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Abstract: We consider drift estimation of a discretely observed Ornstein-
Uhlenbeck process driven by a possibly heavy-tailed symmetric Lévy pro-
cess with positive activity index β. Under an infill and large-time sampling
design, we first establish an asymptotic normality of a self-weighted least

absolute deviation estimator with the rate of convergence being
√
nh

1−1/β
n ,

where n denotes sample size and hn > 0 the sampling mesh satisfying that
hn → 0 and nhn → ∞. This implies that the rate of convergence is de-
termined by the most active part of the driving Lévy process; the presence
of a driving Wiener part leads to

√
nhn, which is familiar in the context

of asymptotically efficient estimation of diffusions with compound Poisson
jumps, while a pure-jump driving Lévy process leads to a faster one. Also
discussed is how to construct corresponding asymptotic confidence regions
without full specification of the driving Lévy process. Second, by means
of a polynomial type large deviation inequality we derive convergence of
moments of our estimator under additional conditions.
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1. Introduction

Estimation of discretely observed stochastic processes with jumps has received
growing interest from both theoreticians and practitioners. Among others, Marko-
vian Ornstein-Uhlenbeck (OU for short) process has several attractive features
mainly stemming from its continuous-time first-order autoregressive structure.
Let X = (Xt)t∈R+ be the univariate OU process given by the stochastic differ-
ential equation

dXt = (γ − λXt)dt+ dZt, (1.1)

where Z is a nontrivial symmetric Lévy process independent of X0. In this
paper, we are concerned with estimation of the true value θ0 := (λ0, γ0) of the
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unknown parameter
θ := (λ, γ) ∈ Θ ⊂ (0,∞)× R

based on a discrete-time data (Xti)
n
i=0, without full specification of Z’s Lévy

measure. Here ti = tni = ih with hn > 0 such that hn → 0 and nhn → ∞
as n → ∞, that is, we consider infill and large-time asymptotics for sampling
design; in the sequel, we often use the abbreviation h = hn.

Analysis of non-Gaussian OU processes was initiated by Doob [10] for sym-
metric stable Z. The general Lévy driven case has been highlighted in applica-
tion fields, especially in finance and turbulence, by, among others, Barndorff-
Nielsen [2] and Barndorff-Nielsen and Shephard [3]. Also, stochastic modelling of
several physical phenomena has been supported by the non-Gaussianity through
realistic experimentations, see, e.g., Garbaczewski and Olkiewicz [12] and the
references therein. In the stochastic differential equation (1.1), λ and γ stands
for the “intensity of the mean reversion” and the “instantaneous constant drift”,
respectively. Here the mean-reversion level is γ/λ, which also corresponds to the
“long-run (invariant) mean” of the process X . We know the general relation

mλκ(m) = κZ(m), m ∈ N,

between the mth cumulants κ(m) and κZ(m) of X ’s invariant distribution and
the distribution of Z1, respectively; cf. Barndorff-Nielsen and Shephard [3, Sec-
tion 2.1], and also (2.5) below. In particular, a smaller λ > 0 (a weaker mean
reversion) leads to a larger long-run mean in magnitude in the presence of a
nonnull instantaneous mean, and also, to a larger long-run variance. Due to its
mathematical tractability against diversity of Lévy processes, OU processes are
still being a subject of research in the field of statistical inference for stochastic
processes. We refer to Masuda [22] for more detailed information and history
about general Lévy driven OU processes.

There are several existing literatures on estimation of OU processes, however,
most of them are concerned with cases where the sampling mesh h is fixed, and
where µ = 0 and Z has no negative jumps, so that X takes values in (0,∞).
In this case, among others: Jongbloed et al. [16] considered a nonparametric
estimation of the Lévy density of Z together with a simple consistent estimator
of λ; Jongbloed and van der Meulen [15] studied a parametric estimation based
on the “cumulant M -estimator”, which is a kind of weighted minimum L2-
distance contrast functions; Brockwell et al. [6] derived the limit distribution of
the Davis-MacCormick estimator, which cannot be of direct use when jumps of Z
are bilateral, and also discussed possibility of consistent estimation of λ as soon
as h → 0 even when nh is fixed. Also, the recent work Creal [7] investigated
performances of filtering and smoothing algorithms for estimating integrated
squared positive OU processes, which is a key quantity in the stochastic volatility
model of Barndorff-Nielsen and Shephard [3].

As we target drift estimation, the most naive but practical way would be to
use the approximate least-squares estimator (LSE), which minimizes the con-
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trast function

θ 7→
n
∑

i=1

{Xti −Xti−1 − h(γ − λXti−1)}2.

Indeed, the LSE fulfils an asymptotic normality when Z is centered with finite
moments and nh2 → 0 as nh → ∞, the resulting rate of convergence being
necessarily

√
nh; see Masuda [23] as well as Section 2.2.2 below. Although the

rate
√
nh is well known to be optimal in the context of drift estimation of

diffusions with compound Poisson jumps, our main result says that this is no
longer the case as soon as Z is of pure-jump type. Hu and Long [14] recently
studied the LSE for λ > 0 when Z is symmetric β-stable, with supposing that
γ0 = 0 from the beginning. Our results are completely different from theirs in
view of the rate of convergence and the limit distribution; see Section 2.2.2 for
some theoretical comparisons between their result and ours.

Instead, motivated by Ling [20], in this paper we introduce an approximate
least absolute deviation (LAD) type estimator and study its asymptotic behav-
ior. The LAD estimation has a long history and is one of popular estimation
procedures robust to outlying observations. The LAD estimator is based on
the “Laplacian” L1-loss, while the LSE on the “Gaussian” L2-one. We refer to,
among others, Knight [17], Koenker [18], and Portnoy and Koenker [25] as well
as the references therein for a detailed account and historical backgrounds of
the LAD estimation. The LAD type estimation has been deeply investigated
also in the time-series literature, e.g., Davis and Dunsmuir [8], Davis et al.
[9], and so on. Just for illustrative purposes, suppose that observed time-series
data stems from the ergodic first-order autoregressive model Xk = θ0Xk−1+ ǫk,
k ≤ n, where |θ0| < 1 and (ǫk) is an i.i.d. noise sequence with common median 0.

Then, the unweighted LAD estimator θ̂n of θ0 is defined to be a minimizer of the
contrast function θ 7→ ∑n

k=1 |Xk−θXk−1|. If ǫ1 admits finite absolute moments

of sufficiently high order, θ̂n is known to be asymptotically normally distributed
at rate

√
n. On the other hand, in case where ǫk has infinite-variance, it is known

that the maximum likelihood and the LAD estimators have a faster rate of con-
vergence than

√
n, while both of them lead to intractable limit distributions; see

Andrews et al. [1] and Davis et al. [9] for details in this direction. On the other
hand, Ling [20] introduced a self-weighted LAD (SLAD) contrast function for
infinite-variance autoregressive models, which entails asymptotically normally
distributed estimators at rate

√
n. That is to say, Ling’s result means that we

may derive a conventional asymptotic normality result in compensation for the
slower rate of convergence than the maximum likelihood and the unweighted
LAD estimators. It can be expected that the SLAD estimation can be employed
on a robust drift estimation for discretely observed continuous-time stochastic
processes as well, in which large jumps may deteriorate finite-sample perfor-
mance of the LSE or, more generally, the quasi-likelihood estimator.

Our SLAD estimator is defined as a minimizer θ̂n of the contrast function

θ 7→
n
∑

i=1

w(Xti−1 )|Xti −Xti−1 − h(γ − λXti−1)|,
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for an appropriate weight function w; the unweighted LAD estimation corre-
sponds to the case where w ≡ 1. Under regularity conditions, we first derive an
asymptotic normality of θ̂n at rate

√
nh1−1/β (see Theorem 2.1), where β stands

for the activity index of the driving Lévy process defined by (2.4) below. As a
result, when Z is of pure-jump type, we have a faster rate of convergence than
the familiar

√
nh. It is interesting that we could get faster rate of convergence

only by changing the type of loss from L2 to L1. Although the corresponding
asymptotic covariance matrix as well as the rate of convergence inevitably de-
pends on the unknown index β, we clarify that it is possible to formulate a
feasible construction of asymptotic confidence interval; specifically, we can con-
struct explicit statistics T̂n such that T̂n(θ̂n − θ0) tends to the standard normal
distribution (see Theorem 2.3). Due to robustness of LAD type estimates to
“outlying” data, our SLAD estimator should be robust to “big” jumps caused
by the driving process Z without individual detection of them, making the es-
timation procedure more practical. Also obtained under additional conditions
is the convergence of moments of the normalized quantities

√
nh1−1/β(θ̂n − θ0)

(see Theorem 2.2). This much stronger mode of convergence is obtained as a
byproduct of the polynomial type large deviation inequality (4.16), which we
prove by applying a general result due to Yoshida [34]. Finally, we remark that
convergence of moments as well as a large deviation inequality is a crucial tool
for investigating: asymptotic behavior of expected values of statistics depending
on estimators; also, error estimate appearing in higher-order theoretical statis-
tics. For smooth statistical random fields associated with a stochastic process,
large deviation inequalities have been investigated and applied, e.g., to the infor-
mation criteria in model selection, the validity of higher-order asymptotic statis-
tical theory, and moment convergence for quasi-likelihood and Bayes estimators
of multidimensional ergodic diffusion processes; among others, see Uchida and
Yoshida [32, 33], Sakamoto and Yoshida [28], and Yoshida [34] for details in these
directions. To the best of author’s knowledge, our Theorem 2.2 is the first result
providing a large deviation inequality and convergence of moments associated
with a non-differentiable LAD type statistical random fields for dependent data.

The rest of this paper is organized as follows. Our main results are given
in Section 2, along with several preliminary facts. We present some numerical
experiments in Section 3. Finally, Section 4 is devoted to the proofs.

2. Asymptotic behavior of the SLAD estimator

2.1. Preliminaries and statement of main results

Let X be given by (1.1), and denote by η the initial distribution of X . Through-
out this paper we assume that:

Θ is a bounded convex domain such that its closure Θ− ⊂ (0,∞)× R; (2.1)

hn → 0 and nhn → ∞; (2.2)

There exists a constant q > 0 such that

∫

|x|qη(dx) < ∞. (2.3)
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Here and in what follows, asymptotic symbols are used for n → ∞ unless oth-
erwise mentioned.

We denote by ν and σ2 the Lévy measure and Gaussian variance of Z, respec-
tively; we implicitly presuppose that either σ2 > 0 or ν(R) > 0, excluding the
trivial case. We refer to Sato [29] for a systematic account of Lévy processes. For
the purpose of investigating sample-path properties of processes with indepen-
dent increments, Blumenthal and Getoor [5] introduced the notion of “activity
index” defined by inf{r > 0 :

∫

|z|≤1
|z|rν(dz) < ∞}, which measures the degree

of small-jump fluctuations. The index plays a crucial role in our main results.
One of our regularity conditions (Assumption 1 below) takes essentially different
forms according as σ2 > 0 or σ2 = 0. It turns out to be convenient in this paper
to introduce the following modified activity index β of Z:

β :=

{

2, if σ2 > 0,

inf
{

r > 0 :
∫

|z|≤1 |z|rν(dz) < ∞
}

, if σ2 = 0.
(2.4)

As β ≤ 2, we always have
√
nh1−1/β → ∞ under (2.2).

2.1.1. Asymptotic normality

We impose some structural assumptions on Z.

Assumption 1. (Structure of Z)

1. ν is symmetric around the origin,

∫

|z|>1

|z|qν(dz) < ∞

(q is the same one as in (2.3)), and the characteristic function of Zt is
given by

ϕZt(u) := exp

{

t

(

− σ2

2
u2 +

∫

(cos(uz)− 1)ν(dz)

)}

, u ∈ R.

2. If σ2 = 0, then ν is decomposed as ν = ν′ + ν′′ for two Lévy measures ν′

and ν′′ satisfying the following (a) and (b).

(a) ν′ admits a (symmetric) density g on U\{0} for an open neighborhood
U of the origin, where g fulfils that

g(z) = c|z|−1−β{1 + g̃(z)}

for some β ∈ (0, 2), c > 0, and a function g̃ such that g̃(z) = O(|z|δ)
as |z| → 0 for some δ > 0.

