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Abstract: Physical random numbers are not as widely used in Monte
Carlo integration as pseudo-random numbers are. They are inconvenient
for many reasons. If we want to generate them on the fly, then they may
be slow. When we want reproducible results from them, we need a lot of
storage. This paper shows that we may construct N = n(n− 1)/2 pairwise
independent random vectors from n independent ones, by summing them
modulo 1 in pairs. As a consequence, the storage and speed problems of
physical random numbers can be greatly mitigated. The new vectors lead
to Monte Carlo averages with the same mean and variance as if we had
used N independent vectors. The asymptotic distribution of the sample
mean has a surprising feature: it is always symmetric, but never Gaussian.
This follows by writing the sample mean as a degenerate U -statistic whose
kernel is a left-circulant matrix. Because of the symmetry, a small number
B of replicates can be used to get confidence intervals based on the central
limit theorem.

Received November 2009.

1. Introduction

When it comes to Monte Carlo simulation, physically based random numbers
are the poor cousin of pseudo-random numbers. Most physical random number
generators have comparatively cumbersome interfaces. Some of them are slow,
although http://true-random.com/ is fast. But all of them have problems with
reproducibility. To reproduce a simulation with physical random numbers, we
would need to store them. Because truly random numbers cannot be compressed,
the storage required could be very large. See L’Ecuyer (2009) for a survey of
random and pseudo-random number generation. Because of these well-known
shortcomings, the great majority of simulations take place with pseudo-random
numbers. Physical random numbers do have their place however. They are still
used in a small percentage of Monte Carlo applications, and there is a market
for devices that produce them. For example, when we are concerned that a
flaw in the pseudo-random number generator might interact with a feature of
the problem, we can replace the pseudo-random numbers by physically random
ones and rerun the example.

This article investigates a strategy to mitigate the storage disadvantage of
physical random numbers, by summing pairs of (vectors of) uniform random
numbers modulo 1. In this way, n physical random inputs can be used to get
answers comparable to what we would get from N = n(n − 1)/2 independent
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random inputs. The CPU cost is still n(n− 1)/2 function evaluations, but stor-
age requirements are greatly reduced, and we end up with reproducibility for
physical random numbers.

We suppose that the random numbers are being used for Monte Carlo in-
tegration, as follows. There is a function f defined on [0, 1)d, and we seek to
approximate the integral µ =

∫

[0,1)d f(x) dx. We will assume that f(x) ∈ R.

Extensions to vector valued f are straightforward. As written, µ = E(f(X))
for X ∼ U[0, 1)d. Many expectations of functions of non-uniform random vari-
ables on the unit cube and other domains, can be cast into this framework, by
techniques described in Devroye (1986). We assume that σ2 = Var(f(X)) <∞.

Forming all pairwise sums of n independent U[0, 1)d random variables and
taking their remainder modulo 1, yields N =

(

n

2

)

composite random vectors

X1, . . . , XN . The statistic we use is Ȳ = (1/N)
∑N

i=1 Yi for Yi = f(X i).
Section 2 gives more details about the construction. Section 3 gives basic

statistical properties of this method. The combined inputs are pairwise inde-
pendent from U[0, 1)d. It follows that E(Ȳ ) = µ, Var(Ȳ ) = σ2/N , and the usual
variance estimate s2 satisfies E(s2) = σ2. The estimate Ȳ is a degenerate U
statistic whose asymptotic distribution is that of a weighted sum of centered
independent χ2

(1) random variables.
Section 4 makes a small empirical comparison of IID sampling versus pairwise

and three-fold combinations. A surprising symmetry turns up in the QQ plots
of the examples even for a lognormally distributed f(X). Section 5 shows that
this symmetry is not special to the lognormal distribution, but can instead be
explained via recent results in the spectra of circulant matrices. Section 6 gives
conclusions.

2. Notation

For U, V ∈ [0, 1), their sum modulo 1 is

U ⊕ V = U + V − ⌊U + V ⌋,

where ⌊z⌋ is the greatest integer less than or equal to z ∈ R. For U , V ∈ [0, 1)d

define U ⊕ V ∈ [0, 1)d componentwise.

Given U1, . . . , Un
ind∼ U[0, 1)d sampled from a source of random numbers,

we want to obtain all of their pairwise sums modulo 1. A convenient iteration
for that purpose is

i← 0

for r = 1, . . . , n− 1

for s = r + 1, . . . , n

i← i + 1

X i ← U r ⊕U s

end double for loop

(1)
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We ordinarily use X i right after it is generated, so we only have to store
U1, . . . , Un. We will not need an explicit expression for i in terms of r and
s, or for r and s in terms of i.

