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Abstract: In this paper we deal with the regression problem in a random
design setting. We investigate asymptotic optimality under minimax point
of view of various Bayesian rules based on warped wavelets. We show that
they nearly attain optimal minimax rates of convergence over the Besov
smoothness class considered. Warped wavelets have been introduced re-
cently, they offer very good computable and easy-to-implement properties
while being well adapted to the statistical problem at hand. We particu-
larly put emphasis on Bayesian rules leaning on small and large variance
Gaussian priors and discuss their simulation performances, comparing them
with a hard thresholding procedure.
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1. Introduction

We observe independent pairs of variables (Xi, Yi), for i = 1, . . . , n, under a
random design regression model:

Yi = f(Xi) + εi, 1 ≤ i ≤ n, (1.1)

where f is an unknown regression function that we aim at estimating, and εi
are independent normal errors with E(εi) = 0, Var(εi) = σ2 < ∞. The design
points Xi are assumed to be supported in the interval [0, 1] and have a density
g which will be supposed to be known. Furthermore we assume that the design
density g is bounded from below, i.e. 0 < m ≤ g, where m is a constant. Many
approaches have been proposed to tackle the problem of regression in random
design, we mention among others the work of Hall and Turlach [17], Kovac and
Silverman [22], Antoniadis et al. [4], Cai and Brown [8] and the model selection
point of view adopted by Baraud [6].

The present paper provides a Bayesian approach to this problem based on
warped wavelet basis. Warped wavelet basis {ψjk(G) j ≥ −1, k ∈ Z} in regres-
sion with random design were recently introduced by Kerkyacharian and Picard
in [20]. The authors proposed an approach which would depart as little as possi-
ble from standard wavelet thresholding procedures which enjoy optimality and
adaptivity properties. These procedures have been largely investigated in the
case of equispaced samples (see a series of pioneering articles by Donoho et al.
[14], [15], [13]). Kerkyacharian and Picard actually pointed out that expanding
the unknown regression function f in the warped basis instead of the standard
wavelet basis could be very interesting. Of course, this basis has no longer the
orthonormality property nonetheless it behaves under some conditions as stan-
dard wavelets. Kerkyacharian and Picard investigated the properties of this new
basis. They showed that not only is it well adapted to the statistical problem at
hand by avoiding unnecessary calculations, but it also offers very good theoreti-
cal features while being easily implemented. More recently Brutti [7] highlighted
their easy-to-implement computational properties.

The novelty of our contribution lies in the combination of Bayesian techniques
and warped wavelets to treat regression in random design. We actually want to
investigate whether this yields optimal theoretical results and promising pratical
performances, which will prove to be the case. We do not deal with the case of
an unknown design density g which requires further machinery and will be the
object of another paper.

Bayesian techniques for shrinking wavelet coefficients have become very pop-
ular in the last few years. The majority of them were devoted to fixed design
regression scheme. Let us cite among others, papers of Abramovich et al. [1],
[2], Clyde et al. [10], [11], [12], [5], Chipman et al. [9], Rivoirard [25], Pensky
[24] in the case of i.i.d errors not necessarily Gaussian.

Most of those works are taking as distribution prior a mixture of Gaussian
distributions. In particular, Abramovich et al. in [1] and [2] have explored opti-
mality properties of Gaussian prior mixed with a point mass at zero and which
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may be viewed as an extreme case of a Gaussian mixture:

βjk ∼ πjN(0, τ2
j ) + (1 − πj)δ(0),

where βjk are the wavelet coefficients of the unknown regression function, τ2
j =

c12
−jα and πj = min(1, c22

−jβ) are the hyperparameters. This particular form
was devised to capture the sparsity of the expansion of the signal in the wavelet
basis.

Our approach will consist in a first time in using the same prior but in the
context of warped wavelets. In Theorem 1, we show that the Bayesian estimator
built, using warped wavelets with this prior and this form of hyperparameters
achieves the optimal minimax rate within logarithmic term, on the considered
Besov functional space. Unfortunately, the Bayesian estimator turns out not to
be adaptive. Indeed, the hyperparameters depend on the Besov smoothness class
index. In order to compensate this drawback, Autin et al. in [5] suggested to
consider Bayesian procedures based on Gaussian prior with large variance. Fol-
lowing this suggestion, we will consider priors still specified in terms of a normal
density mixed with a point mass at zero but with large variance Gaussian den-
sities. In Theorem 2, we prove again that the Bayesian estimator built with this
latter form of prior, still combined with warped wavelets achieves nearly optimal
minimax rate of convergence while being adaptive. Eventually, our simulation
results highlight the very good performances and behaviour of these Bayesian
procedures, whatever the regularity of the test functions, the noise level and the
design density which can be far from the uniform case.