(b) β′′ := inf
{

r ≥ 0 :
∫

|z|≤1
|z|rν′′(dz)

}

∈ [0, β).
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We may ignore Assumption 1.2 if σ2 > 0. Roughly speaking, Assumption 1.2
entails that small fluctuations of Z should be like that of a β-stable Lévy process;
note that g̃ may take a negative value near the origin (e.g., g̃(z) = e−|z|−1), and
in particular, that the measure ν′′ and the function g̃ are identically null for the
symmetric β-stable Z. Especially if g(z) = |z|−1−βv(z) with v being positive,
bounded, and smooth on U\{0}, then we have δ = 1 in Assumption 1.2(a).
Typical such examples are the generalized hyperbolic (except for the variance
gamma) and the exponentially tempered stable cases, the corresponding Lévy
densities (on the whole R\{0}) of which are given by

z 7→ a0|z|−2 + a1|z|−1 + o(|z|−1)

for |z| → 0 and
z 7→ b0|z|−1−βe−b1|z|,

respectively, with some positive constants ak and bk; see Raible [26, pp.39–40]
for the former, and Rosiński [27] as well as the references therein for the latter.

Before proceeding, we point out some facts concerning the OU processes.
Denote by P0 the distribution of X associated with θ0, and by E0 the corre-
sponding expectation operator. Then we know the following, both of which are
essential in our forthcoming results.

• X admits a unique invariant distribution, say π0 (depending on θ0), and is
exponentially absolute regular (hence exponentially strong-mixing) under
P0.

•
∫

|x|qπ0(dx) < ∞ and supt∈R+
E0[|Xt|q] < ∞, with q being the same one

as in Assumption 1.

See Masuda [22, 24] for more details. We also note that π0 is necessarily selfde-
composable, hence admits a density with respect to the Lebesgue measure. The
characteristic function of π0 is given by

u 7→ exp

{

i

(

γ0
λ0

)

u− 1

2

(

σ2

2λ0

)

u2 +

∫

(cos(uz)− 1)

∫ ∞

0

ν(eλ0sdz)ds

}

. (2.5)

Trivially, the density of π0 is symmetric around γ0/λ0.

Now we introduce our contrast function

Mn(θ) =

n
∑

i=1

w(Xti−1)|∆iX − (γ − λXti−1)h|, (2.6)

where ∆iX := Xti − Xti−1 , i ≤ n, and w : R → R+ (supposed to be free of

θ). Then the SLAD estimator is defined to be any measurable mapping θ̂n =

(λ̂n, γ̂n) such that Mn(θ̂n) = infθ∈Θ− Mn(θ). We impose the following technical
conditions on the “weight” function w.

Assumption 2. (Regularity of w)
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1. w is bounded and uniformly continuous.
2. lim sup|x|→∞ w(x)|x|4−q < ∞ (q is the same one as in Assumption 1).

Especially if
∫

|z|>1 |z|q
′

ν(dz) = ∞ for any q′ > 2, then the function x 7→
w(x)x2 is uniformly continuous.

In analogy with Ling [20], in order to deduce an asymptotic normality re-
sult, Assumption 2.2 is indispensable for ν having heavy tails. For example,
even if supt∈R+

E0[|Xt|q] < ∞ only for some q < 4, the first part of Assump-

tion 2.2 implies the existence of a universal constant C such that w(x)x4 =
w(x)|x|4−q |x|q ≤ C|x|q for every x, so that we have supt∈R+

E0[w(Xt)X
4
t ] < ∞

as soon as supt∈R+
E0[|Xt|q] < ∞. Note that Assumption 2.2 is redundant if

we can pick a q ≥ 4, and in this case w does not need to be tapering at infin-
ity (in particular, we may take w ≡ 1, arriving back to the unweighted LAD
estimation). See also Section 2.2.1 for some related remarks.

We need the following condition on the decreasing rate of h = hn in connec-
tion with the value β.

Assumption 3. nh
4−2/β
n → 0.

In view of (2.2), Assumption 3 entails that β > 2/3. Note that it suffices that
nh3 → 0 when σ2 > 0, while a faster decay of h is required when σ2 = 0. The
so-called “rapidly increasing experimental design”, i.e. nh2 → 0, is sufficient as
soon as β ≥ 1.

We denote by Nr(µ, V ) the r-dimensional normal distribution with mean
vector µ and covariance matrix V , and by φβ the symmetric β-stable density
corresponding to N1(0, σ

2) for β = 2, and to the Lévy density z 7→ c|z|−1−β for
β < 2. This implies that

φβ(0) =















1√
2πσ2

, for β = 2,

1

π
Γ

(

1 +
1

β

){

2c

β
Γ(1− β) cos

βπ

2

}−1/β

, for β < 2.

(2.7)

Here, for β < 2, we used the fact φβ(0) = π−1(σ′)−1/βΓ(1 + 1/β) with

σ′ =
2c

β
Γ(1− β) cos

βπ

2
,

which comes from the relation

− σ′|u|β =

∫

(cos(uz)− 1)
c

|z|1+β
dz, u ∈ R.
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Next, let Γ0 and Σ0 be symmetric matrices defined by

Σ0 :=

∫

w(x)2
(

x2 −x
−x 1

)

π0(dx), (2.8)

Γ0 := 2φβ(0)

∫

w(x)

(

x2 −x
−x 1

)

π0(dx). (2.9)

In view of Schwarz’s inequality, both Σ0 and Γ0 are always positive definite. Let

V0 := Γ−1
0 Σ0Γ

−1
0 ,

and let →d denote the weak convergence under P0.

Recall that X is given by (1.1) and that θ = (λ, γ). Now we are ready to
state our asymptotic normality result. See Section 4.1 for the proof.

Theorem 2.1. Suppose (2.1), (2.2), and (2.3), and Assumptions 1, 2, and 3.
Then √

nh1−1/β
n (θ̂n − θ0) →d N2(0, V0).

Thus, unlike with the case of diffusions with compound Poisson jumps, for
pure-jump Z we have no longer the typical rate

√
nh corresponding to

√
T in

case where we have a continuous-time record (Xt)t∈[0,T ] with the asymptotics

T → ∞; see, e.g., Luschgy [21, Section 5] and Sørensen [31]. The rate
√
nh1−1/β

reflects the degree of small-jump fluctuation of Z in conjunction with the sam-
pling frequency 1/h. It is worth mentioning that the rate of convergence becomes
free of the sampling frequency for β = 1; as mentioned before, this is the case
for, e.g., any symmetric generalized hyperbolic Z with positive scale parameter.

For construction of asymptotic confidence intervals of θ, we have to derive a
consistent estimator of V0. We return to this issue in Section 2.1.3 shortly after
stating the moment convergence result.

2.1.2. Convergence of moments

In the sequel, for nonnegative sequences a′n and a′′n we write a′n . a′′n if there
exists a positive generic constant C such that a′n ≤ Ca′′n a.s. for every n large
enough. Here we introduce

Assumption 4. (Additional conditions for the convergence of moments)

1. There exists a constant ǫ0 ∈ (0, 1) such that nhn & nǫ0 .
2. lim sup|x|→∞{w(x)|x|4}k/|x|q < ∞ for any k > 0.

3. β ∈ (1, 2] and nh
4(1−1/β)
n . 1, but the latter can be removed if either γ0 or

λ0 is known, so that the dimension of θ is one.
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For Assumption 4.1, we may set h = n−τ with an appropriate τ (see Section
2.2.3), while, for example, the choice h = n−1 log n is not enough. Trivially,
as in Assumption 2.2 we can remove Assumption 4.2, if we can make q in As-
sumption 1 arbitrarily large; otherwise, it suffices to take, e.g., any uniformly
continuous function with compact support, or any w subgeometrically decreas-
ing for |x| → ∞. We need “provisory” Assumption 4.3 to handle asymptotically
negligible martingale terms uniformly in the parameter, when proving the poly-
nomial type large deviation inequality (see (4.16) below), which is of substantial
importance in the proof of our moment convergence result. The proviso says that
the dimension of unknown θ comes into play in the uniform estimates of the mar-
tingale terms; such a phenomenon does not arise when the contrast function is
smooth in θ and sufficiently integrable.

We can get the convergence of moments in compensation for the additional
assumptions. See Section 4.2 for the proof.

Theorem 2.2. Suppose Assumption 4 in addition to the conditions imposed
in Theorem 2.1. Then, for any continuous function f : R2 → R of at most
polynomial growth,

E0

[

f
(√

nh1−1/β
n (θ̂n − θ0)

)]

→
∫

f(u)φ2(u; 0, V0)du,

where φ2(·; 0, V0) stand for the Gaussian density corresponding to N2(0, V0).

2.1.3. Interval estimation

Now we look at how to implement an interval estimation based on Theorem 2.1.
The asymptotic covariance matrix V0 depends on the quantities

M(k, l) :=

∫

xkw(x)lπ0(dx), k ∈ {0, 1, 2}, l ∈ {1, 2},

and (β, c) through φβ(0). In order to make Theorem 2.1 usable in practice, we
in principle have to estimate these quantities.

Let Γ̌0 := {2φβ(0)}−1Γ0 and U0 := Γ̌−1
0 Σ0Γ̌

−1
0 , so that

V0 = {2φβ(0)}−2U0.

Since U0 is written only by {M(k, l)}, we can readily get a consistent estimator
Ûn of U0 by means of Lemma 4.6:

M̂n(k, l) :=
1

n

n
∑

i=1

wk
i−1X

l
ti−1

→p M(k, l).

On the other hand, as specified by (2.7), the remaining quantity φβ(0) de-
pends only on the two parameters β and c (this point is completely differ-
ent from Ling [20]). Nevertheless, direct consistent estimation of (β, c) seems
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rather difficult in general, for the full form of ν here is not specified. In ad-
dition, even if we could get some consistent estimators (β̂n, ĉn), we actually

need to specify the rate of convergence of β̂n in order to successfully replace√
nh1−1/β with

√
nh1−1/β̂n to get the desired asymptotically standard normal

version 2φβ̂n
(0)Û

−1/2
n

√
nh1−1/β̂n(θ̂n − θ0) →d N2(0, I2), where I2 denotes the

two-dimensional identity matrix; namely, we need to have h1/β−1/β̂n →p 1. In
Theorem 2.3 given below, we show that an appropriate use of kernel estimator,
which was also used by Ling [20], enables us to overcome this annoying aspects.
Specifically, we show how to provide a consistent estimator of φβ(0) and then
formulate a converted distributional result with asymptotic standard normal
distribution, which can be used without direct estimate of (β, c).

Theorem 2.3. Suppose the conditions imposed in Theorem 2.1. Let K : R 7→
R+ be a globally Lipschitz function such that

∫

K(z)dz = 1 and

∫

|z|K(z)dz ∨
∫

{K(z)}pdz < ∞

for some constant p > 2, let (Bn) be a positive sequence such that

Bn = o(1), nBn → ∞, lim inf
n→∞

nB2
n > 0, (2.10)

and define

φ̂β(0)n :=

(

Bn

n
∑

i=1

w(Xti−1 )

)−1 n
∑

i=1

w(Xti−1 )K

(

∆iX − hn(γ̂n − λ̂nXti−1)

h
1/β
n Bn

)

.

Then φ̂β(0)n →p φβ(0). In particular, additionally supposing

lim inf
n→∞

nh2−1/β
n > 0, (2.11)

we have the (β, c)-free version of the asymptotic normality:























2

n
∑

i=1

w(Xti−1 )K

(

∆iX − hn(γ̂n − λ̂nXti−1)√
nh2

n

)

hn

n
∑

i=1

w(Xti−1 )























Û−1/2
n (θ̂n−θ0) →d N2(0, I2).

(2.12)

See Section 4.3 for the proof of Theorem 2.3. For the kernel function K, we
can adopt the standard-Gaussian kernel K(z) = (2π)−1/2e−z2/2 or, as used by
Ling [20], the logistic kernel K(z) = (ez/2+e−z/2)−2. See Section 2.2.3 for some
discussions on the conditions we have imposed so far on the sampling design
(asymptotic behavior of h).
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2.1.4. Case of nonnull Gaussian part

Just for reference, we single out the nonnull Gaussian-part case as a corollary
of the previous results.

Corollary 2.4. Suppose that σ2 > 0, that nh3 → 0, and let (2.1), (2.2), (2.3),
Assumption 1.1, and Assumption 2 be in force. Then the following holds true.

