procedure: in a first step, for a given design matrix G, define

Ψ̂ = arg min
Ψ∈Sm

LN (Ψ),

and take Σ̂ = GΨ̂G⊤ as an estimator of Σ. Note that Ψ̂ will be shown to be
a n.n.d matrix (see Proposition 3.1) and thus Σ̂ is also a n.n.d matrix. Since
the minimization of LN (Ψ) with respect to Ψ is done over the linear space of
symmetric matrices Sm, it can be transformed to a classical least squares linear
problem, and the computation of Ψ̂ is therefore quite simple. For a given design

matrix G, we will construct an estimator for Γ = GΨG
⊤

which will be close
to Σ = V (x1) as soon as X̃ is a sharp approximation of X . So, the role of G
and thus the choice of the subset of indices m is crucial since it determines the
behavior of the estimator.

Hence, in second step, we aim at selecting the best design matrix G = Gm

among a collection of candidates {Gm,m ∈ M}. For this, methods and results
from the theory of model selection in linear regression can be applied to the
present context. In particular the results in [2], [7] or [16, 17] will be useful in
dealing with model selection for the framework (2.4). Note that only assump-
tions about moments, not specific distributions of the data, are involved in the
estimation procedure.

Remark 2.1. We consider here a least-squares estimates of the covariance.
Note that suitable regularization terms or constraints could also be incorporated
into the minimization of LN (Ψ) in order to impose desired properties for the
resulting estimator, such as smoothness or sparsity conditions as in [15].

3. Oracle inequality for covariance estimation

The first part of this section describes the properties of the least squares esti-
mator Σ̂ = GΨ̂G⊤ while the second part builds a selection procedure to pick
automatically the best estimate among a collection of candidates.
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3.1. Least squares covariance estimation

Given some n × |m| fixed design matrix G associated to a finite family of |m|
basis functions, the least squares covariance estimator of Σ is defined by

Σ̂ = GΨ̂G⊤ = argmin

{
1

N

N∑

i=1

∥∥xix
⊤
i − Γ

∥∥2 : Γ = GΨG⊤,Ψ ∈Sm

}
. (3.1)

The corresponding estimator of the covariance function σ is

σ̂ (s, t) = G⊤
s Ψ̂Gt. (3.2)

Proposition 3.1. Let Y1, . . . ,YN ∈ Rn×n and G ∈Rn×|m| be arbitrary matri-
ces Then, (a) The infimum

inf

{
1

N

N∑

i=1

∥∥∥Yi −GΨG⊤
∥∥∥
2

: Ψ ∈Sm

}

is achieved at

Ψ̂ =
(
G⊤G

)−
G⊤

(
Y +Y

⊤

2

)
G
(
G⊤G

)−
, (3.3)

where
(
G⊤G

)−
is any generalized inverse of G⊤G (see [10] for a general defi-

nition), and

Y=
1

N

N∑

i=1

Yi.

(b) Furthermore, GΨ̂G
⊤
is the same for all the generalized inverses

(
G⊤G

)−
of

G⊤G. In particular, if Y1, . . . ,YN ∈ Sn (i.e., if they are symmetric matrices)
then any minimizer has the form

Ψ̂ =
(
G⊤G

)−
G⊤YG

(
G⊤G

)−
.

If Y1, . . . ,YN are n.n.d then these matrices Ψ̂ are n.n.d.

If we assume that (G⊤G)−1 exists, then Proposition 3.1 shows that we re-

trieve the expression (1.3) for Ψ̂ that has been derived from least square esti-
mation in model (1.1).

Theorem 3.2. Let S = 1
N

∑N
i=1 xix

⊤
i . Then, the least squares covariance esti-

mate defined by (3.1) is given by the n.n.d matrix

Σ̂ = GΨ̂G⊤ = ΠSΠ,

where

Ψ̂ =
(
G⊤G

)−
G⊤SG

(
G⊤G

)−
, (3.4)

Π = G
(
G⊤G

)−
G⊤.

Moreover Σ̂ has the following interpretations in terms of orthogonal projections:
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i) Σ̂ is the projection of S ∈ Rn×n on S (G).

ii) 1N⊗Σ̂ is the projection of Y =
(
x1x

⊤
1 , . . . ,xNx⊤

N

)⊤ ∈ RnN×n on SN (G) .

iii) 1N⊗vec
(
Σ̂
)
is the projection of y =

(
vec⊤

(
x1x

⊤
1

)
, . . . , vec⊤

(
xNx⊤

N

))⊤∈
Rn2N on VN (G) .

The proof of this theorem is a direct application of Proposition 3.1. Hence for
a given design matrix G, the least squares estimator Σ̂ = Σ̂(G) is well defined
and has the structure of a covariance matrix. It remains to study how to pick
automatically the estimate when dealing with a collection of design matrices
coming from several approximation choices for the random process X .

3.2. Main result

Consider a collection of indices m ∈ M with size |m|. Let also {Gm : m ∈ M}
be a finite family of design matrices Gm ∈ Rn×|m|, and let Σ̂m = Σ̂(Gm),
m ∈ M, be the corresponding least squares covariance estimators. The problem
of interest is to select the best of these estimators in the sense of the minimal
quadratic risk E

∥∥Σ− Σ̂m

∥∥2.
The main theorem of this section provides a non-asymptotic bound for the

risk of a penalized strategy for this problem. For all m ∈ M, write

Πm = Gm

(
G⊤

mGm

)−
G⊤

m, (3.5)

Dm = Tr (Πm) ,

We assume that Dm ≥ 1 for all m ∈ M. The estimation error for a given model
m ∈ M is given by

E

(∥∥∥Σ− Σ̂m

∥∥∥
2
)

= ‖Σ−ΠmΣΠm‖2 + δ2mDm

N
, (3.6)

where

δ2m =
Tr ((Πm ⊗Πm)Φ)

Dm
,

Φ=V
(
vec

(
x1x

⊤
1

))
.

Given θ > 0, define the penalized covariance estimator Σ̃ = Σ̂m̂ by

m̂ = arg min
m∈M

{
1

N

N∑

i=1

∥∥∥xix
⊤
i − Σ̂m

∥∥∥
2

+ pen (m)

}
,

where

pen (m) = (1 + θ)
δ2mDm

N
. (3.7)
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Theorem 3.3. Let q > 0 be given such that there exists p > 2 (1 + q) satisfying
E
∥∥x1x

⊤
1

∥∥p < ∞. Then, for some constants K (θ) > 1 and C′ (θ, p, q) > 0 we
have that

(
E

∥∥∥Σ− Σ̃

∥∥∥
2q
)1/q

≤ 2(
q−1−1)

+

[
K (θ) inf

m∈M

(
‖Σ−ΠmΣΠm‖2+ δ2mDm

N

)

+
∆p

N
δ2sup

]
,

where

∆q
p = C′ (θ, p, q)E

∥∥x1x
⊤
1

∥∥p
( ∑

m∈M
δ−p
m D−(p/2−1−q)

m

)

and
δ2sup = max

{
δ2m : m ∈ M

}
.

In particular, for q = 1 we have

E

(∥∥∥Σ− Σ̃

∥∥∥
2
)

≤ K (θ) inf
m∈M

E

(∥∥∥Σ− Σ̂m

∥∥∥
2
)
+

∆p

N
δ2sup. (3.8)

For the proof of this result, we first restate this theorem in a a vectorized
form which turns to be a k-variate extensions of results in [2] (which are covered
when k = 1) and are stated in Section 4.1. Their proof rely on model selection
techniques and a concentration tool stated in Section 4.2.

