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Abstract: Frailty models derived from the proportional hazards regres-
sion model are frequently used to analyze clustered right-censored survival
data. We propose a semiparametric Bayesian methodology for this purpose,
modeling both the unknown baseline hazard and density of the random ef-
fects using mixtures of B-splines. The posterior distributions for all regres-
sion coefficients and spline parameters are obtained using Markov Chain
Monte Carlo (MCMC). The methodology permits the use of weighted mix-
tures of parametric and nonparametric components in modeling the hazard
function and frailty distribution; in addition, the spline knots may also be
selected adaptively using reversible-jumpMCMC. Simulations indicate that
the method produces smooth and accurate posterior hazard and frailty den-
sity estimates. The Bayesian approach not only produces point estimators
that outperform existing approaches in certain circumstances, but also of-
fers a wealth of information about the parameters of interest in the form of
MCMC samples from the joint posterior probability distribution. We illus-
trate the adaptability of the method with data from a study of congestive
heart failure.
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1. Introduction

The effects of clustering in survival data are commonly addressed using a gener-
alization of the Cox proportional hazards regression model (Cox, 1972) known
as a proportional hazards frailty model or, for the purposes of this paper, a
frailty model. Specifically, dependence among cluster members is assumed to
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arise through an unobserved random effect, shared by all members of a cluster,
that acts multiplicatively on the hazard function (Clayton and Cuzick, 1985).
The corresponding marginal hazard regression model no longer exhibits a pro-
portional hazards structure; as a result, it is no longer possible to make direct
use of the partial likelihood function (Cox, 1975) in obtaining estimates of the
regression parameters. However, under the assumption that the distribution of
the random effect is a member of a specified parametric family of distributions
(e.g., a gamma distribution) and depending on the model specification for the
baseline hazard function, one may fit either a fully parametric or semiparametric
model to the data (e.g., Andersen et al., 1993, Ch. IX), permitting likelihood-
based estimation of all model parameters.

Extending and building upon these frequentist maximum-likelihood meth-
ods, Bayesian approaches to the frailty model have also emerged. For exam-
ple, Clayton (1991) and Aslanidou, Dey and Sinha (1998) propose modeling the
baseline hazard function in a gamma frailty model with processes that respec-
tively have independent and correlated increments; see Ibrahim, Chen and Sinha
(2001) and Müller and Quintana (2004) for a review. The resulting joint pos-
terior distribution, though generally more computationally expensive to obtain
than its (asymptotic) frequentist counterpart, is often better able to accommo-
date unusual data features and contains a wealth of information in the form of
marginal and conditional posterior distributions for all parameters of interest.
However, the available methods often fail to be semiparametric involving, for
example, piecewise constant baseline hazard specifications that depend on some
discretization of time.

Whether inference is frequentist or Bayesian, the common practice of specify-
ing a parametric family of random effect distributions is a frequently cited disad-
vantage of the frailty model. For example, the results of Kosorok, Lee and Fine
(2004, Prop. 6) show that misspecification of the frailty density can result in
biased estimation of regression coefficients, with the direction of this bias being
unpredictable. To counteract drawbacks related to frailty density misspecifica-
tion, Naskar (2008) proposes to model the baseline hazard function nonparamet-
rically and specifies the distribution of the frailty as a Dirichlet process. In order
to carry out frequentist estimation in this model, Naskar (2008) employs a finite
dimensional approximation to this process that amounts to the specification of
a random discrete probability measure in which the number of point masses is
(where feasible) set equal to the number of clusters. Earlier, Walker and Mallick
(1997) proposed a related Bayesian methodology in which the baseline hazard
function is specified similarly to Aslanidou, Dey and Sinha (1998) and the natu-
ral log of the frailty is assumed to follow an unspecified probability distribution
F with a Pólya tree prior distribution. In theory, the Pólya tree specification
corresponds to a continuous prior distribution; in practice, its use involves the
specification of a finite binary partition of the support of the frailty distribution.
A poorly chosen partition has the potential to obscure important features of the
frailty distribution, or even introduce spurious ones.

In addition to parametric specification of the frailty distribution, there are
some potential disadvantages to using a semiparametric model specification for
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the hazard function in the case of the frailty model. For example, Barker and
Henderson (2005) conjecture that the use of a semiparametric model leads to
systematic underestimation of the frailty variance because the survival time
data primarily influence the estimation of model parameters through their rank
ordering, rather than through their actual magnitudes. In a frequentist context,
Barker and Henderson (2005) also provide some support for this conjecture by
demonstrating the use of local polynomial smoothing methods can reduce the
bias in the estimation of the frailty variance. It is not known to the authors
whether an analogous drawback holds in the case of Bayesian approaches to
semiparametric frailty models.

Collectively, the observations made above suggest consideration of method-
ology that allows for highly flexible but smooth specifications of both the frailty
density and baseline hazard function. In his Ph.D. thesis, Komárek (2006)
presents a Bayesian nonparametric approach to clustered survival, based on the
accelerated failure time model formulation of Pan (2001) and the random ef-
fect density estimation methodology of Ghidey, Lesaffre and Eilers (2004). Both
the random effects density and the event time distribution are modeled as
smooth mixtures of G-splines, with computations facilitated by the use of the
Gibbs sampler. The resulting error and frailty distributions are smooth, al-
lowing for easy visualization and interpretation. In this paper, we propose a
related model that remains within the proportional hazards framework (i.e.,
conditionally upon the frailty) while implementing the desirable features of the
formulation in Komárek and Lesaffre (2008). Specifically, we propose to model
the baseline hazard as a penalized mixture of B-splines and the frailty den-
sity as a penalized mixture of normalized B-splines. Regarding the respective
penalties as corresponding to particular prior specifications and imposing prior
distributions on various other model parameters, we consider a Bayesian ap-
proach to estimation using Markov Chain Monte Carlo (MCMC). Our model
formulation and the deconvolution approach bear some resemblance to those
of Staudenmayer, Ruppert and Buonaccorsi (2008) and Ruppert, Nettleton and
Hwang (2007). The resulting posterior estimates of the baseline hazard and
frailty density are smooth and accurate, and can correctly identify unusual
frailty densities and baseline hazard forms given sufficiently large samples.

Additional model flexibility is achieved in two ways. First, inspired by the
work of Hjort and Glad (1995) and Hjort and Jones (1996), we permit the in-
clusion of parametric components that can incorporate prior knowledge about
the form of the baseline hazard function and frailty density; as shown later, the
resulting spline component can be interpreted as an (additive) smooth but local
departure from the specified parametric model. Second, we allow the number
and position of knots for the hazard and frailty B-spline bases to be chosen in
a data-dependent manner, facilitated here using a reversible jump MCMC pro-
cedure. These extensions respectively improve the performance of the proposed
methods in situations when the hazard or frailty density can be well-modeled
by standard parametric forms or are distinctly non-smooth in nature.

The proposed adaptive knot selection procedure is related to the work of
Denison, Mallick and Smith (1998) and Biller (2000). Such “free-knot” spline
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methods are popular in Bayesian curve-fitting and nonlinear regression (e.g
Smith and Kohn, 1996; DiMatteo, Genovese and Kass, 2001; Lindstrom, 2002).
In the survival analysis setting, Mallick, Denison and Smith (1999) have sug-
gested a Bayesian MARS approach building on the methods of Kooperberg,
Stone and Truong (1995) and LeBlanc and Crowley (1999) for nonparametri-
cally modeling regression coefficient effects, but found that the associated com-
putational complexity made it impractical. Retaining a semiparametric effects
structure and modeling the baseline hazard and frailty density nonparametri-
cally allows great model flexibility while remaining practical for use with large
data sets.

The remainder of this paper is organized as described below. In Section 2,
we introduce the necessary notation, develop the basic model structure and the
aforementioned extensions, and obtain the log-posterior parameter density un-
der an appropriate noninformative right censoring scheme. We summarize the
posterior sampling algorithm and key implementation details in Section 3. Sec-
tion 4 contains illustrative simulation results, and discusses the relative merits
of our approach and existing ones. In Section 5, we use our methodology to an-
alyze data from a study of congestive heart failure patients, to demonstrate the
flexibility and utility of the approach in a practical setting. We conclude with
a brief discussion in Section 6. Appendices A and B respectively contain exam-
ples of important penalties and useful parameterizations of parametric hazard
functions and frailty distributions. The accompanying supplementary materials
(Sharef et al., 2010) to this paper contain an expanded version of Section 3, in-
cluding the various conditional posteriors used in our Gibbs sampling algorithm
and adaptive knot selection stages. The methodology described herein has been
implemented in the R package splinesurv, available from CRAN.

Remark: We adopt a Bayesian philosophy in the development of estimation
and inference procedures in this paper. However, we also take the pragmatic
view that the proposed methods provide a valuable tool for frequentist-based
inference. For example, in the simulations of Section 4, we regard the target of
estimation as being the combination of a fixed but unknown set of regression
parameters, a baseline hazard function, and a frailty density and assess the
frequentist performance of several relevant posterior summaries.

2. Model structure

The basic proportional hazards frailty model, described in Section 2.1, utilizes
B-spline formulations for both the baseline hazard and frailty probability density
function, along with prior specifications that may be used to encourage smooth-
ness. In Section 2.3.1, this model is extended by considering convex combina-
tions of the aforementioned B-splines and (as appropriate) a parametric hazard
or density function. The resulting model, which continues to retain the form
of a proportional hazards frailty model, permits (but does not force) shrinkage
towards a specific parametric hazard function or frailty distribution as well as
allows one to incorporate specific prior knowledge. We describe our methods
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for adaptive selection of the number and placement of the B-spline knots in
Section 2.3.2. Each of the baseline hazard and frailty density curves can then
be specified as some combination of a basic model and its optional extensions,
indexed by a variety of priors and options. The result is a flexible family of
models that allows prior knowledge about the form and smoothness of either
curve to be incorporated into the model fit to the desired extent.