This paper is organized as follows. In section 2 some necessary methodology
is given: we start with a short review of wavelets and warped wavelets, explain
the prior model and discuss the two hyperparameters form we consider. We give
in section 3 some definitions of the functional spaces we consider. In section 4,
we investigate the performances of our Bayesian estimators in terms of minimax
rates in two cases: the first one when the Gaussian prior has small variance, the
second case focuses on Gaussian prior with large variance. Section 5 is devoted
to simulation results and discussion. Finally, all proofs of main results are given
in the Proofs section.

2. Methodology

2.1. Warped bases

Wavelet series are generated by dilations and translations of a function ψ called
the mother wavelet. Let φ denote the orthogonal father wavelet function. The
function φ and ψ are compactly supported. Assume ψ has r vanishing moments.
Let:

φjk(x) = 2j/2φ(2jx− k), j, k ∈ Z

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z.
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For a given square-integrable function f in L2[0, 1], let us denote

ζj,k =< f, ψj,k > .

In this paper, we use decompositions of 1- periodic functions on wavelet basis of
L2[0, 1]. We consider periodic orthonormal wavelet bases on [0, 1] which allow
to have the following series representation of a function f :

f(x) =
∑

j≥−1

2j−1
∑

k=0

ζjkψjk(x) (2.1)

where we have denoted ψ−1,k = φ0,k the scaling function.
We are now going to give the essential background of warped wavelets which

were introduced in details in [20]. First of all, let us define

G(x) =

∫ x

0

g(x)dx. (2.2)

G is assumed to be a known function, continuous and strictly monotone from
[0, 1] to [0, 1].

Let us expand the regression function f in the following sense:

f(G−1)(x) =
∑

j≥−1

2j−1
∑

k=0

βjkψjk(x)

or equivalently

f(x) =
∑

j≥−1

2j−1
∑

k=0

βjkψjk(G(x))

where

βjk =

∫

f(G−1)(x)ψjk(x)dx =

∫

f(x)ψjk(G(x))g(x)dx.

Hence, one immediately notices that expanding f(G−1) in the standard basis
is equivalent to expand f in the new warped wavelet basis {ψjk(G), j ≥ −1, k ∈
Z}. This may give a natural explanation that in the follow-on, regularity con-
ditions will be expressed not for f but for f(G−1).

We set β̂jk = (1/n)
∑n

i=1 ψjk(G(Xi))Yi. β̂jk is an unbiased estimate of βjk
since

E(β̂jk) = (1/n)

n
∑

i=1

E(ψj,k(G(Xi))(f(Xi) + ǫi)) = E(ψj,k(G(X))f(X)

=

∫

f(x)ψjk(G(x))g(x)dx =

∫

f(G−1)(x)ψjk(x)dx = βjk.
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2.2. Priors and estimators

We set in the following

γ2
jk =

σ2

n2

n
∑

i=1

ψ2
jk(G(Xi)). (2.3)

As in Abramovich et al. (see [1], [2]), we use the following prior on the wavelet
coefficients βjk of the unknown function f with respect to the warped basis
{ψjk(G), j ≥ −1, k ∈ Z}:

βjk ∼ πjN(0, τ2
j ) + (1 − πj)δ(0).

Considering the L1 loss, from this form of prior we derive the following Bayesian
rule which is the posterior median:

β̃jk = Med(βjk|β̂jk) = sign(β̂jk)max(0, ζjk) (2.4)

where

ζjk =
τ2
j

γ2
jk + τ2

j

|β̂jk| −
τjγjk

√

γ2
jk + τ2

j

Φ−1

(

1 + min(ηjk, 1)

2

)

(2.5)

where Φ is the normal cumulative distributive function and

ηjk =
1 − πj
πj

√

τ2
j + γ2

jk

γjk
exp

(

−
τ2
j β̂

2
jk

2γ2
jk(τ

2
j + γ2

jk)

)

. (2.6)

We set:
wj(n) :=

πj
1 − πj

. (2.7)

We introduce now the estimator of the unknown regression f

f̃(x) =
∑

j≤J

2j−1
∑

k=0

β̃jkψjk(G(x)), (2.8)

where J is a parameter which will be specified later.
Note that in our case, the estimator resembles the usual ones in [5], [1] and [2],

except that the deterministic noise variance has been replaced by a stochastic
noise level γ2

jk. Its expression is given by (2.3). This change will have a marked
impact both on the proofs of theorems by using now large deviation inequalities
and on simulation results.

Futhermore, such L1 rule is of thresholding type. Indeed, as underlined in
[1] and [2], β̃jk is null whenever β̂jk falls below a certain threshold λB . Some
properties of the threshold λB that will be used in the sequel are given in
lemma 1 in the Proofs section.
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2.2.1. Gaussian priors with small variance

In this paper, two cases of hyperparameters will be considered. The first one
involves Gaussian priors with small variances. We will state as suggested in
Abramovich et al. (see [1], [2]):

τ2
j = c12

−jα πj = min(1, c22
−jβ), (2.9)

where α and β are non-negative constants, c1, c2 > 0.
This choice of hyperparameters is exhaustively discussed in Abramovich et al.