Remark 3.4. Note that the penalty depends on the quantity δm which is un-
known in practice. Indeed, the penalty relies on Φ=V

(
vec

(
x1x

⊤
1

))
, which re-

flects the correlation structure of the data. In the original paper by Baraud [3],
an estimator of the variance is proposed to overcome this issue. However, the
consistency proof relies on a concentration inequality which turns to be a χ2 like
inequality. Extending this inequality to our case would mean to be able to con-
struct concentration bounds for matrices xx⊤, implying Wishart distributions.
Some results exist in this framework [21], but adapting this kind of construction
to our case is a hard task which falls beyond the scope of this paper.

However, we point out that for practical purpose, when N is large enough,
this quantity can be consistently estimated using the empirical version of Φ since
the xi, i = 1, . . . , N are i.i.d observed random variables, which is given by

Φ̂ =
1

N

N∑

i=1

vec
(
xix

⊤
i

) (
vec

(
xix

⊤
i

))⊤ − vec(S) (vec(S))
⊤
. (3.9)

Hence, there is a practical way of computing the penalty. The influence of the
use of such an estimated penalty is studied in Section 5. Note also that if τ > 0
denotes any bound of δ2m such that δ2m ≤ τ for all m, then Theorem 3.3 remains
true with δ2m replaced by τ in all the statements.
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We have obtained in Theorem 3.3 an oracle inequality since, using (3.6) and

(3.8), one immediately sees that Σ̃ has the same quadratic risk as the “oracle”
estimator except for an additive term of order O

(
1
N

)
and a constant factor.

Hence, the selection procedure is optimal in the sense that it behaves as if the
true model were at hand. To describe the result in terms of rate of convergence,
we have to pay a special attention to the bias terms ‖Σ−ΠmΣΠm‖2. In a
very general framework, it is difficult to evaluate such approximation terms.
If the process has bounded second moments, i.e for all j = 1, . . . , n, we have
E
(
X2 (tj)

)
≤ C, then we can write

‖Σ−ΠmΣΠm‖2 ≤ C

n∑

j=1

n∑

j′=1

[
E
(
X (tj)− X̃ (tj)

)2
+ E

(
X (tj′ )− X̃ (tj′)

)2]

≤ 2Cn2 1

n

n∑

j=1

E
(
X (tj)− X̃ (tj)

)2
.

Since n is fixed and the asymptotics are given with respect to N , the number of
replications of the process, the rate of convergence relies on the quadratic error
of the expansion of the process.

To compute the rate of convergence, this approximation error must be con-
trolled. From a theoretical point of view, take d = 1, T = [a, b], and consider a
process X (t) with t ∈ [a, b], for which the basis of its Karhunen-Loève expan-
sion is known. Set M = MN = {m = {1, . . . , |m|}, |m| = 1, . . . , N}. Then we
can write X (t) =

∑∞
λ=1 Zλgλ (t) , where Zλ are centered random variables with

E
(
Z2
λ

)
= γ2

λ, where γ
2
λ is the eigenvalue corresponding to the eigenfunction gλ of

the operator (Kf) (t) =
∫ b

a σ (s, t) f (s) ds. IfX (t) is a Gaussian process then the
random variables Zλ are Gaussian and stochastically independent. Hence, a nat-

ural approximation of X (t) is given by X̃ (t) =
∑|m|

λ=1 Zλgλ (t) . So we have that

E
(
X (t)− X̃ (t)

)2
= E




∞∑

λ=|m|+1

Zλgλ (t)




2

=
∞∑

λ=|m|+1

γ2
λg

2
λ (t) .

therefore, if ‖gλ‖2L2([a,b])
= 1 then E

∥∥X (t)− X̃ (t)
∥∥2
L2([a,b])

=
∑∞

λ=|m|+1 γ
2
λ. As-

sume that the γλ’s have a polynomial decay of rate α > 0, namely γλ ∼ λ−α,
then we get an approximation error of order O

(
(|m| + 1)−2α

)
. Hence, we get

that (under appropriate conditions on the design points t1, . . . , tn)

‖Σ−ΠmΣΠm‖2 = O
(
(|m|+ 1)−2α

)
.

Finally, since in this example E‖Σ − Σ̃‖2 ≤ K (θ) inf
m∈MN

(
‖Σ−ΠmΣΠm‖2 +

δ2mm
N

)
+ O

(
1
N

)
then the quadratic risk is of order N− 2α

2α+1 as soon as |m| ∼
N1/(2α+1) belongs to the collection of models MN . In another framework, if we
consider a spline expansion, the rate of convergence for the approximation given
in [9] are of the same order.
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Hence we have obtained a model selection procedure which enables to recover
the best covariance model among a given collection. This method works without
strong assumptions on the process, in particular stationarity is not assumed, but
at the expend of necessary i.i.d observations of the process at the same points.
We point out that this study requires a large number of replications N with
respect to the number of observation points n. Moreover, since for a practical
use of this methodology, an estimator of the penalty must be computed, relying
on the estimation of the 4-th order moment, the need for a large amount of data
is crucial even if the simulations are still, quite satisfactory, for not so large
sample. This settings is quite common in epidemiology where a phenomenon is
studied at a large number of locations but only during a short time. Hence our
method is not designed to tackle the problem of covariance estimation in the
high dimensional case n >> N . This topic has received a growing attention over
the past years and we refer to [4] and references therein for a survey.

4. Model selection for multidimensional regression

4.1. Oracle inequality for multidimensional regression model

Recall that we consider the following model

xix
⊤
i = GΨG⊤ +Ui, i = 1, . . . , N,

with i.i.d. matrix errors Ui ∈ Rn×n such that E (Ui) = 0.
The key point is that previous model can be rewritten in vectorized form in

the following way
yi= Aβ+ui, i = 1, . . . , N, (4.1)

where yi = vec
(
xix

⊤
i

)
∈ Rn2

, A = (G⊗G)Dm ∈ Rn2× |m|(|m|+1)
2 , where Dm ∈

R|m|2× |m|(|m|+1)
2 is the duplication matrix, β=vech (Ψ) ∈ R

|m|(|m|+1)
2 , and ui =

vec (Ui) ∈ Rn2

.
Note that this model is equivalent to the following regression model

y =(1N ⊗A)β+u, (4.2)

where y =
(
(y1)

⊤, . . . , (yN )⊤
)⊤ ∈ RNn2

is the data vector, (1N ⊗A) ∈
RNn2× |m|(|m|+1)

2 is a known fixed matrix, β=vech (Ψ) is an unknown vector pa-

rameter as before, and u =
(
(u1)

⊤, . . . , (uN )⊤
)⊤ ∈ RNn2

is such that E (u) = 0.
It is worth of noting that this regression model has several peculiarities in com-
parison with standard ones.

i) The error u has a specific correlation structure, namely IN ⊗ Φ, where
Φ = V

(
vec

(
x1x

⊤
1

))
.

ii) In contrast with standard multivariate models, each coordinate of y de-
pends on all the coordinates of β.
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iii) For any estimator Σ̂ = GΨ̂G⊤ that be a linear function of the sample
covariance S of the data x1,. . . ,xN (and so, in particular, for the estimator
minimizing LN) it is possible to construct an unbiased estimator of its

quadratic risk E
∥∥Σ−Σ̂

∥∥2.
More generally, assume we observe yi, i = 1, . . . , N random vectors of Rk,

with k ≥ 1 (k = n2 in the particular case of model (4.1)), such that

yi = f i+εi, i = 1, . . . , N, (4.3)

where f i∈Rk are nonrandom and ε1, . . . , εN are i.i.d. random vectors in Rk with
E (ε1) = 0 and V (ε1) = Φ. For sake of simplicity, we identify the function g :

X → Rk with vectors (g (x1) , . . . , g (xN ))
⊤ ∈ RNk and we denote by 〈a, b〉N =

1
N

∑N
i=1 a

⊤
i bi the inner product of RNk associated to the norm ‖.‖N , where

a = (a1 . . . aN )⊤ and b = (b1 . . . bN)⊤ with ai, bi ∈ Rk for all i = 1, . . . , N .
Given N, k ∈ N, let (Lm)m∈M be a finite family of linear subspaces of RNk.