2.1. The proportional hazards frailty model

We assume that the observed data structure includes information on a failure
time outcome and covariate information for m independent clusters of Ji ≥ 1
subjects, i = 1 . . .m. In the absence of any process that censors the observation
of failure times, we suppose that each subject (i, j), i = 1 . . .m, j = 1 . . . Ji expe-
riences a failure (i.e., event) at time Xij , and may have available p-dimensional
fixed covariates Zij . We allow for the possibility of correlation between subjects
within the same cluster by introducing a set of m positive cluster-level random
effects, or frailties, Ui, i = 1 . . .m. The frailties U1 . . . Um are assumed to be
independent and identically distributed with some density f(·) that has mean
one; in addition, for i = 1 . . .m, subjects within the ith cluster are assumed to
be conditionally independent of each other given Ui. Given a baseline hazard
function λ0(·), a p-dimensional vector of regression coefficients β, the frailties
U = (U1 . . . Um)T and covariate information Z = {Zij , j = 1 . . . Ji; i = 1 . . .m},
we further assume that the distribution of Xij , j = 1 . . . Ji, can be specified via
the proportional hazards model

λij(t|U ,Z) = Uiλ0(t)e
ZT

ijβ. (2.1)

Evidently, if the variance of the frailty probability density f(·) is zero, then
P{U1 = U2 = · · · = Um = 1} = 1 and all subjects are mutually independent;
otherwise, members of the same cluster are marginally dependent.

In typical applications, the observation of failure times on one or more sub-
jects may be censored. To allow for the possibility of right-censoring, we as-
sume that the follow-up data observed on subject (i, j) takes the form Tij =
min{Xij , Cij} and δij = I(Xij ≤ Cij), where Cij , j = 1 . . . Ji; i = 1 . . .m are
potential censoring times. Censoring is assumed to be independent and nonin-
formative in the same sense as Nielsen et al. (1992) (i.e., given λ0(·) and β).
Let T and δ denote the vector of failure times and censoring indicators corre-
sponding to the covariates Z and frailties U defined above. Under the indicated
assumptions and conditionally upon Z, the “full data” likelihood function for
(β, λ0) may then be written

L(β, λ0|T , δ,U ,Z) =

m
∏

i=1






f(Ui)×

Ji
∏

j=1

(

Uiλ0(Tij)e
ZT

ijβ
)δij

exp
(

UiΛ0(Tij)e
ZT

ij
β
)






, (2.2)

where Λ0(t) =
∫ t

0 λ(s)ds (e.g. Andersen et al., 1993, Ch. IX).
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2.2. Spline specifications

As indicated earlier, we intend to use splines for modeling λ0(·) and f(·). Ini-
tially, we propose to model λ0(·) as a non-negative linear combination of Kλ

B-spline basis functions Bλk(·), parametrized for example as per de Boor (2001).
The splines are of order Qλ, defined on Nλ = Kλ − Qλ interior knots ξλ dis-
tributed over the range of the event times. The splines are indexed by parameters
θλ, with the weight associated with each spline basis function being given by
wλk = eθλk . That is, for t ≥ 0, the baseline hazard and cumulative hazard
functions are assumed to have the representations

λ0(t|θλ) =

Kλ
∑

k=1

Bλk(t)wλk , Λ0(t|θλ) =

Kλ
∑

k=1

wλk

∫ t

0

Bλk(s)ds . (2.3)

Similarly, the frailty density f(·) is initially modeled as a convex combination
of normalized B-spline basis functions B̃uk(·) of order Qu defined on knots ξu
over a sufficiently large range, where

B̃uk(x) = Buk(x) ·

(∫ ∞

−∞

Buk(s)ds

)−1

for x ≥ 0.

The splines are indexed by parameters θu, and both the B-splines and weights
are normalized to ensure that the density integrates to 1. That is, given θu, we
assume the frailties Ui are independent and identically distributed with proba-
bility density function f(·|θu), where

f(x|θu) =

Ku
∑

k=1

B̃uk(x)wuk, wuk =
exp(θuk)

∑Ku

ℓ=1 exp(θuℓ)
(2.4)

for x ≥ 0 and is zero otherwise. In order to ensure that (2.4) has mean one, it
is further assumed that θu satisfies the additional constraint

Ku
∑

k=1

eθuk =

∫ ∞

−∞

x

[

Ku
∑

k=1

eθukB̃uk(x)

]

dx.

In a frequentist approach to parameter estimation, one would now maximize
the marginal likelihood function that is obtained from (2.2) by integrating out
U . In practice, the EM algorithm or some related variant is typically used for
this purpose (e.g. Andersen et al., 1993, Ch. IX).

2.3. Bayesian modeling

The Bayesian approach to estimation for the frailty model treats U as an ad-
ditional unknown set of parameters; upon introducing prior distributions for
all unknown model parameters, inferences for specific parameters (including U)
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may be derived from the appropriate marginal posterior distribution. In the
present context, a Bayesian approach requires one to specify the prior distribu-
tion for the regression parameters β and spline parameters θ = (θλ, θu).

We assume that β, θλ, and θu are independent. The prior distribution for
β is assumed to be multivariate Gaussian (e.g. Staudenmayer, Ruppert and
Buonaccorsi, 2008); the prior distributions for θλ and θu also have a Gaus-
sian structure, but may incorporate a specific penalty to induce smoothness in
the B-spline coefficients and avoid overfitting. Specifically, denoting the penalty
functions as pλ(θλ) and pu(θu), the corresponding priors may be written

π(β|σ2
β) = (2πσ2

β)
− p

2 exp

(

−
1

2σ2
β

βTβ

)

, (2.5)

π(θλ|σ
2
λ) ∝ (2πσ2

λ)
−

Kλ
2 exp

(

−
1

2σ2
λ

pλ(θλ)

)

, (2.6)

π(θu|σ
2
u) ∝ (2πσ2

u)
−Ku

2 exp

(

−
1

2σ2
u

pu(θu)

)

. (2.7)

The penalty functions pu(·) and pλ(·) may be chosen to follow a simple quadratic
form, as in (2.5), or to penalize second differences in the parameters θu, θλ, the
integrated squared second derivative of the spline, or chosen to impose some
other form of smoothness criteria. Examples of possible penalty functions are
presented in Appendix A. Lastly, we assume inverse-gamma priors for the error
variance parameters σ2

β , σ
2
λ, and σ2

u; for example, we have

π(σ2
β |αβ) ∝ (σ2

β)
−(αβ1+1) exp

(

−
αβ2

σ2
β

)

(2.8)

for a fixed hyperparameter αβ = (αβ1, αβ2)
T , and with analogous definitions

for the priors on σ2
λ and σ2

u. These prior distributions may be quite diffuse.

Remark: The prior distributions (2.6) and (2.7) corresponding to specific choices
of the penalty functions pu(·) and pλ(·) may be improper. Improper priors, while
not uniformly accepted among Bayesians, are commonly used in statistics. There
are many reasons for this; Ghosh, Delampady and Samanta (2006, Ch. 5) pro-
vide a nice discussion. In our setting, the benefits of using an improper prior
for either (2.6) or (2.7) stem mainly from the ability to incorporate smooth-
ness and related qualitative criteria in a natural way. Suitably noninformative
choices, provided one is led to a proper posterior distribution, may also lead to
results that correspond more closely to those that would be obtained using a
related frequentist procedure (e.g., penalized likelihood). However, because the
use of improper priors also can create difficulties with the behavior and con-
vergence of MCMC schemes (Robert and Casella, 2004), care is required in the
selection of these penalty functions.

Under the proposed model specification, and with σ denoting the set of prior
variance parameters (σ2

β , σ
2
λ, σ

2
u), the log-posterior density (up to a constant)

for the parameters of interest may be written



E. Sharef et al./Bayesian B-Splines in proportional hazards models 614

ℓ(U , θ,σ|T , δ,Z)

=
∑

i,j

δij [log(Ui) + logλ0(Tij |θλ)] (2.9)

−
∑

i,j

δijUiΛ0(Tij |θλ)e
ZT

ijβ +
∑

i

log f(Ui|θu) (2.10)

−

(

p

2
log σ2

β +
βTβ

2σ2
β

)

−
∑

d∈{λ,u}

[

Kd

2
log σ2

d +
pd(θd)

2σ2
d

]

(2.11)

−
∑

d∈{β,λ,u}

[

(αd1 + 1) log σ2
d +

αd2

σ2
d

]

, (2.12)

with the terms in (2.9) and (2.10) corresponding to the likelihood (2.2) with f(·)
replaced by (2.4), the terms in (2.11) corresponding to the prior distributions
(2.5)–(2.7), and the terms (2.12) corresponding to the inverse gamma prior
distributions for σ2

β , σ
2
λ, and σ2

u. (e.g., see (2.8)).

2.3.1. Shrinking towards parametric models

One advantage of the Bayesian approach is the possibility of supplementing the
observed data with prior knowledge. In fact, the selection of a specific set of prior
distributions for use in (2.9)-(2.12) implicitly defines a target towards which the
posterior means of (2.3) and (2.4) are respectively to be shrunk. For example,
the use of a mean zero multivariate Gaussian prior distribution shrinks the base-
line hazard function (2.3) towards a constant function. Such targets have little
influence on the model fit in cases where data contain substantial information
about the shape of the underlying curve. However, in the absence of strong guid-
ance from the data, these implicit targets can play a more significant role and
it may be advantageous to define a more explicit target for shrinkage. Unfortu-
nately, it is not easy to define an informative prior on the spline parameters θ
that induces shrinkage towards a specified parametric target.