[2]. The authors stressed that this form of hyperparameters was actually de-
signed in order to capture the sparsity of wavelet expansion. They pointed out
the connection between Besov spaces parameters and this particular form of
hyperparameters. They investigate various practical choices.

For this case of hyperparameters (2.9), the estimator of f will be denoted f̂ .

2.2.2. Gaussian priors with large variance

The second form of hyperparameters considered in the paper involves Gaussian
priors with large variance as suggested in Autin et al. [5].

As a matter of fact, we suppose that the hyperparameters do not depend on
j and we set:

τ2
j := τ (n)2 = 1/

√

n log(n). (2.10)

Besides, wj(n) := w(n). We suppose that there exist q1 and q2 such that for n
large enough

n−q1/2 ≤ w(n) ≤ n−q2/2. (2.11)

This form of hyperparameters was emphasized in [5] in order to mimic heavy
tailed priors such as Laplace or Cauchy distributions. Indeed, Johnstone and
Silverman in [18], [19] showed that their empirical Bayes approach for regular
regression setting, with a prior mixing a heavy-tailed density and a point mass at
zero proved fruitful, both in theory and practice. Pensky in [24] also underlined
the efficiency of this kind of hyperparameters.

We underscore that contrary to the first form of hyperparameters (2.9), these
latter forms (2.10) and (2.11) lead to an adaptive Bayesian estimator.

For this case of hyperparameters (2.10) and (2.11), the estimator of f will be
denoted f̌ .

3. Functional spaces

In this paper, the functional classes of interest are Besov bodies and weak Besov
bodies. Let us define them. Using the decomposition (2.1), we characterize the
Besov spaces by using the following norm

‖f‖spq =

{

[
∑

j≥−1 2jq(s+1/2−1/p)‖(βj,k)k‖qℓp
]1/q

if q <∞
supj≥−1 2j(s+1/2−1/p)‖(βj,k)k‖ℓp if q = ∞.
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If max(0, 1/p− 1/2) < s < r and p, q ≥ 1

f ∈ Bsp,q ⇐⇒ ‖f‖spq <∞.

The Besov spaces have the following simple relationship

Bs1p,q1 ⊂ Bsp,q , for s1 > s or s1 = s and q1 ≤ q

and
Bsp,q ⊂ Bs1p1,q , for p1 > p and s1 ≥ s− 1/p+ 1/p1.

The index s indicates the smoothness of the function. The Besov spaces capture
a variety of smoothness features in a function including spatially inhomogeneous
behavior when p < 2.

We recall and stress that in this paper as mentioned above, the regularity
conditions will be expressed for the function f(G−1) due to the warped basis
context.

More precisely we shall focus on the space Bs2,∞. We have in particular

f ∈ Bs2,∞ ⇐⇒ sup
J≥−1

22Js
∑

j≥J

∑

k

β2
jk <∞. (3.1)

We define the Besov ball of some radius R as Bs2,∞(R) = {f : ‖f‖s2∞ ≤ R}.
Let us define now the weak Besov space W (r, 2)

Definition 1. Let 0 < r < 2. We say that a function f belongs to the weak
Besov body W (r, 2) if and only if:

‖f‖Wr := [sup
λ>0

λr−2
∑

j≥−1

∑

k

β2
jkI{|βjk ≤ λ|}]1/2 <∞. (3.2)

And we have the following proposition

Proposition 1. Let 0 < r < 2 and f ∈W (r, 2). Then

sup
λ>0

λr
∑

j≥−1

∑

k

I{|βjk| > λ} ≤ 22−r‖f‖2
Wr

1 − 2−r
. (3.3)

For the proof of this proposition see for instance [21].
To conclude this section, we have the following embedding

Bs2,∞ ⊂W2,2/(1+2s),

which is not difficult to prove (see for instance [21]).
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4. Minimax performances of the procedures

4.1. Bayesian estimators based on Gaussian priors with small

variances

Theorem 1. Assume that we observe model (1.1). We consider the hyperpa-
rameters defined by (2.9). Set J := Jα such that 2Jα = (3/(2n))−1/α.

Let α > 1 and α ≥ s, then we have the following upper bound:

sup
f(G−1)∈Bs2,∞(R)

E‖f̂ − f‖2
2 = O((1/n)1−1/α log2(n)) + O((1/n)2s/α). (4.1)

The optimal choice of the hyperparameter α in Theorem 1 should minimize
the upper bound derived in (4.1). Consequently, let us choose now in (4.1)
α = 2s+ 1, we immediately deduce the following corollary.

Corollary 1. If one chooses for the prior parameter α = 2s+ 1, one gets

sup
f(G−1)∈Bs2,∞(R)

E‖f̂ − f‖2
2 = O(log2(n)n−2s/(2s+1)).