For eachm ∈ M, assume Lm has dimensionDm ≥ 1. Let f̂m be the least squares

estimator of f =
(
(f1)⊤, . . . , (fN )⊤

)⊤
based on the data y =

(
y⊤
1 , . . . ,y

⊤
N

)⊤
un-

der the model Lm, i.e.

f̂m = arg min
v∈Lm

{
‖y − v‖2N

}
= Pmy,

where Pm is the orthogonal projection matrix from RNk on Lm. Write

δ2m =
Tr (Pm (IN ⊗Φ))

Dm
,

δ2sup = max
{
δ2m : m ∈ M

}
.

Given θ > 0, define the penalized estimator f̃ = f̂m̂ , where

m̂ = arg min
m∈M

{∥∥∥y−f̂m

∥∥∥
2

N
+ pen (m)

}
,

with

pen (m) = (1 + θ)
δ2mDm

N
.

Proposition 4.1. Let q > 0 be given such that there exists p > 2 (1 + q) satis-
fying E ‖ε1‖p < ∞. Then, for some constants K (θ) > 1 and c (θ, p, q) > 0 we
have that

E

(∥∥∥f − f̃

∥∥∥
2

N
−K (θ)M∗

N

)q

+

≤ ∆q
p

δ2qsup
N q

, (4.4)

where

∆q
p = C (θ, p, q)E ‖ε1‖p

( ∑

m∈M
δ−p
m D−(p/2−1−q)

m

)
,

M∗
N = inf

m∈M

{
‖f −Pmf‖2N +

δ2mDm

N

}
.
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This theorem is equivalent to Theorem 3.3 using the vectorized version of the
model (4.3) and turns to be an extension of Theorem 3.1 in [2] to the multivariate
case. In a similar way, the following result constitutes also a natural extension
of Corollary 3.1 in [2]. It is also closely related to the recent work in [12].

Corollary 4.2. Under the assumptions of Proposition 4.1 it holds that
(
E

∥∥∥f − f̃

∥∥∥
2q

N

)1/q

≤ 2(
q−1−1)

+

[
K (θ) inf

m∈M

(
‖f −Pmf‖2N +

δ2mDm

N

)
+

∆p

N
δ2sup

]
,

where ∆p was defined in Proposition 4.1.

Under regularity assumptions for the function f , depending on a smoothness
parameter s, the bias term is of order

‖f −Pmf‖2N = O(D−2s
m ).

Hence, for q = 1 we obtain the usual rate of convergence N− 2s
2s+1 for the

quadratic risk as soon as the optimal choice Dm = N
1

2s+1 belongs to the col-
lection of models, yielding the optimal rate of convergence for the penalized
estimator.

4.2. Concentration bound for random processes

Recall that k ≥ 1. The following result is a k-variate extension of results in [2]
(which are covered when k = 1). Its proof is deferred to the Appendix.

Proposition 4.3. (Extension of Corollary 5.1 in [2]). Given N, k ∈ N, let Ã ∈
RNk×Nk� {0} be a non-negative definite and symmetric matrix and ε1, . . . , εN

i.i.d random vectors in Rk with E (ε1)=0 and V (ε1)=Φ.Write ε=
(
ε⊤1 , . . . , ε

⊤
N

)⊤
,

ζ (ε) =
√
ε⊤Ãε, and δ2 =

Tr(Ã(IN⊗Φ))
Tr(Ã)

. For all p ≥ 2 such that E ‖ε1‖p < ∞ it

holds that, for all x > 0,

P

(
ζ2 (ε) ≥ δ2Tr

(
Ã
)
+ 2δ2

√
Tr
(
Ã
)
ρ
(
Ã
)
x+ δ2ρ

(
Ã
)
x

)

≤ C (p)
E ‖ε1‖p Tr

(
Ã
)

δpρ
(
Ã
)
xp/2

, (4.5)

where the constant C (p) depends only on p.

Proposition 4.3 reduces to Corollary 5.1 in [2] when we only consider k = 1,
in which case δ2 = (Φ)11 = σ2 is the variance of the univariate i.i.d. errors εi.

5. Numerical examples

In this section we illustrate the practical behaviour of the covariance estimator
by model selection proposed in this paper. In particular, we study its perfor-
mance when computing the criterion using the estimated penalty described in



J. Bigot et al./Covariance estimation by model selection 837

Section 3.2. The programs for our simulations were implemented using MAT-
LAB and the code is available on request.

We will consider i.i.d copies X1, . . . , Xn of different Gaussian processes X on
T = [0, 1] with values in R, observed at fixed equi-spaced points t1, . . . , tn in
[0, 1] for a fixed n, generated according to

X (tj) =
m∗∑

λ=1

aλg
∗
λ (tj) , j = 1, . . . , n, (5.1)

wherem∗ denotes the true model dimension, (g∗λ)λ (λ = 1, . . . ,m∗) are orthonor-
mal functions on [0, 1], and the coefficients a1, . . . , am∗ are independent and iden-
tically distributed Gaussian variables with zero mean. Note that E (X (tj)) = 0
for all j = 1, . . . , n, and that the covariance function of the process X at the
points t1, . . . , tn is given by

σ (tj , tk) = cov (X (tj) , X (tk)) =

m∗∑

λ=1

V (aλ) g
∗
λ (tj) g

∗
λ (tk)

for all 1≤j, k≤n. The corresponding covariance matrix is Σ = (σ (tj , tk))1≤j,k≤n.

We will write X = (Xi(tj)) an n×N matrix. The columns of X are denoted by

xi = (Xi (t1) , . . . , Xi (tn))
⊤, i = 1, . . . , N .

The covariance estimation by model selection is computed as follows. Let
(gλ)λ be an orthonormal basis on [0, 1] (wich may differ from the original basis
functions g∗λ). For a given M > 0, candidate models are chosen among the
collection M = {{1, . . . ,m} : m = 1, . . . ,M}. To each set indexed by m we
associate the matrix (model) Gm ∈ Rn×m, with entries (gλ (tj))1≤j≤n,1≤λ≤m,
which corresponds to a number m of basis functions g1, . . . , gm in the expansion
to approximate the process X . We aim at choosing a good model among the
family of models {Gm : m ∈ M} in the sense of achieving the minimum of the
quadratic risk

R (m) = E

∥∥∥Σ− Σ̂m

∥∥∥
2

= ‖Σ−ΠmΣΠm‖2 + δ2mDm

N
. (5.2)

The ideal model m0 is the minimizer of the risk function m 7→ R (m).
Note that for all m = 1, . . . ,M ,

LN (m) =
1

N

N∑

i=1

∥∥∥xix
⊤
i − Σ̂m

∥∥∥ = LN (m) + C

LN (m) + pen (m) = PC (m) + C,

where

LN (m) =
∥∥∥S−Σ̂m

∥∥∥
2

= ‖S−ΠmSΠm‖2

PC (m) =
∥∥∥S−Σ̂m

∥∥∥
2

+ pen (m) = ‖S−ΠmSΠm‖2 + (1 + θ)
δ2mDm

N
, (5.3)
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Σ̂m is the least squares covariance estimator of Σ corresponding to the model m
as in Theorem 3.2 and the constant C does not depend on m. Thus, LN and PC
can be regarded as the empirical contrast function and the penalized criterion
respectively that will be used for visual presentations of the results. For each
model m = 1, . . . ,M we evaluate the penalized criterion (5.3) with θ = 1 and
expect that the minimum of PC is attained at a value m̂

(
δ2
)
close to m0.