We therefore propose a modification to the spline models of Section 2.2 that
permits the inclusion of a parametrically specified basis function. Specifically,
we propose to replace the baseline hazard (2.3) with

λ0(t|θλ,ηλ, φλ) = φλ

Kλ
∑

k=1

Bλk(t)wλk + (1− φλ)λ0p(t|ηλ)

Λ0(t|θλ,ηλ, φλ) = φλ

Kλ
∑

k=1

wλk

∫ t

0

Bλk(s)ds+ (1− φλ)Λ0p(t|ηλ) ,

(2.13)

where φλ ∈ [0, 1] and λ0p(·|ηλ) and Λ0p(·|ηλ) respectively denote the hazard
and cumulative hazard functions for a specified parametric family of probability
distributions (e.g., Weibull or lognormal). Similarly, we propose to replace the
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frailty density in (2.4) with

f(x|θu,ηu, φu) = φu

Ku
∑

k=1

B̃uk(x)wuk + (1− φu)fp(x|ηu) , (2.14)

where φu ∈ [0, 1] and fp(·|ηu) denotes the density function for a specified para-
metric family of probability distributions (e.g., gamma or lognormal).

The baseline hazard function in (2.13) may be suggestively rewritten as

λ0(t|θλ,ηλ, φλ) = λ0p(t|ηλ) + φλ

[

Kλ
∑

k=1

Bλk(t)wλk − λ0p(t|ηλ)

]

,

with analogous representations available for the cumulative hazard and frailty
density. Consequently, we may view the proposed model extension as being
equivalent to using a parametric baseline hazard, allowing for possibility of a
smooth but local deviation. The prior on the weight φλ can be used to specify
the degree of confidence in the parametric component. For example, a prior
favoring small values of φλ ensures that the fit will shrink more towards the
parametric specification in data-poor circumstances. The use of Beta priors
on the weights φ = (φλ, φu) with fixed hyperparameters αφλ

,αφu
provides a

simple but sensible choice. For example, a nonuniform prior such as Beta(1, 2)
(triangular) ensures that the weight of the nonparametric component shrinks if
it does not capture much information beyond that captured by the parametric
portion. Alternatively, a Beta(2, 1) prior may be used to place additional weight
on the nonparametric component if an unusual structure is suspected. Fixing
φ = (1, 1) reduces the model to that considered in Section 2.1, whereas φ =
(0, 0) leads to a purely parametric Bayesian survival model.

Priors for the parametric terms ηλ and ηu necessarily depend on the de-
sired parametric form. Denote the priors by πλ(ηλ|τηλ

) and πu(ηu|τηu
), where

τηλ
, τηu

index the prior distributions and may themselves have priors depending
on fixed hyperparameters, say, αη = (αηλ

,αηu
). In practice, we have found it

effective to parametrize the distributions λ0p, fp in a way that permits Gaus-
sian priors. Some example choices for common parametric forms are presented
in Appendix B.

The log of the resulting posterior density (up to a constant) is then given by:

ℓ(U , θ,η,φ,σ, τ |T , δ,Z) = ℓ(U , θ,σ|η,φ,T , δ,Z)

+ log
[

φ
(αφλ1−1)

λ (1−φλ)
(αφλ2−1)

]

+ log
[

φ
(αφu1−1)
u (1−φu)

(αφu2−1)
]

(2.15)

+ log πλ(ηλ|τηλ
) + log πu(ηu|τηu

) + log πη(τηλ
, τηu

|αη) (2.16)

where ℓ(U , θ,σ|η,φ,T , δ,Z) is analogous to (2.9)–(2.12), with (2.13) and (2.14)
substituted for the hazard and frailty curves. The terms in (2.15) correspond to
the Beta priors on the weights, and the terms in (2.16) correspond to the priors
on the parametric components.
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2.3.2. Adaptive knot selection

Little attention has been paid in Sections 2.2 and 2.3.1 to the choice of the
number of spline knots Nλ, Nu and their positions ξλ, ξu. Both have a profound
effect on the smoothness of the estimated hazard curve or frailty density: in-
cluding only few widely-spaced knots generally leads to very smooth curves,
whereas for multiple knots in close proximity, smoothness has to be enforced by
a penalty in order to avoid the risk of overfitting.

In the work of Staudenmayer, Ruppert and Buonaccorsi (2008) and Komárek
and Lesaffre (2008), the number of knots is fixed and their positions are dis-
tributed evenly over the range of the data. If the underlying curve is smooth,
this approach yields excellent results in conjunction with smoothing penalties in
the priors of eq. (2.6) and (2.7), provided that the knots and smoothing penal-
ties are well-chosen. However, in the survival analysis setting, such specifications
can be more challenging because the hazard function is really only observable
through the uncensored event times.

Most forms of penalized smoothing act globally over the range of the data;
however, there is often no a priori reason to suspect that all regions of the func-
tion(s) being modeled are similarly smooth. One way to relax the imposition of
global smoothness in spline smoothing is to permit the data to help determine
the “best” choices for both the number and position of the knots. An advantage
of the Bayesian approach is that the number and positions of knots may be
treated as additional parameters to be estimated. Mallick, Denison and Smith
(1999) propose a Bayesian MARS method in which the hazard is a nonpara-
metric function of the covariates, estimated by reversible-jump MCMC (Green,
1995) following Denison, Mallick and Smith (1998). Biller (2000) introduced an
approach for automatic knot selection for generalized linear models using natu-
ral cubic splines, in which the number of knots and spline weights were chosen
by reversible-jump MCMC methods. These procedures make it possible to sam-
ple from the posterior of the model set consisting of different numbers and
placements of knots, and corresponding different dimensionality of the spline
parameters. However, such additional flexibility does not come for free: estima-
tion via MCMC is more complicated in comparison with the fixed knot setting
because the total parameter dimension is not fixed a priori, but changes across
successive Monte Carlo iterations.

It is possible to extend the spline formulation of Section 2.1 in the manner
described above while taking into account the added complexities of the survival
model specification and frailty deconvolution. In addition to the steps required
to sample from the posterior of the parameters introduced in the preceding
sections, the adaptive knot selection procedure consists of three possible moves
that affect the hazard and frailty density curves by changing their B-spline
basis: the addition of a knot (birth step), the removal of a knot (death step),
and the change in position of a knot (move step). We allow the N = (Nλ, Nu)
knots ξ = (ξλ, ξu) to take positions on a larger, predetermined set of candidate
positions, say ξcλ = {ξcλ1, . . . , ξ

c
λMλ

}, ξcu = {ξcu1, . . . , ξ
c
uMu

}. These candidate
knot specifications constitute a prior on knot placement. For example,the Mλ
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candidate knots used for the baseline hazard might be selected as quantiles of
the observed event times, making data-rich regions more likely to contain knots.
During the birth step, an unoccupied candidate knot is added to the knot set;
during the death step, an occupied knot is removed; and, during the move step,
a knot relocates from its current position to a nearby candidate position.

When selecting the knots adaptively, the smoothness of the curve can be dic-
tated by the number of knots and their positions, with no need for an additional
smoothing penalty. In this case, the prior on the number of knots N plays a key
role in specifying the smoothness. Denison, Mallick and Smith (1998) suggests
placing Poisson priors on the number of knots, and simulation experiments con-
ducted by Biller (2000) indicate that this gives good results in the context of
nonlinear regression. The Poisson prior is strongly informative, and allows great
control over the smoothness of the resulting curve, at the risk of overfitting.
In contrast, less informative priors such as a Geometric or Negative Binomial
can be used to penalize large numbers of knots and give preference to smoother
curves. We consider these and other priors in the supplementary materials.

Let π(ξ|N) and log π(N) respectively denote the prior distributions selected
for knot position and parameter dimension. Then, the joint log-posterior density
(up to a constant) is obtained by incorporating this prior information into (2.9)–
(2.12); specifically, we have

ℓ(U , θ,σ, ξ,N |T , δ,Z)

= ℓ(U , θ,σ|T , δ,Z, ξ,N) + log π(ξ|N) + log π(N) , (2.17)

where ℓ(U , θ,σ|T , δ,Z, ξ,N) is as in eq. (2.9)–(2.12). A parametric component
may be included as well, in the same way as discussed in Section 2.3.1. Further
details on the reversible-jump MCMC procedure are provided in Section 3.3.

3. Sampling from the posterior distribution

The algorithm used to sample from the joint posterior distribution consists
of three types of steps: initialization, parameter updates via Gibbs sampling
and Metropolis-Hastings MCMC, and, if desired, adaptive knot selection via
reversible-jump MCMC. After initialization, posterior samples of all parameters
can be drawn by ordinary and reversible-jump MCMC steps, repeated as long
as needed to ensure convergence of the chain and a sufficient number of samples
from the posterior. Figure 1 shows the structure of the algorithm. We briefly
discuss initialization of the algorithm in Section 3.1 and the Metropolis-Hastings
update steps in Section 3.2. The reversible-jump method used for knot selection
is discussed in Section 3.3. Expanded versions of these sections are contained in
the supplementary materials and in Sharef (2008).

3.1. Initialization

Even though the chain can in principle be initialized at any value, we find that
good starting values hasten the convergence of the chain and reduce the risk of
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Initialize

?

