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Abstract: We present a graph-based technique for estimating sparse co-
variancematrices and their inverses from high-dimensionaldata. The method
is based on learning a directed acyclic graph (DAG) and estimating param-
eters of a multivariate Gaussian distribution based on a DAG. For inferring
the underlying DAG we use the PC-algorithm [27] and for estimating the
DAG-based covariance matrix and its inverse, we use a Cholesky decompo-
sition approach which provides a positive (semi-)definite sparse estimate.
We present a consistency result in the high-dimensional framework and we
compare our method with the Glasso [12, 8, 2] for simulated and real data.
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1. Introduction

Estimation of covariance matrices is an important part of multivariate analysis.
There are many problems with high-dimensional data where an estimation of
the covariance matrix is of interest, for example in principal component analysis
or classification by discriminant analysis. Application areas where such prob-
lems arise include gene micro-arrays, imaging and image classification or text
retrieval. In many of these applications, the primary goal is the estimation of
the inverse of a covariance matrix Σ−1, also known as the precision or concen-
tration matrix, rather than the covariance Σ itself. In low-dimensional settings
with p < n, where p denotes the row- or column-dimension of Σ and n the sam-
ple size, we can obtain an estimate of Σ−1 by estimation and inversion of the
Gaussian maximum likelihood estimator Σ̂MLE . But when p is large, inversion
of this estimate is problematic and its accuracy is very poor.

Recently, two classes for high-dimensional covariance estimation have emerged:
those that rely on a natural ordering among variables and typically assuming
that variables far apart in the ordering are only weakly correlated, and those
which are invariant to variable permutation. Regularized estimation by banding
or tapering [3, 13, 5] or using sparse Cholesky factors of the inverse covariance
matrix relying on the natural ordering of the variables [31, 14, 19] are mem-
bers of the first class of covariance estimators. When having no natural ordering
among the variables, estimators should be permutation invariant with respect
to indexing the variables. A popular approach to obtain a sparse permutation-
invariant estimate is to add a Lasso penalty on the entries of the concentration
matrix to the negative Gaussian log-likelihood [12, 8, 2, 26]. This amounts to
shrinking some of the elements of the inverse covariance matrix exactly to zero.
Alternatively, the Lasso can be used for inferring an undirected conditional in-
dependence graph using node-wise regressions [24] and a covariance estimate
can then be obtained using the structure of the graph. Other approaches in-
clude a simple hard-thresholding of the elements of the unpenalized maximum
likelihood estimator [4], with the disadvantage that the resulting estimate is not
necessarily positive (semi-) definite.

The method which we present here is also invariant under permutation of the
variables. The type of regularization which we pursue is based on exploiting a
sparse graphical model structure first and then estimating the covariance matrix
and its inverse using non-regularized estimation. Because of the sparsity of the
graphical model structure, the second step does not need any regularization
anymore. More precisely, we use a sparsely structured Cholesky decomposition
of the concentration matrix for estimation of the covariance and concentration
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matrix. To obtain the structure of such a Cholesky factor, we estimate a DAG (in
fact, an equivalence class of DAGs). Thus, this approach enforces a completely
different sparsity structure on the Cholesky factor than proposals for ordered
data as in e.g. [3, 13, 5, 9].

For a given DAG, our approach equals the iterative conditional fitting (ICF)
method presented in [10, 6] which reduces here to the standard technique of
fitting Gaussian DAG models. Our contribution is to use an estimated DAG,
i.e. an estimated equivalence class of DAGs from the PC-algorithm [27], and
to analyze the method in the high-dimensional case taking the uncertainty of
structure estimation of the equivalence class of DAGs into account. We argue in
this paper that within the class of methods which are invariant under variable
permutation, a graph-structured approach can be worthwhile for a range of
scenarios, sometimes resulting in performance gains up to 30-50% over shrinkage
methods.

In Section 2 we give a brief overview over graph terminology and graphical
models. Section 3 introduces our methodology and we show asymptotic consis-
tency of the method in the high-dimensional framework in Section 4. Simulations
and real data examples are presented in Section 5 and we propose a robustified
version of our procedure in Section 6.

2. Graph terminology and graphical models

2.1. Graphs

Let G = (V, E) be a graph with a set of vertices V and a set of edges E ⊆ V ×V .
In our context, we use V = {1, . . . , p} corresponding to some random variables
X1, . . . , Xp.

A graph can be directed, undirected or partially directed. An edge between
two vertices, for example i and j, is called directed if the edge has an arrowhead:
i← j or i→ j. An edge without arrowhead is an undirected edge: i−j. A graph
in which all edges are directed is called a directed graph; and vice-versa, a graph
in which no edge is directed is called an undirected graph. A graph which may
contain both directed and undirected edges is called a partially directed graph.
The underlying undirected graph of a (partially) directed graph G which we
derive by removing all the arrowheads is called the skeleton of G.

Two vertices i and j are adjacent if there is any kind of edge between them.
The adjacency set of a vertex i, denoted by adj(i, G), is the set of all vertices
that are adjacent to i in G. A path is a sequence of vertices {1, . . . , k} such that
i is adjacent to i + 1 for each i = 1, . . . , k − 1. A directed path is a path with
directed edges that follows the direction of the arrows. When the first and last
vertices coincide, the directed path is called a directed cycle. An acyclic graph
is a graph that contains no directed cycles. A directed graph with no directed
cycles is called directed acyclic graph (DAG).

If i → j, then i is called a parent of j and j is called a child of i. The set of
parents of i in G is denoted as pa(i) and the set of children as ch(i). If there
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is a directed path from i to j, then i is called an ancestor of j and j is called
an descendant of i. The set of ancestors of i is denoted as an(i), the set of
descendants as de(i) and the set of non-descendants as nde(i). A v-structure in
a graph G is an ordered triple of vertices (i, j, r), such that i → j and j ← r,
and i and r are not adjacent in G. The vertex j is then called a collider.

A path Q from i to j in a directed acyclic graph G is said to be blocked by
S, if it contains a vertex v ∈ Q such that either (i) v ∈ S and v is no collider;
or (ii) v /∈ S nor has v any descendants in S, and v is a collider. A path that
is not blocked by S is said to be active. Two subsets A and B are said to be
d-separated by S if all paths from A to B are blocked by S. In other words, there
is no active path from A to B.

2.2. Graphical models and Markov properties

Graphical models form a probabilistic tool to analyze and visualize conditional
dependence between random variables, using some encoding with edges in the
graph. Fundamental to the idea of a graphical model is, based on graph the-
oretical concepts and algorithms, the notion of modularity where a complex
system is built by combining simpler parts. One can distinguish between three
main graphical models. Here we focus on DAG models, where all the edges of
the graph are directed. According to [18], a DAG model may exhibit several
directed Markov properties. In the following, we present only two of them.

We use the following notation. Let P denote the distribution of (X1, . . . , Xp).
For x ∈ Rp, we denote by xA = {xj; j ∈ A} for A ⊆ V = {1, . . . , p} and
analogously for the random vector XA. Furthermore, for disjoint subsets A, B
and S, we denote by XA ⊥⊥ XB |XS conditional independence between XA, XB

given XS .

