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Abstract: In regression with a high-dimensional predictor vector, dimen-
sion reduction methods aim at replacing the predictor by a lower dimen-
sional version without loss of information on the regression. In this context,
the so-called central mean subspace is the key of dimension reduction. The
last two decades have seen the emergence of many methods to estimate
the central mean subspace. In this paper, we go one step further, and we
study the performances of a k-nearest neighbor type estimate of the re-
gression function, based on an estimator of the central mean subspace. In
our setting, the predictor lies in Rp with fixed p, i.e. it does not depend on
the sample size. The estimate is first proved to be consistent. Improvement
due to the dimension reduction step is then observed in term of its rate
of convergence. All the results are distributions-free. As an application, we
give an explicit rate of convergence using the SIR method. The method is
illustrated by a simulation study.
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1. Introduction

In a full generality, the goal of regression is to infer about the conditional law
of the response variable Y given the R

p-valued predictor X . Many different
methods have been developped to adress this issue. In the present paper, we
consider sufficient dimension reduction which is a body of theory and methods
for reducing the dimension of X while preserving information on the regression
(see Li [13, 14], and Cook and Weisberg [6]). Basically, the idea is to replace the
predictor with its projection onto a subspace of the predictor space, without loss
of information on the conditional distribution of Y given X . Several methods
have been introduced to estimate this subspace: sliced inverse regression (SIR;
Li [13]), sliced average variance estimation (SAVE; Cook and Weisberg [6]),
average derivative estimation (ADE; Härdle and Stoker [10]), . . . See also the
paper by Cook and Weisberg [7] who gives an introductory account of studying
regression via these methods.

Even if the methods above give a complete picture of the dependence of
Y on X , certain characteristics of the conditional distribution may often be of
special interest. In particular, regression is often understood to imply a study
of the conditional expectation E[Y |X ]. Subsequently, the response variable Y
is a univariate and integrable random variable. Following the ideas developped
for the conditional distribution, Cook and Li [4] introduced the central mean
subspace that will be of great interest for the paper. Let us recall the definition.
For a matrix Λ ∈ Mp(R), denote by S(Λ) the space spanned by the columns of
Λ. Here, Mp(R) stands for the set of p×p-matrices with real coefficients. Letting
ΛT the transpose matrix of Λ, we say that S(Λ) is a mean dimension-reduction
subspace if

E[Y |X ] = E[Y |ΛTX ], (1.1)

that is, if the projection of the predictor onto S(Λ) has no influence on the
regression. When the intersection of all dimension-reduction subspaces itself is
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a dimension-reduction subspace, it is defined as the central mean subspace and
is denoted by SE[Y |X]. With this respect, a matrix Λ that spans the central
mean subspace is called a candidate matrix. Hence the central mean subspace,
which exists under mild conditions (see Cook [1–3]), is the target of sufficient
dimension reduction for the mean response E[Y |X ]. Various methods have been
developed to estimate SE[Y |X], among with principle Hessian direction (pHd;
Li [14]), iterative Hessian transformation (IHT; Cook and Li [4]), minimum
average variance estimation (MAVE; Xia et al [16]). Discussions, improvements
and relevant papers can be found in Zhu and Zeng [19], Ye and Weiss [17] or
Cook and Ni [5].

Regarding the regression estimation problem in a nonparametric setting, the
aim of the dimension-reduction methods is to overcome the curse of dimension-
ality -which roughly says that the rate of convergence of any estimator decreases
as p grows- by accelerating the rate of convergence. Indeed, assuming (1.1), it
is naturally expected that the rate of convergence of any estimator will depend
on rank(Λ) instead of p, since ΛTX lies in a vector space of dimension rank(Λ).
In general, rank(Λ) is much smaller than p, hence the rate of convergence in
the estimation of E[Y |X ] may be considerably improved. For this estimation
problem, we shall use the so-called k-nearest neighbor method (NN), which is
one of the most studied method in nonparametric regression estimation since it
provides efficient and tractable estimators (e.g., see the monography by Györfi
et al [8], and the references therein). As far as we know, similar studies in a
dimension-reduction setting were only been carried out for particular models,
such as additive models or projection pursuits for instance. We refer the reader
to Chapter 22 in the book by Györfi et al [8] for a complete list of references on
the subject.

In the present paper, we address the problem of estimating the conditional
expectation E[Y |X ] based on a sequence (X1, Y1), . . . , (XN , YN ) of i.i.d. copies
of (X,Y ). In our setting, the predictor X lies in R

p with fixed p, i.e. p does
not depend on the sample size n. Assuming the existence of a mean dimension-
reduction subspace as in (1.1), we first construct in Section 2 the k-NN type
estimator based on an estimate Λ̂ of Λ. Roughly speaking, it is defined as the k-
NN regression estimate drawn from the (Λ̂Xi, Yi)’s. In a distribution-free setting,
we prove consistency of the estimator (Theorem 2.1) and we show that the rate
of convergence essentially depends on rank(Λ) (Theorem 2.2). In particular, up
to the terms induced by the dimension-reduction methodology, we recover the
usual optimal rate when the predictor belongs to R

rank(Λ). Section 3 is devoted
to the term induced by the dimension-reduction method: in a general setting,
we propose and study the performances (convergence and rate) of a numerically
robust estimator. As an example, we consider in Section 4 the case where the
candidate matrix is constructed via the SIR method. This section also present
a data-driven choice of the tuning parameters and a simulation study. All the
proofs are postponed to the last three sections.
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2. Fast regression estimation

2.1. The estimator

Throughout this section, we shall assume the following assumption. Recall that
troughout the paper, the dimension p does not depend on the sample size n; in
particular, it can not grow with n.

Basic assumption: there exists Λ ∈ Mp(R) such that S(ΛT ) is a mean dimen-
sion-reduction subspace, i.e.

E[Y |X ] = E[Y |ΛX ].

Note that we have written “Λ” instead of the usual “ΛT ” in the conditional
expectation. This choice is for notational simplicity since, in this section, we
only have to deal with Λ.

The estimation of the regression function requires to first estimate the matrix
Λ and then to estimate the regression function r defined by

r(x) = E[Y |ΛX = x], x ∈ R
p.

To reach this goal, we assume throughout the paper that the sample size N is
even, with N = 2n. We split the dataset into two sub-samples: the n first data
(X1, Y1), . . . , (Xn, Yn) are used to estimate the matrix Λ, whereas the last ones
(Xn+1, Yn+1), . . . , (X2n, Y2n) are used to estimate the body of the regression
function r.