1. Update the frailties U

2. Update the regression coefficients β

3. Update the baseline hazard curve

(a) If including a spline component, update coefficients θλ

(b) If including a parametric component, update

parametric component parameters ηλ

(c) If including both components, update weight φλ

(d) If including a spline component, and using adaptive

knot selection, choose one:

i. Add a new knot (birth)

ii. Remove an existing knot (death)

iii. Move an existing knot

4. Update the frailty density curve analogously to step 3.

5. Generate the variance parameters σ2

-

Repeat

Fig 1. Structure of the sampling algorithm.

numerical problems. Fixing all hyperparameters α to be 0.01 and all variances
σ to be 0.1 results in suitably noninformative priors. We have found that fitting
a frequentist proportional hazards model (e.g. via coxph in R) provides good
initial values for both the frailtiesU and regression coefficients β. For the hazard
spline, we set the number of knots to Nλ = min(

∑

i Ji/4, 35) and distribute the
knots evenly across the quantiles of the event times.

The frailty density spline is specified on Nu = min(m/4, 35) knots dis-
tributed evenly across twice the range of the initial values of U as determined
above, subject to positivity constraints. The spline and parametric coefficients
θλ, θu,ηλ,ηu are initialized by maximizing their conditional log-likelihoods given
the remaining terms.
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3.2. Metropolis-Hastings MCMC steps

Once initial values have been obtained, the algorithm proceeds through the
MCMC sampling loop of Fig. 1 for a specified number of iterations. Apart from
the adaptive knot selection steps, the loop consists of successive Gibbs sampling
steps, in which each set of parameters is updated in turn by Metropolis-Hastings.
Cluster frailties U are updated independently, with candidates generated from
gamma distributions centered at their current values. Regression coefficients β
and curve coefficients θλ,ηλ,ηu are each updated with normal candidates. The
frailty spline parameters θu are updated pairwise in order to ensure that the
frailty density mean remains fixed at 1. That is, when generating a proposal
vector, we select two elements, say θur and θuv, to update; upon generating a
new proposal value for θur, the mean constraint implies the value for θuv. For the
weights φ, a beta transition kernel is used; lastly, each of the variance parameters
in σ2 is sampled from its corresponding conditional posterior Inverse-Gamma
distribution. Each of these steps depends on a distinct tuning parameter, set
in such a way to maintain an acceptance rate of approximately 25%. Since
setting so many tuning parameters by hand is impractical, they can instead
be automatically tuned during the burn-in period. Further details on candidate
generation and acceptance probabilities may be found in the supplementary
materials and also in Sharef (2008).

3.3. Reversible-jump MCMC for adaptive knot selection

Throughout the steps discussed in Section 3.2, the number of knots in the model,
hence dimension of the spline parameters θλ, θu, has remained fixed. In order
to enable adaptive knot selection, we not only allow knots to move, but also
permit changes in dimension, such as adding a knot (birth step) or deleting a
knot (death step). The basic procedure is identical for both the hazard function
and frailty density; hence, we discuss the procedure below in general terms only,
omitting subscripts that identify the parameters as referring to either curve.

As indicated above, adaptive knot selection requires three types of steps:
the “move” step, in which the position of a single knot is changed to some new
point between its neighbor knots; the “birth” step, in which a new knot is added
after a randomly chosen knot and the dimension of the spline parameter θ in-
creases; and, the “death” step, in which a randomly chosen knot is removed and
the dimension of the parameter decreases. The move step requires no dimen-
sion change and a standard Metropolis-Hastings update is sufficient. However,
the death and birth steps involve a change in model dimension; hence, we use
reversible-jump MCMC subject to a “dimension-matching” constraint (Green,
1995). Typically, transitions between a model indexed by a parameter set θ of
dimension k and a candidate model indexed by parameters θ̃ of dimension k̃ are
accomplished by generating m uniform random numbers u and computing the
candidate by a deterministic function θ̃ = θ̃(θ,u). For the reverse move, one
generates m̃ random numbers ũ and computes the candidate as θ = θ(θ̃, ũ). To
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ensure reversibility, the mapping between (θ,u) and (θ̃, ũ) must be bijective,
and in particular, the dimension-matching constraint m+k = m̃+ k̃ must hold.

Following Denison, Mallick and Smith (1998), at each iteration we choose
randomly whether to execute a birth, death, or move step. Given N = n, the
probability of taking birth, death or move step is respectively

bn = c min

{

1,
πN (n+ 1)

πN (n)

}

, dn = c min

{

1,
πN (n− 1)

πN (n)

}

, mn = 1−bn−dn ,

where the constant c controls the rate of dimension-changing steps and bnπN (n) =
dn+1πN (n + 1). As in Denison, Mallick and Smith (1998), we take c = 0.4. We
provide further details on the move step in Section 3.3.1, the birth step in Sec-
tion 3.3.2, and the death step in Section 3.3.3.

3.3.1. Knot position change (move step)

In the move step, a single knot position ξk to be moved is chosen uniformly
from the set of interior knots, and changed to a random new candidate position
located between its neighboring knots. That is, the candidate knot position
ξ̃k is selected uniformly from the set of candidate locations ξc ∈ ξc such that
ξk−1 < ξc < ξk+1. Since the prior on the knot positions is discrete uniform over
the set of candidate knots, the prior probabilities for knots ξ and the candidate
ξ̃ are identical. Since no dimension change is required, the new knot positions
are accepted with a Metropolis-Hastings probability. The spline parameters θ

remain unchanged.

3.3.2. Knot addition (birth step)

In the birth move, a random unoccupied candidate knot ξc ∈ ξc is chosen to be
added to the current set of knots ξ, of length N . Denote by k the interval of the
current knot set containing ξc, so that ξk < ξc < ξk+1. The new candidate knot
set is then given by ξ̃ = {ξ1, . . . , ξk, ξ

c, ξk+1, . . . , ξN}, of length Ñ = N + 1.
The set of spline coefficients θ of length K must be updated to a candidate

set θ̃ of length K̃ = K+1. There are simple rules for non-destructively inserting
a new knot into a B-spline function (de Boor, 2001), but using these directly
would violate the reversibility and dimension-matching constraint between the
birth and death moves mentioned earlier. Since the birth move begins in a model
of dimension K and its reverse begins at dimension K +1, we need to generate
an additional random number for the birth move. Intuitively, since removing a
knot is a destructive procedure and may cause the shape of the curve to change,
we must during the birth move be able to generate the set of curves that would
reduce to the original curve upon removal of the new knot.

To do this, we compute the candidate spline parameters θ̃ for inserting a
knot ξc ∈ (ξk, ξk+1) as follows:
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θ̃j =















θj if j ≤ k + 1
θj−1 if j > k +Q
log
(

rje
θj + (1− rj)e

θj−1

)

if k + 1 < j < k +Q
log
(

ueθj + (1− u)eθj−1

)

if j = k +Q

(3.1)

where rj = (ξc − ξj−Q)/(ξj−1 − ξj−Q), and u ∼ U(0, 1). These rules correspond

to the deterministic rules in de Boor (2001), except that the parameter θ̃k+Q

is perturbed by a random amount, rather than by the knot ratio rk+Q. The

candidate number of knots Ñ and spline parameters θ̃ are then accepted with
probability

ρ = min {1, RL ·RP · RT · |J |} , (3.2)

where RL is the relevant likelihood ratio (see (2.17)), RP is the prior ratio
encompassing the priors on the number of knots and knot positions, RT is the
transition ratio and J is the Jacobian of the transformation in (3.1). Expressions
for these terms may be found in the supplementary materials.

3.3.3. Knot deletion (death step)

In the death step, a single knot ξk is chosen uniformly from the set of knots
ξ to be removed. The candidate knot set for the next iteration is then ξ̃ =
{ξ1, . . . , ξk−1, ξk+1, . . . , ξN}. The spline parameters are correspondingly adjusted
by the inverse of the transformation in (3.1), that is, by deleting θk+Q−1 and
adjusting the remaining parameters as

θ̃j =











θj if j < k + 1
θj+1 if j ≥ k +Q− 1

log
(

1
rj
eθj −

1−rj
rj

eθj−1

)

if k + 1 ≤ j < k +Q− 1

Because the birth and death moves are symmetrically defined, the likelihood
ratio, prior ratio, transition ratio and Jacobian determinant are the inverses of
those in eq. (3.2).

4. Simulation studies

We implemented the methodology described in Section 3 in the R package
splinesurv. In order to establish the performance and flexibility of the method,
we conducted simulation studies under a variety of settings that intend to inves-
tigate the capacity of the method to correctly identify the form of the underlying
baseline hazard and frailty density, for different numbers of clusters and cluster
sizes. Furthermore, we desired to show that the estimated regression coefficients
β and frailty variance parameter ν2 can be accurately estimated. We remark
here that ν2 is not an explicit model parameter but rather a functional of the
frailty density; for example, under (2.4), ν2 = ν2(θu), where

ν2(θu) =

∫

x≥0

(x − 1)2f(x|θu)dx; (4.1)
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Fig 2. “True” baseline hazard curves, survival functions and frailty densities used for gener-
ating simulated data in each of the three simulation scenarios.

alternatively, one may replace (2.4) with (2.14). We focus on this particular
summary since it is frequently of interest in analyses utilizing a parametric
frailty model.