More generally, for 2 ≤ m ≤ n we can form Nm =
(

n

m

)

points X1, . . . , XNm

by summing all distinct m-tuples of U1, . . . , Un, modulo 1. It is easy to gener-
alize (1) to triple and higher order sums. Ordinary IID sampling corresponds to
m = 1.

3. Statistical properties

Here we give basic statistical properties for the pairwise recycled uniform vec-
tors. Proposition 1 shows that the combined Monte Carlo inputs are pairwise
independent. Then Proposition 2 shows how this suffices to get the low order
moments right.

Proposition 1. For dimension d ≥ 1 and n ≥ m ≥ 1, let U1, . . . , Un be

IID U[0, 1)d random variables. Suppose that Xi for i = 1, . . . , Nm comprise all

Nm =
(

n

m

)

distinct sums of the form U r1 ⊕U r2 ⊕ · · · ⊕U rm
for 1 ≤ r1 < r2 <

· · · < rm ≤ n. Then X i are pairwise independent.

Proof. Write Xi = ⊕m
k=1U rk(i) and Xj = ⊕m

k=1U rk(j). Assume that i 6= j.
Then X i contains at least one summand U r that is not used in Xj. Without
loss of generality suppose that it is U rm(i). The distribution of Xi = ⊕m

k=1U rk(i)

given U r1(i), . . . , U rm−1(i) is U[0, 1)d. Let A and B be Borel subsets of [0, 1)d.
Then

Pr(X i ∈ A, Xj ∈ B) = E
(

Pr(X i ∈ A, Xj ∈ B | U s, ∀s 6= rm(i))
)

= E
(

1⊕m
k=1

Urk(j)∈B Pr(X i ∈ A | U s, ∀s 6= rm(i))
)

= E
(

1Xj∈B vol(A)
)

= Pr(X i ∈ A) Pr(Xj ∈ B).

The random variables X1, . . . , XN are pairwise independent, but for m > 1
they are not generally independent. For example

(U1 ⊕U2) + (U3 ⊕U4)− (U1 ⊕U3)− (U2 ⊕U4)

is always a vector of integers.
Pairwise independent random variables satisfy many of the key properties we

need in Monte Carlo integration. Suppose that Y = f(X) for X ∼ U[0, 1)d. Let
µ = E(Y ) and suppose that σ2 = Var(Y ) <∞. From pairwise independent ran-
dom vectors X1, . . . , XN ∼ U[0, 1)d we get pairwise independent Yi = f(X i).
These have the right low order moments as shown next.

Proposition 2. For N ≥ 2, let Y1, . . . , YN be pairwise independent random

variables with common mean µ and common variance σ2 < ∞. Define Ȳ =
1
N

∑N

i=1 Yi and s2 = 1
N−1

∑N

i=1(Yi − Ȳ )2. Then

E(Ȳ ) = µ, Var(Ȳ ) =
σ2

N
, and E(s2) = σ2.
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Proof. The first part is obvious, by linearity of expectations. The second and
third parts follow easily because E(Y1Y2) = E(Y1)E(Y2) for pairwise independent
random variables Y1 and Y2.

Proposition 2 shows that we can use N pairwise independent random vari-
ables to get unbiased Monte Carlo estimates with the same variance as with
N fully independent random variables. Furthermore we can get an unbiased
estimate of that variance.

Usually in a Monte Carlo integration problem we ask for more than the
moment properties in Proposition 2. To get an asymptotic confidence interval for
µ, we want a central limit theorem. Sequences of pairwise independent random
variables do not always satisfy a central limit theorem, even when the individual
variables are identically distributed and have finite variance. For an extreme
counterexample, see Romano and Siegel (1986, Chapter 5) who construct 2n

pairwise independent random bits from n independent ones.

Suppose that U1, . . . , Un
ind∼ U[0, 1)d and X1, . . . , XNm

are constructed as
described above. Let Y = f(X), where f ∈ L2[0, 1)d. The estimate

Ȳ =
1

N

N
∑

i=1

f(X i)

can be written as the U -statistic

Ȳ =
1

(

n

m

)

∑

1≤r1<r2<···<rm≤n

Ψ(U r1 , U r2 , . . . , U rm
), (2)

where
Ψ(U r1 , U r2 , . . . , U rm

) = f(U r1 ⊕U r2 ⊕ · · · ⊕U rm
).

Hoeffding (1948) gives a central limit theorem for U -statistics. In this setting√
n(Ȳ − µ) → N (0, τ2) but here

√
nVar(Ȳ ) = σ2

√

n/N and so the limit has
τ2 = 0. This U -statistic is degenerate and the central limit theorem for it does
not help us set confidence intervals.