For the first estimation problem, we assume in this section that we have at
hand an estimate Λ̂ of Λ, constructed with the observations (X1, Y1), . . . , (Xn, Yn).
We refer to Sections 3 and 4 for an efficient and tractable way to estimate Λ. We
now explain the nearest neighbor method that will be introduced to estimate
the function r (for more information on the NN-method, we refer the reader to
Chapter 6 of the monography by Györfi et al. [8]). For all i = n+ 1, . . . , 2n, we
let

X̂i = Λ̂Xi.

Then, if x ∈ R
p, we reorder the data (X̂n+1, Yn+1), . . . , (X̂2n, Y2n) according to

increasing values of {‖X̂i−x‖, i = n+1, . . . , 2n}, where ‖.‖ stands for the Schur
norm of any vector or matrix. The reordered data sequence is denoted by:

(X̂(1)(x), Y(1)(x)), (X̂(2)(x), Y(2)(x)), . . . , (X̂(n)(x), Y(n)(x)),

which means that

‖X̂(1)(x) − x‖ ≤ ‖X̂(2)(x) − x‖ ≤ · · · ≤ ‖X̂(n)(x) − x‖.

In this approach, X̂(i)(x) is called the i-th NN of x. Note that if X̂i and X̂j are

equidistant from x, i.e. ‖X̂i − x‖ = ‖X̂j − x‖, then we have a tie. As usual, we
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then declare X̂i closer to x than X̂j if i < j. We now let k = k(n) ≤ n be an
integer and for all i = n+ 1, . . . , 2n, we set:

Wi(x) =

{

1/k if X̂i is among the k-NN of x in {X̂n+1, . . . , X̂2n};
0 elsewhere.

Observe that we have
∑2n

i=n+1Wi(x) = 1. With this respect, the estimate r̂ of
r is then defined by:

r̂(x) =
2n
∑

i=n+1

Wi(x)Yi =
1

k

k
∑

i=1

Y(i)(x), x ∈ R
p. (2.1)

From a computational point of view, the complexity of the calculation algorithm
of r̂(x) is O(n lnn) in mean, using a random Quick-Sort Algorithm.

2.2. Behavior of r̂

In the sequel, (X,Y ) is independent of the whole sample and with the same
distribution as (X1, Y1). Observe that our results are distribution-free; in par-
ticular, we do not assume that the law of (X,Y ) has a density. The first result,
whose proof is deferred to Section 5, establishes a consistency property for the
estimator r̂(Λ̂X).

Theorem 2.1. Assume that EY 2 <∞. If k → ∞, k/n→ 0 and Λ̂
P−→ Λ, then:

r̂(Λ̂X)
L
2

−→ E[Y |X ].

Therefore, we assume in the following that k/n → 0. Recall that the consis-

tency assumption Λ̂
P−→ Λ holds for the standard dimension reductions method-

ologies, as we shall see in Sections 3 and 4.
We now turn to the study of the rate of convergence. Recall that the function

r is lipschitz if there exists L > 0 such that for all x1, x2 ∈ R
p:

|r(x1)− r(x2)| ≤ L‖x1 − x2‖.

Because we deal with the estimation of E[Y |ΛX ], it is naturally expected that
the convergence rate in Theorem 2.1 depends on the dimension of the vector
space spanned by the matrix Λ. In the sequel, d stands for the rank of Λ, and
we also denote by d̂ an estimator such that d̂ = rank(Λ̂). Section 6 is devoted
to the proof of the following result:

Theorem 2.2. Assume that X and E[Y 2|ΛX ] are bounded random variables.
If r is lipschitz and d ≥ 3, there exists a constant C > 0 such that

E

(

r̂(Λ̂X)− E[Y |X ]
)2

≤ C

k
+ C

(

k

n

)2/d

+ C E‖Λ̂− Λ‖2 + P(d̂ > d).
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Remark 2.3. When d ≤ 2, under the additional conditions of Problem 6.7 in
the book of Györfi et al. [8], a slight adaptation of the proof of Theorem 2.2
enables us to derive the same convergence rate.

Observe that the global error is decomposed into two terms: first, the classical
error term

C

k
+ C

(

k

n

)2/d

in nonparametric regression estimation using k-NN, but when the predictor
belongs to R

d (see Chapter 6 in Györfi et al. [8]); seconds, the term

C E‖Λ̂− Λ‖2 + P(d̂ > d)

induced by the dimension-reduction method. We shall concentrate on this term
in the next two sections.

Note also that in this result, the best choice of k, namely k = n2/(2+d), gives
the following bound:

E

(

r̂(Λ̂X)− E[Y |X ]
)2

≤ 2C n−2/(d+2) + C E‖Λ̂− Λ‖2 + P(d̂ > d).

Hence, up to the last two terms, our nearest neighbor estimate achieves the
usual optimal rate in regression estimation, but when the predictor belongs to
R

d (see Ibragimov and Khasminskii [11], Györfi et al. [8]). With this result,
one may quantify the positive effects of the dimension reduction step, that are
measured in term of the rate of convergence.

Next section is dedicated to the construction and estimation of Λ in a general
setting.

3. General dimension reduction methodology

3.1. Construction of Λ

Papers dealing about dimension reduction primarily focus on the determination
of a candidate matrix M ∈ Mp(R) such that the central mean subspace is
spanned by the columns of M , i.e. S(M) = SE[Y |X]. Observe that the matrix
M is symmetric for the standard dimension-reduction methodologies. We shall
see in the next section an explicit description of M with the SIR method. Note
that the matrix M is in some sense minimal because it spans the smallest mean
dimension-reduction subspace.

In this section, the matrix Λ of Section 2 will be constructed from a candidate
matrix with a spectral decomposition. There are two main reasons for this: first,
it automatically gives the effective directions of the reduced space; seconds, the
thresholding procedure of the empirical eigenvalues developped below is robust
from a numerical point of view.
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Here, we only have to assume that M ∈ Mp(R) is a symmetric matrix such
that S(M) is a mean dimension-reduction subspace, i.e.

E[Y |X ] = E[Y |MTX ].

We let rank(M) = d. Furthemore, we denote by λ1, . . . , λp the eigenvalues ofM
indexed as follows:

λ1 ≥ · · · ≥ λp.

