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Abstract: A classical approach for dealing with a multiple testing prob-
lem is to restrict attention to procedures that control the familywise error
rate (FWER), the probability of at least one false rejection. In many ap-
plications, one might be willing to tolerate more than one false rejection
provided the number of such cases is controlled, thereby increasing the abil-
ity of a procedure to detect false null hypotheses. This suggests replacing
control of the FWER by controlling the probability of k or more false re-
jections, which is called the k-FWER. In this article, a unified approach is
presented for deriving the k-FWER controlling procedures. We first gen-
eralize the well-known closure principle in the context of the FWER to
the case of controlling the k-FWER. Then, we discuss how to derive the
k-FWER controlling stepup procedures based on marginal p-values using
this principle. We show that, under certain conditions, generalized closed
testing procedures can be reduced to stepup procedures, and any stepup
procedure is equivalent to a generalized closed testing procedure. Finally,
we generalize the well-known Hommel procedure in two directions, and
show that any generalized Hommel procedure is equivalent to a generalized
closed testing procedure with the same critical values.
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1. Introduction

Consider the problem of simultaneously testing a finite number of null hypothe-
ses Hi (i = 1, . . . , n), using tests that are available for these individual hypothe-
ses. A traditional concern dealing with this problem is to control the familywise
error rate (FWER), the probability of falsely rejecting at least one true null
hypothesis. However, quite often, when the number n of hypotheses is large,
control of FWER is so stringent that a few of false null hypotheses are rejected.
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Therefore, the classical idea of controlling the FWER has been recently gener-
alized to that of controlling the probability of k or more false rejections, which
is called the k-FWER. The rationale behind the k-FWER is that, often in prac-
tice, one is willing to tolerate a few false rejections, so by controlling k or more
false rejections the ability of a procedure to detect more false null hypotheses
can potentially be improved.

A number of methods controlling the k-FWER have been recently suggested.
Single-step and stepwise (stepdown and stepup) k-FWER procedures in terms of
only the marginal null distributions of the p-values under arbitrary dependence
of the p-values are derived in [17, 21] and [25]. When the p-values are positively
dependent, Sarkar [30] developed alternative single-step and stepwise k-FWER
procedures utilizing kth order joint null distributions of the p-values. When the
p-values are independent, Guo and Romano [11] provided more powerful single-
step and stepdown k-FWER procedures. In [20], alternative permutation-based
procedures are proposed to control the k-FWER approximately, which account
for the dependence structure of the individual test statistics or p-values. Their
results were generalized in [26]. In [36], alternative procedures controlling the k-
FWER are provided by augmenting single-step and stepwise FWER procedures.
Further methods are discussed in [6] and [35].

In contrast to the popular false discovery rate (FDR), it is easier to derive
powerful k-FWER controlling procedures in numerous settings. For example,
suppose we are examining all pairwise comparisons in the one-way ANOVA
model, in which the number of treatments is moderate. In this situation, the
assumption of positive regression dependence of the underlying test statistics
is not satisfied ([38]), so the popular Benjamini-Hochberg procedure in [1] is
not applicable ([2]), but no other FDR controlling procedure is available deal-
ing with this problem. An alternative choice is to control the k-FWER, since
we will be able to develop relatively easily powerful k-FWER controlling pro-
cedures accounting for the special dependence structure of the individual test
statistics. Hence, in many applications, the k-FWER can be regarded as a good
complement to the FWER and FDR. For further enunciation of k-FWER crite-
rion, see [17, 20, 21] and [36], and for some practical examples where k-FWER
controlling procedures are used, see [5, 9]. In addition, based on the similar ra-
tionale to the k-FWER, Sarkar [29] advocated the k-FDR using the expected
ratio of k or more false rejections to the total number of rejections, which is a
generalization of the FDR. Several procedures controlling the k-FDR have also
been developed in [29, 31, 32].