The quantity δ2m = Tr ((Πm ⊗Πm)Φ) /Dm depends on the matrix Φ =
V
(
vec(x1x

⊤
1 )

⊤), as pointed out in Section 3.2, which is unknown in practice

but can be consistently estimated by (3.9), yielding the plug-in estimate δ̂2m =

Tr
(
(Πm⊗Πm)Φ̂

)
/Dm for δ2m. We study the influence of using δ̂2 =

(
δ̂2m
)
1≤m≤M

rather than δ2 =
(
δ2m
)
1≤m≤M

on the model selection procedure. Actually, we

first compute the following approximation of the risk R,

R̂ (m) = ‖Σ−ΠmΣΠm‖2 + δ̂2mDm

N
,

and then, compute the estimator of the penalized criterion PC

P̂C (m) = ‖S−ΠmSΠm‖2 + (1 + θ)
δ̂2mDm

N
.

We denote by m̂
(
δ̂2
)
the point at which the penalized criterion estimate P̂C

attains its minimum value, i.e., the model selected by minimizing P̂C.
In the following examples we plot the empirical contrast function LN (m =

1, . . . ,M), the risk function R, the approximate risk function R̂, the penalized

criterion PC and the penalized criterion estimate P̂C. We also show figures of
the true covariance function σ (t, s) for s, t ∈ [0, 1] and the penalized covariance

estimate based on P̂C, i.e., σ̂ (t, s) = G⊤
m̂,tΨ̂m̂Gm̂,s, where m̂ = m̂

(
δ̂2
)
, Ψ̂m̂

is obtained as in Theorem 3.2 and Gm̂,t = (g1 (t) , . . . , gm̂ (t))⊤ ∈ Rm̂ for all
t ∈ [0, 1]. Furthermore, we will focus attention on finite sample settings, i.e.,
those in which the number of repetitions N is not notably large (in comparison
with the number n of design points tj).

Example 1. Let g∗1 , . . . , g
∗
m∗ be the Fourier basis functions

g∗λ (t) =





1√
n
if λ = 1√

2 1√
n
cos
(
2π λ

2 t
)
if λ

2 ∈ Z√
2 1√

n
sin
(
2π λ−1

2 t
)
if λ−1

2 ∈ Z∗

(5.4)

We simulate a sample of size N = 50 according to (5.1) with n = m∗ = 35
and V (aλ) = 1 for all λ = 1, . . . ,m∗. Set M = 31 and consider the models
obtained by choosing m Fourier basis functions. In this setting, it can be shown
that the minimum of the quadratic risk R is attained at m0 = N

2 − 1, which for
N = 50 gives m0 = 24. Figures 1a, 1b, 1c and 1d present the results obtained
for a simulated sample. Figure 1a shows that the approximate risk function
R̂ reproduces the shape of the risk function R, so replacing δ2 by δ̂2 into the
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Fig 1. Results of Example 1

risk does not have a too drastic effect. It can be observed in Figure 1b that,
as expected, the empirical contrast function LN is strictly decreasing over the
whole range of possible models, hence its minimization would lead to choose the
largest model M = 31. Note that, unlike to what is quite common in univariate
linear regression with i.i.d. errors, the empirical contrast curve does not have an
“elbow” (i.e., a change of curvature) around the optimal model m0 = 24, which
could provide by visual inspection some hint for selecting a suitable model. On the
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Fig 2. Results of Example 2

contrary, both minimization of the penalized criterion PC and its estimate P̂C
lead to select the best model, i.e., m̂

(
δ2
)
= 24 and m̂

(
δ̂2
)
= 24 (see Figure 1c).

This also demonstrates that replacing δ2 by δ̂2 into the penalized criterion does
not notably deteriorate the performance of the model selection procedure in this
example. Figure 1d shows that, in spite of the small sample size N = 50, a quite
nice approximation to the true covariance function σ is achieved by its penalized
covariance estimate σ̂ based on P̂C. It is clear that the selected model m̂

(
δ̂2
)
is

a random variable that depends on the observed sample X through the penalized
criterion estimate P̂C. Figure 1e illustrates such a variability by plotting the
curves P̂C corresponding to several simulated samples. It can be observed that
the selected model m̂

(
δ̂2
)
is close to the ideal model m0, and the risk R evaluated

at the selected model is much less than that of the largest model M = 31 that
would be chosen by using the empirical contrast function.

Example 2. Using the Fourier basis (5.4) we simulate a sample of size N = 50
according to (5.1) with n = m∗ = 35 as in the previous example, but now
we set a geometric decay of the variances (or eigenvalues of the covariance
operator of the process X) V (aλ), λ = 1, . . . ,m∗; namely, V (a1) = r and
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Fig 3. Results of Example 3.

V (aλ+1) = V (aλ) r for λ = 2, 3, .., where r = 0.95. We consider a collec-
tion of models up to M = 34, with m Fourier basis functions. In this set-
ting it can be proved that the minimum of the risk R is attained at m0 =
(log (2/ [(1 − r)(N − 2) + 2])) / log(r), which yields m0 = 16 for the actual val-
ues N = 50 and r = 0.95. The results obtained from a simulated sample are
shown in Figures 2a, 2b, 2c and 2d. It can be noted that the empirical con-
trast function is strictly decreasing without any “elbow” effect, while the selected
model by both the penalized criterion and the penalized criterion estimate is
m̂
(
δ2
)
= m̂

(
δ̂2
)
= 16, which is the best model m0 according to the risk R.

Example 3. Using the Fourier basis (5.4) we simulate a sample of size N = 60
according to (5.1) with n = m∗ = 35, but now we set the variances (eigenval-
ues) as follows: V (aλ) = σ2 + rλ for all λ = 1, . . . ,m∗, where r = 0.95 and
σ2 = 0.0475. This decay of the eigenvalues is common in the factor models.
Actually all the eigenvalues have almost the same small value σ2 (corresponding
to “noise”) except for a few first eigenvalues that have larger values (corre-
sponding to some “factors”). The collection of models considered corresponds
to a number m (1 ≤ m ≤ M) of Fourier basis functions up to M = 34. The
results from a simulated sample are shown in Figures 3a, 3b, 3c and 3d. Fig-
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ure 3a shows that the minimum of the risk function R is attained at m0 = 18.
Likewise the previous examples, the empirical contrast function is strictly de-
creasing without any “elbow”, while the model selection procedure chooses the
model m̂

(
δ2
)
= m̂

(
δ̂2
)
= 18, which is the value of m0.