Set now v1, . . . , vp the normalized eigenvectors associated with λ1, . . . , λp, and
ℓ1 < · · · < ℓd the integers such that λℓj 6= 0 for all j = 1, . . . , p. Recall that
v1, . . . , vp are orthogonal vectors. In the particular case where M is positive
definite, ℓi = i. Let O be the null-vector in R

p. The matrix Λ of Section 2 is
defined by:

ΛT =
(

vℓ1 · · · vℓd O · · · O
)

,

so that rank(Λ) = d and
E[Y |X ] = E[Y |ΛX ]

because S(M) = S(ΛT ). In particular, the basic assumption of Section 2 holds.
We also assume that we have at hand the estimator M̂ ∈ Mp(R) of M ,

constructed with the n first data (X1, Y1), . . . , (Xn, Yn). We suppose that M̂

is a symmetric matrix with real coefficients, and we denote by λ̂1, . . . , λ̂p the
eigenvalues indexed as follows:

λ̂1 ≥ · · · ≥ λ̂p,

and by v̂1, . . . , v̂p the corresponding normalized eigenvectors. A natural -and

numerically robust- estimator d̂ of d is then obtained by thresholding the eigen-
values:

d̂ =

p
∑

j=1

1{|λ̂j | ≥ τ},

where the threshold τ is some positive real number with τ ≤ 1, to be specified
latter. Let ℓ̂1 < · · · < ℓ̂d̂ be the integers such that |λ̂ℓ̂j | ≥ r for all j = 1, . . . , d̂.

Then, we put:

Λ̂T =
(

v̂ℓ̂1 · · · v̂ℓ̂
d̂

O · · · O
)

, (3.1)

and we observe that rank(Λ̂) = d̂.

3.2. Rate of convergence

It is an easy task to prove that if M̂
P−→M , then Λ̂

P−→ Λ. Hence by Theorem
2.1, if Y is bounded, we have:

r̂(Λ̂X)
L
2

−→ E[Y |X ],
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provided k → ∞ and k/n → 0. This subsection is dedicated to the rate of
convergence in the above convergence result.

As seen in Theorem 2.2, we need to give bounds for both terms

P(d̂ > d) and E‖Λ̂− Λ‖2.

The bounds are given in Lemmas 7.1 and 7.2 in Section 7. As an application of
Theorem 2.2, we immediately deduce the following result:

Corollary 3.1. Assume that X and E[Y 2|ΛX ] are bounded, d ≥ 3 and r is
lipschitz. If the non-null eigenvalues of M have multiplicity 1, then there exists
a constant C > 0 such that

E

(

r̂(Λ̂X)− E[Y |X ]
)2

≤ C

k
+ C

(

k

n

)2/d

+
C

τ2
E‖M̂ −M‖2.

Next section is dedicated to the case where M is constructed with the SIR
method. In this context, we can give a bound for E‖M̂ −M‖2, hence an explicit
rate of convergence of r̂(Λ̂X) to E[Y |X ].

4. Application with the SIR method

4.1. Theoretical results

The goal of this section is to apply Corollary 3.1 when the candidate matrix
M is constructed with some dimension-reduction method. It appears that for
each dimension-reduction method (SIR, ADE, MAVE, . . .), the estimator M̂ of
M is such that

√
n(M̂ −M) converges in distribution. However, in view of an

application of Corollary 3.1, we need a bound for the quantity

E‖M̂ −M‖2.

Each dimension-reduction method need a specific process, and an exhaustive
study of all processes is beyond the scope of the paper.

Hence, we have chosen to study the case where M is constructed with SIR,
since it is one of the most popular and powerfull dimension-reduction method,
and because it is the subject of many recent papers (e.g. Saracco [15], Zhu and
Zeng [19] and the references therein).

In this section, we assume that X and Y are bounded. For simplicity, we also
assume that X is standard, i.e. X has mean 0 and variance matrix Id. With the
SIR method, the candidate matrix M of Section 3, further denoted MSIR, is the
symmetric matrix defined by:

MSIR = cov (E[X |Y ]) = E
(

E[X |Y ]E[X |Y ]T
)

.

In view of an application of Corollary 3.1, we assume throughout that

S(MSIR) = SY |X ,
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where SY |X stands for the central subspace of Y given X (e.g. Li [13]). We refer
to the papers by Li [13] and Hall and Li [9] for discussions on this assump-
tion, as well as sufficient conditions on the model that ensures this property. In
particular,

E[Y |X ] = E[Y |MT
SIRX ],

hence we are in position to apply the results of Section 3.
Let us introduce the partition {I(h), h = 1, . . . , H} of the support of Y , such

that each slice I(h) (shorten as h) is an interval with length κ/H for some κ > 0,
and moreover:

ph = P(Y ∈ I(h)) > 0.

With this respect, a natural estimator for the SIR matrix MSIR is

M̂SIR =

H
∑

h=1

p̂h m̂h m̂
T
h , (4.1)

where for any slice h:

p̂h =
1

n

n
∑

i=1

1{Yi ∈ I(h)} and m̂h =
1

np̂h

n
∑

i=1

Xi1{Yi ∈ I(h)}.

We now denote by mh the theoretical counterpart of m̂h, i.e.

mh = E[X |Y ∈ I(h)],

and by M ′
SIR the matrix:

M ′
SIR =

H
∑

h=1

phmhm
T
h .

It is an easy exercise to prove that

E‖M̂SIR −M ′
SIR‖2 ≤ C

H

n
, (4.2)

for some constant C > 0 that does not depend on n and H . Hence in the
estimation of MSIR by M̂SIR, the bound on the variance term does not need
additional assumptions. The biais term ‖M ′

SIR − MSIR‖, however, has to be
handled with care. In the sequel, rinv stands for the inverse regression function,
that is:

rinv(y) = E[X |Y = y].

We observe that for each slice h:

mh =
1

ph
EX1{Y ∈ I(h)} =

1

ph
E rinv(Y )1{Y ∈ I(h)}.
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Hence, provided rinv is Lipschitz, one obtains:

‖M ′
SIR −

H
∑

h=1

phrinv(ch)rinv(ch)
T ‖ ≤ C

H
, (4.3)

for some constant C > 0, and where the ch’s are contained in the I(h)’s. More-
over, we observe that MSIR can be written as

MSIR =

H
∑

h=1

E1{Y ∈ I(h)}rinv(Y )rinv(Y )T .

Therefore,

‖MSIR −
H
∑

h=1

phrinv(ch)rinv(ch)
T ‖ ≤ C

H
, (4.4)

for some constant C > 0. Under the Lipschitz assumption on rinv, we thus get
from (4.2), (4.3) and (4.4):

E‖M̂SIR −MSIR‖2 ≤ C

(

H

n
+

1

H2

)

,

for some constant C > 0.
In the sequel, ΛSIR (resp. Λ̂SIR) is constructed with the matrix M = MSIR

(resp. M̂ = M̂SIR) as in Section 3.1 and d is the rank of MSIR. For the con-
struction of the estimate, one has to choose the values of the parameters H (the
number of slices), τ (the thresholding parameter of the eigenvalues) and k (the
number of NN). With the above choices:

H = n1/3, τ = n1/6 and k = n2/(2+d),

we immediatly deduce from Corollary 3.1 our last result.