In this paper a unified approach is provided for the construction of the k-
FWER controlling procedures based on marginal p-values. The main motivation
comes from one particular paradigm of research on the FWER, where the well-
known closure principle plays a fundamental role in the construction of the
FWER controlling procedures. We believe that a generalization of the closure
principle will play a similar key role in the construction of the k-FWER control-
ling procedures. To begin with, we generalize the closure principle, and then de-
rive several general results on the relationship between generalized closed testing
procedures and stepup and generalized Hommel procedures. As an application,
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it is then shown that the existing procedures can be directly derived following
the generalized closure principle, and they are equivalent to some generalized
closed testing procedures.

This paper is organized as follows. In Section 2, we set up the terminology.
A generalization of the closure principle and several global tests are provided in
Section 3. In Section 4, we discuss the relationship between generalized closed
testing procedures and stepup procedures. Several general results are obtained.
In Section 5, we generalize the Hommel procedure and show that generalized
Hommel procedures are equivalent to generalized closed testing procedures with
the same critical values. In Section 6, we offer some concluding remarks.

2. Basic setting

Consider the problem of testing simultaneously a family of n null hypotheses
H1, . . . , Hn. Suppose that the family satisfies the free combination condition of
Holm [13], that is, for any I ⊆ {1, . . . , n}, there exists a distribution P ∈ Ω, for
which all Hi, i ∈ I are true and all Hi, i /∈ I are false, where Ω is the set of all
possible distributions of the data.

Suppose V is the number of true null hypotheses falsely rejected. The gen-
eralized familywise error rate (k-FWER) is defined to be the probability of at
least k false rejections, where k is pre-specified with 1 ≤ k ≤ n. That is,

k -FWER = P{V ≥ k}. (2.1)

If k = 1, k-FWER is the usual familywise error rate (FWER). When testing
H1, . . . , Hn, we assume that the p-values P1, . . . , Pn are available, and the p-
values associated with true null hypotheses satisfy

P{Pi ≤ u} ≤ u for any u ∈ (0, 1). (2.2)

Let the ordered p-values be denoted by P(1) ≤ · · · ≤ P(n), and the associated hy-
potheses by H(1), . . . , H(n). Suppose αk ≤ · · · ≤ αn is a non-decreasing sequence
of critical values.

There are two main avenues open for developing multiple testing procedures
based on marginal p-values: stepup or stepdown. We generalize these proce-
dures to accommodate control of the k-FWER. A (generalized) stepup proce-
dure based on the critical values αi, which is slightly different from the usual
one, is described below. If P(n) ≤ αn, then reject all null hypotheses; otherwise,
reject hypotheses H(1), . . . , H(r), where r ≥ k is the smallest index satisfying

P(n) > αn, · · · , P(r+1) > αr+1. (2.3)

If, for all r ≥ k, P(r) > αr, then reject the first (k−1) most significant hypothe-
ses.

Similarly, a (generalized) stepdown procedure, which is slightly different from
the usual one, is described below. If P(k) > αk, reject the first (k − 1) most
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significant hypotheses. Otherwise, reject hypotheses H(1), . . . , H(r) where r ≥ k
is the largest index satisfying

P(k) ≤ αk, · · · , P(r) ≤ αr. (2.4)

Note that, if k = 1, the stepwise (stepup or stepdown) procedures described
above are the same as the usual ones.

Evidently, from the definition of the k-FWER, one can always reject the
(k − 1) most significant hypotheses without violating control of the k-FWER.
This is the reason why we give a slightly different definitions of stepup and
stepdown procedures, in which, the (k − 1) most significant hypotheses are
automatically rejected. An alternative choice is to let αi = αk, 1 ≤ i < k, as in
[17, 21]. For convenience of theoretical development, in the subsequent sections,
all procedures including the closed testing procedures described in Section 3
and the generalized Hommel procedures defined in Section 5, are also supposed
to reject automatically the (k − 1) most significant hypotheses. However, in
practice, when applying our suggested procedures, we hope that the user can
make a judical choice on these critical values or simply let αi = αk, 1 ≤ i ≤ k.
Such restriction does not change the k-FWER control of these procedures.