This corollary shows that with this specific choice of hyperparameter α, one
recovers the minimax rate of convergence up to a logarithmic factor that one
achieves in a uniform design.

4.2. Bayesian estimators based on Gaussian priors with large

variance

Theorem 2. We consider the model (1.1). We assume that the hyperparameters
are defined by (2.10) and (2.11). Set J := Jn such that 2Jn = n/ logn, then we
have:

sup
f(G−1)∈Bs2,∞(R)

E‖f̌ − f‖2
2 ≤ C

(

log(n)

n

)2s/(2s+1)

.

It is worthwhile to make some comments about the results of Theorem 2.
Here, the estimator turns out to be adaptive and contrary to the similar results
in Proposition 2 in [20], we no longer have the limitation on the regularity index
s > 1/2. Moreover, Kerkyacharian and Picard [20] had to stop the highest level
J such that 2J = (n/ log(n))1/2, here we stop at the usual level Jn such that
2Jn = n/ log(n), one gets in standard thresholding.

5. Simulations and discussion

A simulation study is conducted in order to compare the numerical performances
of the two Bayesian estimators based on warped wavelets and on Gaussian prior
with small or large variance, described respectively in section 2.2.1 and 2.2.2
and the hard thresholding procedure using the universal threshold σ

√

2 log(n),
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based on warped basis and introduced by Kerkyacharian and Picard [20] for
the nonparametric regression model in a random design setting. For more de-
tails on Kerkyacharian and Picard procedure, the readers are referred to Willer
[26], see also [16]. In fact, we have decided to concentrate on the procedure
of Kerkyacharian and Picard. Indeed, it is interesting to point out differences
and compare performances obtained by Bayesian procedures which apply local
thresholds and a universal threshold procedure.

The main difficulties lie in implementing the Bayesian procedures with the
stochastic variance (2.3). Note also the responses proposed by Amato et al. [3]
and Kovac and Silverman [22].

All the simulations done in the present paper have been conducted with
MATLAB and the Wavelet toolbox of MATLAB.

We consider here four test functions of Donoho and Johnstone [13] represent-
ing different level of spatial variability. The test functions are plotted in Fig. 1.
For each of the four objects under study, we compare the three estimators at
two noise levels, one with signal-to-noise ratio RSNR = 4 and another with
RSNR = 7. As in Willer [26], we also consider different cases of design density
which are plotted in Fig. 2. The first two densities are uniform or slightly vary-
ing whereas the last two ones aim at depicting the case where a hole occurs in
the density design. The sample size is equal to n = 1024 and the wavelet we
used is the Symmlet8.

In order to compare the behaviors of the estimators, the RMSE criterion was
retained. More precisely, if f̂(Xi) is the estimated function value at Xi and n is
the sample size, then

RMSE =

√

√

√

√

1

n

n
∑

i=1

(f̂(Xi) − f(Xi))2. (5.1)

The RMSE displayed in Tab. 1 are computed as the average over 100 runs of
expression (5.1). In each run, we hold all factors constant, except the design
points (random design) and the noise process that were regenerated.

Table 1

Values of RMSE over 100 runs

RSNR=4 RSNR=7

design density E1 E2 E3 E1 E2 E3

Blocks Sine 0.0194 0.0219 0.0227 0.0113 0.0161 0.0129
Hole2 0.0196 0.0220 0.0226 0.0114 0.0163 0.0130

Bumps Sine 0.0243 0.240 0.259 0.0156 0.0167 0.0172
Hole2 0.0241 0.0237 0.0253 0.0155 0.0167 0.0169

HeaviSine Sine 0.0164 0.0141 0.0133 0.0103 0.0092 0.0093
Hole2 0.0169 0.0146 0.0138 0.0107 0.0097 0.0096

Doppler Sine 0.0236 0.0231 0.0236 0.0157 0.0238 0.0248
Hole2 0.0244 0.0238 0.0248 0.0166 0.0172 0.0176
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Figure 1. Test functions.
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Figure 2. Design density.

E1 corresponds to the Bayesian estimator based on Gaussian prior with large
variance, E2 to the Bayesian estimator based on Gaussian prior with small
variance and E3 to the estimator built following the Kerkyacharian and Picard
procedure in [20].

In order to implement E1, we made the following choices of hyperparameters
described in section 2.2.2: in (2.11), q1 = q2 = q = 1 proved to be a good
compromise whatever the function of interest to be estimated while leading to
good graphic reconstructions. We set w(n) = 20 × n−q/2 and τ (n) = 20 ×
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Figure 3. Blocks target and Sine density, RSNR = 4.
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Figure 4. Blocks target and Hole2 design density, RSNR = 4.

σ2/(n log(n)). To implement E2, we set c1 = 1, c2 = 2, α = 0.5 and β = 1,
following the choices recommended in [2].

The following plots compare the visual quality of the reconstructions (see
Fig. 3. to Fig. 8). The solid line is the estimator and the dotted line is the true
function.