Definition 2.1. [Directed global Markov property]
Let A, B and S be disjoint subsets of V and G a DAG on V . If

XA ⊥⊥ XB |XS

whenever A and B are d-separated by S in the graph G, we say P obeys the
directed global Markov property relative to the DAG G.

Definition 2.2. [Recursive factorization property]
We say that P admits a recursive factorization according to a DAG G when-

ever there exist non-negative functions fi(.|.) (i = 1, . . . , p), such that

∫
fi(xi|xpa(i))ν(dxi) = 1

and P has a density f with respect to the measure ν, where

f(X1 , . . . , Xp) =

p∏

i=1

fi(Xi|Xpa(i)).
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If the density f of P is strictly positive, as for example in the case of a
multivariate Gaussian distribution, both Markov properties in Definitions 2.1
and 2.2 are equivalent. For more details see [18, pp. 46–52].

A DAG model encodes conditional independence relationships via the no-
tion of d-separation. Several DAGs could encode the same set of conditional
independence relationships. These DAGs form an equivalence class, consisting
of DAGs with the same skeleton and v-structures. A complete partially directed
acyclic graph (CPDAG) uniquely describes such an equivalence class. In fact,
directed edges in the CPDAG are common to all DAGs in the equivalence class.
Undirected edges in the CPDAG correspond to edges that are directed one way
in some DAGs and another way in other DAGs of the equivalence class. The ab-
sence of edges in the CPDAG means that all DAG members in the equivalence
class have no corresponding edge. If all the conditional independence relation-
ships of a distribution P and no additional conditional independence relations,
can be inferred from the graph, we say that the distribution P is faithful to the
DAG G. More precisely, if P is faithful to the DAG G: for any triple of disjoint
sets A, B and S in V ,

XA ⊥⊥ XB |XS ⇔ A and B are d-separated by S in G.

Note that the directed global Markov property in Definition 2.1 implies the
implication from the right- to the left-hand side; the other direction is due to
the faithfulness assumption.

3. Covariance estimation based on DAGs

Our methodology is based on two steps. We first infer the CPDAG, i.e. the
equivalence class of DAGs, and we then estimate the covariance (concentration)
matrix based on the CPDAG structure.

We assume throughout the paper that the data are

X(r) = (X
(r)
1 , . . . , X(r)

p ), r = 1, . . . , n

X(1), . . . , X(n) i.i.d. ∼ P (1)

with P being multivariate normal Np(0, Σ), Markovian (as in Definition 2.1 or
2.2) and faithful to a DAG G.

The Gaussian assumption implies that E
[
Xi | Xpa(i)

]
is linear in Xpa(i) which

will be useful in the second estimation step for the concentration or covariance
matrix. Moreover, it allows us to equate conditional independence with zero
partial correlation which makes estimation for the CPDAG much easier.

3.1. Estimating the covariance matrix from a DAG

We first assume that the underlying DAG is given. Using the factorization prop-
erty from Definition 2.2 in Section 2.2 we have:

f(X1 , . . . , Xp) =

p∏

i=1

f(Xi|Xpa(i)).
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We use here and in the sequel the short-hand notation f(·|·) instead of fi(·|·).
For data as in (1), we can then write the likelihood function as

L =

n∏

r=1

f(X
(r)
1 , . . . , X(r)

p ) =

n∏

r=1

p∏

i=1

f(X
(r)
i |X

(r)
pa(i)) =

p∏

i=1

n∏

r=1

f(X
(r)
i |X

(r)
pa(i)).

Using the Gaussian assumption this leads to the likelihood in terms of the
unknown parameter Σ (or Σ−1 respectively)

L(Σ) =

p∏

i=1

Li(µi|pa(i), Σi|pa(i))

where µi|pa(i) and Σi|pa(i) are the conditional expectation and variance of Xi

given the parents Xpa(i). Note that the conditional covariance is a fixed quantity
whereas the conditional mean depends on the variables Xpa(i). For a single
random variable Xi we have:

µi|pa(i) = E
[
Xi | Xpa(i)

]
= µi + Σi,pa(i)(Σpa(i),pa(i))

−1(Xpa(i) − µpa(i))

= Σi,pa(i)(Σpa(i),pa(i))
−1Xpa(i),

(2)

with assumption µi = 0 ∀i from above, and:

Σi|pa(i) = Σi,i − Σi,pa(i)(Σpa(i),pa(i))
−1Σpa(i),i. (3)

The expressions Σi,pa(i) and Σpa(i),pa(i) are sub-matrices formed by selecting the
corresponding rows and columns from the full covariance matrix Σ. For example,
Σi,pa(i) is the sub-matrix (or vector) of Σ with row i and columns j ∈ pa(i). The
values µi|pa(i) and Σi|pa(i), in the ith factor Li of the likelihood, are connected
to regression, as described next.

Consider for each node i a regression from Xi on Xpa(i), where Xi|Xpa(i) ∼
N (µi|pa(i), Σi|pa(i)). We can represent these p regressions in matrix notation as
follows:

A




X1

...
Xp


 = ǫ (4)

where A is a p × p matrix corresponding to the regressions and ǫ is the vector
of the error terms. That is:

Aij =




−(Σi,pa(i)(Σpa(i),pa(i))

−1)j if j ∈ pa(i)
1 if j = i
0 otherwise

.

Now we can easily compute Σ or Σ−1, because we can write (4) as

(X1, . . . , Xp)
T = A−1ǫ.

Hence,

Σ = Cov
(
(X1, . . . , Xp)

T
)

= Cov
(
A−1ǫ

)
= A−1 Cov (ǫ) (A−1)T ,
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where

Cov (ǫ) =




Σ1|pa(1) 0
. . .

0 Σp|pa(p)


 . (5)

We then also easily obtain

Σ−1 = (A−1 Cov (ǫ) (A−1)T )−1 = AT Cov (ǫ)
−1

A.

See [7, Chap. 3] and [21] for more details.
Since Σ and Σ−1 are based on the structure of the DAG G (via the matrix

A) we write ΣG and Σ−1
G . An estimator is now constructed as follows. Consider

the maximum likelihood estimator

Σ̂MLE = n−1
n∑

j=1

(X(j) −X)(X(j) −X)T (6)

as an “initial” estimator Σ̂init of Σ and use the following plug-in estimators:

Σ̂G = Â−1Ĉov (ǫ) (Â−1)T ,

Σ̂−1
G = ÂT Ĉov (ǫ)

−1
Â, (7)

where Â and Ĉov (ǫ) are as in (5) but with the plug-in estimates Σ̂MLE
i,pa(i),

(Σ̂MLE
pa(i),pa(i))

−1 (for Â) and Σ̂MLE
i|pa(i) (for Ĉov (ǫ)) using formula (3).

Note that the estimators in (7) are automatically positive semi-definite having
eigenvalues ≥ 0 (and positive definite assuming Σ̂i|pa(i) > 0 for all j, which
would fail only in very pathological cases). Furthermore, we could use another
“initial” estimator than Σ̂MLE for estimating Σi,pa(i), Σpa(i),i and Σpa(i),pa(i).
We are exploiting this possibility for a robustified version, as discussed in Section
6. Finally, the estimator in (7) is implemented in the R-package ggm [6].