Corollary 4.1. Assume that d ≥ 3. If r and rinv are Lipschitz, and if the non-
null eigenvalues of MSIR have multiplicity 1, then there exists a constant C > 0
such that

E

(

r̂(Λ̂SIRX)− E[Y |X ]
)2

≤ Cn−2/(2+d).

Hence, we recover the usual optimal rate when the predictor vector belongs
to a d-dimensional vector space.

4.2. Statistical methodology: the NN-SIR method

In view of a simulation study, the first point is to provide a data-driven choice
of the parametersH , τ and k. The aim here is only to propose a data-dependent
selection of the tuning parameters, but a theoretical study is beyond the scope
of the paper.
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We assume that the estimate of the candidate matrix and the body of the
regression estimate are both constructed with the learning sample

Dlearn = {(X1, Y1), . . . , (Xn, Yn)}.

(In the theorems, the independence was essentially imposed to avoid some tech-
nical difficulties in the proofs.) More precisely, for each number of slices H , we
denote by M̂H

SIR the estimate of the matrixMSIR constructed via equation (4.1).

Following the construction leading to (3.1), this gives the matrix Λ̂H,τ
SIR for each

threshold τ . For each number of nearest neighbors k, we then construct the
estimate r̂H,τ,k with the learning sample:

r̂H,τ,k(x) =

n
∑

i=1

Wi(x)Yi, .

where

Wi(x) =

{

1/k if Λ̂H,τ
SIRXi is among the k-NN of x in {Λ̂H,τ

SIRX1, . . . , Λ̂
H,τ
SIRXn};

0 elsewhere.

The best random choice for (H, τ, k) is obtained via a minimization of the
function

(H, τ, k) 7→ E

[

(r̂H,τ,k(X)− r(X))
2 ∣
∣Dlearn

]

,

where X is independent of the learning sample. However, this best choice can
not be computed with the data; the idea presented below is to approximate it
by splitting the data.

We introduce a data-dependent type choice of (H, τ, k) that is inspired by
the method of Chapter 7, in the book by Györfi et al. [8]. Let now

Dtest = {(Xn+1, Yn+1), . . . , (X2n, Y2n)}

be the testing data set of size n. We use the testing data to select the parameters
Ĥ, τ̂ and k̂ that satisfy

2n
∑

i=n+1

(

r̂Ĥ,τ̂ ,k̂(Xi)− Yi

)2

= min

2n
∑

i=n+1

(r̂H,τ,k(Xi)− Yi)
2
, (4.5)

where the minimum is taken over all H ∈ N, 0 < τ ≤ 1 and 1 ≤ k ≤ n. Such
a method has been proved to be efficient in the classical regression estimation
problem using NN (see Chapter 7 in the book by Györfi et al. [8]), in the
sense that the selected parameter approximates the best random choice of the
parameter.

In the sequel, we shall make use of the estimate r̂Ĥ,τ̂ ,k̂, and we further refer
the method as NN-SIR.
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4.3. A small simulation study

The aim of the simulation study is to quickly illustrate the fact that, in NN-
regression, the dimension reduction step considerably improves the performance
of the classical NN-estimate. For this reason, we compare our NN-SIR method
to the classical method in NN regression, with a similar choice for the tuning
parameters.

We let p = 10 and X = (X(1), . . . , X(10)) a 10-dimensional standard gaussian
vector. We study the following models:

Model A : Y = X(1)(X(1) +X(2) + 1) + σε;

Model B : Y =
X(1)

0.5 + (X(2) + 1.5)2
+ σε.

Here, σ > 0 and ε is a standard real gaussian variable independent of X . Both
models, that were studied by Li [13] in his seminal work on SIR, have the
property that the reduced dimension d is 2.

We compare our NN-SIR method with the usual NN method, based on a NN
estimator of the regression function with a 10-dimensional predictor (10-dim.
NN). Furthermore, it is of interest to compare the performances of NN-SIR to
the classical NN-method based on the first two components of the predictor
(2-dim. NN). Of course, the last method must be the one that works best, but
it is based on a full knowledge of the models, hence an unrealistic situation. The
results with the 2-dim. NN method must be seen as the best possible results in
NN regression estimation. As for the data-driven choices of the parameters H, τ
and k, for both methods 2-dim. NN and 10-dim. NN, the best random choice for
the number of NN is obtained by the methodology developped by Györfi et al.
[8] Chapter 7; more precisely, it is obtained as in (4.5), however, by eliminating
the parameters H and τ .

We compute the estimators for a data set of size 400 (i.e. n = 200) and σ = 0.1
or 0.5. For each method, we split this data set into the learning data set Dlearn of
size 200 and the testing data set Dtest of size 200 (see the previous section). For
each estimate, say r̂, we compute an approximation of the quadratic distance
between it and E[Y |X ] using a Monte-Carlo algorithm (with a 200 sample size),
i.e. we compute an approximation of

√

E(r̂(X)− E[Y |X ])2.

This step is replicated 200 times, with independent samples. We then compute
the mean and the standard deviation (in parentheses) of these experiments. The
results appears in the following tables.

Table 1
Model A - mean and standard deviation (in parentheses)

2-dim. NN NN-SIR 10-dim. NN
σ = 0.1 0.509 (0.109) 0.598 (0.174) 1.419 (0.190)
σ = 0.5 0.632 (0.134) 0.787 (0.134) 1.442 (0.174)
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Table 2
Model B - mean and standard deviation (in parentheses)

2-dim. NN NN-SIR 10-dim. NN
σ = 0.1 0.158 (0.037) 0.190 (0.047) 0.525 (0.064)
σ = 0.5 0.307 (0.050) 0.347 (0.036) 0.561 (0.059)

As expected, the (unrealistic) 2-dim. NN method provides the best perfor-
mances, whereas we observe the curse of dimensionality for the 10-dim. NN
method. Our NN-SIR method performs very well in each case and the simu-
lation study illustrates the effects of the dimension reduction step which over-
comes the curse of dimensionality: first, the numerical results are close to those
of the 2-dim. NN method in which it is known that the model is 2-dimensional;
seconds, the results are far from those of the 10-dim. NN method.