The limiting distribution for degenerate U -statistics of order m = 2 is a
weighted sum of independent centered chisquares. It uses the eigenvalues λj of
Ψ(·, ·)− µ where an eigenvalue-eigenfunction pair (λ, g) satisfies

∫

[0,1)d

(f(V ⊕U) − µ)g(U ) dU = λg(V ).

The function g(V ) = 1 is an eigenfunction with eigenvalue 0. By convention we
will call this eigenpair (λ0, g0).

Theorem 1. For integer d ≥ 1 and r = 1, . . . , n, let U r
ind∼ U[0, 1)d. For

f ∈ L2[0, 1)d, let µ = E(f(U 1)), assume σ2 = E((f(U 1) − µ)2) > 0, and let

Ȳ =
(

n

2

)−1 ∑n−1
r=1

∑n

s=r+1 f(U r ⊕U s). Then

n(Ȳ − µ)
d→

∞
∑

j=1

λj(Z
2
j − 1) (3)
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as n → ∞ where Zj
ind∼ N (0, 1), where λj for j ≥ 0 are the eigenvalues of

Ψ(·, ·) = f(· ⊕ ·)− µ.

Proof. See Gregory (1977) or Serfling (1980, Chapter 5.5).

Notice that the sum in (3) does not include the zeroth eigenvalue. Com-

bining (3) with N = n(n − 1)/2 = (n2/2)(1 + o(1)) find
√

N(Ȳ − µ)
d→√

2
∑∞

j=1 λj(Z
2
j − 1). Therefore

σ2 = 4

∞
∑

j=1

λ2
j

because Var(Z2
j ) = 2.

The degree of nonnormality in the limiting distribution (3) is quite mild.
The skewness of a weighted sum of independent χ2

(1) random variables must be

between −
√

8 and
√

8 because
√

8 is the skewness of the χ2
(1) distribution. The

kurtosis of that weighted sum must be between 0 and 12, the kurtosis of χ2
(1).

Degenerate U -statistics for m ≥ 3 do not satisfy a central limit theorem
either. See Arcones and Giné (1993).

The lack of a central limit theorem is easily mended. We take B independent

replicates of the whole process and average them. Specifically let U rb
ind∼ U[0, 1)d

for r = 1, . . . , n and b = 1, . . . , B. Let Yib = f(⊕m
k=1U rk(i)b) and then put

Ȳ =
1

B
(

n

m

)

B
∑

b=1

(n

m)
∑

i=1

Yib

and

s2 =
1

B
(

n

m

)

− 1

B
∑

b=1

(n
m)

∑

i=1

(Yib − Ȳ )2.

Then

E(Ȳ ) = µ, Var(Ȳ ) =
σ2

B
(

n

m

) , and E(s2) = σ2

by the same pairwise independence properties used in Proposition 2. We could

also form B separate averages Ȳb and take σ̂2 =
(n

m)
B−1

∑B

b=1(Ȳb − Ȳ )2, but this
estimate would have only B − 1 degrees of freedom.

Using B replicates we consume only nB uniform random vectors to obtain
B

(

n

m

)

pairwise independent ones. For m = 2, taking a fixed n > 2000 leads to at
least a 1000 fold reduction in the number of independent random vectors that
we need to store. For fixed n and N , we have a central limit theorem

lim
B→∞

Pr
(
√

NB(Ȳ − µ)/σ ≤ z
)

= Φ(z).
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4. Numerical comparison

Here we make a small numerical inspection of random vector recycling. It is
convenient to compare the methods with m = 2 and m = 3 using the same
value of N . There are only three values of N in the range 10 < N < 106 that
can be attained as both

(

n2

2

)

and
(

n3

3

)

for some integers n2 and n3. They are
listed below:

n2 n3 N

16 10 120
56 22 1540

120 36 7140

To make the comparison we use N = 1540. This sample size is small enough
to allow many replications. The distribution of Ȳ may be sensitive to that of
Yi. Two quite different example distributions are used for Yi. The first is the
lognormal distribution, which we get via f(X) = exp(Φ−1(X)) for X ∈ [0, 1).
The second is the uniform distribution which we get via f(X) = X. The mean,
variance, skewness, and kurtosis of these two distributions are as follows:

Uniform Log normal
µ 1/2 1.649
σ2 1/12 4.671
γ 0 4.874
κ −6/5 110.936

The results of 10,000 independent replicated computations of Ȳ from these
methods are displayed in Figure 1. Taking m = 1 corresponds to sampling N
independent values of Yi. For m = 1, 2, 3 the distribution of Ȳ is nearly normal
in the center, but starts to depart in the tails, where it matters most. For
m = 2 and 3 the distributions are nearly symmetric while for m = 1 and the
log normal distribution, the distribution of Ȳ retains some of the skewness of
Yi. As we might expect, the non-normality is more severe with m = 3 than with
m = 2. Surprisingly, the non-normality is more severe for Yi ∼ U(0, 1) than for
log normal Yi.