3. Generalized closure principle

In this section, we generalize the well-known closure principle in the context of
the FWER to the case of controlling the k-FWER. Similar to the usual closure
principle, the value of the generalized closure principle is that the problem of
controlling the k-FWER is reduced to the problem of controlling the usual
probability of the Type I error of single tests of intersection hypotheses.

Let I ⊂ {1, . . . , n} with |I| ≥ k. Let Pi, i ∈ I be the p-values associated with
Hi, i ∈ I and P1:I ≤ · · · ≤ P|I|:I an ordered arrangement of these p-values. Let
H1:I , . . . , H|I|:I be the corresponding null hypotheses. Let HI = ∩i∈IHi. Let
αk:I ≤ · · · ≤ α|I|:I be a given set of critical values. We present the following
local test based on marginal p-values, which is proposed in [30], for testing the
single hypothesis HI :

Reject HI if and only if Pj:I ≤ αj:I for at least one j ∈ {k, . . . , |I|}, (3.1)

which implies that an intersection hypothesis is declared significant if and only
if at least k of the individual hypotheses are found significant. The local test is
denoted by (I : αk:I , . . . , α|I|:I) and the Type I error probability associated with

the local test is given by P (∪
|I|
j=k{Pj:I ≤ αj:I}) when the intersection hypothesis

HI is true. If the Type I error probability is ≤ α, we call the local test as a level
α test. Now, consider the family of the local tests {(I : αk:I , . . . , α|I|:I) : I ⊂
{1, . . . , n}, |I| ≥ k}. We call this family to be symmetric if for any subsets I and
J with |I| = |J | ≥ k, we have αi:I = αi:J , for k ≤ i ≤ |I|. The notation implies
that we use the same local test for testing different intersection null hypotheses
HI and HJ if the cardinalities of I and J are the same. A symmetric family



W. Guo and M. Rao/On stepwise control of the k-FWER 476

of local tests is indeed characterized by a double-integer-indexed set of critical
constants. Later, for simplicity, we use (I : αk,|I|, . . . , α|I|,|I|) to denote the local
test (I : αk:I , . . . , α|I|:I) in the symmetric family. The following lemma plays an
important role in the construction of symmetric local tests.

Lemma 3.1. ([7, 21, 24]) Suppose P1, . . . , Pt are p-values in the sense that
P{Pi ≤ u} ≤ u for all i and u in (0, 1). Let their ordered values be P(1) ≤ · · · ≤
P(t). Let 0 = β0 ≤ β1 ≤ · · · ≤ βm ≤ 1 for some m ≤ t. Then

P
{

{P(1) ≤ β1} ∪ . . . ∪ {P(m) ≤ βm}
}

≤ t

m
∑

i=1

(βi − βi−1)/i. (3.2)

For any subset I ⊂ {1, . . . , n} with |I| ≥ k, consider the local test (I :
αk,|I|, . . . , α|I|,|I|) of HI . Let m = t = |I| and βi = αi,|I| if k ≤ i ≤ |I| and
otherwise 0. Then, by Lemma 3.1, the Type I error rate of the local test is less
than or equal to

|I|
(

αk,|I|/k +

|I|
∑

i=k+1

(αi,|I| − αi−1,|I|)/i
)

. (3.3)

Evidently, if the right side of (3.3) is bounded above by α, then the local test is
a level α test under arbitrary dependence of p-values.

Let αk ≤ · · · ≤ αn be given. Define

D1(k) = max
k≤|I|≤n







|I|
αn−|I|+k

k
+ |I|

∑

k<j≤|I|

αn−|I|+j − αn−|I|+j−1

j







. (3.4)

Then by (3.2), the local test (I : ααn−|I|+i/D1(k), k ≤ i ≤ |I|) is a level α test of
HI . Specially, suppose αj,|I| (j = k, . . . , |I|) is a constant. For the validity of (3.3)
≤ α, one only needs αk,|I| ≤ kα/|I|. Thus the local test (I : kα/|I|, . . . , kα/|I|)
is also a level α test of HI .