1. We have √
nh(θ̂n − θ0) →d N2

(

0,
πσ2

2
U0

)

.

2. Suppose that lim supn→∞ nh2 < ∞ if both λ0 and γ0 are actually unknown;
no additional condition is made especially if either λ0 or γ0 is known from
the beginning. Then, for any continuous function f : R2 → R of at most
polynomial growth,

E0

[

f
(√

nh(θ̂n − θ0)
)]

→
∫

f(u)φ2

(

u; 0,
πσ2

2
U0

)

du.

3. We have (2.12) if lim infn→∞ nh3/2 > 0.

Corollary 2.4 directly follows from the previous claims.

2.1.5. Some future issues

In the literature, we could find no previous work concerning LAD type estima-
tion for discretely observed processes with infill asymptotics. Here we mention
some future issues worth being considered, together with some conjectures.

• “What is a proper definition of asymptotic efficiency in the present frame-
work?”
Concerning the statistical model in question, we want to derive the lo-
cal asymptotic normality in principle. Nevertheless, we could see that the
LAN cannot hold true at least for the non-Gaussian stable Z, as in the
case of infinite-variance autoregressive time series models (see Davis et al.
[9] for details); for the stable case we conjecture that the best attainable
one for estimating λ is the much faster n1/βh1−1/β than

√
nh1−1/β of our

SLAD estimators. On the other hand, we conjecture that
√
nh1−1/β is the

best attainable rate of convergence for estimating γ.
• “Is it possible to relax the ergodicity and the long-term asymptotics?”
We have set nh → ∞ and focused on the ergodic case. Nevertheless, our
SLAD estimator does seem to work even when X is non-recurrent with or
without imposing that nh → ∞ (e.g., nh is a fixed positive constant, but
in this case we need β < 2); needless to say, the limit distribution may
be then no longer normal. For specific derivation of the limit distribution
when nh fixed, we would need a more sophisticated weak limit theorem
than the martingale central limit theorem used in the present proof; it
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would be nice if we could derive a tailor-made stable convergence in law,
leading to a mixed normal limit distribution with specified limit random
covariance matrix.

• “What is occurring in the higher order part?”
For example, Knight [17, Section 4.2] (see also the references therein) dis-
cussed this issue in case of linear regression models. It would be interesting
to investigate this point in the framework of discretely observed OU pro-
cesses.

• “What will occur for small β?”
Overall, our assumptions require that the index β is large. Concerning
Theorem 2.1, it is expected from the proof (see Section 4.1) that we may
relax the sampling-design condition Assumption 3 by targeting the “gen-
uine” SLAD estimator defined to be

arg inf
θ=(λ,γ)∈Θ

{ n
∑

i=1

w(Xti−1)

∣

∣

∣

∣

Xtni
− e−λhnXtni−1

− γ

λ
(1− e−λhn)

∣

∣

∣

∣

}

,

which is a little bit more involved than ours, but should be appropriate in
view of the expression (4.1). Furthermore, even if this estimating function
works properly, it still excludes the case of β = 0, e.g., the variance gamma
and the bilateral gamma Z as well as the purely compound Poisson Z:
in such cases the local-limit result given by Lemma 4.4 below, which is
essential in our proofs, breaks down. Therefore we have to resort to a
whole other kind of estimating procedure. See also Section 2.2.4.

We leave answering such questions to future works.

2.2. Remarks on the results

Here we gather some technical remarks concerning the results given in Sec-
tion 2.1.

2.2.1. On the asymptotic covariance matrix

In general, we do not know which w optimizes the asymptotic covariance matrix
V0. Nevertheless, V0 can be simplified and actually optimized in some instances.
Let mk :=

∫

xkπ0(dx) and denote by v2 the variance of π0 if they exist. specif-
ically, we have m1 = γ0/λ0 and v2 = κZ(2)/(2λ0), where κZ(2) stands for the
variance of Z1.

1. We can take w ≡ 1 if q ≥ 4, so that

V0 =
1

{2φβ(0)}2v2
(

1 m1

m1 m2

)

. (2.13)

If additionally γ0 = 0, then V0 becomes diagonal, hence the SLAD esti-
mation of λ0 and γ0 are asymptotically independent, as in the case of OU
diffusions.
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2. On the other hand, suppose that γ0 = 0 and w is symmetric around
zero, while we now do not assume q ≥ 4. Then Assumption 2 entails that
∫

w(x)xπ0(dx) =
∫

w(x)2xπ0(dx) = 0, hence

V0 =
1

{2φβ(0)}2
diag

{
∫

w(x)2xπ0(dx)

{
∫

w(x)xπ0(dx)}2
,

∫

w(x)2π0(dx)

{
∫

w(x)π0(dx)}2
}

.

If further m2 < ∞, then Schwarz’s inequality readily gives

V0 ≥ 1

{2φβ(0)}2
diag(1/m2, 1),

the lower bound attained for (any positive) constant w.

2.2.2. Comparisons with respect to the LSE

When nh2 → 0 and q > 0 in Assumption 1 can be taken large enough, we
can deduce the asymptotic normality of the LSE θ̃n, namely,

√
nh(θ̃n − θ0) →d

N2(0, Ṽ0) with

Ṽ0 :=
V ar[Z1]

v2

(

1 m1

m1 m2

)

.

(See Masuda [23] for details.) Now suppose that w ≡ 1 and β = 2, so that, as
in the LSE, the SLAD estimator is asymptotically normal at rate

√
nh. Then,

the Ṽ0 compared with (2.13) implies that the asymptotic relative efficiency of
the SLAD estimator with respect to the LSE can be measured by the quantity

r(σ2, ν) := {2φ2(0)}2V ar[Z1] =
2

π

(

1 +

∫

z2ν(dz)

σ2

)

.

From this aspect, the SLAD estimator turns out to be asymptotically superior
to the LSE if the Gaussian variance is not so large compared with the jump-part
variance:

r(σ2, ν) > 1 ⇐⇒ 2

π − 2

∫

z2ν(dz) > σ2.

In other words, the LSE is asymptotically superior to the SLAD estimator if σ2

is dominant in the sense that the last inequality sign is reversed.

The SLAD estimation is formally new even for the Gaussian case. Suppose
X is given by

dXt = −λXtdt+ σdwt,

where w is a standard Wiener process. As is well known in the literature, or as
can be seen from direct computations, the exact maximum likelihood estima-
tor of λ0 is asymptotically normal and efficient with asymptotic variance being
2λ0. On the other hand, building on Section 2.2.1 we see that the unweighted
SLAD estimator λ̂n leads to the asymptotic variance πλ0, hence the asymptotic
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efficiency of λ̂n relative to the maximum likelihood estimator is 2/π; this asymp-
totic relative efficiency is the same as in the one for the sample median over the
sample mean in estimating the mean of i.i.d. normal samples. Moreover, for the
asymptotic normality of λ̂n we do not need the rapidly increasing experimental
design nh2 → 0, which is quite often inevitable when adopting a contrast func-
tion based on the naive “Euler-type approximation”; for the SLAD estimator,
the weaker sampling design nh3 → 0 is sufficient in view of Corollary 2.4.

Recently, Hu and Long [14] derived an asymptotic distributional result con-
cerning the (approximate) LSE of λ0 > 0, presupposing that γ0 = 0 and letting
Z be a symmetric β-stable Lévy process with β ∈ (1, 2); in this setting, we can

ignore Assumption 4.3 for our SLAD estimator λ̂n from the very beginning. The
LSE is given by

λ̃n := arg inf
λ>0

n
∑

i=1

(∆iX + λXti−1h)
2 = −

∑n
i=1 Xti−1∆iX

h
∑n

i=1 X
2
ti−1

. (2.14)

Let us make some comparisons between λ̃n with λ̂n. The primary point is the
differences in the rates of convergence and the limit distributions: their λ̃n fulfil
that

(

nh

logn

)1/β

(λ̃n − λ0) →d S

S+
,

where nh → ∞, and S ∈ R and S+ > 0 are two independent strictly sta-
ble random variables with specified parameters. In order to obtain the explicit
asymptotic distribution, Hu and Long [14] also imposed some technical condi-
tions on the decreasing rate of h → 0 in connection with the value of β, while
they are not necessary for the (strong) consistency; see their (A1). As

(nh/ logn)1/β√
nh1−1/β

=
(nh2)(2−β)/(2β)

(log n)1/β
,

we see that the SLAD estimator λ̂n with appropriate w (tapering at infinity)
converges more rapidly than λ̃n as soon as

h = o

(

1√
n
(logn)1/(2−β)

)

.

In particular, this is the case if nh2 . 1. Moreover, in case where h = n−a for
some constant a > 0, Hu and Long [14, Remark 3.3] mentioned that the choice
a = (1 + β)−1 is optimal. This choice implies that nh2 → ∞, and we can see

that λ̃n now converges more rapidly than λ̂n. Nevertheless, our λ̂n would be
more convenient to use because of its asymptotic normality. Moreover, contrary
to our λ̂n, the convergence of moments seems impossible for λ̃n.
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2.2.3. On the sampling-design conditions in Theorem 2.3

In the statement of Theorem 2.3 we have several conditions on the decreasing
rate of h. The conditions can be more specific when h = n−τ with the choice
ln =

√
nh2, where τ ∈ (0, 1) for (2.2) to be fulfilled. In this case Assumption 3

is equivalent to β/{2(2β− 1)} < τ , while the condition lim infn→∞ nh2−1/β > 0
to τ ≤ β/(2β− 1). Thus, the admissible region of τ for the “interval estimation
(2.12)” turns out to be

{

β
2(2β−1) < τ ≤ β

2β−1 , if β > 1,

β
2(2β−1) < τ < 1, if β ∈ (2/3, 1].

(2.15)

For the convergence of moments, we additionally need β > 1 and also the
condition nh4(1−1/β) . 1 if both λ and γ are actually unknown (see Assumption
4). The condition nh4(1−1/β) . 1 is equivalent to τ ≥ β/{4(β−1)} (> β/{2(2β−
1)}, always); in view of (2.15), we need β/{4(β−1)} ≤ β/{2β−1} ⇐⇒ β ≥ 3/2
in order to make the admissible region non-empty. Thus, the admissible region
of τ for the “convergence of moments” is

{

β
2(2β−1) < τ ≤ β

2β−1 , if either λ or γ is known and β > 1,
β

4(β−1) ≤ τ ≤ β
2β−1 , if both λ and γ unknown and β ≥ 3/2.

(2.16)

In particular, the “boundary” case in (2.16), where β = 3/2 with both λ and γ
being unknown, leads to the only possibility τ = 3/4 making both the conver-
gence (2.12) and the convergence of moments valid.

2.2.4. Model extension

We have used some inherent property of the OU processes in our proofs, hence,
unfortunately, it is not clear whether or not a similar type of contrast function
actually works for more general nonlinear-drift stochastic differential equation
models with jumps. Nevertheless, a more general statement is formally possible
so that we can provide a set of conditions for the convergence of moments and so
on to hold true for a broader class of statistical experiments of dependent data
as well as independent ones (not necessarily a stochastic differential equation).
This may be done by setting the contrast function as

θ 7→
n
∑

i=1

w̄n,i−1|X̄ni − θ⊤Ȳn,i−1|,

where w̄n,i−1 and Ȳn,i−1 are Gn,i−1-measurable while X̄ni is Gni-measurable with
respect to some underlying filtration (Gni)i≤n; all of w̄n,i−1, Ȳn,i−1 and X̄n,i

should be observable in order to follow a similar line to the proofs given in this
paper. This setting might allow us to deal with, for instance, discretely observed
Lévy process, general i.i.d. regression model, and also the autoregressive time-
series in a unified way. Of course, the rate of convergence as well as the limit
distribution should depend on the specific structure of the underlying statistical
model.
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3. Numerical experiments

In this section, we report some numerical results concerning finite-sample per-
formance of our SLAD estimator λ̂n in the model

dXt = −λXtdt+ dZt.

We treat the following cases for the Lévy process Z and the weight function w:

(A) L(Z1) = NIG(1, 0, 1, 0) and w ≡ 1;
(B) L(Z1) = Sβ(1) and w(x) = exp(−|x|).