Since m = 3 gives greater skewness, and is not covered by the sum of chi-
squareds result in Theorem 1, we focus on the case m = 2, which should create
enough pairwise independent vectors for applications. For m = 2 we group the
10,000 independent replicates into groups of B = 4 and B = 10. Figure 2 shows
QQ plots for the averages of these replicates. Even B as small as 10 gives a very
nearly normal distribution.

A QQ plot (not shown) for Ȳ from 1,000 independent samples for m = 2
and N = 7140 was similarly symmetric, had slightly lighter tails than that for
N = 1540, but was clearly not normal.
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Fig 1. QQ plots to show the effect of m ∈ {1,2,3} in random vector recycling. The distribution√
N(Ȳ − µ)/σ is plotted versus normal quantiles. All samples had N =

(

22

3

)

=
(

56

2

)

= 1540

function evaluations. The 45 degree line is given as a reference. Points corresponding to 95%
and 99% confidence interval endpoints are plotted on it.

5. Symmetry of Ȳ

In the numerical examples, the QQ-plots of Ȳ appeared to be symmetric, even
when the test function was the log-normal inverse CDF exp(Φ−1(u)). Such sym-
metry is consistent with the limit distribution (3) only when the eigenvalues, or
at least the dominant ones, come in pairs of opposite sign. Symmetry, if it holds
generally, is useful because it means that the central limit approximation will
be more accurate for a small number B of replicates than it would otherwise
be.

To investigate the eigenvalues we first consider a 1 dimensional problem with

Ψ(u1, u2) = f(u1 ⊕ u2) − µ for u1, u2 ∈ [0, 1) and µ =
∫ 1

0
f(u) du. Without loss

of generality, assume that µ = 0 for this section. The d dimensional case will be
similar as remarked below.

Let G be a large odd integer and define zj = (j+1/2)/G for j = 0, . . . , G−1.
The values zj are from a midpoint rule on [0, 1). We will use the approximation

∫ 1

0

Ψ(v, u)g(u) du
.
=

1

G

G−1
∑

j=0

Ψ(v, zj)g(zj ),

at points v = zk for 0 ≤ k < G. As a result, we study the eigenvalues of Ψ by
looking at those of the G×G matrix G−1ΨG where



A.B. Owen/Recycling physical random numbers 1538

−4 −2 0 2 4

−
4

−
2

0
2

4
Log normal

●

●

B= 1
B= 4
B=10

−4 −2 0 2 4
−

4
−

2
0

2
4

Uniform

●

●

B= 1
B= 4
B=10

QQ plots

Fig 2. QQ plots to show the effect of averaging B ∈ {1,4,10} independent replicates of

random vector recycling. The recycling scheme averaged 1540 =
(

56

2

)

pairwise independent

vectors constructed from n = 56 independent ones. Here
√

NB(Ȳ − µ)/σ is plotted versus
normal quantiles. The 45 degree line is given as a reference. Points corresponding to 95%
and 99% confidence interval endpoints are plotted on it.

ΨG
jk = f(zj ⊕ zk) = f((j + k + 1)/G mod 1) = f(z0 ⊕ zj+k mod G).

Let aj = f(z0 ⊕ zj). Then

ΨG =















a0 a1 a2 . . . aG−1

a1 a2 a3 . . . a0

a2 a3 a4 . . . a1

...
...

...
. . .

...
aG−1 aG−2 aG−3 . . . a0















is a left-circulant matrix (Davis, 1979). Each row is the previous one shifted left
one position with wraparound. The better known right-circulant matrices shift
each row to the right, and are thus a subfamily of Toeplitz matrices.

The spectral decomposition of left-circulant matrices was recently found by
Karner et al. (2003), giving a more explicit version of results in Davis (1979).
We restate one of their results.