We consider three scenarios within which to test the method, differing in the
form of the “true” baseline hazard and frailty density used to generate simulated
data. The first, referred to as the “Parametric” scenario, is characterized by a
Weibull hazard and a lognormal frailty density. In the “Smooth” scenario, the
baseline hazard is a smooth curve not easily described by typical parametric
forms, and the frailty density is a mixture of two lognormal distributions. In the
“Stepfunction” scenario, the baseline hazard is a discontinuous step function,
and the frailty distribution is a mixture of uniform densities. Figure 2 contains
plots of the hazard, survival and frailty in each of the three scenarios.

For purposes of the simulation, a replication consists of first generating frail-
ties Ui, i = 1 . . .m from the scenario’s frailty density. A single covariate is
generated for each subject as Z ∼ N(0, 1). The single regression coefficient is
fixed at β = 1. Given the frailty and covariate, event times can then be generated
using the baseline hazard for the scenario. Censoring times are independently
generated from a Weibull hazard with parameters chosen for each scenario to
yield approximately a 20% censoring rate. The simulated sample generated in
this way can then be fit using the splinesurv package.

4.1. Curve fitting performance

To explore the effects of sample size on the quality of the curve fits, we first
simulate a single dataset for various sample sizes, under each scenario, and
explore the effect of different model specifications. We limit ourselves to four
sample sizes for each scenario, setting the number of clusters to either m = 10
or m = 500, and the cluster size to either Ji = 10 or Ji = 500, i = 1 . . .m.
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We also include a sample size and censoring profile matching the data to be
analyzed in Sec. 5

The methodology is very flexible, offering a range of choices of penalty func-
tions, parametric distributions, prior parameters, and the option of adaptive
knot selection. For brevity, we only select one model specification for purposes
of demonstrating curve-fitting here. For both the hazard and frailty, we include
a spline component only, using a simple Gaussian prior on the spline parameters
(corresponding to the penalty function in Section A.1). We allow for adaptive
knot selection with a truncated Poisson prior on the number of knots, with
means µλ = µu = 10 and a maximum of 35 knots, and 100 candidate knots
distributed uniformly over the range of the data. Each fit was run for a 2000-
iteration burn-in, during which tuning parameters were chosen adaptively to
ensure approximately a 25% parameter acceptance rate, followed by 3000 iter-
ations used for constructing posterior estimates.

The results are shown in Figure 3, where we report posterior means and
95% pointwise credible intervals, and suggest that the methodology functions
as intended: in each scenario, the fitted models capture the features of the
underlying hazard and frailty curves with sufficiently large samples. The number
of clusters appears to have a more immediate effect on the quality of the fit
than does the cluster size, especially for the frailty density. In order to obtain
an accurate estimate of the frailty density, a large number of clusters is required,
but these clusters need not be large. With few, large clusters, the form of the
hazard can be identified, while the frailty distribution cannot. Hazard estimates
in the Stepfunction scenario display sharp spikes at the points of discontinuity—
this is an artifact caused by the use of cubic splines in a scenario where linear
splines would have been better able to capture the discontinuity.

Following these single dataset analyses, we repeated this process 1000 times.
Averaging the posterior mean estimates over multiple replications shows that
the baseline hazard curve is estimated with great accuracy and only minimal
smoothing bias (see Fig. 4). If the number of clusters is large, the frailty density
can be well-estimated also. Further such simulation results (not shown here)
indicate that fixed-knot penalized splines perform well in the Parametric and
Smooth scenarios, but do quite poorly in the Stepfunction scenario, as the sharp
trough cannot be captured without significant smoothing error. Further, the
inclusion of a correctly specified parametric component improves curve-fitting
performance in the Parametric scenario, and does not significantly affect the
other scenarios.

4.2. Parameter estimation performance

In order to establish the ability of the procedure to estimate the regression
parameter and the frailty variance, we conduct a simulation study at smaller
sample sizes. Sample sizes under all three scenarios are limited to 10, 50 and
500 clusters of size 10 or 50 or 500, excluding the largest combination. We fur-
ther introduce a sample with the same cluster number and sizes, and censoring
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Fig 3. Baseline hazard and frailty density curve fitting results of a single replication conducted
under each of the three scenarios, for different sample sizes.
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Fig 4. Baseline hazard and frailty density estimates, aggregated over 1000 replications (10
for the largest sample) for each of the three scenarios, for different sample sizes.
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characteristics similar to the data set to be analyzed in sec. 5. The scenarios are
specified as before.

We consider six spline model specifications: The first two are fourth order
spline-only models with adaptively chosen knots and Poisson(10) or Poisson(20)
priors respectively on the number of knots, as described for Figure 3. The third
and fourth add parametric components, consisting of a Weibull baseline and a
lognormal frailty curve, with a Beta(1, 2) prior on the weight, thus giving slight
preference to the parametric component. We note here that these parametric
components are correctly specified in the Parametric scenario but not other-
wise. The fifth is a fixed-knot penalized spline model specified according to
Section 2.1, with equally spaced knots and a penalty on the integrated squared
second derivative, following Section A.3. The sixth is similar, but penalizes the
squared second differences between the parameters, as per Section A.2. Penal-
ized spline fits can be sensitive to the choice of hyperparameters; these were
chosen here so as to give reasonably smooth curves in several test scenarios;
we intentionally did not choose the “best” settings, but instead tried to select
parameters as one might do if the underlying curve were unknown.

In Bayesian estimation by MCMC, the collection of posterior samples con-
tains a great deal of useful information. However, for the purposes of this simula-
tion study, and to enable comparison with frequentist methodology, we construct
point estimators from these posterior samples and summarize their frequentist
performance. Natural estimators for the regression coefficient β include the mean
and median of its marginal posterior distribution, estimated for each simulated
dataset from the corresponding MCMC samples from the joint posterior distri-
bution. Similarly, for the frailty variance ν2, one may utilize the posterior mean
or median of (4.1), obtained for each simulated dataset using the correspond-
ing MCMC samples from the posterior distribution of the parameters defining
either (2.4) or (2.14).

Tables 1 and 2 respectively contain the simulated biases of the posterior
mean and median point estimators based on 1000 simulations for each of the
spline model specifications. For comparison, we also fit a (misspecified) gamma
frailty model as described in Therneau and Grambsch (2000) using the R rou-
tine coxph. In general, the results show that the proposed Bayesian modeling
scheme yields good estimates of the regression coefficient, with the similarity
between means and medians reflecting symmetry in the posterior. With few ex-
ceptions, the biases are acceptably small and similar to the regression coefficients
estimated under the gamma frailty model.

When additionally accounting for estimation of the frailty variance, we see
that the adaptive methods perform very well in the Parametric setting; here,
increasing the prior mean number of knots also has no clear effect, as evidenced
by the comparable performance of the Adapt(10) and Adapt(20) methods. In
fact, most of the methods perform quite well in the Parametric setting across
the range of sample sizes considered, a notable exception being the Penalized
(2nd diff.) prior when estimating ν2. The story is somewhat less consistent out-
side of the Parametric setting, where the Penalized (2nd deriv.) prior arguably
exhibits some robustness and turns in the best overall performance. The Penal-
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Table 1

Percentage bias of posterior means of the regression coefficient and frailty variance in six
model specifications, and a gamma frailty model. Results are based on 1000 replications

Parametric Smooth Stepfunction
Bias % Bias % Bias %

Method m Ji Censor β ν2 β ν2 β ν2

Adapt(10) 10 10 0.20 −1.51 5.82 3.32 41.87 1.25 63.08
50 0.20 −0.78 3.28 0.32 31.44 0.57 59.66

500 0.20 0.22 −0.61 0.17 27.26 0.15 60.02
50 10 0.20 0.79 −0.31 1.60 20.95 1.03 39.49

50 0.20 0.13 1.95 0.45 10.33 0.03 29.60
500 10 0.20 0.28 −14.05 0.75 12.22 0.59 17.13
31 6 0.40 −0.11 −4.22 2.39 37.26 0.82 65.44

Adapt(20) 10 10 0.20 −2.17 2.16 3.02 55.01 −2.46 75.60
50 0.20 −0.35 6.36 0.90 40.15 0.61 65.23

500 0.20 0.00 8.58 0.17 37.28 0.13 67.22
50 10 0.20 1.19 −1.34 0.39 24.78 1.50 53.26

50 0.20 0.44 2.09 0.32 14.96 0.06 34.16
500 10 0.20 −0.09 −12.40 0.38 11.41 0.69 16.54
31 6 0.40 −1.27 −0.27 3.35 50.79 0.60 72.00

Adapt(10)+Par 10 10 0.20 0.87 −10.30 −1.02 36.39 −2.84 82.45
50 0.20 −0.16 −5.00 −0.21 35.46 −0.55 77.80

500 0.20 0.05 −6.76 −0.06 34.89 −0.11 83.79
50 10 0.20 −0.59 −10.18 0.21 33.41 0.00 77.88

50 0.20 −0.27 −10.95 −0.01 26.05 −0.00 60.69
500 10 0.20 −0.25 −21.13 0.63 19.73 0.72 28.82
31 6 0.40 −2.57 −6.95 −0.16 43.41 −1.92 91.32

Adapt(20)+Par 10 10 0.20 −1.58 −2.67 −0.40 38.59 −5.66 81.94
50 0.20 −0.79 −1.11 0.30 38.22 −0.47 91.63

500 0.20 −0.14 −5.70 0.06 38.83 0.00 89.04
50 10 0.20 0.05 −10.69 0.63 33.63 0.61 80.34

50 0.20 0.02 −11.38 0.36 26.55 0.22 59.99
500 10 0.20 0.07 −20.58 0.48 19.61 0.58 27.57
31 6 0.40 −2.53 −4.56 0.85 41.90 −1.42 89.30