Example 4. In this example we use different basis functions for generating
the data and for estimating the covariance. Specifically, the process is generated
using a wavelet basis and the collection of models considered in the model se-
lection procedure corresponds to different numbers of Fourier basis functions up
to M = 31. We simulate a sample of size N = 50 according to (5.1) using the
Symmlet 8 wavelet basis, with n = m∗ = 32. We set the variances of the random
coefficients aλ with a geometric decay likewise in Example 2, i.e., V (a1) = r and
V (aλ+1) = V (aλ) r, where r = 0.95. The results of one simulation are displayed
in Figures 4a, 4b, 4c and 4d. Here it can be also observed that the penalized es-
timation procedure shows good performance even when using an estimate of the
penalized criterion, leading to choosing the model m̂

(
δ̂2
)
= m̂

(
δ2
)
= 16 = m0.

Summarizing the results of these simulated examples, we may conclude that
for not so large sample sizes N :
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a) The empirical contrast function LN is useless to select a model that attains
a low risk. It is a strictly decreasing function whose minimization leads to
simply choose the largest modelM within the set of candidate modelsm =
1, . . . ,M . Furthermore, frequently the curve LN does not have an “elbow”
that could guide researchers to choose a suitable model by exploratory
analysis.

b) The covariance function estimator by model selection introduced in this
paper shows good performance in a variety of examples when based on the
penalized criterion PC but also when using the estimated penalty P̂C.

6. Appendix

6.1. Proofs of preliminary results

Proof of Proposition 3.1

Proof. a) The minimization problem is equivalent to minimize

h (Ψ) =
∥∥∥Y −GΨG⊤

∥∥∥
2

.

The Frobenius norm ‖.‖ is invariant by the vec operation. Furthermore, Ψ ∈Sm

can be represented by means of vec (Ψ) = Dmβ where β ∈R|m|(|m|+1)/2. These
facts and the identity

vec (ABC) =
(
C⊤ ⊗A

)
vec (B) (6.1)

allow one to rewrite

h (Ψ) = ‖y − (G⊗G)Dmβ‖2 ,
where y = vec

(
Y
)
. Minimization of this quadratic function with respect to β

in R|m|(|m|+1)/2 is equivalent to solve the normal equation

D⊤
m (G⊗G)⊤ (G⊗G)Dmβ = D⊤

m (G⊗G)⊤ y.

By using the identities

D⊤
mvec (A) = vech

(
A+A⊤ − diag (A)

)

and 6.1, said normal equation can be rewritten

vech
(
G⊤G

(
Ψ+Ψ⊤

)
G⊤G− diag

(
G⊤GΨG⊤G

))
=

vech
(
G⊤

(
Y +Y

⊤)
G− diag

(
G⊤YG

))
.

Finally, it can be verified that Ψ̂ given by (3.3) satisfies this equation as a

consequence of the fact that such Ψ̂ it holds that

vech
(
G⊤GΨ̂G

⊤
G
)
= vech

(
G⊤

(
Y +Y

⊤

2

)
G

)
.

b) It straightforwardly follows from part a).
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6.2. Proofs of main results

Proof of Proposition (4.1)

Proof. The proof follows the guidelines of the proof in [2]. More generally we
will prove that for any η > 0 and any sequence of positive numbers Lm, if the
penalty function pen : M −→ R+ is chosen to satisfy:

pen (m) = (1 + η + Lm)
δ2m
N

Dm for all m ∈ M, (6.2)

then for each x > 0 and p ≥ 2

P

(
H (f) ≥

(
1 +

2

η

)
x

N
δ2m

)
≤ c (p, η)E ‖ε1‖p

∑

m∈M

1

δpm

Dm ∨ 1

(LmDm + x)
p/2

, (6.3)

where we have set

H (f) =

[∥∥∥f − f̃

∥∥∥
2

N
−
(
2− 4

η

)
inf

m∈M

{
d2N (f ,Lm) + pen (m)

}]

+

.

To obtain (4.4), take η = θ
2 = Lm. As for each m ∈ M,

d2N (f ,Lm) + pen (m) ≤ d2N (f ,Lm) + (1 + θ)
δ2m
N

Dm

≤ (1 + θ)

(
d2N (f ,Lm) +

δ2m
N

Dm

)

we get that for all q > 0,

Hq (f) ≥
[∥∥∥f − f̃

∥∥∥
2

N
−
(
2 +

8

θ

)
(1 + θ)M∗

N

]q

+

=

[∥∥∥f − f̃

∥∥∥
2

N
−K (θ)M∗

N

]q

+

,

(6.4)
where K (θ) =

(
2 + 8

θ

)
(1 + θ).

Since

E (Hq (f)) =

∞∫

0

quq−1P (H (f) > u) du,

we derive from (6.4) and (6.3) that for all p > 2 (1 + q)

E

[(∥∥∥f − f̃

∥∥∥
2

N
−K (θ)M∗

N

)q

+

]

≤ E (Hq (f))

≤ c (p, θ)

(
1 +

4

θ

)q
E ‖ε1‖p
N q

∑

m∈M

δ2qm
δpm

∞∫

0

qxq−1

[
Dm ∨ 1

(
θ
2Dm + x

)p/2 ∧ 1

]
dx

≤ c′ (p, q, θ)
E ‖ε1‖p
N q

δ2qsup

[ ∑

m∈M
δ−p
m D−(p/2−1−q)

m

]
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using that P (H (f) > u) ≤ 1. Indeed, for m ∈ M such that Dm ≥ 1, using that
q − 1− p/2 < 0, we get

δ2qm
δpm

∞∫

0

qxq−1

[
Dm ∨ 1

(
θ
2Dm + x

)p/2 ∧ 1

]
dx

≤ δ2qsupδ
−p
m

∞∫

0

qxq−1

[
Dm(

θ
2Dm + x

)p/2

]
dx

= δ2qsupδ
−p
m




Dm∫

0

qxq−1

[
Dm(

θ
2Dm + x

)p/2

]
dx +

∞∫

Dm

qxq−1

[
Dm(

θ
2Dm + x

)p/2

]
dx




≤ δ2qsupδ
−p
m


 Dm(

θ
2Dm

)p/2

Dm∫

0

qxq−1dx+Dm

∞∫

Dm

qxq−1

[
1

xp/2

]
dx




= δ2qsupδ
−p
m


2p/2θ−p/2D1−p/2

m

Dm∫

0

qxq−1dx+Dm

∞∫

Dm

qxq−1−p/2dx




= δ2qsupδ
−p
m

(
2p/2θ−p/2D1−p/2

m [Dq
m] +Dm

[
q

p/2− q
Dq−p/2

m

])

= δ2qsupδ
−p
m

(
2p/2θ−p/2D1−p/2+q

m +D1−p/2+q
m

[
q

p/2− q

])

= δ2qsupδ
−p
m

(
D−(p/2−1−q)

m

[
2p/2θ−p/2 +

q

p/2− q

])
. (6.5)

Inequality (6.5) enables to conclude that (4.4) holds assuming (6.3).
We now turn to the proof of (6.3). Recall that, we identify the function

g : X → Rk with vectors (g (x1) . . . g (xN ))⊤ ∈ RNk and we denote by 〈a, b〉N =
1
N

∑N
i=1 a

⊤
i bi the inner product of RNk associated to the norm ‖.‖N , where

a = (a1 . . . aN )
⊤

and b = (b1 . . . bN )
⊤

with ai, bi ∈ Rk for all i = 1, . . . , N . For
each m ∈ M we denote by Pm the orthogonal projector onto the linear space{
(g (x1) . . . g (xN ))⊤ : g ∈ Lm

}
⊂ RNk. This linear space is also denoted by

Lm. From now on, the subscript m denotes any minimizer of the function m′ →
‖f −Pm′f‖2N+pen (m′), m′ ∈ MN . For any g ∈ RNk we define the least-squares
loss function by

γN (g) = ‖y − g‖2N
Using the definition of γN we have that for all g ∈ RNk,

γN (g) = ‖f + ε− g‖2N .