5. Proof of Theorem 2.1

5.1. Preliminaries

For simplicity, we assume throughout the section that |Y | ≤ 1. We let

X̂ = Λ̂X, X̃ = ΛX

and, for all i = n+ 1, . . . , 2n:
X̃i = ΛXi.

Lemma 5.1. If k/n→ 0 and Λ̂
P−→ Λ, then

X̂(k)(X̂)− X̂
P−→ 0.

Proof. In the proof, µ stands for the distribution of X . Let ε > 0. Since X
is independent from the sample and distributed according to µ, we have the
following equality:

P(‖X̂(k)(X̂)− X̂‖ > ε) =

∫

Rp

P(‖X̂(k)(Λ̂x) − Λ̂x‖ > ε)µ(dx).

Then, according to the Lebesgue domination Theorem, one only needs to prove
that for all x in the support of µ:

P(‖X̂(k)(Λ̂ x)− Λ̂ x‖ > ε) −→ 0.

Observe now that for all x:

P(‖X̂(k)(Λ̂ x)− Λ̂ x‖ > ε) = P

(

2n
∑

i=n+1

1{‖X̂i − Λ̂x‖ ≤ ε} < k

)

.
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Let a > ‖Λ‖. If ‖Λ̂− Λ‖ ≤ a and ‖X̂i − Λ̂x‖ ≤ ε, we then have:

‖X̃i − Λx‖ ≤ ‖(Λ− Λ̂)Xi‖+ ‖X̂i − Λ̂x‖+ ‖(Λ̂− Λ)x‖
≤ a(‖Xi‖+ ‖x‖) + ε.

Therefore,

P(‖X̂(k)(Λ̂ x)− Λ̂ x‖ > ε) (5.1)

≤ P

(

2n
∑

i=n+1

1{‖X̃i − Λx‖ ≤ a(‖Xi‖+ ‖x‖) + ε} < k

)

+ P(‖Λ̂− Λ‖ > a).

According to the strong law of large numbers:

1

n

2n
∑

i=n+1

1{‖X̃i−Λx‖ ≤ a(‖Xi‖+‖x‖)+ε} a.s−→ P

(

‖X̃−Λx‖≤ a(‖X‖+‖x‖)+ ε
)

.

Assume that the latter quantity equals 0. Then, we have a.s.

‖X̃ − Λx‖ > a(‖X‖+ ‖x‖) + ε.

But this is impossible since ‖X̃ − Λx‖ ≤ ‖Λ‖(‖X‖ + ‖x‖) and a > ‖Λ‖. As a
consequence,

P

(

‖X̃ − Λx‖ ≤ a(‖X‖+ ‖x‖) + ε
)

6= 0,

and, since k/n→ 0, we obtain

P

(

2n
∑

i=n+1

1{‖X̃i − Λx‖ ≤ a(‖Xi‖+ ‖x‖) + ε} < k

)

−→ 0.

By assumption, P(‖Λ̂− Λ‖ > a) → 0 so that by (5.1),

P(‖X̂(k)(Λ̂ x)− Λ̂ x‖ > ε) −→ 0,

hence the lemma.

Lemma 5.2. Let ϕ : R
p → R be a uniformly continuous function such that

0 ≤ ϕ ≤ 1. If k/n→ 0 and Λ̂
P−→ Λ, we have:

E

2n
∑

i=n+1

Wi(X̂)
(

ϕ(X̃)− ϕ(X̃i)
)2

−→ 0.

Proof. For all K > 0, we let XK = X1{‖X‖ ≤ K}. Then, we note X̂K = Λ̂XK ,
X̃K = ΛXK and similarly for X̂i,K and X̃i,K . Moreover, Wi,K is defined as Wi,
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but with the X̂i,K ’s instead of the X̂i’s (see Section 2.1). A moment’s thought

reveals that, since
∑2n

i=n+1Wi,K(X̂K) = 1:

E

2n
∑

i=n+1

Wi(X̂)
(

ϕ(X̃)− ϕ(X̃i)
)2

= P(‖X‖ < K)n E

2n
∑

i=n+1

Wi,K(X̂K)
(

ϕ(X̃K)− ϕ(X̃i,K)
)2

+RK ,

where RK is a positive real number that satisfies supnRK → 0 as K → ∞.
Therefore, one only needs to prove that for all K > 0, one has:

E

2n
∑

i=n+1

Wi,K(X̂K)
(

ϕ(X̃K)− ϕ(X̃i,K)
)2

−→ 0. (5.2)

We now proceed to prove this property.
Fix K > 0 and ε > 0. There exists r > 0 such that |ϕ(x1) − ϕ(x2)| ≤ ε

provided x1, x2 ∈ R
p satisfy ‖x1 − x2‖ ≤ r. Since ϕ is bounded by 1 and

∑2n
i=n+1Wi,K(X̂K) = 1, we have:

E

2n
∑

i=n+1

Wi,K(X̂K)
(

ϕ(X̃K)− ϕ(X̃i,K)
)2

≤ ε2 + E

2n
∑

i=n+1

Wi,K(X̂K)1{‖X̃K − X̃i,K‖ > r}. (5.3)

Hence, one only needs to prove that the rightmost term tends to 0. If ‖Λ̂−Λ‖ ≤
r/(4K) and ‖X̃i,K − X̃K‖ > r, then:

‖X̂K − X̂i,K‖ ≥ ‖X̃K − X̃i,K‖ − ‖Λ̂− Λ‖(‖XK‖+ ‖Xi,K‖) ≥ r

2
,

because ‖XK‖ ≤ K and ‖Xi,K‖ ≤ K. Consequently,

E

2n
∑

i=n+1

Wi,K(X̂K)1{‖X̃K − X̃i,K‖ > r}

≤ E

2n
∑

i=n+1

Wi,K(X̂K)1
{

‖X̃K − X̃i,K‖>r, ‖Λ̂−Λ‖≤ r

4K

}

+P

(

‖Λ̂−Λ‖> r

4K

)

≤ E

2n
∑

i=n+1

Wi,K(X̂)1
{

‖X̂K − X̂i,K‖ > r

2

}

+ P

(

‖Λ̂− Λ‖ > r

4K

)

. (5.4)

Now denote by X̂(i),K(x) the i-th NN of x ∈ R
p among {X̂n+1,K , . . . , X̂2n,K}.
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Then, since

2n
∑

i=n+1

Wi,K(X̂K)1
{

‖X̂K − X̂i,K‖ > r

2

}

=
1

k

k
∑

i=1

1
{

‖X̂(i),K(X̂K)− X̂K‖ > r

2

}

≤ 1
{

‖X̂(k),K(X̂K)− X̂K‖ > r

2

}

,

we can deduce from (5.4), Lemma 5.1 and the fact that Λ̂ converges to Λ in
probability that

E

2n
∑

i=n+1

Wi,K(X̂K)1{‖X̃K − X̃i,K‖ > r} −→ 0.