Theorem 2 (Theorem 3.6 of Karner et al. (2003)). The eigenvalues of

G−1ΨG are λ0 = 1
G

∑G−1
k=0 ak and
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±
∣

∣

∣

1

G

G−1
∑

k=0

ak exp
(

−jk
√
−1/G

)

∣

∣

∣, for j = 1, . . . , (G− 1)/2. (4)

The sums in (4) are real because ΨG is a symmetric matrix. As a result, the
eigenvalues of ΨG come as pairs of real numbers with opposite signs except for

a0 =
1

G

G−1
∑

j=0

aj =
1

G

G−1
∑

j=0

Ψ(z0, zj)→
∫ 1

0

f(u) du = 0 (5)

as G→∞. The limit in (5) holds if a midpoint rule is asymtotically correct for
∫ 1

0 f(u) du. It suffices for f to be Riemann integrable, but that is not necessary,
as convergence also holds for some unbounded integrands.

For an even number G, the eigenvalues of G−1ΨG come in pairs apart from
the 0’th and the G/2’th one, which is G−1

∑G−1
j=0 (−1)jaj → 0. See Karner et al.

(2003).
When d > 1, and G is odd, the eigenvalues still come in pairs with opposite

sign. The generalization of ΨG is then a d-fold Kronecker product of left circulant
matrices. See van der Mee et al. (2006) for an example using multiindex Toeplitz
matrices with a similar Kronecker product structure. The eigenvalues of the
Kronecker product are products of the eigenvalues of its matrix factors and
so the spectrum is still symmetric apart from the eigenvalue for the constant
eigenvector, which approaches

∫

[0,1)d f(u) du = 0.

6. Conclusions

Given n independent vectors U i ∼ U[0, 1)d we can recycle them over and over
to make Nm =

(

n

m

)

pairwise independent random variables X i. The variance of
Monte Carlo integration is not adversely affected when we substitute these pair-
wise independent for genuinely independent ones. The estimate Ȳ is unbiased
with the same variance as for independent variables and the customary variance
estimate for Ȳ is unbiased. These moment results hold for fixed m as n→∞. If
m increases with n, perhaps m = ⌊n/2⌋, then Propositions 1 and 2 still hold, but
Theorem 1 does not apply unless m = 2. Because results for m = 3 appeared
worse than for m = 2, it is reasonable to use a small fixed m like m = 2.

To get confidence intervals based on the central limit theorem, it is necessary
to average several replicates of the recycled vectors. Due in part to a surprising
symmetry in the asymptotic distribution of Ȳ , shown for m = 2, only a small
number of replicates are needed. Even m = 2 is enough to generate a very
large number N of pairwise independent vectors from a modest number n of
independent ones.

Pairing up random vectors works for d dimensional integration, but it is
crucial to the analysis that the components Xij for j = 1, . . . , d of each point X i

be truly independent. We arranged this by making each U i have d independent
components. In particular, nothing in this article is meant to support turning
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n independent scalar uniform random variables into N pairwise independent
scalars before forming vectors of dimension d.

Another route to pairwise independent random vectors is to take U r
ind∼

U[0, 1)d for 1 ≤ r ≤ n, where n is even, and form n2/4 pairs U r ⊕U s for 1 ≤
r ≤ n/2 and n/2 < s ≤ n. The resulting statistic Ȳ is a generalized U -statistic,
and once again, is degenerate. Theorem 1 does not apply to it. From Lemma
B of Serfling (1980, Section 5.2.2) we can find that E((

√
N(Ȳ − µ))k) = O(1)

for k ≥ 3 when E(|f(U)|k) < ∞. Unless the implied constant is zero when
k = 3 a strategy based on generalized U -statistics will also require independent
replicates in order to satisfy a central limit theorem. Even if that constant is 0,
the Lemma B does not yield a central limit theorem for generalized U statistics.

Pseudorandom numbers have many advantages compared to physical ones.
Indeed the simulations in Section 4 were done with pseudo-random numbers.
It is also known that some sources of physical random numbers fail tests of
randomness such as Marsaglia’s diehard battery of tests. But when one wants to
use physical random numbers, the problems of large storage needs can be greatly
mitigated by pooling the random numbers together into pairwise independent
vectors.

Finally, the problem considered here is similar to one that arises in random-
ized quasi-Monte Carlo. Scrambled digital nets with the random scrambling
proposed in Owen (1995) satisfy a central limit theorem (Loh, 2003). The ran-
dom linear scrambles of Matoušek (1998) are simpler to implement and require
much less storage. Random linear permutations have the same first and second
order marginal distributions as uniform random permutations, and scrambled
nets using them have the same mean and variance as with uniform random per-
mutations. The third and higher order margins of random linear permutations
are different from the uniform ones (when more than 3 items are permuted).
Thus they may fail to satisfy a central limit theorem, but no proof or counter
example has yet been published. There is some empirical evidence that the
distributions could be different: Hong et al. (2003) have found that the two
scramblings yield quite different distributions for a related quantity (the mean
squared discrepancy) of quadrature points.
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