Then we derive that

‖f − g‖2N = γN (f) + 2 〈f − y, ε〉N + ‖ ε‖2N
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and therefore
∥∥∥f − f̃

∥∥∥
2

N
− ‖f −Pmf‖2N = γN

(
f̃
)
− γN (Pmf) + 2

〈
f̃ −Pmf , ε

〉
N
. (6.6)

By the definition of f̃ , we know that

γN

(
f̃
)
+ pen (m̂) ≤ γN (g) + pen (m)

for all m ∈ M and for all g ∈ Lm. Then

γN

(
f̃
)
− γN (Pmf) ≤ pen (m)− pen (m̂) . (6.7)

So we get from (6.6) and (6.7) that

∥∥∥f − f̃

∥∥∥
2

N
≤‖f −Pmf‖2N + pen (m)− pen (m̂)

+ 2 〈f −Pmf , ε〉N + 2 〈Pm̂f − f , ε〉N + 2
〈
f̃ −Pm̂f , ε

〉
N
. (6.8)

In the following we set for each m′ ∈ M,

Bm′ = {g ∈ Lm′ : ‖g‖N ≤ 1} ,
Gm′ = sup

t∈Bm′

〈g, ε〉N = ‖Pm′ ε‖N ,

um′ =

{
Pm′ f−f

‖Pm′ f−f‖
N

if ‖Pm′f − f‖N 6= 0

0 otherwise.

Since f̃ = Pm̂ f+ Pm̂ ε, (6.8) gives

∥∥∥f − f̃

∥∥∥
2

N
≤ ‖f −Pmf‖2N + pen (m)− pen (m̂)

+ 2 ‖f −Pmf‖N |〈um, ε〉N |+ 2 ‖f −Pm̂f‖N |〈um̂, ε〉N |+ 2G2
m̂. (6.9)

Using repeatedly the following elementary inequality that holds for all positive
numbers α, x, z

2xz ≤ αx2 +
1

α
z2 (6.10)

we get for any m′ ∈ M

2 ‖f −Pm′f‖N |〈um′ , ε〉N | ≤ α ‖f −Pm′f‖2N +
1

α
|〈um′ , ε〉N |2 . (6.11)

By Pythagoras Theorem we have

∥∥∥f − f̃

∥∥∥
2

N
= ‖f −Pm̂f‖2N +

∥∥∥Pm̂f − f̃

∥∥∥
2

N

= ‖f −Pm̂f‖2N +G2
m̂. (6.12)
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We derive from (6.9) and (6.11) that for any α > 0:

∥∥∥f − f̃

∥∥∥
2

N
≤‖f −Pmf‖2N + α ‖f −Pmf‖2N +

1

α
〈um, ε〉2N

+ α ‖f −Pm̂f‖2N +
1

α
〈um̂, ε〉2N + 2G2

m̂ + pen (m)− pen (m̂) .

Now taking into account that by equation (6.12) ‖f −Pm̂f‖2N =
∥∥∥f − f̃

∥∥∥
2

N
−G2

m̂

the above inequality is equivalent to:

(1− α)
∥∥∥f − f̃

∥∥∥
2

N
≤ (1 + α) ‖f −Pmf‖2N +

1

α
〈um, ε〉2N

+
1

α
〈um̂, ε〉2N + (2− α)G2

m̂ + pen (m)− pen (m̂) . (6.13)

We choose α = 2
2+η ∈ ]0, 1[, but for sake of simplicity we keep using the notation

α. Let p̃1 and p̃2 be two functions depending on η mapping M into R+. They
will be specified later to satisfy

pen (m′) ≥ (2− α) p̃1 (m
′) +

1

α
p̃2 (m

′) ∀(m′) ∈ M. (6.14)

Since 1
α p̃2 (m

′) ≤ pen (m′) and 1 + α ≤ 2, we get from (6.13) and (6.14) that

(1− α)
∥∥∥f − f̃

∥∥∥
2

N
≤ (1 + α) ‖f −Pmf‖2N + pen (m)

+
1

α
p̃2 (m) + (2− α)

(
G2

m̂ − p̃1 (m̂)
)

+
1

α

(
〈um̂, ε〉2N − p̃2 (m̂)

)
+

1

α

(
〈um, ε〉2N − p̃2 (m)

)

≤ 2
(
‖f −Pmf‖2N + pen (m)

)
+ (2− α)

(
G2

m̂ − p̃1 (m̂)
)

+
1

α

(
〈um̂, ε〉2N − p̃2 (m̂)

)
+

1

α

(
〈um, ε〉2N − p̃2 (m)

)
.

(6.15)

As 2
1−α = 2 + 4

η we obtain that

(1− α)H (f)

=

{
(1− α)

∥∥∥f − f̃

∥∥∥
2

N
− (1− α)

(
2 +

4

η

)
inf

m′∈M

(
‖f −Pm′f‖2N + pen (m′)

)}

+

=

{
(1− α)

∥∥∥f − f̃

∥∥∥
2

N
− 2

(
‖f −Pmf‖2N + 2pen (m)

)}

+

≤
{
(2− α)

(
G2

m̂ − p̃1 (m̂)
)
+

1

α

(
〈um̂, ε〉2N − p̃2 (m̂)

)

+
1

α

(
〈um, ε〉2N − p̃2 (m)

)}

+
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using that m minimizes the function ‖f −Pm′‖2 + pen (m′) and (6.15).
For any x > 0,

P

(
(1− α)H (f) ≥ xδ2m

N

)
≤P

(
∃m′ ∈ M : (2− α)

(
G2

m′ − p̃1 (m
′)
)
≥ xδ2m′

3N

)

+ P

(
∃m′ ∈ M :

1

α

(
〈um′ , ε〉2N − p̃2 (m

′)
)
≥ xδ2m′

3N

)

≤
∑

m′∈M
P

(
(2− α)

(
‖Pm′ε‖2N − p̃1 (m

′)
)
≥ xδ2m′

3N

)

+
∑

m′∈M
P

(
1

α

(
〈um′ , ε〉2N − p̃2 (m

′)
)
≥ xδ2m′

3N

)

:=
∑

m′∈M
P1,m′ (x) +

∑

m′∈M
P2,m′ (x) . (6.16)

We first bound P2,m′ (x). Let t be some positive number,

P (|〈um′ , ε〉N | ≥ t) ≤ t−pE (|〈um′ , ε〉N |p) . (6.17)

Since 〈um′ , ε〉N = 1
N

N∑
i=1

〈uim′ , εi〉 with εi i.i.d. and with zero mean, then by

Rosenthal’s inequality we know that for some constant c (p) that depends on p
only

c−1 (p)NpE |〈um′ , ε〉N |p ≤
N∑

i=1

E |〈uim′ , εi〉|p +
(

N∑

i=1

E

(
〈uim′ , εi〉2

))
p
2

≤
N∑

i=1

E ‖uim′‖p ‖εi‖p +
(

N∑

i=1

E ‖uim′‖2 ‖εi‖2
) p

2

= E ‖ε1‖p
N∑

i=1

‖uim′‖p +
(
E ‖ε1‖2

) p

2

(
N∑

i=1

‖uim′‖2
) p

2

.