We shall now comment and discuss the results displayed in Tab. 1 as well as
the various visual reconstructions.
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Figure 5. Blocks target and Hole2 design density, RSNR = 7.
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Figure 6. Bumps target and Sine design density, RSNR = 4.

The performances are always better for the Bayesian estimators except for
the case of the HeaviSine test function. More precisely, the RMSE for Blocks
whatever the noise level and design densities are smaller for Estimator 1. More-
over the RMSE are almost equal for Estimator 1 and 2 in the case of Bumps test
function, whatever the design densities and for a noise level RSNR=4. This may
be due to the irregularity of the Bumps, Blocks and Doppler test functions which
are much rougher than the HeaviSine which is more regular. Indeed, Estimator
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Figure 7. HeaviSine target and Sine design density, RSNR = 7.
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Figure 8. Doppler target and Hole2 design density, SNR = 4.

1 and 2 tend to detect better the corner of Blocks, the high peaks in Bumps,
and the high frequency parts of Doppler as the graphics show it. We may ex-
plain this by the fact that Estimators 1 and 2 have level-dependent thresholds
whereas Estimator 3 has a hard universal threshold.

As for the reconstructions, one can see that they are slightly better in the
case of Sine density and small noise, whereas there are small deteriorations when
a hole occurs in the design density, but this change does not affect the visual
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quality in too big proportions. This fact highlights the interest of “warping” the
wavelet basis. Warping the basis allows the estimators to behave still correctly
when the design densities are far from the uniform density such as in the case
of Hole2.

6. Proofs

In the sequel C denotes some positive constant which may change from one line
to another line. We also assume without loss of generality that σ = 1 in model
(1.1).

We have that

E(ψ2
jk(G(X))) =

∫

ψ2
jk(G(x))g(x)dx =

∫

ψ2
jk(y)dy = 1.

hence we get E(γ2
jk) = 1/n, the expression of γ2

jk being given by (2.3).
Let us define the following event:

Ωδn = {|γ2
jk − 1/n| ≤ δ}. (6.1)

To make proofs clearer, we recall the Bernstein inequality that we will use in
the sequel. (see in [23] Proposition 2.8 and formula (2.16))

Proposition 2. Let Z1, . . . , Zn be independent and square integrable random
variables such that for some nonnegative constant b, Zi ≤ b almost surely for
all i ≤ n. Let

S =

n
∑

i=1

(Zi − E[Zi])

and v =
∑n

i=1 E(Z2
i ). Then for any positive x, we have

P[S ≥ x] ≤ exp

(−v
b2
h(
bx

v
)

)

where h(u) = (1 + u) log(1 + u) − u.
It is easy to prove that

h(u) ≤ u2

2(1 + u/3)

which immediately yields

P[S ≥ x] ≤ exp

( −x2

2(v + bx/3)

)

.

Lemma 1. Let ς be some positive constant. We have

P(|γ2
jk − 1/n| > ς/n) ≤ 2e−n

1−1/α ς2

2C(1+ς/3) ∀ j ≤ Jα (6.2)

P(|γ2
jk − 1/n| > ς/n) ≤ 2e−ς

2 log(n)/(C‖ψ‖4
4+ς‖ψ‖

2
∞) ∀ j ≤ Jn. (6.3)
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Proof of Lemma 1

Let us deal with the first case j ≤ Jα. To bound P(|γ2
jk − 1/n| > ς/n) we will

use the Bernstein inequality and apply Proposition 2. In the present situation
Zi = (1/n2)ψ2

jk(G(Xi)).
First of all, in order to apply the Bernstein inequality, we need the value of

the sum

v =

n
∑

i=1

E[((1/n2)ψ2
j,k(G(Xi)))

2]

we have

Eψ4
j,k(G(X)) =

∫ 1

0

ψ4
j,k(G(x))g(x)dx =

∫ 1

0

ψ4
j,k(y)dy

≤
∫ 1

0

22jψ4(2jy − k)dy ≤ 2j
∫

ψ4(y)dy ≤ C‖ψ‖4
42
j (6.4)

hence

(1/n4)

n
∑

i=1

Eψ4
j,k(G(Xi)) ≤ (C/n3)2Jα =

C

n3−1/α

moreover
ψ2
jk(G(X)) ≤ ‖ψ‖2

∞2j ≤ Cn1/α j ≤ Jα a.s

so

P(|γ2
jk − 1/n)| > ς/n) ≤ 2 exp(− ς2

2C(1 + ς/3)

n−2

n−3+1/α
).

Let us now deal with the second case j ≤ Jn. To bound P(|γ2
jk − 1/n| > ς/n)

we will follow the lines of the proof of the first case. Here again

Zi = 1/n2ψ2
jk(G(Xi)).