After obtaining the symmetric families of local tests, we now generalize the
usual closure principle for controlling the k-FWER.

Theorem 3.1. Let {Hi, i = 1, . . . , n} be a finite family of hypotheses and k be
pre-specified with 1 ≤ k ≤ n. For any I ⊂ {1, . . . , n} with |I| ≥ k, let Pi, i ∈ I
be the p-values associated with Hi, i ∈ I and P1:I ≤ · · · ≤ P|I|:I an ordered
arrangement of these p-values. Let HI =

⋂

j∈I Hj. Suppose a level α local test
defined by (3.1) is available to test HI for each I. Then, the (generalized) closed
testing procedure, which rejects any hypothesis Hi if and only if HI is rejected
for all I satisfying i ∈ I and Pi ≥ Pk:I , controls the k-FWER at level α.

Proof. Let I0 be the set of indices of true hypotheses. Assume |I0| ≥ k or there
is nothing to prove. Define the event

A = {at least k true hypotheses are rejected}.
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The occurrence of event A implies that there exists i ≥ k such that the null hy-
pothesis Hi:I0 is rejected. From the description of the generalized closed testing
procedure, Hi:I0 is rejected implies that HI0 is rejected. Therefore,

k-FWER = P (A) ≤ P{HI0 rejected} ≤ α.

Remark 3.1. Under the generalized closed testing procedure described above,
H(1), . . . , H(k−1) will always be rejected. Specifically, if k = 1, the procedure is
identical to the one proposed by Marcus et al. [23].

Remark 3.2. Compared with the original closure principle, the generalized
closed testing procedure involves far fewer single tests for testing significance
of Hi when k ≥ 2. One of the reasons is that, when testing HI , (k − 1) false
rejections are allowed. If Pi is one of the first (k−1) minimal p-values in Pj , j ∈ I,
the p-value Pi does not play any role in testing HI .

Remark 3.3. The work by Xu and Hsu [37] was brought to our attention in
the review process. Xu and Hsu is related to our work, but there are two main
differences between our paper and theirs. Firstly, in this paper we generalized
the usual closure principle while Xu and Hsu generalized the partitioning prin-
ciple. The closure principle is the first general principle in multiple testing and
nowadays it is still a main tool for constructing multiple testing procedures con-
trolling the FWER at level α. The partitioning principle is another powerful
tool for the construction of multiple testing procedures, which is based on a
partitioning of the parameter space and was introduced by Stefansson et al. [34]
and Finner and Strassburger [8]. Compared to the partitioning principle, the
closure principle is simpler, easier to apply, and is extensively applied to con-
struct a number of multiple testing procedures in practice, especially stepwise
procedures. An advantage of the partitioning principle is that, depending on
the underlying multiple testing problem, it may lead to more powerful test pro-
cedures than the closure principle. In addition, it is more general than closure
principle. It implies the closure principle. For readily accessible paper explaining
partition testing implies closed testing, one may refer to [18]. Secondly, in their
paper, Xu and Hsu present a set of sufficient conditions that allows the general-
ized partitioning principle to be executed as some FWER controlling stepdown
procedure, but its construction is not presented. In Sections 4 and 5 of this
paper, we derive several general results on the relationship between general-
ized closed testing procedures and stepup and generalized Hommel procedures.
Based on these results and given single tests for intersection hypotheses, we can
directly derive computationally simple stepwise procedures.

In what follows, the closed testing procedures considered are always built on
symmetric families of local tests characterized by the critical constants αi,|I|.
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4. Stepup procedure

In this section, we discuss how to apply the generalized closure principle enun-
ciated in Theorem 3.1 to derive stepup procedures with the k-FWER control-
ling property. For discussion on developing stepdown procedures, one may refer
to [37].