Using (5.3), we get that for all ε > 0:

lim sup
n

E

2n
∑

i=n+1

Wi,K(X̂K)
(

ϕ(X̃K)− ϕ(X̃i,K)
)2

≤ ε2,

hence (5.2) holds.

Lemma 5.3. Let ψ : R
p → R+ be a borel function which is bounded by 1.

Then, there exists a constant C > 0 that only depends on p and such that

E

2n
∑

i=n+1

Wi(X̂)ψ(X̃i) ≤ C Eψ(X̃).

Proof. By Doob’s factorisation Lemma, there exists a borel function ξ : Rp →
R+ such that for all i = n+ 1, . . . , 2n:

E[ψ(X̃i)|X̂i] = ξ(X̂i).

Note that such a function does not depends on i, because the law of the pair
(X̃i, X̂i) is independent on i. We let S = {(X1, Y1), . . . , (Xn, Yn)} and E =
{X̂n+1, . . . , X̂2n}. Then,

E

[

2n
∑

i=n+1

Wi(X̂)ψ(X̃i)
∣

∣

∣
S
]

= E

[

E

[

2n
∑

i=n+1

Wi(X̂)ψ(X̃i)
∣

∣

∣
S, E , X̂

]

∣

∣

∣
S
]

= E

[

2n
∑

i=n+1

Wi(X̂)E
[

ψ(X̃i)
∣

∣

∣
X̂i

] ∣

∣

∣
S
]

= E

[

2n
∑

i=n+1

Wi(X̂)ξ(X̂i)
∣

∣

∣
S
]

.

By Stone’s Lemma (e.g. Lemma 6.3 in Györfi et al, 2002), there exists a constant
C > 0 only depending on p, and such that:

E

[

2n
∑

i=n+1

Wi(X̂)ξ(X̂i)
∣

∣

∣
S
]

≤ CE
[

ξ(X̂)
∣

∣

∣
S
]

.
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This leads to:

E

2n
∑

i=n+1

Wi(X̂)ψ(X̃i) = EE

[

2n
∑

i=n+1

Wi(X̂)ψ(X̃i)
∣

∣

∣
S
]

≤ CEξ(X̂)

= CEψ(X̃),

by definition of ξ, hence the lemma.

5.2. Proof of Theorem 2.1

In the sequel, r̃ stands for the function defined for all x ∈ R
p by:

r̃(x) =

2n
∑

i=n+1

Wi(x)r(X̃i).

Fix ε > 0. There exists a continuous function r′ : R
p → R with a bounded

support such that

E

(

r(X̃)− r′(X̃)
)2

≤ ε.

One may also choose r′ so that 0 ≤ r′ ≤ 1. Since
∑2n

i=n+1Wi(X̂) = 1, we have
by Jensen’s inequality:

E

(

r(X̃)− r̃(X̂)
)2

= E

(

2n
∑

i=n+1

Wi(X̂)
(

r(X̃)− r(X̃i)
)

)2

≤ E

2n
∑

i=n+1

Wi(X̂)
(

r(X̃)− r(X̃i)
)2

.

Introducing the continuous function r′, we obtain:

E

(

r(X̃)− r̃(X̂)
)2

≤ 3E
(

r(X̃)− r′(X̃)
)2

+ 3E
2n
∑

i=n+1

Wi(X̂)
(

r′(X̃)− r′(X̃i)
)2

+ 3E

2n
∑

i=n+1

Wi(X̂)
(

r′(X̃i)− r(X̃i)
)2

.

According to Lemma 5.3 and by definition of r′, we then get:

E

(

r(X̃)− r̃(X̂)
)2

≤ 3ε(1 + C) + 3E
2n
∑

i=n+1

Wi(X̂)
(

r′(X̃)− r′(X̃i)
)2

,

for some constant C > 0. Therefore, by Lemma 5.2, we have for all ε > 0:

lim sup E

(

r(X̃)− r̃(X̂)
)2

≤ 3ε(1 + C),
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and hence

E

(

r(X̃)− r̃(X̂)
)2

−→ 0. (5.5)

The task is now to prove the following property:

E

(

r̃(X̂)− r̂(X̂)
)2

−→ 0.

First observe that

E

(

r̃(X̂)− r̂(X̂)
)2

= E

(

2n
∑

i=n+1

Wi(X̂)
(

r(X̃i)− Yi

)

)2

.

But, if i, j = n+ 1, . . . , 2n are different,

E

[

Wi(X̂)(r(X̃i)− Yi)Wj(X̂)(r(X̃j)− Yj)
∣

∣

∣
X,X1, . . . , X2n, Y1, . . . , Yn

]

=Wi(X̂)Wj(X̂)
(

r(X̃i)− E[Yi|Xi]
)(

r(X̃j)− E[Yj |Xj]
)

= 0,

since, by the basic assumption, E[Yi|Xi] = E[Yi|X̃i] = r(X̃i). Consequently,

EWi(X̂)(r(X̃i)− Yi)Wj(X̂)(r(X̃j)− Yj) = 0,

which implies that

E

(

r̃(X̂)− r̂(X̂)
)2

= E

2n
∑

i=n+1

Wi(X̂)2
(

r(X̃i)− Yi

)2

≤ 1

k
,

because
∑2n

i=n+1Wi(X̂) = 1, Wi(X̂) ≤ 1/k and |Y | ≤ 1 by assumption. The
theorem is now a straightforward consequence of (5.5). �

6. Proof of Theorem 2.2

Recall that we assume here that k/n → 0. We shall make use of the notations
of Section 5.1: X̂ = Λ̂X , X̃ = ΛX and, for all i = n+1, . . . , 2n: X̃i = ΛXi. For
simplicity, we assume throughout the proof that ‖X‖ ≤ 1 and |Y | ≤ 1. Finally,
we denote by S the sub-sample

S = {(X1, Y1), . . . , (Xn, Yn)}.