Here NIG(1, 0, 1, 0) stands for the normal inverse Gaussian (NIG) distribu-
tion having the density x 7→ (e/π)K1(

√
1 + x2)/

√
1 + x2, x ∈ R; see Barndorff-

Nielsen [2] for details of the general NIG distribution. Also, Sβ(a) for
a > 0 denotes the β-stable distribution having the characteristic function u 7→
exp(−|au|β). In case (B), we can simulate (Xti)

n
i=1 exactly, since the distribu-

tion of Xti conditional on Xti−1 = x is δ(e−λhx) ∗ Sβ({(1 − e−λβh)/(λβ)}1/β),
which immediately follows from the property of the stable integrals.

In both cases, we also observe performances of the LSE λ̃n defined by (2.14).
Recall that, in case (A), the distribution of

√
nh(λ̃n − λ0) tends to a centered

normal, while in case (B), the distribution of (nh/ logn)1/β(λ̃n −λ0) tends to a
nondegenerate one; see the references cited in Section 2.2.2 for details.

Throughout this section, we set h = n−3/5, the true value λ0 = 1, andX0 = 0.
Also, we use the logistic kernel K(x) = (ex/2 + e−x/2)−2 for both (A) and (B).
In each trial, we use the LSE λ̃n for the initial value in numerical minimization
of the SLAD contrast function.

3.1. Case (A)

For generating sample (Xti)
n
i=1, we apply the Euler scheme with generation

mesh being h/50. It is easy to see that all the conditions imposed in Theorems
2.1 and 2.3 are fulfilled. With the choice w ≡ 1, the weak convergence (2.12)
becomes

{

2

nh

n
∑

i=1

K

(

∆iX + hnλ̂nXti−1√
nh2

n

)

}

(

1

n

n
∑

i=1

X2
ti−1

)1/2

(λ̂n − λ0) →d N1(0, 1).

For n = 500, 1000, and 2000, we simulate 1000 independent estimates λ̂n and
λ̃n, and compute their sample means, standard deviations (S.D.), maximums,
and minimums. The results are reported in Table 1. We can observe from Table 1
that our (unweighted) LAD estimate λ̂n is much more reliable than LSE λ̃n.
We note that the S.D. of the LAD estimates for n = 500 is smaller even than
that of the LSE for n = 2000.

Next, we report in Figure 1 the normal probability plots for the Studentized
versions of the λ̂n obtained above. In each panel, we can see that the normality
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Table 1
Estimation results for λ0 = 1 in case (A)

n nhn Mean S.D. Max Min

LAD LSE LAD LSE LAD LSE LAD LSE

500 12.01 1.003 1.127 0.127 0.466 2.037 3.781 0.680 0.229

1000 15.85 1.001 1.122 0.082 0.386 1.382 2.728 0.745 0.382

2000 20.91 1.000 1.078 0.055 0.310 1.238 2.473 0.836 0.434
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Fig 1. Normal probability plots for the Studentized LAD estimates in case (A); the abscissa
axes correspond to the thoretical quantiles of the standard normal, and the vertical axes to
the sample quantiles of the Studentized LAD estimates.

is well achieved: the 45 degree lines correspond to the target standard normal
distribution.

3.2. Case (B)

We take β = 1.5 for the simulations. Then, with the exponential weight w(x) =
exp(−|x|), we see that all the conditions imposed in Theorems 2.1, 2.2, and 2.3
are fulfilled. It directly follows from (2.12) that the random variable























2

n
∑

i=1

w(Xti−1 )K

(

∆iX + hnλ̂nXti−1)√
nh2

n

)

hn

n
∑

i=1

w(Xti−1)



























1
n

∑n
i=1 wi−1X

2
ti−1

√

1
n

∑n
i=1 w

2
i−1X

2
ti−1



 (λ̂n−λ0)

asymptotically obeys the standard normal distribution.
As before, we report the numerical results in Table 2. Again, the SLAD

estimator exhibits better performance than the LSE, although the superiority
seems less drastic compared with the case (A) (see Table 1).

Figure 2 reports the corresponding normal probability plots concerning the
Studentized SLAD estimators. Once again, the standard normal approximation
works quite well. This reveals the usefulness of the SLAD estimator for estima-
tion of the infinite-variance OU processes.
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Table 2
Estimation results for λ0 = 1 in case (B)

n nhn Mean S.D. Max Min

SLAD LSE SLAD LSE SLAD LSE SLAD LSE

500 12.01 1.014 1.106 0.332 0.455 2.785 6.668 0.189 0.244

1000 15.85 1.018 1.095 0.264 0.365 2.068 3.631 0.258 0.401

2000 20.91 1.010 1.078 0.207 0.316 2.004 2.982 0.503 0.362
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Fig 2. Normal probability plots for the Studentized SLAD estimates in case (B); the abscissa
axes correspond to the thoretical quantiles of the standard normal, and the vertical axes to
the sample quantiles of the Studentized SLAD estimates.

4. Proofs

We denote by (Ω,F , P ) the underlying probability space on which (X0, Z) is
defined, and by E the corresponding expectation operator. Recall that P0 stands
for the true distribution ofX associated with θ0. Throughout this section, we use
some basic notation: C denotes a positive generic constant, possibly varying from
line to line; A⊤ denotes the transpose of a matrix A; A⊗2 := AA⊤ for any matrix
A; wi−1 := w(Xti−1); P i−1

0 [·] := P0[·|Fti−1 ], where Ft := σ(X0, Zs; s ≤ t);
finally, →p denotes the convergence in probability under P0.

4.1. Proof of Theorem 2.1

Under P0 we have the autoregressive representation

Xti =
γ0
λ0

(1− e−λ0h) + e−λ0hXti−1 +

∫ ti

ti−1

e−λ0(ti−s)dZs (4.1)

for n ∈ N and i ≤ n. For convenience we write

ǫni = h−1/β

∫ ti

ti−1

e−λ0(ti−s)dZs,

ǫ′n,i−1 = h−1/β

(

Xti−1 −
γ0
λ0

)

(e−λ0h − 1 + λ0h),

xi−1 = (−Xti−1 , 1)
⊤,
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so that

h−1/β{∆iX − (γ − λXti−1)h} = (ǫ′n,i−1 + ǫni)− (θ − θ0)
⊤xi−1h

1−1/β . (4.2)

It follows from the definition (2.6) that, for each θ ∈ Θ,

h−1/β
{

Mn(θ)−Mn(θ0)
}

=

n
∑

i=1

wi−1

{

|(ǫ′n,i−1 + ǫni)− (θ − θ0)
⊤xi−1h

1−1/β | − |ǫ′n,i−1 + ǫni|
}

. (4.3)

In our proof, it is crucial that ǫ′n,i−1 is Fti−1-measurable.

Let Un(θ0) := {u ∈ R2 : θ0 + anu ∈ Θ} with

an = an(β) := (
√
nh1−1/β)−1.

Then we define the random fields Zn(·; θ0) : Un(θ0)× Ω → (0,∞) by

logZn(u; θ0) = −h−1/β
{

Mn(θ0 + anu)−Mn(θ0)
}

, (4.4)

its maximizer equalling ûn := a−1
n (θ̂n−θ0). To achieve the proof, we are going to

derive the following asymptotically locally quadratic structure of logZn(u; θ0)
for each u ∈ Un(θ0):

logZn(u; θ0) = u⊤∆n − 1

2
u⊤Γnu

⊤ + op(1), (4.5)

where ∆n →d N (0,Σ0) and Γn →p Γ0 for positive definite nonrandom matrices
Σ0 and Γ0 given by (2.8) and (2.9), respectively. Then, in view of the convexity
of u 7→ − logZn(u; θ0), Theorem 2.1 follows on applying the optimization result
for convex random functions:

Proposition 4.1. Let An be real-valued convex random functions defined on
a convex domain S ⊂ Rp, and suppose that An can be represented as An(s) =
s⊤Un + s⊤Vns/2 + rn(s), where Un weakly tends to a random variable U ∈ Rp,
Vn tends in probability to a positive definite matrix V ∈ Rp ⊗ Rp, and rn(s)
tends in probability to 0 for each s ∈ S. Then the minimizer αn of s 7→ An(s)
weakly tends to −V −1U .

Proposition 4.1 is a direct corollary of Hjørt and Pollard [13, Basic Corol-
lary].

In order to deduce (4.5), first we rewrite logZn(u; θ0). For any function K of
the form K(x) =

∫ x

0
k(y)dy, we have K(x − y) −K(x) = −yk(x) +

∫ y

0
{k(x) −

k(x − s)}ds. As in Knight [17], taking k(y) = I(y ≥ 0) − I(y ≤ 0) so that
K(x) = |x|, we make use of the following identity valid for any x 6= 0 and y ∈ R:

|x− y| − |x| = −y{I(x > 0)− I(x < 0)}+2

∫ y

0

{I(x ≤ s)− I(x ≤ 0)}ds. (4.6)
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From Lemma 4.4 below, we have P [ǫni 6= 0] = 1 for each n ∈ N and i ≤ n.
Combining (4.3), (4.4), and (4.6) yields logZn(u; θ0) = Ln(u) +Qn(u), P0-a.s.,
where

Ln(u) := u⊤
n
∑

i=1

1√
n
wi−1xi−1{I(ǫ′n,i−1 + ǫni > 0)− I(ǫ′n,i−1 + ǫni < 0)},

Qn(u) := −2

n
∑

i=1

wi−1

∫ u⊤xi−1/
√
n

0

{I(ǫ′n,i−1 + ǫni ≤ s)− I(ǫ′n,i−1 + ǫni ≤ 0)}ds.

Write Ln(u) = u⊤∑n
i=1 lni and Qn(u) =

∑n
i=1 qni(u). Both Ln(u) and Qn(u)

entail a leading term plus some remainder terms. We look at them separately.

Asymptotic behavior of Ln(u). We decompose Ln(u) as

Ln(u) = u⊤
n
∑

i=1

(lni−Ei−1
0 [lni])+u⊤

n
∑

i=1

Ei−1
0 [lni] =: u⊤

n
∑

i=1

∆ni+R1
n(u). (4.7)

Denote the distribution of ǫni by

Fh(dz) = ph(z)dz,

which is independent of i (see Lemma 4.4). Since ph is symmetric around 0,

Ei−1
0 [∆⊗2

ni ] =
1

n
w2

i−1x
⊗2
i−1

{

P i−1
0 [ǫ′n,i−1 + ǫni 6= 0]

−
(

P i−1
0 [ǫ′n,i−1 + ǫni > 0]− P i−1

0 [ǫ′n,i−1 + ǫni < 0]
)2
}

=
1

n
w2

i−1x
⊗2
i−1

{

1−
(

2

∫ |ǫ′n,i−1|

0

ph(z)dz

)2}

.

Moreover, since
|ǫ′n,i−1| . h2−1/β(1 + |Xti−1 |) (4.8)

and ph is bounded, we have |
∫ |ǫ′n,i−1|
0 ph(z)dz|2 . h2(2−1/β)(1 + |Xti−1 |)2. Thus

∣

∣

∣

∣

n
∑

i=1

Ei−1
0 [∆⊗2

ni ]−
1

n

n
∑

i=1

w2
i−1x

⊗2
i−1

∣

∣

∣

∣

. h2(2−1/β) 1

n

n
∑

i=1

w2
i−1(1 + |Xti−1 |)4

= Op(h
2(2−1/β)) = op(1).

Now we note that the mixing property of X under P0 leads to the ergodic

theorem, namely, (nh)−1
∫ nh

0
F (Xs)ds →p

∫

F (x)π0(dx) for every π0-integrable
function F : see Bhattacharya [4, Proposition 2.5 and pp.193–194] for details.
This combined with Lemma 4.6 yields that 1

n

∑n
i=1 w

2
i−1x

⊗2
i−1 →p Σ0, hence in

view of the last display we get

n
∑

i=1

Ei−1
0 [∆⊗2

ni ] →p Σ0. (4.9)
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Also, under the assumptions it is easy to see that for a ∈ (0, 2]

n
∑

i=1

E0[|∆ni|2+a] . n−a/2 sup
t

E0[{w(Xt)(1 + |Xt|)}2+a]

. n−a/2 sup
t

E0[w(Xt)(1 + |Xt|)4] = O(n−a/2) = o(1). (4.10)

From (4.9) and (4.10) we can apply the martingale central limit theorem (cf.
Dvoretzky [11]) for

∆n :=

n
∑

i=1

∆ni

to obtain ∆n →d N1(0,Σ0). As for R
1
n(u),

|R1
n(u)| =

∣

∣

∣

∣

u⊤

n

n
∑

i=1

wi−1xi−1

√
n{1− 2Fh(−ǫ′n,i−1)}

∣

∣

∣

∣

=

∣

∣

∣

∣

2u⊤

n

n
∑

i=1

wi−1xi−1

√
nǫ′n,i−1

∫ 1

0

ph(−yǫ′n,i−1)dy

∣

∣

∣

∣

. |u|√nh2−1/β 1

n

n
∑

i=1

wi−1(1 + |Xti−1 |)2 = |u|O(
√
nh2−1/β) = o(1),

(4.11)

where we used 1 − 2Fh(0) = 0 for the second equality. Thus Ln(u) = u⊤∆n +
op(1) with ∆n →d N1(0,Σ0) for each u, as was desired.