Pen. (2nd deriv.) 10 10 0.20 4.44 −14.32 −16.00 −15.12 −11.25 3.03
50 0.20 −0.98 −12.98 −6.08 −0.86 −6.01 18.93

500 0.20 1.23 −4.99 −0.41 12.26 −1.36 20.39
50 10 0.20 −0.20 −10.05 −6.07 −1.17 −5.93 3.66

50 0.20 0.60 1.86 −1.16 3.46 −1.74 8.16
500 10 0.20 1.09 −4.61 0.04 2.54 −0.98 9.11
31 6 0.40 6.90 −12.76 −11.22 −6.31 −6.70 10.45

Pen. (2nd diff.) 10 10 0.20 2.05 −39.31 0.40 −15.29 2.68 8.51
50 0.20 0.86 −30.45 0.19 −8.08 −1.30 4.51

500 0.20 −0.19 −28.79 −0.17 −6.22 −0.63 6.07
50 10 0.20 −1.38 −44.00 −0.35 −13.12 −1.24 2.82

50 0.20 −0.74 −31.34 −0.15 −6.85 −0.08 2.41
500 10 0.20 −0.44 −15.50 0.02 0.55 −0.43 4.02
31 6 0.40 −3.91 −59.44 −3.43 −23.60 −1.72 1.31

Cox: gamma 10 10 0.20 −0.89 −44.26 0.02 7.73 −2.46 52.53
50 0.20 −1.09 −12.91 −0.23 29.70 −0.64 74.10

500 0.20 0.29 33.98 −0.02 47.93 −0.28 93.92
50 10 0.20 0.52 −35.16 0.02 9.70 0.29 75.17

50 0.20 1.03 −3.51 0.51 34.70 0.25 69.11
500 10 0.20 −0.89 −37.63 0.08 14.27 0.06 70.07
31 6 0.40 2.27 −45.01 0.78 9.50 −1.86 48.16

ized (2nd diff.) prior is observed to perform especially well in the Stepfunction
(i.e., nonsmooth) setting and acceptably well in the Smooth setting; the adap-
tive methods also perform well across all settings with larger total sample sizes.
The adaptive methods that include a parametric component perform admirably
in estimating the regression coefficients in all cases. These also do very well in
estimating the frailty variance in the Parametric setting (i.e., where both para-
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Table 2

Percentage bias of posterior medians of the regression coefficient and frailty variance in six
model specifications. Results are based on 1000 replications

Parametric Smooth Stepfunction
Bias % Bias % Bias %

Method m Ji Censor β ν2 β ν2 β ν2

Adapt(10) 10 10 0.20 −1.76 0.60 3.16 36.80 1.07 57.97
50 0.20 −0.88 −2.96 0.25 24.36 0.48 55.73

500 0.20 0.19 −6.14 0.13 20.92 0.09 57.08
50 10 0.20 0.70 −3.61 1.54 16.61 0.99 34.31

50 0.20 0.10 −0.30 0.39 6.53 −0.02 26.06
500 10 0.20 0.25 −14.75 0.69 11.73 0.55 16.51
31 6 0.40 −0.34 −8.98 2.33 31.46 0.70 59.28

Adapt(20) 10 10 0.20 −2.46 −0.21 2.87 53.03 −2.58 73.04
50 0.20 −0.42 1.09 0.86 35.43 0.57 62.17

500 0.20 −0.04 3.66 0.11 32.49 0.08 65.74
50 10 0.20 1.11 −4.08 0.31 19.85 1.45 49.84

50 0.20 0.40 0.55 0.26 11.11 0.01 31.31
500 10 0.20 −0.11 −12.87 0.34 10.83 0.65 15.82
31 6 0.40 −1.45 −2.91 3.27 48.67 0.48 68.14

Adapt(10)+Par 10 10 0.20 0.74 −13.33 −1.15 24.55 −2.90 47.54
50 0.20 −0.18 −4.71 −0.25 21.59 −0.58 45.77

500 0.20 0.04 −3.81 −0.11 22.94 −0.16 52.66
50 10 0.20 −0.63 −6.27 0.14 17.27 −0.04 37.08

50 0.20 −0.29 0.72 −0.06 6.42 −0.06 30.46
500 10 0.20 −0.26 −16.74 0.58 15.45 0.69 21.96
31 6 0.40 −2.74 −16.37 −0.29 22.60 −2.10 52.45

Adapt(20)+Par 10 10 0.20 −1.66 −2.23 −0.54 33.79 −5.79 59.84
50 0.20 −0.83 2.96 0.27 33.49 −0.52 70.30

500 0.20 −0.15 −0.84 0.01 34.28 −0.04 64.30
50 10 0.20 0.02 −7.24 0.56 17.28 0.52 44.84

50 0.20 0.01 −1.76 0.30 9.59 0.17 35.44
500 10 0.20 0.06 −16.16 0.43 15.69 0.54 20.66
31 6 0.40 −2.57 −13.05 0.72 28.71 −1.52 56.56

Pen. (2nd deriv.) 10 10 0.20 4.39 −15.37 −15.99 −18.84 −11.11 1.50
50 0.20 −0.93 −14.99 −6.04 −1.93 −5.95 19.81

500 0.20 1.23 −6.32 −0.42 12.32 −1.36 20.28
50 10 0.20 −0.17 −12.12 −6.07 −3.85 −5.91 0.21

50 0.20 0.60 0.30 −1.17 1.18 −1.72 5.20
500 10 0.20 1.09 −4.89 0.05 2.09 −0.97 8.48
31 6 0.40 6.81 −15.03 −11.16 −9.08 −6.65 7.24

Pen. (2nd diff.) 10 10 0.20 1.98 −43.40 0.30 −18.87 2.55 5.41
50 0.20 0.82 −34.79 0.18 −10.32 −1.30 3.00

500 0.20 −0.19 −32.63 −0.16 −8.32 −0.63 4.20
50 10 0.20 −1.43 −45.21 −0.38 −14.17 −1.27 2.31

50 0.20 −0.76 −32.72 −0.15 −7.36 −0.08 1.99
500 10 0.20 −0.44 −15.87 0.02 0.12 −0.43 3.55
31 6 0.40 −4.04 −62.70 −3.56 −26.44 −1.87 −1.70

metric components are correctly specified). Outside of this setting, the degree
of smoothness and sample / cluster size have a clear impact on performance.

In general, the results suggest that the Penalized (2nd deriv.) prior is the best
overall choice unless one has strong prior information to suggest that the baseline
hazard and frailty distributions are particularly smooth (in which case adaptive
methods with or without a parametric start perform commendably well) or
particularly nonsmooth (in which case Penalized (2nd diff.) is perhaps the best
choice). The frequentist performance of the posterior mean and median tend
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to be comparable for estimating regression coefficients; the posterior median
exhibits somewhat less bias in comparison with the mean for estimating the
frailty variance, with the greatest benefits being observed in the Smooth and
Stepfunction settings when used in combination with adaptive knot selection.

As expected, the results for the gamma frailty model in Table 1 exhibit
good performance for estimating the regression coefficient in all settings, de-
spite a misspecified frailty distribution; however, relatively poor performance is
observed for estimating the frailty variance. In our opinion, the results suggest
that the use of the Penalized (2nd deriv.) prior creates an acceptable and gener-
ally robust tradeoff, with the potential for mildly increased bias in the regression
coefficients being offset by substantial reductions in the bias of the estimated
frailty variance.

5. Example

5.1. Congestive heart failure data description

We consider data from a study conducted in a 487-bed, not-for-profit commu-
nity hospital located in southeast Michigan. The study population consisted of
patients with either systolic or diastolic heart failure, and was originally iden-
tified for the purposes of a randomized, controlled clinical trial designed to
compare a pro-active case management strategy to standard care on all-cause
re-hospitalizations. A planned secondary analysis was to determine prognostic
factors for readmission or mortality.

Patients were eligible for the study if they were hospitalized on an inter-
nal or family medicine service between October 29, 2002 and September 20,
2003 and received intravenous diuretics to treat possible heart failure. Interven-
tion patients were assessed by a cardiology nurse practitioner who developed
a protocol-driven discharge plan that could include telemanagement, an out-
patient nurse-run heart failure clinic, or usual care. All control patients were
managed by the usual discharge planning activities of hospital staff. Of the 440
patients enrolled in the study, 17 died during the index hospitalization and were
removed from the sample, resulting in a cohort of 423 patients. Unfortunately,
approximately one-half of the patients assigned to the intervention arm were
discharged prior to receiving the complete intervention. Using an intent-to-treat
analysis, (e.g. Fisher et al., 1990), no difference between the intervention or con-
trol groups was found for the outcome of all-cause subsequent hospitalizations
or emergency department encounters.

Below, we proceed to re-analyze the data, defining the event of interest as
a patient’s first rehospitalization or death during the 180 day period following
the index hospitalization. Of the 423 patients, 257 such events were observed,
of which 233 are rehospitalizations and the remainder are deaths. The remain-
ing 39.2% of patients are considered to be censored as of the end of followup.
Patients are clustered into 31 groups by their attending physician, ranging in
size between 1 and 80 patients, with mean and median cluster sizes of 14 and
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Table 3

Covariates and basic descriptive statistics for the congestive heart failure data

Name Description Mean Median SD
hxsumINPTorER Prior hospitalizations and ED visits (count) 0.88 0.00 1.31
minHb Minimum hemoglobin 10.79 10.80 2.07
LN lastCREAT Last creatinine log 0.26 0.22 0.45
LN maxGLU Maximum glucose log 5.12 5.04 0.41
minPLTSlt50k Indicator: minimum platelet count ¡105 0.02 0.00 0.13
lastPOTASgt5 Indicator: last potassium >5 0.04 0.00 0.19
itoECF Indicator: discharged to nursing home 0.19 0.00 0.39
ejectionpctcon Cardiac ejection fraction 43.66 45.00 16.47
dcbeta Indicator: beta-blockers 0.54 1.00 0.50
dcaceiorarb Indicator: ACE Inhibitors 0.61 1.00 0.49

5.5 respectively. A wide range of explanatory variable data are available for
each patient. Since treatment was not administered to half of the intervention
group patients, treatment group membership is excluded from the set of covari-
ates. Covariates with more than 5% missing values were not considered for the
purposes of this analysis; for all remaining covariates, we imputed any missing
covariate values by their respective median values. A subset of these remaining
covariates has been selected using a combination of stepwise automated proce-
dures and consultations with study clinicians. These covariates, along with basic
descriptive statistics, are summarized in Table 3.