The above proof will borrow and adapt some elements from the proof of
Theorem 6.2 in Györfi et al. [8]. We first need a lemma.
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Lemma 6.1. If d ≥ 3, then there exists a constant C > 0 such that:

E

[

‖X̂(1)(X̂)− X̂‖2|S
]

≤ C

n2/d
,

on the event where d̂ ≤ d and ‖Λ̂‖ ≤ 2‖Λ‖.
Proof. We assume throughout the proof that the sub-sample S is fixed, with
d̂ ≤ d and ‖Λ̂‖ ≤ 2‖Λ‖, and we denote by µ̂ the law of X̂ (given S). Since
d̂ ≤ d, the support of µ̂ is contained in some vector space of dimension d. For
simplicity, we shall consider that µ̂ is a probability measure on R

d.
We first fix ε > 0. Then,

P(‖X̂(1)(X̂)− X̂‖ > ε|S) = E

[

P(‖X̂(1)(X̂)− X̂‖ > ε|S, X)|S
]

= E

[

P

(

‖X̂n+1 − X̂‖ > ε|S, X
)n

|S
]

= E

[(

1− µ̂(B(X̂, ε))
)n

|S
]

=

∫

Rd

(1− µ̂(B(x, ε)))
n
µ̂(dx),

where B(x, r) stands for the Euclidean closed ball in R
d, with center at x and

radius r. Since ‖X‖ ≤ 1, the support supp(µ̂) of µ̂ is contained in the ball
B(0, ‖Λ̂‖). Thus, one can find N(ε) Euclidean balls in R

d with radius ε, say
B1, . . . , BN(ε), such that

supp(µ̂) ⊂
N(ε)
⋃

j=1

Bj and N(ε) ≤ 2
‖Λ̂‖
εd

. (6.1)

Observe that if x ∈ Bj , then Bj ⊂ B(x, ε). Consequently,

P(‖X̂(1)(X̂)− X̂‖ > ε|S) ≤
N(ε)
∑

j=1

∫

Bj

(1− µ̂(B(x, ε)))
n
µ̂(dx)

≤
N(ε)
∑

j=1

∫

Bj

(1− µ̂(Bj))
n µ̂(dx)

≤
N(ε)
∑

j=1

µ̂(Bj) (1− µ̂(Bj))
n

≤ N(ε)

n
, (6.2)

since t(1− t)n ≤ 1/n when t ∈ [0, 1].
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Recall now that ‖X‖ ≤ 1 and hence ‖X̂‖ ≤ ‖Λ̂‖. Therefore:

E

[

‖X̂(1)(X̂)− X̂‖2|S
]

=

∫ ∞

0

P(‖X̂(1)(X̂)− X̂‖2 > ε|S) dε

=

∫ ‖Λ̂‖2

0

P(‖X̂(1)(X̂)− X̂‖ > √
ε|S) dε.

Using (6.2) and (6.1) lead to the following bound:

E

[

‖X̂(1)(X̂)− X̂‖2|S
]

≤
∫ ‖Λ̂‖2

0

min

(

1,
N(

√
ε)

n

)

dε

≤
∫ ‖Λ̂‖2

0

min

(

1,
2‖Λ̂‖
nεd/2

)

dε.

Since ‖Λ̂‖ ≤ 2‖Λ‖, it is now an easy task to prove that, provided d ≥ 3,

E

[

‖X̂(1)(X̂)− X̂‖2|S
]

≤ C

n2/d
,

for some constant C > 0, hence the lemma.

We are now in position to prove Theorem 2.2.

Proof of Theorem 2.2 We shall use the bias-variance decomposition of the
following form:

E

[

(

r̂(X̂)− r(X̂)
)2

|S, X
]

= I1 + I2, (6.3)

where we put, with the notation SW = S ∪ {Xn+1, . . . , X2n}:

I1 = E

[

(

r̂(X̂)− E

[

r̂(X̂)|SW , X
])2 ∣

∣

∣
S, X

]

and I2 = E

[

(

E

[

r̂(X̂)|SW , X
]

− r(X̂)
)2 ∣
∣

∣
S, X

]

.

We first proceed to bound I1. Let us remark that since, by assumption, r(X̃i) =
E[Yi|ΛXi] = E[Yi|Xi], we have:

E

[

r̂(X̂)|SW , X
]

= E

[

2n
∑

i=n+1

Wi(X̂)Yi

∣

∣

∣
SW , X

]

=

2n
∑

i=n+1

Wi(X̂)E[Yi|Xi]

=

2n
∑

i=n+1

Wi(X̂)r(X̃i). (6.4)
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Consequently,

I1 = E





(

2n
∑

i=n+1

Wi(X̂)
(

Yi − r(X̃i)
)

)2
∣

∣

∣
S, X





= E

[

2n
∑

i=n+1

Wi(X̂)2
(

Yi − r(X̃i)
)2 ∣
∣

∣
S, X

]

,

since, as seen in a similar context in the proof of Theorem 2.1,

E

[

Wi(X̂)(Yi − r(X̃i))Wj(X̂)(Yj − r(X̃j))|S, X
]

= 0,

provided i, j = n+1, . . . , 2n are different. Using the properties
∑2n

i=n+1Wi(X̂) =

1, Wi(X̂) ≤ 1/k and |Y | ≤ 1, we conclude that:

I1 ≤ 1

k
(6.5)

We now proceed to bound I2. Since r is a Lipschitz function, there exists a
constant L > 0 such that |r(x1)− r(x2)| ≤ L‖x1−x2‖ for all x1, x2 ∈ R

p. Then,
according to (6.4):

I2 ≤ 2E





(

2n
∑

i=n+1

Wi(X̂)
(

r(X̃i)− r(X̂i)
)

)2
∣

∣

∣
S, X





+2E





(

2n
∑

i=n+1

Wi(X̂)
(

r(X̂i)− r(X̂)
)

)2
∣

∣

∣
S, X





≤ 2L2‖Λ̂− Λ‖2 + 2E





(

1

k

k
∑

i=1

(

r(X̂(i)(X̂))− r(X̂)
)

)2
∣

∣

∣
S, X





≤ 2L2‖Λ̂− Λ‖2|+ 2L2
E





(

1

k

k
∑

i=1

‖X̂(i)(X̂)− X̂‖
)2
∣

∣

∣
S, X



 , (6.6)

where we used the facts that ‖X‖ ≤ 1 and
∑2n

i=n+1Wi(X̂) = 1. We now let ñ =

[n/k], and we split the sub-sample {X̃1, . . . , X̃kñ} into k sub-samples Z1, . . . , Zk

of size ñ, with:
Zi = {X̃iñ+1, . . . X̃(i+1)ñ}, i = 1, . . . , k.

For each sample Zi, we denote by Z
(1)
i the closest element of Zi from X̂ (ties

being considered as usual). Then,

k
∑

i=1

‖X̂(i)(X̂)− X̂‖ ≤
k
∑

i=1

‖Z(1)
i − X̂‖.
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Jensen’s Inequality and (6.6) then give

E [I2|S] ≤ 2L2‖Λ̂− Λ‖2 + 2L2

k

k
∑

i=1

E

[

‖Z(1)
i − X̂‖2

∣

∣

∣
S
]

.