It is generally not easy to show directly that a specific stepwise procedure
has the k-FWER controlling property. However, our strategy is first to build
a closed testing procedure based on a family of level α local tests, and then
to prove that the specific stepwise procedure is equivalent to or dominated by
the closed testing procedure. We now qualify equivalence or dominance of two
procedures (cf. [10, 22]). Two procedures A and B are called equivalent if they
reject or accept the same individual hypotheses. Procedure A is said to dominate
Procedure B if A always rejects at least those individual hypotheses rejected by
Procedure B. It is easy to see that, if Procedure B is shown to be equivalent
to or dominated by Procedure A, which has the k-FWER controlling property,
then Procedure B also has the k-FWER controlling property.

When the p-values are in any dependency structure, Romano and Shaikh [25]
obtained a stepup procedure with the critical values α′

i = ααi/D1(k), where
αk ≤ · · · ≤ αn are any non-decreasing constants and D1(k) is defined as in
(3.4). In this section, we give a general result (Theorem 4.1) of deriving stepup
procedures through given closed testing procedures.

Theorem 4.1. Suppose αi,|I|, k ≤ i ≤ |I| and k ≤ |I| ≤ n be given, αi,|I| is
increasing in i and decreasing in |I|, and αl,(n−i)+l is increasing in l for each
given i ≥ k. The following statements are true.

(i) The closed testing procedure with the critical values αi,|I| dominates the
stepup procedure with the critical values αk,(n−i)+k.

(ii) Furthermore, if αl,(n−i)+l, k ≤ l ≤ n are constant for each given i ≥ k,
then these two procedures are equivalent.

(iii) If (I : αi,|I|, k ≤ i ≤ |I|) is a level α local test of HI for each I ⊂ {1, . . . , n}
with |I| ≥ k, then the stepup procedure controls the k-FWER at level α.

Proof. (i) We show that, for any individual hypothesis H(i), if it is rejected by
the stepup procedure, it is also rejected by the closed testing procedure.

If i < k, H(i) is automatically rejected by these two procedures. So, we
assume i ≥ k. If H(i) is rejected by the stepup procedure, then there exists
j ≥ i satisfying P(j) ≤ αk,(n−j)+k. Consider any subset I ⊂ {1, . . . , n} with
(i) ∈ I, |I| ≥ k, and P(i) ≥ Pk:I . Let l = max{i′ : Pi′:I ≤ P(j)}. Since j ≥ i and
(i) ∈ I, l ≥ k. If l < |I|, then Pl+1:I > P(j), so |I| ≤ (n− j)+ l. Evidently, when
l = |I|, it follows that |I| ≤ (n− j) + l, too. Hence,

Pl:I ≤ P(j) ≤ αk,(n−j)+k ≤ αl,(n−j)+l ≤ αl,|I|.

The third inequality in the chain above follows from the assumption that αl,(n−i)+l

is increasing in l, and the last inequality follows from the inequality |I| ≤
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(n − j) + l. Consequently, HI is rejected. Then, by Theorem 3.1, H(i) is re-
jected by the closed testing procedure. Hence, the stepup procedure with the
critical values αk,(n−i)+k is dominated by the closed testing procedure.

(ii) We show that when αl,(n−j)+l, k ≤ l ≤ n are constant for each given
j ≥ k, if H(i) is rejected by the closed testing procedure, it is also rejected by
the stepup procedure.

Let I = {(1), . . . , (k−1), (i), . . . , (n)}, and note that, (i) ∈ I, |I| = (n−i)+k ≥
k. If H(i) is rejected by the closed testing procedure, then by Theorem 3.1, HI

will be rejected by the corresponding level α local test. That is, there exists
j ≥ i satisfying Pj:I ≤ αj,|I|. Since Pj:I = P(i+j−k) , αj,|I| = αj,n−i+k, and
αl,(n−i′)+l, k ≤ l ≤ n are constant for each given i′ ≥ k, αj,n−i+k = αk,n−i−j+2k .
Hence, P(i+j−k) ≤ αk,n−(i+j−k)+k . From the definition of generalized stepup
procedure, H(i) is rejected by the stepup procedure. Consequently, these two
procedures are equivalent.