3.2. Inferring a directed acyclic graph

The conditional dependencies between X1, . . . , Xp and hence the DAG are usu-
ally not known. We use the PC-algorithm [27] with estimated conditional de-
pendencies to infer the corresponding CPDAG G, i.e. the equivalence class of
DAGs (inferring the true DAG itself is well-known to be impossible due to
identifiability problems).

Estimation of the skeleton and partial orientation of edges are the two major
parts of inferring a CPDAG. In the following we will describe these two steps.

3.2.1. Estimating the CPDAG

In a first step, we start from a complete undirected graph. When two variables
Xi Xj are found to be conditional independent given XK for some set K, the
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edge i−j is deleted: details are given in Algorithm 1. In a second step, the edges
are oriented using the conditioning sets K which made edges drop out in the
first step: details are given in Algorithm 2.

In the first step of the PC-algorithm, we need to estimate the conditional
independence relations between X1, . . . , Xp. Under the Gaussian assumption
conditional independencies can be inferred from partial correlations. Then, the
conditional independence of Xi and Xj given XK = {Xr ; r ∈ K}, where K ⊆
{1, . . . , p}\{i, j}, is equivalent to the following: the partial correlation of Xi and
Xj given {Xr; r ∈ K}, denoted by ρi,j|K, is equal to zero. This is an elementary
property of the multivariate normal distribution, see [18, Prop. 5.2]. Hence to
obtain estimates of conditional independencies we can use estimated partial
correlations ρ̂i,j|K . For testing whether an estimated partial correlation is zero
or not, we apply Fisher’s z-transform

Z(i, j | K) =
1

2
log

(
1 + ρ̂ij|K
1− ρ̂i,j|K

)
.

Since Z(i, j | K) has a N (0, (n− |K|− 3)−1) distribution if ρi,j|K = 0 [1], we
have evidence that ρi,j|K 6= 0 if

√
n− |K| − 3|Z(i, j | K)| > Φ−1(1− α

2
),

where Φ is the cumulative distribution function of the standard Normal distri-
bution and the significance level 0 < α < 1 is a tuning (threshold) parameter of
the PC-algorithm described in Algorithms 1 and 2.

Algorithm 1: The PC-algorithm for the skeleton
Input: z-transform of estimated partial correlations, tuning parameter α
Output: Skeleton of CPDAG G, separation sets S (used later for directing the skeleton)
Form the complete undirected graph G̃ on the set {1, . . . , p};1

l = −1; G = G̃;2

repeat3

l = l + 1;4

repeat5

Select an ordered pair of adjacent variables i, j in G such that6

|adj(i,G)\{j}| ≥ l;
repeat7

Choose K ⊆ adj(i,G)\{j} with |K| = l;8

if
√

n− |K| − 3|Z(i, j | K)| ≤ Φ−1(1 − α/2) then9

Delete edge i, j;10

Denote this new graph by G;11

Save K in S(i, j) and S(j, i);12

until edge i, j is deleted or all K ⊆ adj(i, G)\{j} with |K| = l have been13

chosen ;
until all ordered pairs of adjacent variables i and j, such that |adj(i,G)\{j}| ≥ l14

and K ⊆ adj(i,G)\{j} with |K| = l, have been tested for conditional independence ;
until for each ordered pair of adjacent nodes i,j: |adj(i,G)\{j}| < l ;15
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If ρi,j|K = 0 is plausible, the edge i − j is deleted and K is saved in S(i, j).
We call S = {S(i, j); i, j ∈ {1, . . . , p}, i 6= j} the separation sets. These sets
are important for extending the estimated skeleton to a CPDAG as described
below in Algorithm 2.

Algorithm 2: The PC-algorithm: extending the skeleton to a CPDAG
Input: Skeleton G of CPDAG, separation sets S
Output: CPDAG
forall pairs of nonadjacent variables i, j with common neighbor k do1

if k /∈ S(i, j) then2

Replace i− k − j in Skeleton of G by i→ k ← j;3

repeat4

R1 Orient j − k into j → k whenever there is an arrow i→ j such that i and k are5

nonadjacent;
R2 Orient i− j into i→ j whenever there is a chain i→ k → j;6

R3 Orient i− j into i→ j whenever there are two chains i→ k → j and i→ l→ j7

such that k and l are nonadjacent;
until no more orienting of undirected edges is possible by the rules R1 to R3 ;8

[23] showed that the rules in Algorithm 2 are sufficient to orient all arrows in
the CPDAG, see also [25, pp. 50]. The PC-algorithm, described in Algorithms 1
and 2, yields an estimate ĜCPDAG(α) of the true underlying CPDAG which
depends on the tuning parameter α.

3.2.2. The PC-DAG covariance estimator

Having an estimate ĜCPDAG(α) of the CPDAG, we pick any DAG ĜDAG(α) in
the equivalence class of the CPDAG. This can be done by directing undirected
edges in the CPDAG at random without creating additional v-structures or
cycles. The estimate for the covariance and concentration matrix is then:

Σ̂ĜDAG(α), Σ̂−1

ĜDAG(α)
as in formula (7), (8)

and since the PC-algorithm for DAGs is involved, we call it the PC-DAG co-
variance estimator. Its only tuning parameter is α used in the PC-algorithm. As
described in Section 3.2.1, it has the interpretation of a significance level for a
single test whether a partial correlation is zero or not. The choice of this tuning
parameter α can be done using cross-validation of the negative out-of-sample
log-likelihood.

We remark that the zeros in Σ̂−1

ĜDAG(α)
are the same for any choice of a DAG in

the estimated CPDAG ĜCPDAG(α). However, the non-zero estimated elements
of the estimated matrices will be slightly different. To avoid an unusual random
realization when selecting a DAG from ĜCPDAG(α), we can sample many DAGs
and average the corresponding estimates for Σ−1 or Σ.

In some cases, we need some small modifications of the PC-DAG covariance
estimator which are described in Appendix B. Estimation of a CPDAG as de-
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scribed in Algorithm 1 and 2 is efficiently implemented in the R-package pcalg,
as described in its reference manual [17].

4. Consistency

We prove asymptotic consistency of the estimation method in high-dimensional
settings where the number of variables p can be much larger than the sample size
n. In such a framework, the model depends on n and this is reflected notationally
by using the subscript n. We assume:

(A) The data is as in (1) with distribution Pn of (X1, . . . , Xpn
) being multi-

variate normal N (0, Σn), Markovian as in Definition 2.1 or 2.2 and faithful
to a DAG Gn.

(B) The variances satisfy: Var (Xi) = σ2
n;i ≤ σ2 <∞ for all i = 1, . . . , pn.

(C) The dimension pn = O(na) for some 0 ≤ a <∞.
(D) The maximal cardinality qn = maxi=1,...,pn

|adj(i, Gn)| of the adjacency

sets in Gn satisfies qn = O(n
1
2−b) for some 0 < b ≤ 1/2.