5.2. Model selection and fitting

In the absence of external information on which to base a model choice, we fit
all six model specifications presented in Sec. 4.2. Prior to analysis, all covariates
were centered and standardized; we found empirically that doing so improved
the mixing properties of the MCMC procedure. The sampling chain is run for
50,000 iterations, discarding the first 20,000 iterates as burn-in and thinning
the chain to every 10th sample. In order to provide a measure of model dis-
crimination and means for selection, we used a modified version of the original
Deviance Information Criterion (DIC; Spiegelhalter et al., 2002). In particular,
we computed

DIC = D̄ +
V

2
, (5.1)

where D̄ and V are respectively the sample mean and variance of deviance
calculated at each MCMC step. Here, V/2 is used as an estimator of the effective
number of parameters pD because, unlike the usual estimator, it is guaranteed
to be non-negative; see (Gelman et al., 2004, p. 182). Estimated DIC values are
shown Table 4. Consistent with simulation results, these results indicate that a
model fitting penalized splines to the hazard and frailty density using a prior
that reflects a second-derivative-type penalty is a good choice.

We focus our attention below on the indicated model; results pertinent to this
model fit are summarized in Table 5 and Figure 5. Recall the hazard and frailty
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Table 4

Deviance Information Criterion estimates for six model specifications, fitted to the
congestive heart failure data

Model DIC
Adapt(10) 3487.1
Adapt(20) 3869.5
Adapt(10)+Par 3424.7
Adapt(20)+Par 3604.59
Pen. (2nd deriv.) 2807.7
Pen. (2nd diff.) 3033.5

Table 5

Posterior means (PM) and 95% credible intervals of regression coefficients and frailty
variance, for models using penalized splines and adaptive splines, fitted to congestive heart

failure data, compared to gamma and lognormal frailty model estimates from coxph

Pen. (2nd deriv.) Adapt(10)
Covariate PM 2.5% 97.5% PM 2.5% 97.5%

hxsumINPTorER 0.324 0.197 0.444 0.245 0.127 0.354
minHb −0.256 −0.409 −0.107 −0.199 −0.335 −0.067
LN lastCREAT 0.196 0.036 0.357 0.157 0.017 0.303
LN maxGLU 0.120 −0.031 0.264 0.113 −0.023 0.244
minPLTSlt50k 0.144 0.025 0.252 0.120 0.008 0.224
lastPOTASgt5 0.138 0.010 0.255 0.079 −0.041 0.191
itoECF 0.112 −0.017 0.240 0.104 −0.013 0.219
ejectionpctcon −0.129 −0.289 0.024 −0.104 −0.238 0.027
dcbeta −0.057 −0.200 0.085 −0.039 −0.167 0.090
dcaceiorarb −0.052 −0.197 0.092 −0.034 −0.156 0.093
minHb:LN lastCREAT 0.100 −0.044 0.259 0.167 0.032 0.308
Frailty Variance 0.406 0.216 0.692 0.716 0.176 1.533

Cox: gamma Cox: lognormal
Covariate Est SD Pval Est SD Pval

hxsumINPTorER 0.248 0.056 0.000 0.249 0.056 0.000
minHb −0.193 0.069 0.005 −0.195 0.070 0.005
LN lastCREAT 0.236 0.074 0.001 0.235 0.074 0.002
LN maxGLU 0.122 0.067 0.068 0.123 0.067 0.066
minPLTSlt50k 0.138 0.051 0.007 0.138 0.051 0.007
lastPOTASgt5 0.122 0.055 0.026 0.120 0.055 0.028
itoECF 0.129 0.060 0.033 0.129 0.060 0.033
ejectionpctcon −0.117 0.071 0.098 −0.119 0.071 0.094
dcbeta −0.055 0.065 0.398 −0.055 0.065 0.400
dcaceiorarb −0.045 0.066 0.502 −0.043 0.066 0.517
minHb:LN lastCREAT 0.189 0.073 0.010 0.190 0.073 0.009
Frailty Variance 0.000 0.001

are specified following Sections 2.1 using fourth-order (cubic) splines. Table 5
shows the posterior mean and 95% posterior intervals for the covariate effects
and the variance of the random effects in the first three columns. We observe
substantial agreement in the signs and magnitudes of the regression coefficients
in comparison with both the gamma and lognormal frailty models fit using
coxph and summarized in the lower half of Table 5. For comparison, we also
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Fig 5. Upper panel: Hazard, survival and frailty density estimates, and 95% pointwise pos-
terior intervals for the congestive heart failure data. The baseline represents a patient with
average covariates. Lower panel: Boxplots of the marginal posterior distributions for each of
31 cluster-level frailties, sorted in order of ascending posterior mean. Box width indicates the
cluster size.

provide the regression results and frailty variance obtained under the Adapt(10)
spline model specification. Comparable results are again observed for the regres-
sion parameters, with the frailty variance estimate having a substantially larger
posterior mean and variation.

Both of the spline-based models suggest the existence of a frailty effect,
whereas the frailty variance is effectively estimated to be zero in both the gamma
and lognormal frailty models. Based on the results summarized in Section 4, care
is clearly required when interpreting these point estimates; all variance estima-
tors exhibit some bias. For example, with the indicated sample size and under
the Smooth setting (e.g., Table 1), we see a positive bias for the Adapt(10)
setting and negative bias for the Pen. (2nd deriv.) setting, suggesting that the
posterior mean of the frailty variance may perhaps lie closer to 0.5 or 0.6.

The top panel of Figure 5 shows the posterior mean estimate of the hazard,
survival and frailty density curves, as well as pointwise 95% credible bands for
each. The shape of the hazard and frailty density estimates is arguably poorly
described by a parametric model. We observe that the risk for readmission or
death is greatest shortly after discharge from the index hospitalization, declin-
ing rapidly during the first few weeks post-discharge, then more slowly before
reaching a minimum at approximately 120 days. There is a secondary peak
around 150 days. This pattern of risk suggests that the design of interventions
for postponing mortality or readmissions should be targeted at the care transi-
tion from the hospital to home or to another facility, with most of the benefit
being realized in the first few months following the index event.

The Bayesian approach allows the marginal posterior distributions of the
physician-level effects Ui, i = 1 . . . 31 (i.e., frailties) to be examined. The lower
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panel of Figure 5 shows boxplots that summarizes the main features of these
marginal posteriors. The height and width of the boxes indicate that, with
increasing cluster size, the marginal posterior distributions of the frailties exhibit
less dispersion and tend to be larger than the prior mean. In the absence of
heterogeneity, one would expect to see each boxplot centered approximately at
the prior mean (i.e., one). The observed pattern is consistent with the existence
of heterogeneity, and perhaps even suggests the possibility at least two distinct
groups of physicians or defining practice characteristics.

The results summarized above rely on approximate samples from the poste-
rior distribution obtained via MCMC. We monitor the mixing of chain param-
eters by examining trace plots and autocorrelation functions of the posterior
samples. The trace plots for coefficients in Figure 6 indicate that the regression
coefficient estimates have converged. Kernel density estimates based on the pos-
terior samples suggest approximately normal marginal posterior distributions.
However, estimates of the frailty variance do appear to mix at a lower rate than
the other parameters, and show some evidence of long-term autocorrelation.

Previous studies have suggested that physician-level variables, such as physi-
cian volume and specialty, impact both the readmissions and mortality of heart
failure patients (Jong et al., 2003; Cujec et al., 2005). The influence of the physi-
cian as the frailty effect on heart failure outcomes, as examined in our study, may
be a novel contribution. However, it is also possible that the observed hetero-
geneity merely reflects physician-level differences not currently adjusted for in
the hazard model. For example, in this data set, the physician clusters actually
represent groups of physicians who share responsibilities as attending physicians
for hospital care. There are inter-cluster differences in training (specialist and
generalist) and also scope of practice: academic hospitalists, private practice
hospitalists, and community physicians (Halasyamani et al., 2005). The physi-
cian effect may also serve as a proxy for differences between in-hospital and
post-hospital systems of care delivery. Community physicians are more likely to
follow their patients personally after hospital discharge, whereas the academic
and private hospitalists frequently transition such care to other physicians. The
information available in this data set is not sufficient to examine these potential
influences. Further research is needed to determine which, if any, of these effects
contribute in a significant and modifiable way to heart failure outcomes.

5.3. Choice of model specification and priors

We now illustrate the effects of selecting an alternative model specification or
different priors when analyzing the same data set. Instead of the penalized spline
specification selected by the DIC criterion in Section 5.2, we fit an adaptive
spline model with a parametric component, as described in Section 2.3.1.