Asymptotic behavior of Qn(u). Again we separate the martingale term:

Qn(u) =

n
∑

i=1

Ei−1
0 [qni(u)] +

n
∑

i=1

{qni(u)− Ei−1
0 [qni(u)]}.

For the first term of the right-hand side, Taylor’s formula gives

n
∑

i=1

Ei−1
0 [qni(u)]

= −2

n
∑

i=1

wi−1

∫ u⊤xi−1/
√
n

0

{Fh(s− ǫ′n,i−1)− Fh(−ǫ′n,i−1)}ds

= −1

2
u⊤

{

2ph(0)
1

n

n
∑

i=1

wi−1x
⊗2
i−1

}

u

+

[

− 1

n

n
∑

i=1

wi−1(u
⊤xi−1)

2{ph(−ǫ′n,i−1)− ph(0)}

− 2

n
∑

i=1

wi−1

∫ u⊤xi−1/
√
n

0

s2
∫ 1

0

(1− y)∂ph(sy − ǫ′n,i−1)dyds

]

=: −1

2
u⊤Γnu+R2

n(u), say. (4.12)
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We have Γn →p Γ0 by means of Lemmas 4.4 and 4.6. To deal with R2
n(u), we

note that: first, |∂ph(z)| = |∂ph(z)− ∂ph(0)| . |z|, which follows from the first

half of the proof of Lemma 4.4; second, |
∫ x

0
g(y)dy| ≤

∫ |x|
0

{|g(y)|∨|g(−y)|}dy for
any x ∈ R and g : R → R. Using these facts, we derive the following estimates:

|R2
n(u)| . |u|2 1

n

n
∑

i=1

wi−1|xi−1|2|ǫ′n,i−1|2 +
n
∑

i=1

wi−1

∫ |u||xi−1|/
√
n

0

s2(s+ |ǫ′n,i−1|)ds

.

(

h2(2−1/β)|u|2 + h2−1/β |u|3√
n

+
|u|4
n

)

1

n

n
∑

i=1

wi−1(1 + |Xti−1 |)4

(4.13)

= Op

(

h2(2−1/β)|u|2 + h2−1/β|u|3√
n

+
|u|4
n

)

= op(1).

Thus
∑n

i=1 E
i−1
0 [qni(u)] →p −u⊤Γ0u/2 for each u. It remains to show that the

martingale part

R3
n(u) :=

n
∑

i=1

{qni(u)− Ei−1
0 [qni(u)]} (4.14)

is op(1) for each u. This readily follows on applying Burkholder’s and Schwarz’s
inequalities:

E0[{R3
n(u)}2]

.

n
∑

i=1

E0[{qni(u)− Ei−1
0 [qni(u)]}2]

=

n
∑

i=1

E0

[

w2
i−1

{∫ u⊤xi−1/
√
n

0

(I(ǫ′n,i−1 + ǫni ≤ s)− I(ǫ′n,i−1 + ǫni ≤ 0))ds

}2]

≤
n
∑

i=1

E0

[

w2
i−1

{∫ |u||xi−1|/
√
n

0

I(|ǫ′n,i−1 + ǫni| ≤ s)ds

}2]

≤
n
∑

i=1

E0

[

w2
i−1

|u||xi−1|√
n

∫ |u||xi−1|/
√
n

0

I(−s− ǫ′n,i−1 ≤ ǫni ≤ s− ǫ′n,i−1)ds

]

≤
n
∑

i=1

E0

[

w2
i−1

|u||xi−1|√
n

∫ |u||xi−1|/
√
n

0

(∫ s−ǫ′n,i−1

−s−ǫ′n,i−1

ph(z)dz

)

ds

]

.
|u|3√
n

sup
t∈R+

E0[w(Xt)
2(1 + |Xt|)3] .

|u|3√
n

→ 0. (4.15)

Summarizing the above yields that Qn(u) = −u⊤Γnu/2+op(1) for each u, with
Γn →p Γ0.

Combining the two steps leads to (4.5), hence the claim of Theorem 2.1.
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4.2. Proof of Theorem 2.2

We keep using the notation introduce in the proof of Theorem 2.1. As we have
already derived the asymptotic normality ûn →d N2(0, V0), it suffices to ensure
the Lp(P0)-boundedness of (ûn)n∈N for every p > 0. Suppose that, given any
L > 0 there exist constant CL > 0 such that for every r > 0 large enough

sup
n∈N

P0

[

sup
u∈Un(θ0):r≤|u|

Zn(u; θ0) ≥ e−r

]

≤ CL

rL
. (4.16)

Then the desired Lp(P0)-boundedness follows: for every r > 0 large enough,

sup
n∈N

P0[|ûn| > r] ≤ sup
n∈N

P0

[

sup
|u|>r

Zn(u; θ0) ≥ Zn(0; θ0)

]

= sup
n∈N

P0

[

sup
|u|>r

Zn(u; θ0) ≥ 1

]

≤ CL

rL
.

We are going to derive the polynomial type large deviation inequality (4.16) by
applying Yoshida [34].

From the proof of Theorem 2.1, we know that logZn(u; θ0) = u⊤∆n −
u⊤Γnu/2 +

∑3
j=1 R

j
n(u); see (4.7), (4.12) and (4.14). Rearrange this as

logZn(u; θ0) = u⊤∆n − 1

2
u⊤Γ0u+

5
∑

j=1

Rj
n(u), (4.17)

where

R4
n(u) := −u⊤{ph(0)− p0(0)}

1

n

n
∑

i=1

wi−1x
⊗2
i−1u,

R5
n(u) := −u⊤p0(0)

{

1

n

n
∑

i=1

wi−1x
⊗2
i−1 −

∫

w(x)

(

x2 −x
−x 1

)

π0(dx)

}

u.

The martingale part ∆n is LM (P0)-bounded for any M > 0:

sup
n∈N

E0[|∆n|M ] . sup
n∈N

1

n

n
∑

i=1

E0[{wi−1(1 + |Xti−1 |)}M ]

. sup
t∈R+

E0[{w(Xt)(1 + |Xt|)}M ] < ∞ (4.18)

by means of Burkholder’s inequality and Assumption 4.2. Let

bn := a−2
n = nh2(1−1/β),
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and

Yn(θ) :=
1

bn
logZn(a

−1
n (θ − θ0); θ0), (4.19)

Y(θ) := −1

2
(θ − θ0)

⊤Γ0(θ − θ0).

Since Γ0 is positive definite, we can find a constant χ > 0 such that for each
θ ∈ Θ

Y(θ) = Y(θ)− Y(θ0) ≤ −χ|θ − θ0|2. (4.20)

Let Un(r) := {u ∈ Un(θ0) : r ≤ |u| ≤ b
(1−α)/2
n }, where α ∈ (0, 1) is a constant.

Having (4.18) and (4.20) in hand, in order to ensure (4.16) we are left to proving
the following lemmas (see Yoshida [34] for details).

Lemma 4.2. For any L > 0, we can find (sufficiently small) constants α ∈
(0, 1) and ρ1 ∈ (0, 1) in such a way that there exists a constant CL > 0 such
that for every r > 0

max
1≤j≤5

sup
n∈N

P0

[

sup
u∈Un(r)

|Rj
n(u)|

1 + |u|2 ≥ r−ρ1

]

≤ CL

rL
.

Lemma 4.3. For any L > 0, we can find a β2 ∈ [0, 1/2) (sufficiently close to
1/2) such that

sup
n∈N

E0

[(

sup
θ∈Θ

b1/2−β2
n |Yn(θ)− Y(θ)|

)L]

< ∞.

For convenience we write

In(k) =
1

n

n
∑

i=1

wi−1(1 + |Xti−1 |)k

in what follows. Then, supn∈N
E0[|In(k)|M ] < ∞ for every k ∈ N and M > 0.

4.2.1. Proof of Lemma 4.2

Fix any L > 0 and let

Hj(r) := sup
n∈N

P0

[

sup
u∈Un(r)

|Rj
n(u)|

1 + |u|2 ≥ r−ρ1

]

, r > 0, j ∈ {1, 2, . . . , 5}.

We are going to show Hj(r) ≤ CL/r
L individually. In the sequel, Kj ≥ 2 denote

arbitrarily large reals, and the constant CL may vary from step to step.
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Estimate of H1(r). We have

H1(r) ≤ sup
n∈N

P0

[

sup
u∈Un(r)

|u|
1 + |u|2

√
nh2−1/βIn(2) ≥ Cr−ρ1

]

≤ sup
n∈N

P0[
√
nh2−1/βIn(2) ≥ Cr1−ρ1 ] . r−K1(1−ρ1),

hence we get H1(r) ≤ CL/r
L.

Estimate of H2(r). Let
c′n := b(1−α)/2

n .

On Un(r), we have for any κ2 > ρ1

sup
u∈Un(r)

|R2
n(u)|

1 + |u|2 ≤ r−κ2(c′n)
κ2 sup

u∈Un(r)

|R2
n(u)|

1 + |u|2 ,

hence

H2(r) ≤ sup
n∈N

P0

[

(c′n)
κ2 sup

u∈Un(r)

|R2
n(u)|

1 + |u|2 ≥ Crκ2−ρ1

]

(4.21)

On the other hand, using (4.13),

sup
u∈Un(r)

|R2
n(u)|

1 + |u|2 .

(

h2(2−1/β) +
h2−1/βc′n√

n
+

(c′n)
2

n

)

In(4). (4.22)

From (4.21) and (4.22), we get

H2(r) .
1

rK2(κ2−ρ1)
sup
n∈N

{

(c′n)
κ2

(

h2(2−1/β) +
h2−1/βc′n√

n
+

(c′n)
2

n

)}K2

=:
supn∈N BK2

n

rK2(κ2−ρ1)
.

Set κ2 = α/(1 − α) (given any α ∈ (0, 1)), and

0 < ρ1 <
α

1− α
. (4.23)

Note that Assumption 3 entails β > 2/3, hence 2(2− 1/β) > 1 > α. Now,

Bn =
{

(nh4−2/β)h
4(2−1/β)
κ2(1−α) −2

}κ2(1−α)/2

+
h2−1/β

√
n

b(1−α)(1+κ2)/2
n +

1

n
b(1−α)(1+κ2)/2
n b(1−α)/2

n

. o(1) +
h2−1/β

√
n

√

bn +
1

n
b1−α/2
n . o(1) + h3−2/β +

h2(1−1/β)

b
α/2
n

. 1,

yielding that H2(r) ≤ CL/r
L. The condition (4.23) continues to be in force in

the sequel.
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Estimate of H3(r). To derive the uniform convergence of the martingale resid-
ual terms, we make use of Lemma 4.8. Picking any constant ǫ ∈ (0, 1/2], we
strengthen (4.23) to

0 < ρ1 <
α

1− α
∧ ǫ.

Then, in a similar manner to the estimate (4.21),

H3(r) ≤ sup
n∈N

P0

[

sup
u∈Un(r)

|R3
n(u)|

(1 + |u|2)1−ǫ/2
≥ Crǫ−ρ1

]

.
1

rK3(ǫ−ρ1)
sup
n∈N

E0

[

sup
|v|≤1

{ |R3
n(c

′
nv)|

(1 + |c′nv|2)1−ǫ/2

}K3
]

.