(E) For any i, j ∈ 1, . . . , pn, let ρn;i,j|S denote the partial correlation between
Xi and Xj given S, where S ∈ {1, . . . , pn} \ {i, j}. These partial correla-
tions are bounded above and below:

sup
n,i 6=j,S

∣∣ρn;i,j|S
∣∣ ≤M

for some M < 1, and

inf
i,j,S

{∣∣ρn;i,j|S
∣∣ ; ρn;i,j|S 6= 0

}
≥ cn

with c−1
n = O(nd) for some 0 < d < 1/4 + b/2, where b is as in (D).

(F) For every DAG in the equivalence class of the true underlying CPDAG
(induced by the distribution in assumption (A)), the conditional variances
satisfy the following bound:

inf
1≤i≤pn, j∈pa(i)

Var
(
Xj | Xpa(i)\j

)
≥ r > 0,

inf
1≤i≤pn

Var
(
Xi | Xpa(i)

)
≥ r > 0.

Assumption (C) allows the number of variables pn to grow as an arbitrary
polynomial in the sample size and reflects the high-dimensional setting. As-
sumption (D) is a sparseness assumption, requiring that the maximal number

of neighbors per node grows at a slower rate than O(n
1
2 ). Assumption (F) is

a regularity condition on the conditional variances. Assumption (E), in partic-
ular the second part, is a restriction which corresponds to the detectability of
non-zero partial correlations: obviously, we cannot consistently detect non-zero
partial correlations of smaller order than 1√

n
. For sparse graphs with b close to

1/2 in (D), the value d close to 1/2 is allowed. i.e. close to the 1/
√

n detection
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limit. Under assumptions (A)-(E), the PC-algorithm was shown to be consistent
for inferring the true underlying CPDAG [15, Th.2]. More precisely, we denote by
ĜCPDAG;n(α) the estimate for the underlying CPDAG, using the PC-algorithm
with tuning parameter α (Algorithms 1 and 2), and by GCPDAG;n the true
underlying CPDAG. Then, assuming (A)-(E) and for αn = 2(1−Φ(n1/2cn/2)):

P [ĜCPDAG;n(αn) = GCPDAG;n]→ 1 (n→∞). (9)

Concerning the consistency of DAG based estimation of the concentration
matrix, we have the following new result.

Lemma 4.1. Under assumptions (A)-(D) and (F) the following holds. For any
DAG G in the equivalence class of the true underlying CPDAG and using the
estimator Σ̂−1

G in (7):

sup
i,j

∣∣∣Σ̂−1
G,n;i,j −Σ−1

n;i,j

∣∣∣ P−→ 0 (n→∞).

A proof is given in the Appendix. We then obtain the main theoretical result.

Theorem 4.1. Under assumptions (A)-(F) and using the tuning parameter
αn = 2(1− Φ(n1/2cn/2)) in the PC-algorithm, the following holds for the esti-
mator in (8):

sup
i,j

∣∣∣Σ̂−1

ĜDAG(α),n;i,j
−Σ−1

n;i,j

∣∣∣ P−→ 0 (n→∞).

Proof. The estimate ĜDAG;n(α) is a DAG element of the estimated equivalence

class encoded by the estimated CPDAG ĜCPDAG;n(α). Denote this DAG by G∗.
Consider the event

An = {ĜCPDAG;n(αn) = GCPDAG;n},
whose probability P [An] → 1 (n → ∞), see (9). On An, G∗ must be a DAG
element of the true equivalence class GCPDAG;n and hence on An, Lemma 4.1
yields consistency:

sup
i,j

∣∣∣Σ̂−1

Ĝ,n;i,j
−Σ−1

n;i,j

∣∣∣ = sup
i,j

∣∣∣Σ̂−1
G∗,n;i,j − Σ−1

n;i,j

∣∣∣ P−→ 0 (n→∞).

Since P [An]→ 1, the proof is complete.

5. Simulation and real data analysis

We examine the behavior of our PC-DAG estimator using simulated and real
data and compare it to the Glasso method [12, 2]. The Glasso is defined as:

Σ̂−1
Glasso = arg min

Σ−1 non-neg. def.
(− log detΣ−1 + tr (Σ̂MLEΣ−1) + λ‖Σ−1‖1) (10)

where Σ̂MLE is the empirical covariance matrix in (6), ‖Σ−1‖1 =
∑

i<j |Σ−1
ij |

and the minimization is over non-negative definite matrices.
All computations are done with the R-packages pcalg [17] and glasso.



P. Rütimann, P. Bühlmann/High dimensional sparse covariance estimation 1144

5.1. Simulation study

We consider a DAG and a non-DAG model for generating the data.

5.1.1. DAG models

We focus on the following class of DAG models. We generate recursively

X1 = ǫ1 ∼ N (0, 1),

Xi =

i−1∑

r=1

BirXr + ǫi (i = 2, . . . , p),

where ǫ1, . . . , ǫp i.i.d. ∼ N (0, 1) and B is an adjacency matrix generated as
follows. We first fill the matrix B with zeros and replace every matrix entry in the
lower triangle by independent realizations of Bernoulli(s) random variables with
success probability s where 0 < s < 1. Afterwards, we replace each entry having
a 1 in the matrix B by independent realizations of a Uniform([0.1,1]) random
variable. If i < j and Bji 6= 0 the corresponding DAG has a directed edge
from node i to node j. The variables X1, . . . , Xp have a multivariate Gaussian
distribution with mean zero and covariance Σ which can be computed from B.
We consider this model for different settings of n, s and p:

D1: n = 30, s = 0.01, p = 40, 50, 60, 70, 80, 90, 100, 110, 120
D2: n = 50, s = 0.01, p = 40, 50, 60, 70, 80, 90, 100, 110, 120
D3: n = 30, s = 0.05, p = 40, 50, 60, 70, 80, 90, 100, 110, 120
D4: n = 50, s = 0.05, p = 40, 50, 60, 70, 80, 90, 100, 110, 120

The settings D1 to D4 mainly differ in the sparsity s of the generated data,
which is related to the expected neighborhood size E [adj(i, G)] = s(p − 1) for
all i. For each of these settings we estimate the covariance and the concentration
matrix with both methods, our PC-DAG and the Glasso estimator.

We use two different performance measures to compare the two estimation
techniques. First, the Frobenius norm of the difference between the estimated
and the true matrix ‖Σ̂− Σ‖F and ‖Σ̂−1 − Σ−1‖F . And second, the Kullback-
Leibler Loss ∆KL(Σ̂−1, Σ−1) = tr(ΣΣ̂−1)− log |ΣΣ̂−1| − p.

We sample data X(1), . . . , X(n) i.i.d. from the DAG model described above
for each value of p in settings D1-D4. Then we derive, on a separate validation
data-set X(1)∗, . . . , X(n)∗, the optimal value of the tuning parameters α (PC-
DAG) or λ (Glasso), with respect to the negative Gaussian log-likelihood. The
two different performance measures are evaluated for the estimates based on the
training data X(1), . . . , X(n) with optimal tuning parameter choice based on the
validation data. All results are based on 50 independent simulation runs.