(6.18)

Since p ≥ 2,
(
E ‖ε1‖2

) 1
2 ≤ (E ‖ε1‖p)

1
p and

(
E ‖ε1‖2

) p

2 ≤ E ‖ε1‖p . (6.19)

Using also that by definition ‖um′‖2N = 1
N

∑N
i=1 ‖uim′‖2 = 1, then ‖uim′‖2

N ≤ 1

and therefore ‖uim′‖
N

1
2

≤ 1. Thus

N∑

i=1

‖uim′‖p = N
p

2

N∑

i=1

(‖uim′‖
N

1
2

)p

≤ N
p

2

N∑

i=1

(‖uim′‖
N

1
2

)2

= N
p

2 ‖um′‖2N = N
p

2 .

(6.20)
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We deduce from (6.18), (6.19) and (6.20) that

c−1 (p)NpE |〈um′ , ε〉N |p ≤ E ‖ε1‖p N
p

2 + E ‖ε1‖p N
p

2 .

Then for some constant c′ (p) that only depends on p

E |〈um′ , ε〉N |p ≤ c′ (p)E ‖ε1‖p N− p

2 .

By this last inequality and (6.17) we get that

P (|〈um′ , ε〉N | ≥ t) ≤ c′ (p)E ‖ε1‖p N− p

2 t−p. (6.21)

Let υ be some positive number depending on η only to be chosen later. We take t
such thatNt2 = min

(
υ, α

3

)
(Lm′Dm′ + x) δ2m′ and setNp̃2 (m

′) = υLm′Dm′δ2m′ .
We get

P2,m′ (x) = P

(
1

α

(
〈um′ , ε〉2N − p̃2 (m

′)
)
≥ xδ2m′

3N

)

= P

(
N 〈um′ , ε〉2N ≥ Np̃2 (m

′) + α
δ2m′

3
x

)

= P

(
N 〈um′ , ε〉2N ≥ υLm′Dm′δ2m′ + α

δ2m′

3
x

)

≤ P

(
|〈um′ , ε〉N | ≥ N− 1

2

√
min

(
υ,

α

3

)√
(Lm′Dm′ + x)δm′

)

≤ c′ (p)E ‖ε1‖p N− p

2
N

p

2

(
min

(
υ, α3

)) p

2 (Lm′Dm′ + x)
p

2 δpm′

= c′′ (p, η)
E ‖ε1‖p
δpm′

1

(Lm′Dm′ + x)
p
2

. (6.22)

The last inequality holds using (6.21).
We now bound P1,m′ (x) for those m′ ∈ M such that Dm′ ≥ 1. By using our

version of Corollary 5.1 in Baraud with Ã = Pm′ , Tr
(
Ã
)
= Dm′ and ρ

(
Ã
)
= 1,

we obtain from (4.5) that for any positive xm′

P
(
N ‖Pm′ε‖2N ≥ δ2m′Dm′ + 2δ2m′

√
Dm′xm′ + δ2m′xm′

)
≤ C (p)

E ‖ε1‖p
δpm′

Dm′x
− p

2

m′ .

(6.23)
Since for any β > 0, 2

√
Dm′xm′ ≤ βDm′ + β−1xm′ then (6.23) imply that

P
(
N ‖Pm′ε‖2N ≥ (1 + β)Dm′δ2m′ +

(
1 + β−1

)
xm′δ2m′

)
≤ C (p)

E ‖ε1‖p
δpm′

Dm′x
− p

2

m′ .

(6.24)
Now for some number β depending on η only to be chosen later, we take

xm′ =
(
1 + β−1

)
min

(
υ,

(2− α)−1

3

)
(Lm′Dm′ + x)
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and Np̃1 (m
′) = υLm′Dm′δ2m′ + (1 + β)Dm′δ2m′ . By (6.24) this gives

P1,m′ (x) = P

(
‖Pm′ε‖2N − p̃1 (m

′) ≥ (2− α)
−1

xδ2m′

3N

)

= P

(
N ‖Pm′ε‖2N ≥ υLm′Dm′δ2m′+(1 + β)Dm′δ2m′+

(2− α)−1

3
xδ2m′

)

≤ P
(
N ‖Pm′ε‖2N ≥ (1 + β)Dm′δ2m′ +

(
1 + β−1

)
xm′δ2m′

)

≤ c (p)
E ‖ε1‖p
δpm′

Dm′x
− p

2

m′ ≤ c′ (p, η)
E ‖ε1‖p
δpm′

Dm′

(Lm′Dm′ + x)
p

2

. (6.25)

Gathering (6.22), (6.25) and (6.16) we get that

P

(
H (f) ≥ xδ2m′

N (1− α)

)
≤
∑

m′∈M
P1,m′ (x) +

∑

m′∈M
P2,m′ (x)

≤
∑

m′∈M
c′ (p, η)

E ‖ε1‖p
δpm′

Dm′

(Lm′Dm′ + x)
p

2

+
∑

m′∈M
c′′ (p, η)

E ‖ε1‖p
δpm′

1

(Lm′Dm′ + x)
p

2

.

Since 1
(1−α) =

(
1 + 2η−1

)
, then (6.3) holds:

P

(
H (f) ≥

(
1 + 2η−1

) xδ2m′

N

)

≤
∑

m′∈M

E ‖ε1‖p

δpm′ (Lm′Dm′ + x)
p

2

max (Dm′ , 1) (c′ (p, η) + c′′ (p, η))

= c (p, η)
E ‖ε1‖p
δpm′

∑

m′∈M

Dm′ ∨ 1

(Lm′Dm′ + x)
p

2

.

It remains to choose β and δ for (6.14) to hold (we recall that α = 2
2+η ). This

is the case if (2− α) (1 + β) = 1+ η and
(
2− α+ α−1

)
δ = 1, therefore we take

β = η
2 and δ =

[
1 + η

2 + 2 (1+η)
(2+η)

]−1

.

6.3. Proof of the concentration inequality

Proof of Proposition (4.3)

Proof. Since Ã is nonnegative and symmetric there exists A ∈ RNk×Nk� {0}
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such that Ã = A⊤A. Then

ζ2 (ε) = ε⊤Ãε =(Aε)⊤Aε = ‖Aε‖2 =

[
sup

‖u‖≤1

〈Aε,u〉
]2

=

[
sup

‖u‖≤1

〈
ε, A⊤u

〉
]2

=

[
sup

‖u‖≤1

N∑

i=1

〈
εi,
(
A⊤u

)
i

〉
]2

=

[
sup

‖u‖≤1

N∑

i=1

〈
εi, A

⊤
i u
〉
]2

=


 sup
‖u‖≤1

N∑

i=1

k∑

j=1

εij
(
A⊤

i u
)
j



2

with A = (A1 | . . . | AN ), where Ai is a (Nk)× k matrix.

Now take G = {gu : gu (x) =
∑N

i=1

〈
xi, A

⊤
i u
〉
=
∑N

i=1

〈
Bix, BiA

⊤u
〉
, u,x =

(x1, . . . ,xN )
⊤∈ R(Nk), ‖u‖ ≤ 1}. LetMi = [0, . . . ,0, Ik,0, . . . ,0]

⊤∈ R(Nk)×(Nk),
where Ik is the i-th block of Mi, Bi = [0, . . . , 0, Ik, 0, . . . 0]∈ R(Nk)×(Nk), εi =

Bi ε and Mi ε = [0, . . . ,0, εi,0, . . . ,0]
⊤
.