According to (6.4), we have

E(1/n4ψ4
jk(G(X))) ≤ C2j/n4 ≤ C/(n3 log(n)), j ≤ Jn

and

v =

n
∑

i=1

E(1/n4ψ4
jk(G(X))) ≤ C‖ψ‖4

4/(n
2 log(n))

and

1/n2ψ2
jk(G(X))) ≤ ‖ψ‖2

∞2j/(n2) ≤ ‖ψ‖2
∞/(n log(n)), j ≤ Jn a.s

consequently

P(|γ2
jk − 1/n| > ς/n) ≤ 2e−ς

2 log(n)/(C‖ψ‖4
4+ς‖ψ‖

2
∞).

The following lemma shows that the properties of the Bayesian estimators f̌
and f̂ can be controlled on the event Ωδn. To lighten the notations for the proof
of this lemma, we will denote Ωn for Ωδn and Ωcn the complementary of Ωn.
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Lemma 2. We have

E[I(Ωcn)‖f̌ − f‖2
2] = o((log(n)/n)2s/(2s+1)

E[I(Ωcn)‖f̂ − f‖2
2] = o((1/n)1−1/α log(n)).

Proof of Lemma 2.

We have

E
[

I(Ωcn)‖f̌ − f‖2
2

]

≤ CJnE





∑

j≤Jn

∑

k

(β̃jk − βjk)
2I(Ωcn)



 + P(Ωcn)
∑

j>Jn

∑

k

β2
jk

≤ V +B.

Let us first deal with the variance term V. The estimator β̃jk can be written

as β̃jk = wjkβ̂jk with 0 ≤ wjk ≤ 1. We have

V ≤ CJnE





∑

j≤Jn,k

(

wjk(β̂jk − βjk) − (1 − wjk)βjk

)2

I(Ωcn)





≤ 2CJnE





∑

j≤Jn

∑

k

w2
jk(β̂jk − βjk)

2I(Ωcn)





+ 2CJn
∑

j≤Jn

∑

k

E
[

(1 − wjk)
2β2
jkI(Ω

c
n)

]

≤ 2CJnE





∑

j≤Jn

∑

k

(β̂jk − βjk)
2I(Ωcn)



 + 2CJn
∑

j≤Jn

∑

k

E
[

β2
jkI(Ω

c
n)

]

because 0 ≤ wjk ≤ 1. Then, using Cauchy Scharwz inequality we get

V ≤ 2CJn
∑

j≤Jn

∑

k

[

E(β̂jk − βjk)
4
]

1
2

P(Ωcn)
1
2 + 2CJn

∑

j≤Jn

∑

k

β2
jkP(Ωcn).

Using (6.3) and (6.23) we have

V ≤ 2CJn2
Jne−ς

2 log(n)/(2C‖ψ‖4
4/n+ς‖ψ‖2

∞)

+ 2CJn‖f(G−1)‖2
2e

−ς2 log(n)/(C‖ψ‖4
4+ς‖ψ‖

2
∞).

We recall that 2Jn = n/ log(n), accordingly by choosing ς large enough we have

V = o((log(n)/n)2s/(2s+1)

As for the term B

B ≤ C2−2Jnse−ς
2 log(n)/(C‖ψ‖4

4+ς‖ψ‖
2
∞)

which completes the proof for f̌ .
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The proof for f̂ is similar, all inequalities hold a fortiori since, in the case of

the estimator f̂ we have P(Ωcn) ≤ e−Cn
1−1/α

(see (6.2)).
We consider the setting of Theorem 1. We recall that β̃jk is zero whenever

|β̂jk| falls below a threshold λB and we have the following lemma concerning
the behavior of λB .

Lemma 3. On the event Ωδn defined by (6.1) with δ = 1/(2n), for α > 1 we
have

λB ≈
√

log(n)

n
, j < Jα (6.5)

and Jα is taken such that 2Jα = ( 3
2n)−1/α.

Proof of Lemma 3.

We follow the lines of the proof of lemma 1. in [1].
On the one hand we have (see proof of lemma 1. in [1] page 228)

λB
2 ≤

2γ2
jk(γ

2
jk + τ2

j )

τ2
j

log

(

1 − πj
πj

√

γ2
jk + τ2

j

γjk
+ c

)

where c is some suitable positive constant. Besides, we have 1/(2n) ≤ γ2
jk ≤

3/(2n), therefore

λB
2 ≤ 2(3/(2n))((3/(2n)) + c1(3/(2n)))

c1(3/(2n))

× log

(

1 − c2(3/(2n))β/α

c2(3/(2n))β/α

√

(1 + c1)(3/(2n))
√

1/(2n)
+ c

)

hence we get

λB
2 ≤ c̃(1/n) log(c̃(1/n)(−

β
α ) + c)

where c̃ denotes a positive constant depending on c1 and c2 and which may be
different at different places. Since

c̃(1/n) log(c̃(1/n)(−
β
α ) + c) ≈ −c̃(β/α)(1/n) log(1/n)

we finally get
λB

2 ≤ −c̃(β/α)(1/n) log(1/n).