Figures 1 and 2 show that in the sparse settings D1 and D2, the PC-DAG
estimator clearly outperforms Glasso. Concerning the more dense settings D3
and D4, the PC-DAG method degrades only for the covariance matrix, whereas
for the inverse covariance matrix Σ−1, the figures still show an improvement
of the PC-DAG estimator compared to the Glasso. If we match Figure 1 (a)
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(a) For setting D1 (b) For setting D2

(c) For setting D3 (d) For setting D4

Fig 1. Plots of ‖Σ̂−Σ‖F for DAG models. Vertical bars indicate (pointwise) 95% confidence
intervals.

with Figure 1 (b) and Figure 2 (a) with Figure 2 (b), we see that for a small
increase of the sample size the Glasso improves substantially less compared to
the PC-DAG estimator. The results in terms of the Kullback-Leibler loss are
summarized in Table 1.

5.1.2. Non DAG models

Next we generate data from a non-DAG model proposed by [26]. The concen-
tration matrix equals

Σ−1 = B + δI,

where each off-diagonal entry in B is generated independently and equals 0.5
with probability π or 0 with probability 1−π, all diagonal entries of B are zero,
and δ is chosen such that the condition number of Σ−1 is p. The concentration
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(a) For setting D1 (b) For setting D2

(c) For setting D3 (d) For setting D4

Fig 2. Plots of ‖Σ̂−1 − Σ−1‖F for DAG models. Vertical bars indicate (pointwise) 95%
confidence intervals.

matrices, which we generate from this model vary in their level of sparsity: for
Σ−1

(1) we take π = 0.1 and for Σ−1
(2) we choose π = 0.5, i.e. Σ−1

(1) is sparser than

Σ−1
(2). Note that the expected numbers of non-zero entries in Σ−1

(1) and Σ−1
(2) are

proportional to p2.
We generate Gaussian data X(1), . . . , X(n) i.i.d. ∼ Np(0, Σ) with Σ−1 con-

structed as above, according to the following settings:

nD1: n = 30, π = 0.1, p = 40, 50, 60, 70, 80, 90, 100, 110, 120
nD2: n = 50, π = 0.1, p = 40, 50, 60, 70, 80, 90, 100, 110, 120
nD3: n = 30, π = 0.5, p = 40, 50, 60, 70, 80, 90, 100, 110, 120
nD4: n = 50, π = 0.5, p = 40, 50, 60, 70, 80, 90, 100, 110, 120

We tune and compare the estimation methods as described in Section 5.1.1.
In Figures 3 and 4 we see that in case of the dense model with π = 0.5, the

two methods do not differ much (some of the differences are so small that they
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(a) For setting nD1 (b) For setting nD2

(c) For setting nD3 (d) For setting nD4

Fig 3. Plots of ‖Σ̂−Σ‖F for non DAG models. Vertical bars indicate (pointwise) 95% con-
fidence intervals.

are invisible on the scales shown in the plots). But for the sparse model with
π = 0.1 we observe that our PC-DAG estimator is better than the Glasso, in
particular for the setting nD2. The results in terms of the Kullback-Leibler loss
are summarized in Table 1.

5.2. Real data

In this section we compare the two estimation methods for real data.

5.2.1. Isoprenoid gene pathways in Arabidopsis thaliana

We analyze the gene expression data from the isoprenoid biosynthesis pathway
in Arabidopsis thaliana given in [30]. Isoprenoids comprehend the most diverse
class of natural products and have been identified in many different organisms.
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(a) For setting nD1 (b) For setting nD2

(c) For setting nD3 (d) For setting nD4

Fig 4. Plots of ‖Σ̂−1 −Σ−1‖F for non DAG models. Vertical bars indicate (pointwise) 95%
confidence intervals.

In plants isoprenoids play important roles in a variety of processes such as
photosynthesis, respiration, regulation of growth and development.

This data set consists of p = 39 isoprenoid genes for which we have n = 118
gene expression patterns under various experimental conditions. As performance
measure we use the 10-fold cross-validated negative Gaussian log-likelihood for
centered data.

The results are described in Figure 5. We find that none of the two methods
performs substantially better than the other and the slight superiority of Glasso
is in the order of 1% only. The marginal difference in the negative log-likelihood
between the two estimation techniques may be due to the high noise in the data.
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Table 1

Kullback-Leibler Loss (standard error in parentheses)

Kullback-Leibler Loss
DAG

n = 30
p s = 0.01 (D1) s = 0.05 (D3)

Glasso PC-DAG Glasso PC-DAG
40 3.78(0.17) 3.38(0.16) 13.64(0.41) 9.27(0.29)
80 12.75(0.34) 11.36(0.29) 54.63(0.9) 41.69(0.67)
120 25.5(0.41) 22.93(0.42) 79.34(1.35) 104.43(1.47)

DAG
n = 50

p s = 0.01 (D2) s = 0.05 (D4)
Glasso PC-DAG Glasso PC-DAG

40 3.12(0.15) 1.88(0.08) 13.3(0.31) 6.26(0.18)
80 11.07(0.26) 6.32(0.17) 53.08(1.22) 31.83(0.53)
120 24.35(0.47) 13.76(0.27) 66.21(2.78) 87.11(0.93)

non DAG
n = 30

p Model Σ−1
(1)

(nD1) Model Σ−1
(2)

(nD3)

Glasso PC-DAG Glasso PC-DAG
40 15.61(0.21) 14.91(0.22) 13.53(0.16) 13.71(0.16)
80 35.63(0.45) 35.9(0.49) 29.36(0.33) 29.49(0.33)
120 56.44(0.67) 56.88(0.7) 45.34(0.45) 45.76(0.46)

non DAG
n = 50

p Model Σ−1
(1)

(nD2) Model Σ−1
(2)

(nD4)

Glasso PC-DAG Glasso PC-DAG

40 15.38(0.24) 10.58(0.18) 12.76(0.16) 12.91(0.17)
80 34.28(0.4) 32.13(0.3) 27.49(0.28) 27.68(0.34)
120 53.69(0.7) 53.16(0.67) 42.85(0.5) 43.08(0.5)

5.2.2. Breast Cancer data

Next, we explore the performance on a gene expression data set from breast
tumor samples. The tumor samples were selected from the Duke Breast Cancer
SPORE tissue bank on the basis of several criteria. For more details on the data
set see [29]. The data matrix monitors p = 7129 genes in n = 49 breast tumor
samples. We only use the 100 variables having the largest sample variance.

As before we first center the data and then compute the negative log-likelihood
via 10-fold cross-validation. Figure 6 shows the result.

As for the Isoprenoid gene pathways data-set, we cannot nominate a winner
here. In fact, the performances are even more indistinct than before.

6. A robust PC-DAG covariance estimator

In this section we propose a robust version of the PC-DAG estimator. According
to Section 3, we need an initial covariance matrix estimation Σ̂init in order
to run the PC-DAG technique. In Section 3, we used the sample covariance
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Fig 5. 10-fold CV of negative log-likelihood against the logarithm of the average number of
non-zero entries of the estimated concentration matrix Σ̂−1. The squares stand for the Glasso
and the circles for the PC-DAG estimator.