(iii) Since (I : αi,|I|, k ≤ i ≤ |I|) is a level α local test of HI for each
I ⊂ {1, . . . , n} with |I| ≥ k, by Theorem 3.1, the closed testing procedure
controls the k-FWER at level α. Note that the stepup procedure is dominated
by the closed testing procedure, so the stepup procedure also controls the k-
FWER at level α.

Theorem 4.1 shows that under certain conditions, a generalized closed test-
ing procedure can be reduced to a corresponding stepup procedure. As an ap-
plication, we show that the stepup procedure in [25] can be derived by the
general result by choosing appropriate level α local tests. Let αk ≤ · · · ≤
αn be given and define βi,|I| = αn−|I|+i. As illustrated in Section 3, (I :
ααn−|I|+k/D1(k), . . . , ααn/D1(k)) is a level α local test of HI for each I. Note
that βl,(n−i)+l = αi, k ≤ l ≤ n are constant for each given i. Then, based on
these local tests, the stepup procedure in [25] is derived by Theorem 4.1.

We now focus on the converse of Theorem 4.1. In Theorem 4.2, we show that
any stepup procedure is equivalent to some closed testing procedure.

Theorem 4.2. Let αk ≤ · · · ≤ αn be given. Then, the stepup procedure with
the critical values αi, k ≤ i ≤ n is equivalent to a closed testing procedure with
the critical values βi,|I| = αn−|I|+i, k ≤ i ≤ |I| and k ≤ |I| ≤ n.

Proof. Note that, βi,|I| = αn−|I|+i is increasing in i, decreasing in |I|, and
βl,n−i+l = αi are constant for each given i ≥ k. Then, from Theorem 4.1, the
closed testing procedure with critical values βi,|I| = αn−|I|+k is equivalent to
the stepup procedure with the critical values βk,n−i+k = αi, k ≤ i ≤ n.

Theorem 4.2 shows that the stepup procedures can also be viewed as a specific
class of the closed testing procedures.

Remark 4.1. When the p-values are positively dependent in the sense of being
multivariate totally positive of order two (MTP2) (cf. [19]), based on the gener-
alized Simes’ test of Sarkar [30], we can easily derive the stepup procedures in
[30] by Theorem 4.1.
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5. Generalized Hommel procedure

In the context of the FWER, Hommel [15] developed a well-known sequential
procedure based on Simes’ test in [33], which is more powerful than the common
Hochberg stepup procedure in [12] (see [16]). Hommel’s procedure is described
as follows: compute j = max{i ∈ {1, . . . , n} : P(n−i+l) >

lα
i
, for l = 1, . . . , i}. If

the maximum does not exist, reject all Hi (i = 1, . . . , n); otherwise reject all Hi

with Pi ≤ α/j, (i = 1, . . . , n). In this section, we generalize Hommel’s procedure
in two directions. In one direction, we move from the critical values of Simes’
test to any double-indexed critical values satisfying certain properties, and in
another, we move from the control of the FWER to that of the k-FWER.

For convenience of discussion, a formal definition of a generalized Hommel
procedure is first given as follows.

Definition 5.1. Let αi,|I|, k ≤ i ≤ |I| and k ≤ |I| ≤ n be given. Suppose αi,|I|

is increasing in i and decreasing in |I|. A generalized Hommel procedure with
the critical values αi,|I| is defined as follows: compute j = max{i ∈ {k, . . . , n} :
P(n−i+l) > αl,i, for l = k, . . . , i}. If the maximum does not exist, reject all
H(i) (i = k, . . . , n), otherwise reject all H(i) with P(i) ≤ αk,j (i = k, . . . , n).
In any case, the first (k − 1) most significant hypotheses H(1), . . . , H(k−1) are
automatically rejected.

For example, for the original Hommel procedure, k = 1, and αi,|I| is taken to

be αi,|I| =
i
|I|α. The following is the main result of this section.