On the other hand, for the reverse inequality, we have (see proof of lemma 1. in
[1] page 228 and formula (14) in [1] page 221)

λB
2 ≥

2γ2
jk(γ

2
jk + τ2

j )

τ2
j

log

(

1 − πj
πj

√

γ2
jk + τ2

j

γjk

)

but |γ2
jk − 1/n| ≤ 1/(2n) consequently one has

λB
2 ≥ −c̃(β/α)(1/n)(log(1/n))

which completes the proof.
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Proof of Theorem 1.

On the event Ωδn defined by (6.1) with δ = 1/(2n), by the usual decomposition
of the MISE into a variance and a bias term, we get

E‖f̂ − f‖2
2 ≤ 2

[

E‖
∑

j≤Jα

∑

k

(β̃jk − βjk)ψj,k(G)‖2
2 + ‖

∑

j>Jα

∑

k

βjkψj,k(G)‖2
2

]

≤ 2(V + B)

with
V = E‖

∑

j≤Jα

∑

k

(β̃jk − βjk)ψj,k(G)‖2
2

B = ‖
∑

j>Jα

∑

k

βjkψj,k(G)‖2
2.

We first deal with the term V . We have

‖
∑

j≤Jα

∑

k

(β̃jk − βjk)ψj,k(G)‖2
2 ≤ Jα

∑

j≤Jα

‖
∑

k

(β̃jk − βjk)ψj,k(G)‖2
2.

We want to show that

‖
∑

k

(β̃jk − βjk)ψj,k(G)‖2
2 ≤ C

∑

k

(β̃jk − βjk)
2.

For this purpose we have

‖
∑

k

(β̃jk − βjk)ψj,k(G)‖2
2 =

∫

|
∑

k

(β̃jk − βjk)ψjk(G(x))|2dx

=

∫

|
∑

k

(β̃jk − βjk)ψjk(x)|2
1

g(G−1(x))
dx

= ‖
∑

k

(β̃jk − βjk)ψj,k‖2
L2(̺)

where ̺(x) = 1/(g(G−1))(x).
Now using inequality (44) p. 1075 in [20] we have

‖
∑

k

(β̃jk − βjk)ψj,k‖2
L2(̺) ≤ C2j

∑

k

|β̃jk − βjk|2̺(Ij,k)

where Ij,k denotes the interval [ k2j ,
k+1
2j ] and ̺(Ijk) =

∫

Ijk
̺(x)dx. But the design

density g is bounded from below by m. Hence we get

̺(Ij,k) ≤ 2−j/m

and consequently

‖
∑

k

(β̃jk − βjk)ψj,k‖2
L2(̺) ≤ C

∑

k

(β̃jk − βjk)
2.
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We decompose now V into three terms

V ≤ CJαE

∑

j≤Jα

∑

k

[(β̃jk − β
′

jk)
2 + (β

′

jk − β
′′

jk)
2 + (β

′′

jk − βjk)
2]

where
β

′

jk = bjβ̂jkI{|β̂jk| ≥ κλB}
with κ a positive constant and

bj =
τ2
j

τ2
j + γ2

jk

β
′′

jk = bjβjk.

As a consequence we have

V ≤ CJα(A1 + A2 +A3).

We are now going to upperbound each term A1, A2 and A3. We start with A1

A1 =
∑

j≤Jα

∑

k

E[(β̃jk − β
′

jk)
2].

As precised in the beginning of section 2.2, β̃jk = 0 for |β̂jk| < λB . As well,

β
′

jk = 0 for |β̂jk| < κλB and β̃jk − β
′

jk → 0 monotonically as β̂jk → ∞. Hence

max
β̂jk

|β̃jk − β
′

jk| = bjλB

which implies

A1 ≤ C
∑

j<Jα

∑

k

E(b2jλ
2
B).

We have λB ≈
√

log n
n and bj ≤ 1 for j ≤ Jα hence we get

A1 ≤ C
∑

j≤Jα

2j−1
∑

k=0

log(n)

n

so

A1 ≤ C
log(n)

n

∑

j≤Jα

2j (6.6)

≤ C
log(n)

n

(

1

n

)−1/α

(6.7)

finally

A1 = O
(

log(n)

(

1

n

)1−1/α)
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Let us now consider the second term A2

A2 =
∑

j≤Jα

2j−1
∑

k=0

E(β
′

jk − β
′′

jk)
2

=
∑

j≤Jα

2j−1
∑

k=0

E(bjβ̂jkI{|β̂jk| ≥ κλB} − bjβjk)
2

We have that bj ≤ 1, consequently it follows

A2 =
∑

j≤Jα

2j−1
∑

k=0

E((β̂jk − βjk)
2I{|β̂jk| ≥ κλB}) + E

∑

j≤Jα

2j−1
∑

k=0

β2
jkI{|β̂jk| < κλB}

= A
′

2 + A
′′

2

We have

A
′

2 ≤
∑

j≤Jα

2j−1
∑

k=0

E(β̂jk − βjk)
2.