Fig 6. 10-fold CV of negative log-likelihood against the logarithm of the average number of
non-zero entries of the estimated concentration matrix. The squares stand for the Glasso and
the circles for the PC-DAG estimator.

Σ̂init = Σ̂MLE from (6). It is well known that the standard sample covariance
estimator is not robust against outliers or non-Gaussian distributions.

In order to get a robust version of the PC-DAG method we start with a
robust estimate of Σ. We propose to use the orthogonalized Gnanadesikan-
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Kettenring (OGK) estimator presented by [22]. Employing the OGK estimator
in the PC-algorithm, i.e. estimating partial correlations from the OGK covari-
ance estimate, we obtain a robustified estimate of the CPDAG, see also [16],
and finally a robust PC-DAG covariance estimate as in (7) and (8) by using
again the OGK covariance estimator instead of Σ̂MLE.

An “ad-hoc” robustification of the Glasso method can be achieved by using
in (10) the robust OGK covariance estimate instead of the sample covariance
Σ̂MLE .

6.1. Simulation study for non-Gaussian data

In order to analyze the behavior of the robust PC-DAG method we use a sim-
ulation model as in Section 5.1.1 but with different distributions for the er-
rors ǫ. Regarding the latter, we consider the following distributions: N (0, 1),
0.9N (0, 1) + 0.1t3(0, 1) or 0.9N (0, 1) + 0.1Cauchy(0, 1).

We compare the standard PC-DAG, robust PC-DAG, standard Glasso and
the robust Glasso estimators for Gaussian, 10% t3 contaminated Gaussian and
10% Cauchy contaminated Gaussian data for one specific parameter setting:

R : n = 50, p = 80, s = 0.01

In order to compare the four methods we use the Kullback-Leibler loss defined
in Section 5.1.1. For the four estimation methods we plot the Kullback-Leibler
loss against the logarithm of the average number of non-zero entries of the esti-
mated concentration matrix Σ̂−1. The dotted vertical line represents the average
number of non-zero entries of the true underlying concentration matrices. All
the results are again based on 50 independent simulation runs.

Figures 7 (a) and 7 (b) show that without or with moderate outliers, the
standard and robust PC-DAG estimators perform about as well as the standard
and robust Glasso: the claim is based on the observation that the minimum
Kullback-Leibler loss of each of the four methods is about the same, although
the corresponding sparsity of the fitted concentration matrix may be very dif-
ferent. In the presence of more severe outliers, the robust PC-DAG technique
is best as can be seen from Figure 7 (c). In summary, the robust PC-DAG esti-
mator is a useful addition to gain robustness for estimating a high-dimensional
concentration matrix.

7. Summary and discussion

We have introduced the PC-DAG estimator, a graphical model based tech-
nique for estimating sparse covariance matrices and their inverses from high-
dimensional data. The method is based on very different methodological con-
cepts than shrinkage estimators. Our PC-DAG procedure is invariant to variable
permutation, yields a positive definite estimate of the covariance and concen-
tration matrix, and we have proven asymptotic consistency for sparse high-
dimensional settings. An implementation of the estimator is based on the R-
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(a) Gaussian data (b) 10% t3 contaminated Gaussian data

(c) 10% Cauchy contaminated Gaussian
data

Fig 7. Kullback-Leibler loss against the logarithm of the average number of non-zero elements
of Σ−1 for Gaussian data (a), 10% t3 contaminated Gaussian data (b) and 10% Cauchy
contaminated Gaussian data (c).

package pcalg [17]. We remark that alternatively, one could construct a high-
dimensional covariance estimate based on a sparse undirected conditional inde-
pendence graph which itself can be inferred from data using e.g. the node-wise
Lasso procedure from [24].

We have compared our PC-DAG estimator with the Glasso [12, 2] in two sim-
ulation models. For the concentration matrix, our PC-DAG approach clearly
outperforms the Glasso technique for some parameter settings, with perfor-
mance gains up to 30-50%, while it keeps up with Glasso for the rest of the
considered scenarios. For estimation of covariances, the conclusions are similar
but slightly less pronounced than for inferring concentration matrices. Further-
more, we have compared the two methods in two real data-sets and found only
marginal differences in performance. If the data generating mechanism is well
approximated by a DAG-model, the PC-DAG estimator is undoubtedly bet-
ter than the shrinkage-based Glasso. However, it is very hard to know a-priori
how well a DAG-model describes the underlying true distribution. Finally, we
have presented a robustification of our PC-DAG estimator for cases where the
Gaussian data is contaminated by outliers.



P. Rütimann, P. Bühlmann/High dimensional sparse covariance estimation 1153

Appendix

Appendix A: Proof of Lemma 4.1

A key element of the proofs is the analysis of low-order regression problems
described in Section 3.1. For a DAG-structure with sets of parents, we consider
regressions of the form

Xi =
∑

j∈pa(i)

β
(i)
j Xj + εi, εi ∼ N (0, σ2

i|pa(i)),

and εi independent of Xpa(i). The corresponding OLS estimates based on n i.i.d.

samples X(1), . . . , X(n) as in (1) are denoted by

β̂
(i)
j , σ̂2

i|pa(i) = (n − |pa(i)|)−1
n∑

r=1


X

(r)
i −

∑

j∈pa(i)

β̂
(i)
j X

(r)
j




2

.

Lemma A.1. Suppose that the Gaussian assumption in (A), assumptions (B)
and (F) hold. Then, for every ǫ > 0,

P

[
sup

i=1,...,pn,j∈pa(i)

∣∣∣β̂(i)
j − β

(i)
j

∣∣∣ >
ǫ

qn

]

≤ C1

ǫ
q2
npn exp

(
−C2

ǫ2

q2
n

(n− qn − 1)

)
+ 2 exp

(
−C3

(n

2
− qn − 1

))
,

(11)

n ≥ 2(qn + C4) where C1, C2 > 0 are constants depending on σ2 and r (see
Assumptions (B) and (F)), and C3, C4 > 0 are absolute constants.

Proof. The proof is analogous to Lemma 7.1 in [20]. For completeness, we give
a detailed derivation. The union bound yields

P

[
sup

i=1,...,pn,j∈pa(i)

∣∣∣β̂(i)
j − β

(i)
j

∣∣∣ >
ǫ

qn

]
≤ pnqn sup

i,j
P

[∣∣∣β̂(i)
j − β

(i)
j

∣∣∣ >
ǫ

qn

]
. (12)

Next we analyze supi,j P
[∣∣β̂(i)

j − β
(i)
j

∣∣ > ǫ̃
]

for a general ǫ̃ > 0.

Let i ∈ {1, . . . , pn} and denote by s(i, j) = pa(i)\j. We consider first the

conditional distribution of β̂
(i)
j |Xpa(i). The variance of Xi|Xpa(i) is σ2

i|pa(i) and

we denote the variance of Xj|Xs(i,j) by σ2
j|s(i,j). Further, we denote the sample

variance of Xj by σ̂2
j , the sample variance of Xj |Xs(i,j) by σ̂2

j|s(i,j) and the

sample multivariate correlation coefficient between Xj and Xs(i,j) by R2
j|s(i,j).