Let Sn(v) := |R3
n(c

′
nv)|/(1 + |c′nv|2)1−ǫ/2. If

sup
|v|≤1

sup
n∈N

E0[|Sn(v)|K3 ] < ∞ (4.24)

and if there exists a p′ > 2 (here “2” indicates the dimension of θ) such that for
every v, v′ satisfying 0 ≤ |v′| ≤ |v| ≤ 1

sup
n∈N

E0[|Sn(v)− Sn(v
′)|K3 ] ≤ C|v − v′|p′

, (4.25)

then supn∈N E0[sup|v|≤1 |Sn(v)|K3 ] < ∞ by means of Lemma 4.8, hence H3(r) ≤
CL/r

L.
As with the estimate (4.15) we have E0[|R3

n(c
′
nv)|K3 ] . n−1/2|c′nv|K3+1, so

that, since ǫ ≤ 1/2 and K3 ≥ 2,

E0[|Sn(v)|K3 ] .
1√
n

|c′nv|K3+1

(1 + |c′nv|2)K3(1−ǫ/2)
.

1√
n
(1+|c′nv|2)(1−K3+ǫK3)/2 .

1√
n
.

This leads to (4.24). To prove (4.25), we first observe that |Sn(v) − Sn(v
′)| ≤

S̄1
n(v, v

′) + S̄2
n(v, v

′), where

S̄1
n(v, v

′) :=
|R3

n(c
′
nv)−R3

n(c
′
nv

′)|
(1 + |c′nv|2)1−ǫ/2

,

S̄2
n(v, v

′) := |R3
n(c

′
nv

′)|
∣

∣

∣

∣

1

(1 + |c′nv|2)1−ǫ/2
− 1

(1 + |c′nv′|2)1−ǫ/2

∣

∣

∣

∣

.

Pick any ǫ′ > 0. Again as with the estimate (4.15), it is not difficult to show
that

E0[|S̄1
n(v, v

′)|K3 ] .
1√
n

(c′n)
K3+1|v||v − v′|K3

(1 + |c′nv′|2)K3(1−ǫ/2)

. |v − v′|2+ǫ′ (c
′
n)

2+ǫ′

√
n

|c′nv|K3−1−ǫ′

(1 + |c′nv′|2)K3(1−ǫ/2)

. |v − v′|2+ǫ′ (c
′
n)

2+ǫ′

√
n

. (4.26)
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As for S̄2
n(v, v

′), since 1− ǫ/2 ∈ (0, 1) and |v′| ≤ |v| ≤ 1, we have

E0[|S̄2
n(v, v

′)|K3 ]

.
|c′nv′|K3+1

√
n

{

c′n|c′nv||v − v′|
(1 + |c′nv|2)(1 + |c′nv′|2)

}K3(1−ǫ/2)

. |v − v′|K3(1−ǫ/2) |c′nv|K3(1−ǫ/2)

√
n

|c′nv′|K3+1

(1 + |c′nv′|2)K3(1−ǫ/2)

|c′nv|K3(1−ǫ/2)

(1 + |c′nv|2)K3(1−ǫ/2)

. |v − v′|2+ǫ′ (c
′
n)

2+ǫ′

√
n

|c′nv|2K3(1−ǫ/2)−(2+ǫ′)

(1 + |c′nv|2)K3(1−ǫ/2)
. |v − v′|2+ǫ′ (c

′
n)

2+ǫ′

√
n

. (4.27)

It follows from (4.26) and (4.27) that

sup
n∈N

E0[|Sn(v)− Sn(v
′)|K3 ] ≤ |v − v′|2+ǫ′ sup

n∈N

(c′n)
2+ǫ′

√
n

, (4.28)

for any ǫ′ > 0. Now, given any α ∈ (0, 1) we take ǫ′ ∈ (0, 2α/(1 − α)), so that
(1 − α)(2 + ǫ′) < 2. Then (c′n)

2+ǫ′/
√
n . bn/

√
n = {nh4(1−1/β)}1/2 . 1 under

Assumption 4, hence (4.25) follows.
If either λ0 or γ0 is known, so that the dimension of θ is one, then, all without

distinction, we can deduce (4.28) with the exponents “2 + ǫ′” in the right-hand
side replaced by “1 + ǫ′”. In this case (c′n)

1+ǫ′/
√
n .

√

bn/n = h1−1/β . 1 as
soon as β ≥ 1, hence we do not need the condition nh4(1−1/β) . 1.

Estimate of H4(r). According to Lemma 4.4, |ph(0) − p0(0)| . hd for some
constant d > 0. Strengthen (4.23) to (ǫ > 0 is the constant taken in the step of
estimating H3(r))

0 < ρ1 <
α ∧ d

1− α
∧ ǫ. (4.29)

Then we derive for any κ4 ∈ (ρ1,
α∧d
1−α ∧ ǫ]

H4(r) ≤ sup
n∈N

P0

[

bκ4(1−α)/2
n hdIn(2) ≥ Crκ4−ρ1

]

.
1

rK4(κ4−ρ1)
sup
n∈N

(√
nh2−1/β · h d

κ4(1−α)
−1

)κ4(1−α)

.
1

rK4(κ4−ρ1)
,

hence H4(r) ≤ CL/r
L.

Estimate of H5(r). We have |R5
n(u)|/(1 + |u|2) ≤ |R5′

n |+ |R5′′
n |, where

R5′
n :=

1

n

n
∑

i=1

(wi−1x
⊗2
i−1 − E0[wi−1x

⊗2
i−1]),

R5′′
n :=

1

n

n
∑

i=1

(E0[wi−1x
⊗2
i−1]− Eπ0

0 [wi−1x
⊗2
i−1]),
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where Eπ0
0 denotes the expectation operator corresponding to P0 withX0 having

the distribution π0. Since X is exponentially absolute-regular under P0, we can
deduce

E0

[

max
i≤n

∣

∣

√
nhR5′

n

∣

∣

K5

]

. 1

by invoking Yoshida [34, Lemma 4]. Strengthen (4.29) to

0 < ρ1 <
α ∧ d ∧ ǫ0
1− α

∧ ǫ,

and then pick a κ5 ∈ (ρ1, ǫ0/(1 − α)], where ǫ0 is the constant appearing in
Assumption 4.1. Then we get

E0[|(c′n)κ5R5′
n |K5 ] . {(c′n)κ5/

√
nh}K5 . n{κ5(1−α)−ǫ0}K5/2 . 1, (4.30)

as h1−1/β . 1. Finally we estimate R5′′
n . Write ‖λ‖ḡ = sup|g|≤ḡ |λ(g)| for a

signed measure λ and a nonnegative function ḡ, and Pt(x, dy) for the transition
semigroups under P0 associated with X . Then, denoting by g(x) either x2w(x),
−xw(x), or w(x), we have

|R5′′
n | . 1

n

n
∑

i=1

∫

‖Pti−1(x, ·) − π0‖1+|g|η(dx)

.
1

n

n
∑

i=1

e−a0ti−1

∫

(1 + |g|)(x)η(dx) . 1

n

n
∑

i=1

e−a0ti−1 .
1

nh
, (4.31)

where a0 > 0 is some constant; see Masuda [22, 24] for details. Now, building
on (4.30) and (4.31), we arrive at the following estimate for every r > 0 large
enough:

H5(r) . sup
n∈N

P0

[

(c′n)
κ5 |R5′

n | ≥ Crκ5−ρ1
]

.
1

rK5(κ5−ρ1)
.

The proof of Lemma 4.2 is thus complete.

4.2.2. Proof of Lemma 4.3

Fix any L > 0, and write Ỹn(θ) = b
1/2−β2
n {Yn(θ) − Y(θ)}. Trivially we have

Ỹn(θ0) ≡ 0, hence, by means of Lemma 4.8, it suffices to prove that

∃p′ > 2 ∀θ, θ′ ∈ Θ sup
n∈N

E0

[

|Ỹn(θ)− Ỹn(θ
′)|L

]

≤ C|θ − θ′|p′

.

From (4.17) and (4.19) we have

Ỹn(θ) = b−β2+1/2
n

{

an(θ − θ0)
⊤∆n +

5
∑

j=1

b−1
n Rj

n(a
−1
n (θ − θ0))

}

.
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Hence |Ỹn(θ) − Ỹn(θ
′)| ≤ |θ − θ′|b−β2

n |∆n| +
∑5

j=1 Ȳ
j
n(θ, θ

′) for each θ, θ′ ∈ Θ,
where

Ȳj
n(θ, θ

′) := b−(β2+1/2)
n |Rj

n(a
−1
n (θ − θ0))−Rj

n(a
−1
n (θ′ − θ0))|

In view of (4.18), it remains to estimate supn∈N E0[|Ȳj
n(θ, θ

′)|L] one by one.

Case of j = 1. From (4.11), we readily get E0[|Ȳ1
n(θ, θ

′)|L] . |θ − θ′|L.

Case of j = 2. Note the elementary inequality: |
∫ y

x g(z)dz| . |x − y|{|g(x)| +
|g(y)|} for any x, y ∈ R and g : R → R. In a similar way to deriving (4.13), we
can deduce that for every u, u′

|R2
n(u)−R2

n(u
′)| . |u− u′|In(4)

·
{

(|u|+ |u′|)h2(2−1/β) +(|u|2 + |u′|2)h
2−1/β

√
n

+(|u|3 + |u′|3) 1
n

}

.

This estimate combined with the boundedness of Θ leads to

Ȳ2
n(θ, θ

′) . |θ − θ′|In(4)
{

a2β2−1
n

(

h2(2−1/β) +
a−2
n

n
+

a−1
n h2−1/β

√
n

)}

. |θ − θ′|In(4) · a2β2−1
n h2(1−1/β)

= |θ − θ′|In(4) ·
{√

nh(1−1/β)(3−2β2)/(1−2β2)
}1−2β2

.

Now take β2 ∈ [0, 1/2) so large that

(1− 1/β)(3− 2β2)

1− 2β2
≥ 2− 1

β

(

⇐⇒ β2 ≥ 2− β

2β

)

, (4.32)

then we deduce E0[|Ȳ2
n(θ, θ

′)|L] . |θ − θ′|L; note that the condition β > 1 was
implicitly used.

Case of j = 3. Every bit as the estimate (4.15), we can deduce that for every
u, u′

E0[|R3
n(u)−R3

n(u
′)|L] . |u− u′|L(|u|+ |u′|) 1√

n
sup
t∈R+

E0[w(Xt)
L(1 + |Xt|)L+1]

. |u− u′|L(|u|+ |u′|) 1√
n
.

Thus E0[|Ȳ3
n(θ, θ

′)|L] . |θ−θ′|Lb−L(1/2+β2)
n a−1−L

n /
√
n = |θ−θ′|Lb−β2L

n h1−1/β .

|θ − θ′|L.

Case of j = 4. Reminding the proof of Theorem 2.1 (the step of estimating
H4(r)), we have

|Ȳ4
n(θ, θ

′)| . |θ − θ′|In(2) · a2β2−1
n |ph(0)− p0(0)|

. |θ − θ′|In(2)
(√

nh1−1/β+d/(1−2β2)
)1−2β2

.
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The desired estimate E0[|Ȳ4
n(θ, θ

′)|L] . |θ− θ′|L follows on letting β2 fulfil that,
in addition to (4.32),

1− 1

β
+

d

1− 2β2
≥ 2− 1

β

(

⇐⇒ β2 ≥ 1− d

2

)

. (4.33)

Case of j = 5. It remains to look at Ȳ5
n(θ, θ

′). In view of the step of estimating
H5(r) in the proof of Theorem 2.1, we get

E0[|Ȳ5
n(θ, θ

′)|L] . |θ − θ′|L
{

E0

[

(b(1−2β2)/2
n R5′

n )
L
]

+

(

b
(1−2β2)/2
n

nh

)L}

.

Under Assumption 4 we have b
(1−2β2)/2
n /(nh) . n(1−2β2)/2−ǫ0 . 1 as soon as

β2 ≥ 1− 2ǫ0
2

. (4.34)

Now we get E0[|Ȳ5
n(θ, θ

′)|L] . |θ − θ′|L by taking β2 sufficiently close to 1/2 so

that E0[(b
(1−2β2)/2
n R5′

n )
L] . 1 in addition to (4.32), (4.33), and (4.34).