Therefore, on the event where d̂ ≤ d and ‖Λ̂‖ ≤ 2‖Λ‖, we have by Lemma 6.1:

E[I2|S] ≤ 2L2‖Λ̂− Λ‖2 + 2L2C

ñ2/d
,

for some constant C > 0. Since k/n → 0, there exists a constant κ > 0 such

that ñ ≥ κn/k. Hence, on the event where d̂ ≤ d and ‖Λ̂‖ ≤ 2‖Λ‖,

E[I2|S] ≤ 2L2‖Λ̂− Λ‖2 + 2κ−2/dL2C

(

k

n

)2/d

.

By (6.5) and (6.3), we then deduce that for some constant C′ > 0:

E

[

(

r̂(X̂)− r(X̂)
)2 ∣
∣

∣
S
]

≤ 1

k
+ C′‖Λ̂− Λ‖2 + C′

(

k

n

)2/d

,

on the event where d̂ ≤ d and ‖Λ̂‖ ≤ 2‖Λ‖. Noticing that ‖Λ̂− Λ‖ > ‖Λ‖ when
‖Λ̂‖ > 2‖Λ‖, and since |r̂(X̂)| ≤ 1, |r(X̂)| ≤ 1, we obtain:

E

(

r̂(X̂)− r(X̂)
)2

= EE

[

(

r̂(X̂)− r(X̂)
)2 ∣
∣

∣
S
]

≤ 1

k
+ C′

E‖Λ̂− Λ‖2 + C′

(

k

n

)2/d

+ P(‖Λ̂− Λ‖ > ‖Λ‖)

+ P(d̂ > d)

≤ 1

k
+

(

C′ +
1

‖Λ‖2
)

E‖Λ̂− Λ‖2 + C′

(

k

n

)2/d

+ P(d̂ > d),

using the Markov Inequality. Finally, by the Lipschitz property of r,

E

(

r(X̂)− r(X̃)
)2

≤ L2
E‖Λ̂− Λ‖2.

The last 2 inequalities give the result since, by the basic assumption, r(X̃) =
E[Y |X ]. �

7. Proof of Corollary 3.1

The proof of Corollary 3.1 is straightforward from Theorem 2.2 and Lemmas
7.1 and 7.2 below.
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Lemma 7.1. We have:

P(d̂ > d) ≤ p

τ2
E‖M̂ −M‖2.

Proof. Let N = {j = 1, . . . , p : λj 6= 0}, and recall that card(N ) = d. If d̂ > d,
we then have

1 ≤
∑

j∈N

(

1{|λ̂j| ≥ τ} − 1
)

+
∑

j /∈N

1{|λ̂j | ≥ τ} ≤
∑

j /∈N

1{|λ̂j| ≥ τ}.

Thus, we deduce the inequality:

P(d̂ > d) ≤ pmax
j /∈N

P(|λ̂j | ≥ τ). (7.1)

Fix j /∈ N . Since M̂ and M are symmetric, the indexation of the eigenvalues
implies that ‖M̂ −M‖ ≥ |λ̂j −λj | = |λ̂j |. Consequently, when |λ̂j | ≥ τ , we have

‖M̂ −M‖ ≥ τ. Therefore:

P(|λ̂j | ≥ τ) ≤ P(‖M̂ −M‖ ≥ τ) ≤ 1

τ2
E‖M̂ −M‖2.

The lemma is now a straightforward consequence of (7.1).

Our next task is to bound the quantity E‖Λ − Λ̂‖2. For this purpose, we
recall the following classical fact (e.g. see Kato [12]): for any symmetric matrix
A ∈ Mp(R), let vi(A) be the normalized eigenvector associated with the i-th
largest eigenvalue. If it is a simple eigenvalue, then there exists δA > 0 such that
for any symmetric matrix A′ ∈ Mp(R) with ‖A−A′‖ ≤ δA:

‖vi(A) − vi(A
′)‖ ≤ C0‖A−A′‖, (7.2)

for some constant C0 > 0 that only depends on A.

Lemma 7.2. Assume that the non-null eigenvalues of M have multiplicity 1.
Then, there exists a constant C > 0 such that:

E‖Λ̂− Λ‖2 ≤ C

τ2
E‖M̂ −M‖2.

Proof. We let

N = {j = 1, . . . , p : λj 6= 0} and N̂ = {j = 1, . . . , p : |λ̂j | ≥ τ}.

Writting M̂ =M +(M̂ −M), we deduce from (7.2) that, provided ‖M̂ −M‖ ≤
δM :

max
j∈N

‖v̂j − vj‖ ≤ C ‖M̂ −M‖, (7.3)

Here, and in the following, C is a positive constant whose value may change
from line to line. Since ‖vj‖ = ‖v̂j‖ = 1 for all j = 1, . . . , p, we have:
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E‖Λ̂− Λ‖21{‖M̂ −M‖ ≤ δM}
= E

∑

j∈N∪N̂

‖v̂j − vj‖21{‖M̂ −M‖ ≤ δM}

≤
∑

j∈N

E‖v̂j − vj‖21{‖M̂ −M‖ ≤ δM}+
p
∑

j=1

E‖v̂j − vj‖21{N ∪ N̂ 6= N}

≤ C E‖M̂ −M‖2 + C P(N ∪ N̂ 6= N ),

according to (7.3). Moreover, since ‖M̂ −M‖ ≥ |λ̂j − λj | for all j because M

and M̂ are symmetric matrices, we have:

P(N ∪ N̂ 6= N ) = P

(

∃j = 1, . . . , p : |λ̂j | ≥ τ and λj = 0
)

≤ P(‖M̂ −M‖ ≥ τ)

≤ 1

τ2
E‖M̂ −M‖2.

Combining the next two inequalities gives:

E‖Λ̂− Λ‖21{‖M̂ −M‖ ≤ δM} ≤ C E‖M̂ −M‖2 + C

τ2
E‖M̂ −M‖2.

Since ‖Λ̂− Λ‖ ≤ 2p, we also have:

E‖Λ̂− Λ‖21{‖M̂ −M‖ > δM} ≤ C P(‖M̂ −M‖ > δM )

≤ C E‖M̂ −M‖2.

Therefore, since τ ≤ 1:

E‖Λ̂− Λ‖2 ≤ C

τ2
E‖M̂ −M‖2,

for some constant C > 0, that only depends on M and p.
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