Then, when conditioning on Xpa(i) = {Xr,j ; r = 1, . . . , n, j ∈ pa(i)},

Var
(
β̂

(i)
j | Xpa(i)

)
=

1

1− R2
j|s(i,j)

σ2
i|pa(i)

(n− 1)σ̂2
j

=
σ2

i|pa(i)

(n− |s(i, j)| − 1)σ̂2
j|s(i,j)

, (13)
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where the first equality follows from e.g. [11, p.120] and the second equality

follows from 1 − R2
j|s(i,j) =

(n−|s(i,j)|−1)σ̂2
j|s(i,j)

(n−1)σ̂2
j

. With (13), E
[
β̂

(i)
j | Xpa(i)

]
=

β
(i)
j and the Gaussian assumption in (A), we get

P
[
|β̂(i)

j − β
(i)
j | > ǫ̃ | Xpa(i)

]
=

P

[
|Z| > ǫ̃

√
n− |s(i, j)| − 1σ̂j|s(i,j)

σi|pa(i)
| Xpa(i)

]
,

(14)

where Z is a standard normal random variable.
We first analyze (14) on the set Bjs(i,j) = {σ̂2

j|s(i,j) > 1
2σ2

j|s(i,j)}. From as-

sumption (F) and Var
(
Xi | Xpa(i)

)
≤ σ2 it follows that

inf
i=1,...,pn,j∈pa(i)

Var
(
Xj | Xpa(i)\j

)

Var
(
Xi | Xpa(i)

) ≥ r

σ2
= v2, (15)

where v > 0. Using this bound from (15) we obtain

P

[
|Z| > ǫ̃

√
n− |s(i, j)| − 1σ̂j|s(i,j)

σi|pa(i)
| Xpa(i)

]
IBjs(i,j)

≤ P

[
|Z| > ǫ̃v

√
n− |s(i, j)| − 1√

2

]

≤ P
[
|Z| > Cǫ̃

√
n− |qn| − 1

]
, (16)

where C depends on v in (15). We then bound the tail probability of the standard

normal distribution by P [|Z| > a] ≤ 2√
2πa

exp (−a2

2 ) for a > 0. Hence, (16) can

be further bounded by

C1

ǫ̃
exp (−C2ǫ̃

2(n − qn − 1)) (17)

for all n such that qn < n− 2, where C1, C2 > 0 are constants depending on v
in (15), i.e. they depend on σ2 and r in assumptions (B) and (F).

Next, we compute a bound for P
[
BC

js(i,j)

]
. Note that

P
[
BC

js(i,j) | Xs(i,j)

]
= P

[
(n− |s(i, j)| − 1)σ̂2

j|s(i,j)
σ2

j|s(i,j)
≤ (n − |s(i, j)| − 1)

2
| Xs(i,j)

]

= P

[
χ2

n−|s(i,j)|−1 ≤
(n− |s(i, j)| − 1)

2

]

≤ P

[
χ2

n−qn−1 ≤
n − 1

2

]
.
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Now we apply Bernstein’s inequality [28, Lemma 2.2.11] by writing

P

[
χ2

n−qn−1 ≤
n− 1

2

]
= P

[
χ2

n−qn−1 − (n− qn − 1) ≤ −(n− 1)

2
+ qn

]

≤ P

[
|χ2

n−qn−1 − (n− qn − 1)| < (n− 1)

2
− qn

]

and noting that χ2
n−qn−1 − (n− qn− 1) can be viewed as the sum of n− qn − 1

independent centered χ2
1 random variables. Hence, the last term is bounded

above by

2 exp

(
− (n−1

2 − qn)2

C ′
3 + C ′

4(
n−1

2 − qn)

)

where C ′
3, C ′

4 > 0 are constants arising from moment conditions. This expression
is in addition bounded above by

2 exp
(
−C3

(n

2
− qn − 1

))
(18)

for all n such that n−2
2 −qn > C ′

3, and C3 > 0 is a constant arising from moment
conditions. Because this bound in (18) holds for all Xs(i,j) with |s(i, j)| ≤ qn, it

also holds for the unconditional probability P
[
BC

js(i,j)

]
.

The upper bound for P
[
|β̂(i)

j − β
(i)
j | > ǫ̃

]
now follows by combining (17)

and (18):

P
[∣∣∣β̂(i)

j − β
(i)
j

∣∣∣ > ǫ̃
]

≤
∫

Bjs(i,j)

P
[∣∣∣β̂(i)

j − β
(i)
j

∣∣∣ > ǫ̃ | pa(i)
]
dFXj,s(i,j)

+ P
[
BC

js(i,j)

]

≤ C1

ǫ̃
exp (−C2ǫ̃

2(n− qn − 1)) + 2 exp (−C3(
n

2
− qn − 1)).

Now by using ǫ̃ = ǫ
qn

we derive

sup
i,j

P

[∣∣∣β̂(i)
j − β

(i)
j

∣∣∣ >
ǫ

qn

]

≤ C1qn

ǫ
exp (−C2

ǫ2

q2
n

(n− qn − 1)) + 2 exp (−C3(
n

2
− qn − 1))

(19)

which holds for all n > 2(qn + C ′
3) + 2 = 2(qn + C4). Combining (19) with (12)

we complete the proof of Lemma A.1.

Lemma A.2. Suppose that the Gaussian distribution in assumption (A), as-
sumptions (B) and (F) hold. Then, for every ǫ > 0,

P

[
sup

1≤i≤pn

∣∣∣∣∣
1

σ̂2
i|pa(i)

− 1

σ2
i|pa(i)

∣∣∣∣∣ >
ǫ

qn

]

≤ pn2

(
exp

(
− ǫ2(n − qn)

6C2q2
nσ4 + 4Cǫqnσ2

)
+ exp

(
− r2(n− qn)

24σ4 + 8rσ2

))
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where C > 0 is an absolute constant and r > 0 as in assumption (F).

Proof. Using the union bound, for ǫ̃ > 0,

P

[
sup

i=1,...,pn

∣∣∣σ̂2
i|pa(i) − σ2

i|pa(i)

∣∣∣ > ǫ̃

]
≤ pn sup

i=1,...,pn

P
[∣∣∣σ̂2

i|pa(i) − σ2
i|pa(i)

∣∣∣ > ǫ̃
]
.

For the conditional probability, when conditioning on Xpa(i) = {Xr,j ; r =

1, . . . , n, j ∈ pa(i)}, we have that P
[∣∣∣σ̂2

i|pa(i) − σ2
i|pa(i)

∣∣∣ > ǫ̃ | Xpa(i)

]
is equal to

P

[∣∣∣∣∣
σ̂2

i|pa(i)

σ2
i|pa(i)

− 1

∣∣∣∣∣ >
ǫ̃

σ2
i|pa(i)

| Xpa(i)

]
=

P

[∣∣∣∣∣
(n − |pa(i)|)σ̂2

i|pa(i)

σ2
i|pa(i)

− (n− |pa(i)|)
∣∣∣∣∣ >

ǫ̃(n− |pa(i)|)
σ2

i|pa(i)

| Xpa(i)

]
.