4.3. Proof of Theorem 2.3

First we prove φ̂β(0)n →p φβ(0), based on a modification of Ling [20, Section
A.2]. Since n−1

∑n
i=1 wi−1 →p

∫

w(x)π0(dx) > 0, it suffices to prove the two
convergences:

∣

∣

∣

∣

1

n

n
∑

i=1

wi−1Gni(ûn)− φβ(0)

(

1

n

n
∑

i=1

wi−1

)∣

∣

∣

∣

→p 0, (4.35)

∣

∣

∣

∣

1

n

n
∑

i=1

wi−1

{

1

Bn
K

(

∆iX − h(γ̂n − λ̂nXti−1)

h1/βBn

)

−Gni(ûn)

}∣

∣

∣

∣

→p 0, (4.36)

where (recall (4.2) and that ûn :=
√
nh1−1/β(θ̂n−θ0)), for each u, n, and i ≤ n,

Gni(u) := Ei−1
0

[

1

Bn
K

(

ǫni + ǫ′n,i−1 − u⊤xi−1/
√
n

Bn

)]

=

∫

K(z)ph

(

Bnz − ǫ′n,i−1 +
u⊤xi−1√

n

)

dz (4.37)

the last equality following from the Fti−1 -measurability of ǫ′n,i−1 and xi−1. In
view of Lemma 4.4, we have supn,i≤n ‖Gni‖∞ < ∞.

We begin with (4.35). Put δni = −ǫ′n,i−1+ û⊤
nxi−1/

√
n. Using the expression

(4.37) we see that n−1
∑n

i=1 wi−1|Gni(ûn)− φβ(0)| ≤ J1n + J2n: first,

J1n :=
1

n

n
∑

i=1

wi−1

∣

∣

∣

∣

∫

K(z){ph(Bnz + δni)− φβ(Bnz + δni)}dz
∣

∣

∣

∣

≤ hd 1

n

n
∑

i=1

wi−1 = Op(h
d)
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for some d > 0 by virtue of Lemma 4.4; second, again by using Lemma 4.4,

J2n :=
1

n

n
∑

i=1

wi−1

∣

∣

∣

∣

∫

K(z){φβ(Bnz + δni)− φβ(0)}dz
∣

∣

∣

∣

.
1

n

n
∑

i=1

wi−1

∫

K(z)|Bnz + δni|dz

. Op(Bn) +

(

h2−1/β +
|ûn|√
n

)

1

n

n
∑

i=1

wi−1(1 + |Xti−1 |)

. Op(Bn ∨ h2−1/β ∨ n−1/2) = op(1),

where we used (4.8) in proceeding from the second line to the third one. Thus
we get (4.35).

Next we turn to (4.36). Set

χni(u) =
wi−1

n

{

1

Bn
K

(

ǫni + ǫ′n,i−1 − u⊤xi−1/
√
n

Bn

)

−Gni(u)

}

,

then (4.36) follows on proving |Vn(ûn)| →p 0, where Vn(u) :=
∑n

i=1 χni(u). For
each u, the sequence {χni(u)}i≤n forms an (Fti)-martingale difference array with
the associated quadratic characteristics tending to 0 in probability: through the
change of variable as in (4.37), we see that

n
∑

i=1

Ei−1
0 [χni(u)

2] . Op

(

1

nBn

)

+Op

(

1

n

)

= op(1).

This readily implies that Vn(u) →p 0 for each u. Now fix any ǫ > 0 and ǫ′. Then
we can find an A > 0, for which supn∈N P0[|ûn| > A] < ǫ. Since

P0

[

|Vn(ûn)| > ǫ′
]

≤ P0

[

sup
|u|≤A

|Vn(u)| > ǫ′
]

+ ǫ,

it remains to show that sup|u|≤A |Vn(u)| →p 0. To this end we apply Lemma
4.8. By means of Burkholder’s inequality,

E0[|Vn(u)− Vn(u
′)|p] . 1

np/2

1

n

n
∑

i=1

E0[|nχni(u)− nχni(u
′)|p]

.
1

np/2

1

n

n
∑

i=1

{W ′
ni(u, u

′) +W ′′
ni(u, u

′)} (4.38)

for each u, u′ ∈ {u : |u| ≤ A}, where, writing δ′ni(u) = ǫni+ǫ′n,i−1−u⊤xi−1/
√
n,

W ′
ni(u, u

′) := E0

[

wp
i−1

Bp
n

∣

∣

∣

∣

K

(

δ′ni(u)

Bn

)

−K

(

δ′ni(u
′)

Bn

)∣

∣

∣

∣

p]

,

W ′′
ni(u, u

′) := E0[w
p
i−1|Gni(u)−Gni(u

′)|p].
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It follows from the Lipschitz continuity of K that W ′
ni(u, u

′) . n−p/2B−2p
n |u−

u′|p. Also, Lemma 4.4 yields that W ′′
ni(u, u

′) . n−p/2|u−u′|p. Substituting these
estimates into (4.38) yields that

E0[|Vn(u)− Vn(u
′)|p] . {n−p + (nB2

n)
−p}|u− u′|p . |u− u′|p.

In a similar way, we can deduce

sup
n∈N

sup
|u|≤A

E0[|Vn(u)|p] . sup
n∈N

{

n−p/2 +
Bn

(nB2
n)

p/2

}

< ∞.

Lemma 4.8 now yields that sup|u|≤A |Vn(u)| →p 0. We thus get the desired

convergence φ̂β(0)n →p φβ(0).

From Theorem 2.1 and Slutsky’s lemma,

2φ̂β(0)nÛ
−1/2
n

√
nh1−1/β(θ̂n − θ0) →d N2(0, I2).

The choice Bn = lnh
−1/β enables us to eliminate the factor “h−1/β”:

2
√
nh

n
∑

i=1

wi−1K

(

∆iX − h(γ̂n − λ̂nXti−1)

ln

)

ln

n
∑

i=1

wi−1

Û−1/2
n (θ̂n − θ0) →d N2(0, I2)

(4.39)

for any positive sequence (ln) satisfying the following, which corresponds to
(2.10):

ln = o(h1/β), nh−1/βln → ∞, lim inf
n→∞

nh−2/βl2n > 0.

These conditions are satisfied by the specific choice ln =
√
nh2 under Assump-

tion 3 and the condition (2.11), therefore, (2.12) follows from (4.39). The proof
of Theorem 2.3 is thus complete.

4.4. Preliminary lemmas

The following lemma provides a local limit result concerning the distribution
of ǫni for h → 0, with rates of convergence depending on the structure of Z.
Let β′ < 2 denote the Blumenthal-Getoor index of the pure-jump part of Z.
Also, recall that β′′ is the Blumenthal-Getoor index associated with ν′′; see
Assumption 1.2(b).

Lemma 4.4. The following holds true under Assumption 1.

(a) The distribution of ǫni for each n ∈ N and i ≤ n admits a common positive
smooth Lebesgue-density ph on R.

(b) We have the uniform estimate

sup
z∈R

|ph(z)− φβ(z)| . hd,
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where φβ is the symmetric β-stable density defined in Section 2.1, and the
positive constant d can be taken as follows.

(i) d = 1 if either:

• σ2 > 0 and ν(R) < ∞; or,

• σ2 = 0, g̃ ≡ 0 on U , and ν′′(R) < ∞.

(ii) d = 1− β′
+/2 for any β′

+ > β′ if σ2 > 0 and ν(R) = ∞.

(iii) d = 1−β′′
+/β for any β′′

+ > β′′ if σ2 = 0, g̃ ≡ 0 on U , and ν′′(R) = ∞.

(iv) d = δ′/β for any δ′ ∈ (0, β)∩ (0, δ] if σ2 = 0, δ > 0, and ν′′(R) < ∞.

(v) d = (δ′/β) ∨ (1 − β′′
+/β) for any δ′ ∈ (0, β) ∩ (0, δ] and β′′

+ > β′′ if
σ2 = 0, δ > 0, and ν′′(R) = ∞.

Proof. Throughout this proof, ϕY (resp. L(Y )) denotes the characteristic func-
tion (resp. the distribution) of a random variable Y .

First we prove (a). By the well known property of Lévy integrals, we have

ϕǫni(u)

= exp

{∫ h

0

logϕZ1(h
−1/βe−λ0su)ds

}

= exp

{

− σ2

2
h−2/β

(

1− e−2λ0h

2λ0

)

u2 +

∫

(cos(uz)− 1)

∫ h

0

ν(h1/βeλ0sdz)ds

}

,

(4.40)

so that L(ǫni) = L(h−1/β
∫ h

0
e−λ0sdZs) for each n ∈ N and i ≤ n. If σ2 > 0

(hence β = 2), then the existence of positive smooth density is obvious: L(ǫni)
has a nondegenerate Gaussian distribution as its convolution factor, and more-
over, it follows from (4.40) that sup(n,i):N≤n,i≤n |ϕǫni(u)| ≤ exp(−Cu2) for every

N large enough. When σ2 = 0, Assumption 1.2 leads to the following estimate
of L(ǫni)’s Lévy measure: we can find a (small) constant r0 > 0 such that
(−r0, r0) ⊂ U , that supz∈(−r0,r0) |g̃(z)| < 1/2, and that for every r ∈ (0, r0]

∫

|z|≤r

z2
∫ h

0

ν(h1/βeλ0sdz)ds ≥
∫

|z|≤r

z2
∫ h

0

ν′(h1/βeλ0sdz)ds

≥ c

2

∫ h

0

∫

|z|≤r

z2h1/βeλ0s|h1/βeλ0sz|−1−βdzds

≥ c

2− β

(

1− e−λ0βh

λ0βh

)

r2−β & r2−β .

This estimate combined with Orey’s criterion (see Sato [29, Proposition 28.3])
and Sharpe [30] ensures the existence of a positive smooth density of L(ǫni);
indeed, the last display implies that supn,i |ϕǫni(u)| ≤ exp(−C|u|β) for every |u|
large enough.



H. Masuda/SLAD estimation of ergodic OU processes 558

Now we turn to (b). We have to deal with the cases where σ2 > 0 and σ2 = 0
separately. For both cases, we utilize the basic estimate

∫

|H10(u)H11(u)−H0(u)|du

≤
∫

|H0(u)|
∣

∣

∣

∣

∫ 1

0

(

H10(u)

H0(u)

)y

dy

∣

∣

∣

∣

∣

∣

∣

∣

log
H10(u)

H0(u)
+ logH11(u)

∣

∣

∣

∣

du, (4.41)

which is valid for any (0,∞)-valued characteristic functions H0, H10, and H11.
First we consider the case where σ2 > 0. It follows from the Lévy-Itô de-

composition that we may write Zt = σwt + Jt, where w is a standard Winer
process and J is a pure-jump Lévy process with the Blumenthal-Getoor index
β′ ∈ [0, 2). For convenience, we write

Ah(u) =

∫ h

0

logϕJ1

(

e−λ0su√
h

)

ds.

Then, reminding the expression (4.40), we apply (4.41) with

H0(u) = exp

(

− σ2

2
u2

)

,

H10(u) = exp

{

− σ2

2

(

1− exp(−2λ0h)

2λ0h

)

u2

}

,

H11(u) = exp{Ah(u)},

to obtain the following estimates through the Fourier-inversion formula:

sup
z∈R

|ph(z)− φβ(z)|

≤ 1

2π

∫

|H10(u)H11(u)−H0(u)|du

.

∫

e−σ2u2/2 exp

{

σ2u2

2

∣

∣

∣

∣

1− 1− e−2λ0h

2λ0h

∣

∣

∣

∣

}

·
(

u2

∣

∣

∣

∣

1− 1− e−2λ0h

2λ0h

∣

∣

∣

∣

+ |Ah(u)|
)

du

.

∫

e−Cu2{hu2 + |Ah(u)|}du . h+

∫

e−Cu2 |Ah(u)|du. (4.42)

The estimate of |Ah(u)| may change according to the structure of J .

• If ν(R) < ∞, then clearly ‖ logϕJ1(·)‖∞ < ∞ since J is compound Pois-
son. Therefore we get |Ah(u)| . h.

• In case where ν(R) = ∞, we have

|Ah(u)|I(|u| ≤
√
h) ≤ h sup

|v|≤1

| logϕJ1(v)| . h.