Theorem 5.1. Let αi,|I|, k ≤ i ≤ |I| and k ≤ |I| ≤ n be given, and suppose
αi,|I| is increasing in i and decreasing in |I|. Then the following are true.

(i) The closed testing procedure with the critical values αi,|I| is equivalent to
the generalized Hommel procedure with the same critical values.

(ii) If (I : αi,|I|, k ≤ i ≤ |I|) is a level α local test of HI for each I ⊂ {1, . . . , n}
with |I| ≥ k, then the generalized Hommel procedure controls the k-FWER
at level α.

Proof. (i) If i < k,H(i) is automatically rejected by these two procedures. So, we
assume i ≥ k. Let j = max{i′ ∈ {k, . . . , n} : P(n−i′+l) > αl,i′ , for l = k, . . . , i′}.
Suppose j does not exist. By Definition 5.1, the generalized Hommel procedure
rejects all Hi. We now show that the closed testing procedure rejects all Hi.
Non-existence of j implies that for any i with k ≤ i ≤ n, there exists l with
k ≤ l ≤ i satisfying P(n−i+l) ≤ αl,i. Consider any subset I ⊂ {1, . . . , n} with
|I| = i. Suppose Pl:I = P(l′), then |I| ≤ (n− l′) + l. That is, l′ ≤ n− i + l. So,
Pl:I ≤ P(n−i+l) ≤ αl,|I|. Hence, HI is rejected. By Theorem 3.1, all hypotheses
H(1), . . . , H(n) are rejected by the closed testing procedure.

We now consider the case that j exists. First, we show that, for any individual
hypothesis H(i), if it is rejected by the generalized Hommel procedure, it is also
rejected by the closed testing procedure.

If H(i) is rejected by the generalized Hommel procedure, then P(i) ≤ αk,j .
Consider any subset I ⊂ {1, . . . , n} with (i) ∈ I, |I| ≥ k, and P(i) ≥ Pk:I . If
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|I| ≤ j, then
Pk:I ≤ P(i) ≤ αk,j ≤ αk,|I|.

Consequently, HI is rejected. If |I| > j, then from the definition of j, there
exists l satisfying k ≤ l ≤ |I| such that P(n−|I|+l) ≤ αl,|I|. Let i0 = max{i′ ≥
k : Pi′:I ≤ P(n−|I|+l)}. Note that (|I| − k+1)+ (n− |I|+ l) = n+ l− k+1 > n,
which implies that the maximum i0 exists. From the definition of i0, we have
Pi0+1:I > P(n−|I|+l), so |I| ≤ n− (n− |I|+ l) + i0. That is, l ≤ i0. Therefore,

Pi0 :I ≤ P(n−|I|+l) ≤ αl,|I| ≤ αi0,|I|.

Hence, HI is rejected. Consequently, H(i) is rejected by the closed testing pro-
cedure. Therefore, the generalized Hommel procedure with the critical values
αi,|I| is dominated by the closed testing procedure.

Next, we show that, if H(i) is rejected by the closed testing procedure, it is
also rejected by the generalized Hommel procedure.

Let I = {(1), . . . , (k − 1), (n − j + k), (n − j + k + 1), . . . , (n)}. Note that
|I| = j ≥ k, and Pl:I = P(n−j+l), k ≤ l ≤ j. From the definition of j, we
have P(n−j+l) > αl,j for all k ≤ l ≤ j. Thus, HI will not be rejected by
the local test (I : αi,j , k ≤ i ≤ j). If H(i) is rejected by the closed testing
procedure, then from Definition 5.1, (i) /∈ I. That is, k ≤ i < n − j + k.
Let I ′ = {(1), . . . , (k − 1), (i), (n − j + k + 1), . . . , (n)}. Note that (i) ∈ I ′,
|I ′| = j ≥ k and Pk:I′ = P(i). Then HI′ is rejected following from Theorem 3.1.
It now follows that P(i) ≤ αk,j and H(i) is rejected by the generalized Hommel
procedure. Hence, these two procedures are equivalent.