Because
(n−|pa(i)|)σ̂2

i|pa(i)

σ2
i|pa(i)

− (n − |pa(i)|) is a sum of (n − |pa(i)|) independent

χ2
1-distributed centered random variables, we can use Bernstein’s inequality [28,

Lemma 2.2.11]. Hence, with σ2
i|pa(i) ≤ σ2 we get

P

[∣∣∣∣∣
(n− |pa(i)|)σ̂2

i|pa(i)

σ2
i|pa(i)

− (n − |pa(i)|)
∣∣∣∣∣ >

ǫ̃(n− |pa(i)|)
σ2

k

| Xpa(i)

]

≤ 2 exp

(
− ǫ̃2(n− |pa(i)|)

6σ4 + 4ǫ̃σ2

)
.

Since this bound holds for all Xpa(i), the bound also applies to the unconditional
probability:

P
[∣∣∣σ̂2

i|pa(i) − σ2
i|pa(i)

∣∣∣ > ǫ̃
]

= P

[∣∣∣∣∣
(n− |pa(i)|)σ̂2

i|pa(i)

σ2
i|pa(i)

− (n− |pa(i)|)
∣∣∣∣∣ >

ǫ̃(n− |pa(i)|)
σ2

k

]

≤ 2 exp

(
− ǫ̃2(n− |pa(i)|)

6σ4 + 4ǫ̃σ2

)
. (20)

We use now a Taylor expansion:

1

σ̂2
i|pa(i)

=
1

σ2
i|pa(i)

− 1

σ̃4
i|pa(i)

(σ̂2
i|pa(i) − σ2

i|pa(i)),

where
∣∣∣σ̃2

i|pa(i) − σ2
i|pa(i)

∣∣∣ ≤
∣∣∣σ̂2

i|pa(i) − σ2
i|pa(i)

∣∣∣.
Consider the set B = {supi=1,...,pn

∣∣∣σ̂2
i|pa(i) − σ2

i|pa(i)

∣∣∣ ≤ r/2} with r > 0 as in

assumption (F). Then, on B, we have
∣∣∣ 1
σ̃4

i

∣∣∣ ≤ C̃ < ∞ (and the bound does not
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depend on the index i). Therefore,

P

[
sup

i=1,...,pn

∣∣∣∣∣
1

σ̂2
i|pa(i)

− 1

σ2
i|pa(i)

∣∣∣∣∣ >
ǫ

qn

]

≤ P

[{
C̃ sup

i=1,...,pn

∣∣∣σ̂2
i|pa(i) − σ2

i|pa(i)

∣∣∣ >
ǫ

qn

}
∩B

]
+ P

[
BC

]

The first term and second term on the right-hand side can be bounded using
(20), leading to the bound in the statement of the lemma. This completes the
proof of Lemma A.2.

Proof of Lemma 4.1. Let G be a DAG from the true underlying CPDAG, i.e.
the true equivalence class. Using the union bound we have

P

[
sup

i,j=1,...,pn

∣∣∣Σ̂−1
G,n;i,j −Σ−1

n;i,j

∣∣∣ > γ

]
≤ p2

n sup
i,j

P
[∣∣∣Σ̂−1

G,n;i,j −Σ−1
n;i,j

∣∣∣ > γ
]
. (21)

Since Σ̂−1 = ÂT Ĉov (ǫ)
−1

Â we have Σ̂−1
G,n;i,j =

∑pn

k=1 λ̂kÂkjÂki with λ̂k = 1
σ̂2

k

and Â as in (7). Thus,

∣∣∣Σ̂−1
G,n;i,j − Σ−1

n;i,j

∣∣∣ =

∣∣∣∣∣

pn∑

k=1

(
λ̂kÂkjÂki − λkAkjAki

)∣∣∣∣∣

≤
pn∑

k=1

∣∣∣λ̂kÂkjÂki − λkAkjAki

∣∣∣

=

pn∑

k=1

∣∣∣λ̂kÂkjÂki − λ̂kAkjAki + λ̂kAkjAki − λkAkjAki

∣∣∣

=

pn∑

k=1

∣∣∣λ̂k

(
ÂkjÂki −AkjAki

)
+ AkjAki

(
λ̂k − λk

)∣∣∣

≤
pn∑

k=1

(∣∣∣λ̂k

∣∣∣
∣∣∣ÂkjÂki − AkjAki

∣∣∣ + |AkjAki|
∣∣∣λ̂k − λk

∣∣∣
)

Consider the terms
∣∣∣ÂkjÂki − AkjAki

∣∣∣ and
∣∣∣λ̂k

∣∣∣:
∣∣∣ÂkjÂki − AkjAki

∣∣∣ =
∣∣∣ÂkjÂki − ÂkjAki + ÂkjAki − AkjAki

∣∣∣

=
∣∣∣Âkj

(
Âki − Aki

)
+ Aki

(
Âkj −Akj

)∣∣∣

≤
∣∣∣Âkj

∣∣∣
∣∣∣Âki − Aki

∣∣∣ + |Aki|
∣∣∣Âkj −Akj

∣∣∣
∣∣∣λ̂k

∣∣∣ =
∣∣∣λ̂k − λk + λk

∣∣∣ ≤
∣∣∣λ̂k − λk

∣∣∣ + |λk|
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By plugging these bounds into the formula above and using that the summations
are over at most qn terms only (due to sparsity of Âki and Aki), we obtain

∣∣∣Σ̂−1
G,n;i,j −Σ−1

n;i,j

∣∣∣ ≤ Cqnδ

where C > 0 is an absolute constant and δ the maximal absolute difference of
Â’s and λ̂’s:

δ = max{max
i,k
|Âki −Aki|, max

k
|λ̂k − λk|}.

Hence

P
[∣∣∣Σ̂−1

G,n;i,j −Σ−1
n;i,j

∣∣∣ > γ
]
≤ P [Cqn |δ| > γ] = P

[
|δ| > γ

Cqn

]
= P

[
|δ| > ǫ

qn

]

with γ
C = ǫ. Because the convergence of the term P

[
|δ| > ǫ

qn

]
is covered ei-

ther by Lemma A.1 or Lemma A.2, since q2
n = O(n1−2b) (0 < b ≤ 1/2) from

assumption (D), and using (21), we complete the proof of Lemma 4.1.

Appendix B: Modifications of the PC-DAG covariance estimator

With finite sample size, the PC-algorithm may make some errors. One of them
can produce conflicting v-structures when orienting the graph: if so, we deal
with it by keeping one and discarding other v-structures. In our implementa-
tion, the result then depends on the order of the performed independence tests.
Furthermore, it may happen that the output of the PC-algorithm is an invalid
CPDAG which does not describe an equivalence class of DAGs. In such a case we
use the retry type orientation procedure implemented in the pcAlgo-function of
the pcalg-package, see the reference manual of the pcalg-package [17] for more
information.
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