Also, for every h sufficiently small,

inf
(s,u):0≤s≤h,|u|≥

√
h

∣

∣

∣

∣

e−λ0su√
h

∣

∣

∣

∣

>
1

2
.
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Hence, reminding the fact that lim|v|→∞ |v|−β′

+ | logϕJ1(v)| = 0 for any
β′
+ > β′ (e.g. Sato [29, page 362]), we obtain

|Ah(u)|I(|u| >
√
h) .

∫ h

0

|e−λ0su/
√
h|β′

+ds . |u|β′

+h1−β′

+/2.

Thus it follows that |Ah(u)| . h1−β′

+/2(1 + |u|β′

+).

Piecing together the last two items and (4.42), we get the claim for σ2 > 0.
Now we look at the case where σ2 = 0. First we introduce some nota-

tion. For a V ⊂ R, define Lévy processes Z ′(V ) and Z ′′ by logϕZ′(V )1(u) =
∫

V {cos(uz) − 1}ν′(dz) and logϕZ′′

1
(u) =

∫

{cos(uz) − 1}ν′′(dz). Then Z =

Z♯ + Z♭, where Z♯ := Z ′(U) and Z♭ := Z ′(U c) + Z ′′. Obviously, Z♯ (resp.
Z♭) has the Blumenthal-Getoor index β (resp. β′′). Let

u 7→ exp

{∫

(cos(zu)− 1)c|z|−1−βdz

}

=: exp(−c1|u|β).

denote the symmetric β-stable characteristic function corresponding to the den-
sity φβ ; specifically, c and c1 are related as c1 = 2cβ−1Γ(1−β) cos(βπ/2). Then,
we are going to apply (4.41) with

H0(u) = exp(−c1|u|β),

H10(u) = exp

{∫ h

0

logϕZ♯
1
(e−λ0suh−1/β)ds

}

,

H11(u) = exp

{∫ h

0

logϕZ♭
1
(e−λ0suh−1/β)ds

}

.

We may set U = (−1, 1) without loss of generality. Then, we have for each u ∈ R

log
H10(u)

H0(u)

=

∫

{cos(uz)− 1}
(

− c

|z|1+β

+

∫ h

0

I(|z| ≤ e−λ0sh−1/β)eλ0sh1/βg(eλ0sh1/βz)ds

)

dz

=

∫

{cos(uz)− 1} c

|z|1+β

(

1

h

∫ h

0

e−λ0βsI(|z| ≤ e−λ0sh−1/β)ds− 1

)

dz

+

∫

{cos(uz)− 1} c

|z|1+β

1

h

∫ h

0

e−λ0βsI(|z| ≤ e−λ0sh−1/β)g̃(eλ0sh1/βz)dsdz

=: A0
h(u) +A1

h(u), say. (4.43)
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For A0
h, we have

|A0
h(u)| ≤

∣

∣

∣

∣

∫

{cos(uz)− 1} c

|z|1+β

(

1

h

∫ h

0

e−λ0βsds− 1

)

dz

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

{cos(uz)− 1} c

|z|1+β

1

h

∫ h

0

e−λ0βsI(|z| > e−λ0sh−1/β)dsdz

∣

∣

∣

∣

. h

∣

∣

∣

∣

∫

{cos(uz)− 1} c

|z|1+β
dz

∣

∣

∣

∣

+

∣

∣

∣

∣

1

h

∫ h

0

e−λ0βs

{∫

|z|>e−λ0sh−1/β

(cos(uz)− 1)|z|−(1+β)dz

}

ds

∣

∣

∣

∣

. h|u|β +
1

h

∫ h

0

e−λ0βs

(∫ ∞

e−λ0sh−1/β

z−1−βdz

)

ds . h(|u|β + 1).

(4.44)

We now turn to A1
h. Trivially, A

1
h ≡ 0 if g̃ ≡ 0 on U ; otherwise, |g̃(z)| . |z|δ′ on

U for every δ′ ∈ (0, δ]. Fix any δ′ ∈ (0, β) ∩ (0, δ] in the sequel. We readily get

|A1
h(u)| . −hδ′/β

∫

{cos(uz)− 1}|z|−1−(β−δ′)dz . hδ′/β |u|β−δ′ . (4.45)

Summarizing (4.43), (4.44), and (4.45) yields

sup
z∈R

|ph(z)− φβ(z)| .
∫

exp
[

−c1|u|β + C{hδ′/β |u|β−δ′ + h(|u|β + 1)}
]

·
{

hδ′/β |u|β−δ′ + h(|u|β + 1) + | logH11(u)|
}

du,

(4.46)

where the terms involving δ′ vanish if g̃ ≡ 0 on U . Just like the foregoing
estimates of |Ah(u)|, we see that:

• | logH11(u)| . h if Z♭ is compound Poisson;
• otherwise, for any β′′

+ > β′′ we have

| logH11(u)| ≤ | logH11(u)|I(|u| ≤ h1/β) + | logH11(u)|I(|u| > h1/β)

. h sup
|v|≤1

| logH11(v)| +
∫ h

0

|e−λ0sh−1/βu|β′′

+ds

. h1−β′′

+/β(|u|β′′

+ + 1).

Combining these estimates with (4.46), it is straightforward to complete the
proof of (b).

Lemma 4.5. Suppose
∫

|z|>1
|z|qν(dz) < ∞ for some q > 0. Then,

sup
t,s∈R+:|t−s|≤h

E0[|Xt −Xs|2∧q] . h1∧(q/2).
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Proof. Using the expression (4.1) we get

sup
t,s∈R+:|t−s|≤h

E0

[

|Xt −Xs|2∧q
]

. h2∧q sup
t∈R+

E0[|Xt|2∧q] + sup
t,s∈R+:|t−s|≤h

E

[∣

∣

∣

∣

∫ t−s

0

e−λ0vdZv

∣

∣

∣

∣

2∧q]

=: U1
h + U2

h(Z).

Trivially U1
h . h2∧q, so that it suffices to deduce U2

h(Z) . h1∧(q/2).

For q ≥ 2, we have U2
h(Z) = E[Z2

1 ]
∫ h

0 e−2λ0sds . h = h1∧(q/2). For q < 2,
we consider the decomposition Z = Z0 + Z1, where Z0 (resp. Z1) has only
jumps whose sizes in magnitude are less than or equal to 1 (resp. greater than
1). Then U2

h(Z
1) . h since Z1 is compound Poisson and

∫

|z|>1 |z|qν(dz) < ∞.

As for U2
h(Z

0), since Z0
1 admits finite variance, Schwarz’s inequality yields that

U2
h(Z

0) ≤ sup
t,s∈R+:|t−s|≤h

{

E0

[∣

∣

∣

∣

∫ t−s

0

e−λ0vdZ0
v

∣

∣

∣

∣

2]}q/2

. hq/2.

Hence we get U2
h(Z) . {U2

h(Z
0) + U2

h(Z
1)} . h1∧(q/2) as desired.

Lemma 4.6. Suppose Assumption 2 and that
∫

|z|>1 |z|qν(dz) < ∞ for some

q > 0. Let
gk,l(x) := xkw(x)l

for k ∈ {0, 1, 2} and l ∈ {1, 2}, and let

δn(gk,l) :=

∣

∣

∣

∣

1

nh

∫ nh

0

gk,l(Xs)ds−
1

n

n
∑

i=1

gk,l(Xti−1)

∣

∣

∣

∣

.

Then δn(gk,l) →p 0 for k ∈ {0, 1, 2} and l ∈ {1, 2}.
Proof. The claim follows on proving

δ̄h(gk,l) := sup
t,s:|t−s|≤h

E0[|gk,l(Xt)− gk,l(Xs)|] → 0. (4.47)

We divide the proof into two steps.

Step 1. First we prove (4.47) for l = 1. It suffices to show that δ̄′h(k)∨ δ̄′′h(k) → 0,
where

δ̄′h(k) := sup
t,s:|t−s|≤h

E0[|Xt|k|w(Xt)− w(Xs)|],

δ̄′′h(k) := sup
t,s:|t−s|≤h

E0[w(Xs)|Xk
t −Xk

s |].

Note that the growth rate of gk,1 is connected with how large q can be taken:
g1,1 and g2,1 can be unbounded if, e.g., q is set to be large and w is a positive
constant.
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First we target k = 0. Fix an arbitrary ǫ > 0, then we can find a ρ > 0 such
that |x− y| < ρ implies |w(x)−w(y)| < ǫ/2. Observe that from Lemma 4.5 we
have

δ̄′h(0) ≤
ǫ

2
+ 2‖w‖∞ sup

t,s:|t−s|≤h

E0

[( |Xt −Xs|
ρ

)2∧q]

≤ ǫ

2
+ Ch1∧(q/2),

which implies that δ̄n(gk,1) < ǫ for every n large enough, hence δ̄n(gk,1) → 0.
Next, we target k ∈ {1, 2} and q > 2. It follows from Hölder’s and Schwarz’s

inequalities and Lemma 4.5 that for k ∈ {1, 2}

δ̄′′h(1) ∨ δ̄′′h(2) .

(

sup
t,s:|t−s|≤h

E0[|Xt −Xs|2]
)1/2

.
√
h. (4.48)

Using the uniform continuity of w as before, we derive

δ̄′h(k) ≤ ǫ sup
t∈R+

E0[|Xt|k] +
2‖w‖∞

ρr
sup

t,s:|t−s|≤h

E0[|Xt|k|Xt −Xs|r]

. ǫ+ sup
t,s:|t−s|≤h

{E0[|Xt|ku]}1/u{E0[|Xt −Xs|rv]}1/v

for any r > 0 and u > 1 together with u’s conjugate exponent v. Now take
u = q/k, v = q/(q − k), and r = 2(q − k)/q to conclude that for k ∈ {1, 2}

δ̄′h(k) . ǫ+

(

sup
t,s:|t−s|≤h

E0[|Xt −Xs|2]
)r/2

. ǫ+ hr/2. (4.49)

Now (4.48) and (4.49) yields that δ̄n(gk,1) → 0 for k ∈ {1, 2}.
We are left to considering the case where k ∈ {1, 2} and q ∈ (0, 2]. However, in

this case we can see that Assumption 2.2 implies the boundedness and uniform
continuity of g1,1 and g2,1, so that we can follow the same line as in the case
where k = 0. This completes the proof of (4.47) for l = 1.

Step 2. In case of l = 2, we observe that for every x, y ∈ R

|gk,2(x) − gk,2(y)| ≤ ‖w‖∞{|gk,1(x)− gk,1(y)|+ |y|k|w(y)− w(x)|},

from which it follows that δ̄h(gk,2) . δ̄h(gk,1) + δ̄′h(k) → 0 in view of what we
have seen in the previous step. This leads to (4.47) for l = 2. The proof of
Lemma 4.6 is thus complete.

Remark 4.7. It is a simple matter to show supt,s:|t−s|≤h E0[|k(Xt)−k(Xs)|r] .√
h for each r ≥ 2 if q can be large enough and k is a C1-function with the

derivative being of at most polynomial growth. This trivially leads to the er-
godic theorem for the discrete-time samples: n−1

∑n
i=1 k∗(Xti−1) →p π0(k∗) for

smooth k∗. (Of course, this can be valid for much more general class of diffu-
sions with jumps.) On the other hand, Lemma 4.6 enables us to deal with small
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q (i.e., heavy-tailed cases) too, without imposing the global differentiability of w.
A practical candidate for w when suspecting heavy-tailed nature in data would
be the standard Gaussian density, however, it is also possible to take, e.g., the
Laplace-type weight w(x) = exp(−|x|).

The following lemma are used to deduce the uniform estimates of some mar-
tingale terms. See Kunita [19, Theorem 1.4.7] for details.

Lemma 4.8. Let {Ξn(h) : h = (hj)pj=1 ∈ H−} be a sequence of R-valued
continuous random fields defined on a probability space (Ω,F , P ), where H is a
bounded domain in Rp. Suppose there exist constants a > p, b > 0 and c > 0
such that for every h1, h2 ∈ H

sup
n∈N

P
[

|Ξn(h1)− Ξn(h2)|b
]

≤ c|h1 − h2|a,

sup
n∈N

P
[

|Ξn(h1)|b
]

≤ c.

Then the family {Ξn(·)}n is tight with respect to the supremum norm over H,
and moreover for any compact convex set K ⊂ H− we have

sup
n∈N

P

[

sup
h∈K

|Ξn(h)|b
]

< ∞.
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