Figure 7 shows the curves and frailties obtained using adaptive splines speci-
fied per the Adapt(20)+Par specification introduced in Section 4.2. This model
specification consists of a Poisson(20) prior on the number of spline knots and
models the baseline hazard and frailty density as a mixture of B-splines and a
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Fig 6. Trace plots, autocorrelation functions, and posterior density estimates for a regression
coefficients (defined in Table 3) and frailty variance (denoted by fvar) of a penalized spline
fit to the congestive heart failure data.
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Fig 7. Upper panel: Hazard, survival and frailty density estimates, and 95% pointwise pos-
terior intervals for the congestive heart failure data. Adapt(20)+Parametric model specifica-
tion, with Weibull and lognormal parametric components for the hazard and frailty density
respectively. Component weight prior is Beta(1, 2), which favors the parametric component.
The baseline represents a patient with average covariates. Lower panel: Boxplots of posterior
frailty estimates for each of the 31 clusters, sorted in order of ascending posterior mean. Box
width indicates the cluster size.

parametric curve, here being a a Weibull hazard function and lognormal den-
sity, respectively. The curves in the top panel show that the specification has
a substantial smoothing effect on the hazard and frailty density estimates. In
particular, the parametric component dominates the frailty density, making it
appear nearly lognormal, but has a smaller effect on the estimated hazard curve.
The lower panel in Figure 7 shows that the marginal posterior distributions of
the frailties exhibit greater variation in comparison with those in Figure 5, an
effect that seems particularly noticeable with smaller clusters.

We next use the congestive heart failure data to illustrate the effect of choos-
ing different priors on the number of knots. Figure 7 used a Poisson(20) prior
on the number of knots. The top panel of Figure 8 compares this fit to those
resulting from different Poisson prior choices. As expected, setting the prior to
Poisson(1) leads to excessively smooth fits, whereas the Poisson(50) curve is
considerably more variable and shows potentially undesirable detail. The effect
on the survival curve is relatively small, however, as local bumps in the hazard
are smoothed out by the integration.

The second and third panels show the effect of using geometric and negative
binomial priors for the number of knots. As noted by Biller (2000), these priors
universally encourage smoother fits, and are relatively insensitive to the choice
of parameters. This is a desirable property if a more robust fit is preferred,
but if control over the smoothness of the curve is desired, the Poisson prior is
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Fig 8. Illustrating the effect of choosing different priors on the number of knots, and different
prior parameters for the spline weight. Credible intervals shown correspond to the black line
in each plot.

preferable. DIC might be used to select the mean of the Poisson prior.
The relative prominence of the parametric and spline components can be

controlled through the prior on the weights φ. The bottom panel of Figure 8
shows the effects of changing the prior to Beta(1, 10) and Beta(10, 1), which
respectively place more and less emphasis on the parametric component. The
frailty density is more sensitive to changes in the prior weight than the hazard
curve, because with only 31 clusters, the data contain much less information
regarding the shape of the frailty density.
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6. Discussion

The proposed Bayesian methodology permits the analysis of clustered survival
data when the underlying frailty distribution is unknown, helping to mitigate
the impact associated with the specification of an incorrect parametric model
on the assessment of heterogeneity. Our simulation results demonstrate that
the method generally performs well, particularly so in cases where the data
contain many clusters of reasonable size. From a frequentist perspective, lev-
els of bias and also coverage (results not shown) for the posterior mean and
median regression coefficients are generally comparable to those obtained un-
der the gamma frailty model; in addition, substantial reductions in the bias
of the frailty variance are frequently achieved. The results further demonstrate
that unusual baseline hazards and frailty distributions can be correctly iden-
tified in the presence of sufficient information; the resulting gain in flexibility
and information available from the proposed methodology may help to offset
its concomitant (and potentially substantial) computational cost. Extensions
of the methodology to accomodate stratification and time-dependent covariates
are conceptually simple; however, at the time of this writing, such extensions
are not supported by the accompanying R package.

The Bayesian approach provides a wealth of information in the form of the
joint posterior distribution of all parameters of interest. MCMC sampling pro-
vides the joint posterior of the hazard and survival, as well as for cluster- level
frailties; in addition, unlike standard frequentist methods of estimation for the
proportional hazards frailty model, uncertainty in the frailty variance (i.e., den-
sity) is naturally reflected in the posterior behavior of all parameter estimates.
Through the deliberate specification of priors, the Bayesian approach permits
great flexibility in model specification. For example, with appropriate priors and
hyperparameters, the smoothness of the baseline hazard and frailty density are
mainly controlled through the prior distribution. In addition, in settings where
either curve can be well-modeled using a parametric family of distributions,
the inclusion of an appropriate parametric component results in smoother, less
variable fits. Importantly, one is also not limited to prior specifications that are
primarily designed to control the degree of smoothness in the baseline hazard
function and frailty density; where available, practitioners can easily incorporate
prior information on model parameters and the general shape of the baseline
hazard function, decreasing the possibility of obscuring important effects.

The statistical methodology developed here may also prove to be a useful
tool for public policy audiences. Re-hospitalizations of Medicare patients within
30 days (as a binary outcome) are receiving increasing scrutiny due to their
frequency and costs (Jencks, Williams and Coleman, 2009). In addition, there
is on-going dialogue regarding the current payment system and how it can be
redesigned to align better with improved patient outcomes (Averill et al., 2009).
Despite the interest in outcomes reported at the cluster (eg. hospital, physician)
level, existing multivariable models in the clinical literature provide only a mod-
est amount of explanatory information (Ross et al., 2008; Keenan et al., 2008),
with hospital performance typically represented by normally-distributed ran-
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dom intercepts. Implicit to such “profiling” approaches is that the unexplained
variability may signal important quality-related performance differences at the
cluster level (Keenan et al., 2008). Our flexible modeling approach may help to
accelerate understanding of the nature and influence of the providers in such ap-
plications, which often involve large databases, through modeling provider-level
effects in a more nonparametric way. Understanding the provider characteristics
associated with the best (and worst) outcomes in such a distribution may help
in identifying the best practices to replicate.
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Appendix A: Choice of penalty functions

A.1. Gaussian penalty

The penalty function may be chosen to yield a Gaussian prior on the parameter
set, for example pλ(θλ) = θT

λ θλ, and analogously for pu(θu). This penalty func-
tion is recommended when adaptive knot selection is used, since in that case,
the smoothness of the curve is controlled through the prior on the number of
knots, and does not need to be explicitly penalized.

A.2. Penalty on second differences

Let D be a matrix so that Dy computes the second difference in y, and let
P = DTD. Then, for analogously defined matrices Pλ,Pu of the appropriate
dimensions, the following functions penalize the second differences in the spline
parameters:

pλ(θλ) = θT
λPλθλ , pu(θu) = θT

uPuθu .

While this choice of penalty function is appropriate when the knots are equally
spaced, it does not necessarily result in smooth behavior otherwise. When knots
are unevenly spaced, it is possible to adjust the matrix D to compute appropri-
ately scaled differences.

A.3. Penalty on the second derivative

In order to ensure smoothness even when knots are not equally spaced, we can
construct a penalty on the second derivative of the spline. In the case of the
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baseline hazard spline, that is

pλ(θλ) =

∫ ∞

0

(

λ
(2)
0 (t, θλ)

)2

dt =

∫ ∞

0

(

Kλ
∑

k=1

B
(2)
λk (t) exp(θλk)

)2

dt = eθλ
T
Pλe

θλ ,

where Pλ is a matrix whose (j, k) entry is

Pλ,jk =

∫ ∞

0

B
(2)
λj (t)B

(2)
λk (t) dt .

We can construct an analogous penalty matrix for the frailty density, keeping
in mind that the frailty density uses normalized splines, that is,

pu(θu) =
eθu

T
P̃ue

θu

(1T
Ku

eθu)2
, where P̃u,jk =

∫ ∞

0

B̃
(2)
uj (t)B̃

(2)
uk (t) dt .

Appendix B: Choice of parametric components

Both the baseline hazard and frailty density may have optional parametric com-
ponents. In this section, we present some of the possible choices of distributions,
parametrized in a way that allows Gaussian priors:

An exponential baseline hazard can be parametrized by a constant log-hazard
ηλ = ηλ, so that the hazard function is

λ0p(t,ηλ) = exp(ηλ) , Λ0p(t,ηλ) = t exp(ηλ) .

Similarly, the Weibull baseline hazard is parametrized by a log-hazard ηλ1
and log scale parameter ηλ2, so the hazard function is

λ0p(t,ηλ) = exp(ηλ1+ηλ2+(eηλ2 −1) log t) , Λ0p(t,ηλ) = exp(ηλ1)t
exp(ηλ2) .

For the frailty distribution, we parametrize a gamma frailty distribution by
its log-variance ηu, resulting in the following parametric density component:

fp(x, ηu) = xexp(−ηu)−1 exp(−ηu)
exp(−ηu)e− exp(−ηu)x

Γ(exp(−ηu))
.

Similarly, the lognormal frailty density parametrized by a log-variance pa-
rameter ηu gives:

fp(x, ηu) =
exp

(

−
(log x+ 1

2
exp(ηu))

2

2 exp(ηu)

)

x
√

2π exp(ηu)
.

Supplementary Material

Supplementary materials to accompany “Bayesian adaptive B-spline

estimation in proportional hazards frailty models” by Sharef, Straw-

derman, Ruppert, Cowen, and Halasyamani

(doi: 10.1214/10-EJS566SUPP). The supplementary materials contain an ex-
panded version of Section 3, including the various conditional posteriors used
in our Gibbs sampling algorithm and adaptive knot selection stages.

http://dx.doi.org/10.1214/10-EJS566SUPP
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