(ii) Since (I : αi,|I|, k ≤ i ≤ |I|) is a level α local test for each I ⊂ {1, . . . , n}
with |I| ≥ k, then, from Theorem 3.1, the closed testing procedure controls the
k-FWER at level α. Since the generalized Hommel procedure is equivalent to
the closed testing procedure, the generalized Hommel procedure also controls
the k-FWER at level α.

Theorem 5.1 shows that each generalized closed testing procedure is equiv-
alent to a generalized Hommel procedure with the same critical values. Since
generalized Hommel procedures are much simpler than closed testing proce-
dures, this result implies that we find a new shortcut, which can reduce gener-
alized closed testing procedures to computationally simple procedures in appli-
cations.

Remark 5.1. Professor Hommel brought to our attention, while commenting
on an earlier draft of the paper, that a version similar to Theorem 5.1 for k = 1
appears in the paper by Bernhard et al. [3]. Their result is stated without proof.

Finally, we provide an intuitive interpretation for the generalized Hommel
procedures. For each generalized Hommel procedure with the critical values
αi,|I|, the value ĵ = max{i ∈ {k, . . . , n} : P(n−i+l) > αl,i, for l = k, . . . , i} can
be viewed as an estimate of the number of true null hypotheses. Thus, each gen-
eralized Hommel procedure with the critical values αi,|I| can be interpreted as a
two-stage procedure, in which, first estimate the number of true null hypotheses
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by using ĵ, and then based on the estimate ĵ, establish a single-step procedure
with the critical value αk,ĵ .

6. Concluding remarks

The original closure principle was formulated by Marcus et al. [23] in the con-
text of the FWER and has since been a powerful tool for deriving multiple
testing procedures controlling the FWER. In fact, almost all FWER controlling
procedures are either derived using this principle or can be rewritten as asso-
ciated closed testing procedures. The only disadvantage is that closed testing
procedures are computationally complex.

In this paper, we have generalized the closure principle for the k-FWER.
In the same vein as the usual closure principle, the value of generalized clo-
sure principle is that, instead of simultaneously testing multiple hypotheses,
one only needs to do a number of single tests of intersection null hypothe-
ses. The construction of single tests based on marginal p-values is relatively
easy. The reason is that, as all p-values associated with true null hypotheses
are marginally stochastically dominated by uniformly distributed random vari-
ables, some powerful probability inequalities on uniformly distributed random
variables are available such as Bonferroni inequality, Simes’ inequality and gener-
alized Simes’ inequality, which are useful in building single tests. See Sarkar [30].

The generalized closed testing procedures are also computationally complex.
We have discussed how to reduce generalized closed testing procedures to simple
stepup procedures, and showed that, under certain conditions, a generalized
closed testing procedure can be formulated as a stepup procedure. We have
generalized the well-known Hommel procedure, and shown that each generalized
closed testing procedure is equivalent to a simple generalized Hommel procedure
with the same critical values.

We need to point out that, in this paper, we only discussed how to derive the
k-FWER controlling procedures based on marginal p-values using the general-
ized closure principle. A future research is to use this principle for developing
some resampling-based methods such as those described in Dudoit et al. [6],
van der Laan et al. [35], and Romano and Wolf [26] that take into account the
dependence structure of the underlying test statistics. As pointed out by a ref-
eree, for some resampling-based methods, for example, the method in Korn et
al. [20], their k-FWER control requires a subtle condition to hold. Calian et al.
[4] explains why such a condition is needed. For Romano and Wolf’s method
and van der Lann et al.’s methods, which are different, they do not require such
a condition.

We also need to note that the generalized closure principle is derived for
the families of non-hierarchical null hypotheses. In many cases, we need to test
families of hierarchical null hypotheses simultaneously. An interesting future
research is to modify the generalized closure principle for families of hierarchical
null hypotheses extending the work of Hommel [14] on the FWER to the k-
FWER.
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