Then

ζ (ε) = sup
‖u‖≤1

N∑

i=1

gu (Miε) .

Now take Ui = Mi ε, ε ∈ R(Nk). Then for each positive number t and p > 0

P (ζ (ε) ≥ E (ζ (ε)) + t) ≤ P (|ζ (ε)− E (ζ (ε))| > t)

≤ t−pE (|ζ (ε)− E (ζ (ε))|p) by Markov inequality

≤ c (p) t−p

{
E

(
max

i=1,...,N
sup

‖u‖≤1

∣∣〈εi, A⊤
i u
〉∣∣p
)

+

[
E

(
sup

‖u‖≤1

N∑

i=1

(〈
εi, A

⊤
i u
〉)2
)]p/2



= c (p) t−p
(
E1 + E

p/2
2

)
. (6.26)

We start by bounding E1. For all u such that ‖u‖ ≤ 1 and i ∈ {1, . . . , N},
∥∥A⊤

i u
∥∥2 ≤

∥∥A⊤u
∥∥2 ≤ ρ2 (A) ,

where ρ (M) = sup
x 6=0

‖Mx‖
‖x‖ for all matrix M . For p ≥ 2 we have that

∥∥A⊤
i u
∥∥p ≤

ρp−2 (A)
∥∥A⊤

i u
∥∥2, then

∣∣〈εi, A⊤
i u
〉∣∣p ≤

[
‖εi‖

∥∥A⊤
i u
∥∥]p ≤ ρp−2 (A) ‖εi‖p

∥∥A⊤
i u
∥∥2 .

Therefore

E1 ≤ ρp−2 (A)E

(
sup

‖u‖=1

N∑

i=1

‖εi‖p
∥∥A⊤

i u
∥∥2
)
.
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Since ‖u‖ ≤ 1, ∀i = 1, . . . , N

∥∥A⊤
i u
∥∥2 = u⊤AiA

⊤
i u ≤ ρ

(
AiA

⊤
i

)
≤ Tr

(
AiA

⊤
i

)
,

then
N∑

i=1

∥∥A⊤
i u
∥∥2 ≤

N∑

i=1

Tr
(
AiA

⊤
i

)
= Tr

(
N∑

i=1

AiA
⊤
i

)
= Tr

(
Ã
)
.

Thus,

E1 ≤ ρp−2 (A) Tr
(
Ã
)
E (‖ε1‖p) . (6.27)

We now bound E2 via a truncation argument. Since for all u such that ‖u‖ ≤ 1,∥∥A⊤u
∥∥2 ≤ ρ2 (A), for any positive number c to be specified later we have that

E2 ≤ E

(
sup

‖u‖≤1

N∑

i=1

‖εi‖2
∥∥A⊤

i u
∥∥2 1{‖εi‖≤c}

)

+ E

(
sup

‖u‖≤1

N∑

i=1

‖εi‖2
∥∥A⊤

i u
∥∥2 1{‖εi‖>c}

)

≤ E

(
c2 sup

‖u‖≤1

N∑

i=1

∥∥A⊤
i u
∥∥2 1{‖εi‖≤c}

)

+ E

(
sup

‖u‖≤1

N∑

i=1

‖εi‖2
∥∥A⊤

i u
∥∥2 1{‖εi‖>c}

)

≤ c2ρ2 (A) + c2−pE

(
sup

‖u‖≤1

N∑

i=1

‖Aiu‖2 ‖εi‖p
)

≤ c2ρ2 (A) + c2−pE (‖ε1‖p)Tr
(
Ã
)

(6.28)

using the bound obtained for E1. It remains to take cp = E
(
‖ε1‖p

)
Tr
(
Ã
)
/ρ2 (A)

to get that:
E2 ≤ c2ρ2 (A) + c2ρ2 (A) = 2c2ρ2 (A) ,

therefore
E
p/2
2 ≤ 2p/2cpρp (A) , (6.29)

which implies that

2−p/2E
p/2
2 ≤ E (‖ε1‖p)Tr

(
Ã
)
ρp−2 (A) .

We straightforwardly derive from (6.26) that

P
(
ζ2 (ε) ≥ [E (ζ (ε))]

2
+ 2E (ζ (ε)) t+ t2

)
≤ c (p) t−p

(
E1 + E

p/2
2

)
.
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Since [E (ζ (ε))]
2 ≤ E

(
ζ2 (ε)

)
, (6.27) and (6.29) imply that

P
(
ζ2 (ε) ≥ E

(
ζ2 (ε)

)
+ 2
√
E (ζ2 (ε)) t2 + t2

)

≤ c (p) t−p
(
E1 + E

p/2
2

)

≤ c (p) t−p
(
ρp−2 (A) Tr

(
Ã
)
E (‖ε1‖p) + 2p/2E (‖ε1‖p)Tr

(
Ã
)
ρp−2 (A)

)

≤ c′ (p) t−pρp−2 (A) Tr
(
Ã
)
E (‖ε1‖p) , (6.30)

for all t > 0. Moreover

E
(
ζ2 (ε)

)
= E

(
ε⊤Ãε

)
= E

(
Tr
(
ε⊤Ãε

))
= E

(
Tr
(
Ãεε⊤

))

= Tr
(
ÃE
(
εε⊤

))
= Tr

(
Ã (IN ⊗ Φ)

)
= δ2Tr

(
Ã
)

(6.31)

Using (6.31), take t2 = ρ
(
Ã
)
δ2x > 0 in (6.30) to get that

P

(
ζ2 (ε) ≥ δ2Tr

(
Ã
)
+ 2

√
δ2Tr

(
Ã
)
ρ
(
Ã
)
δ2x+ ρ

(
Ã
)
δ2x

)

≤ c′ (p) ρ−p/2
(
Ã
)
δ−p/2x−p/2ρp−2 (A)Tr

(
Ã
)
E (‖ε1‖p) .

Since ρ
(
Ã
)
= ρ2 (A) (with the Euclidean norm) the desired result follows:

P

(
ζ2 (ε) ≥ δ2Tr

(
Ã
)
+ 2δ2

√
ρ
(
Ã
)
Tr
(
Ã
)
x+ δ2ρ

(
Ã
)
x

)

≤ c′ (p)
E ‖ε1‖p

δp

Tr
(
Ã
)

ρ
(
Ã
)
xp/2

. (6.32)
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[22] Schäfer, Juliane and Strimmer, Korbinian. A shrinkage approach
to large-scale covariance matrix estimation and implications for functional
genomics. Stat. Appl. Genet. Mol. Biol., 4:Art. 32, 28 pp. (electronic), 2005.
MR2183942

[23] Stein, Michael L. Interpolation of spatial data. Some theory for kriging.
Springer Series in Statistics. New York, NY: Springer. xvii, 247 p., 1999.
MR1697409

http://www.ams.org/mathscinet-getitem?mr=2485015
http://www.ams.org/mathscinet-getitem?mr=2183942
http://www.ams.org/mathscinet-getitem?mr=1697409

	Introduction
	Nonparametric model selection for covariance estimation
	Notations and preliminary definitions
	Model selection approach for covariance estimation

	Oracle inequality for covariance estimation
	Least squares covariance estimation
	Main result

	Model selection for multidimensional regression
	Oracle inequality for multidimensional regression model
	Concentration bound for random processes

	Numerical examples
	Appendix
	Proofs of preliminary results
	Proofs of main results
	Proof of the concentration inequality

	References