Using inequality (64) in [20] p. 1086 we have

E(β̂jk − βjk)
2 ≤ C

1 + ‖f‖2
∞

n
(6.8)

hence
A

′

2 = O((1/n)1−1/α).

We now bound the term A
′′

2 :

A
′′

2 = E

∑

j≤Jα

2j−1
∑

k=0

β2
jkI{|β̂jk| < κλB}(I{|βjk| < 2κλB} + I{|βjk| > 2κλB})

≤ E

∑

j≤Jα

2j−1
∑

k=0

β2
jkI{|βjk| < 2κλB} +

∑

j≤Jα

2j−1
∑

k=0

β2
jkP(|β̂jk − βjk| > κλB)

= T3 + T4 (6.9)

We have

T3 ≤ C
∑

j≤Jα

λ2
B2j ≤ C

log(n)

n
n1/α = C log(n)n−1+1/α.

Let us focus on T4, we have

β̂jk − βjk = 1/n

n
∑

i=1

ψj,k(G(Xi))(f(Xi) + εi) − Eψj,k(G(X))f(X)
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Hence
P(|β̂jk − βjk| > κ

√

log(n)/n) ≤ P1 + P2

where

P1 = P(|1/n
n

∑

i=1

ψj,k(G(Xi))(f(Xi)) − Eψj,k(G(X))f(X)| > κ/2
√

(log(n)/n))

(6.10)
and

P2 = P(|1/n
n

∑

i=1

ψj,k(G(Xi))εi| > κ/2
√

(log(n)/n)) (6.11)

Kerkyacharian and Picard in [20] in order to prove inequality (65) in [20] showed
p. 1088 that

P1 ≤ 2 exp

(

− 3κ2 log(n)

4‖f‖∞(3 + κ)

)

(6.12)

if 2j ≤ n/ log(n). As for P2, conditionally on (X1, . . . , Xn) we have

1/n

n
∑

i=1

ψj,k(G(Xi))εi ∼ N(0, γ2
jk),

where γ2
jk has been defined in (2.3). Using exponential inequality for Gaussian

random variable we have

P2 ≤ E(exp(−κ
2 log(n)

8nγ2
jk

))

= Ee
−
κ2 log(n)

8nγ2
jk (I(|γ2

jk − 1/n| ≤ 1/2n) + I(|γ2
jk − 1/n| > 1/(2n)))

≤ e−
κ2 log(n)

12 + P(|γ2
jk − 1/n| > 1/(2n)). (6.13)

Using (6.2) with ς = 1/2, we have for α > 1

T4 ≤
(

2e(−Cn
1−1/α) + e−

κ2 log(n)
12 + 2 exp

( −3κ2 log(n)

4‖f‖∞(3 + κ)

))

∑

j≤Jα

2j−1
∑

k=0

β2
jk

≤
(

2e(−Cn
1−1/α) + e−

κ2 log(n)
12 + 2 exp

( −3κ2 log(n)

4‖f‖∞(3 + κ)

))

‖f(G−1)‖2
2

It remains to fix κ large enough so that we get

T4 = O(log(n)n−1+1/α).

So we have for A
′′

2 , with α > 1,

A
′′

2 = O
(

log(n)

n1−1/α

)
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Finally we get for A2

A2 = O
(

log(n)

(

1

n

)1−1/α)

.

Let us consider now the term A3

A3 ≤ C
∑

j≤Jα

2j−1
∑

k=0

E(β”
jk − βjk)

2

= C
∑

j≤Jα

2j−1
∑

k=0

β2
jk(1 − bj)

2 =
∑

j≤Jα

2j−1
∑

k=0

(

γ2
jk

τ2
j + γ2

jk

)2

β2
jk.

Since |γ2
jk − 1/n| ≤ 1/(2n), we get

A3 ≤
∑

j≤Jα

(

3/(2n)

c12−jα + 1/(2n)

)2 2j−1
∑

k=0

β2
jk

but f(G−1) belongs to the Besov ball Bs2,∞(R) which entails

2j−1
∑

k=0

β2
jk ≤M2−2js

hence

A3 ≤ C/n2
∑

j≤Jα

22j(−s+α)

We have

A3 ≤ C/n2(1/n)
−2(−s+α)

α = O(1/n)2s/α.

We are now in position to give an upper bound for the variance term V namely

V ≤ CJα(log(n)(1/n)1−1/α + (1/n)2s/α).

It remains to bound the bias term B. In [20] p.1083 using inequality (44) the
authors have proved that for any l we get

‖
∑

j≥l

∑

k

βjkψj,k(G)‖2 ≤
∑

j≥l

‖
∑

k

βjkψj,k(G)‖2

≤ C
∑

j≥l

2j/2
(

∑

k

|βjk|2̺(Ij,k)
)1/2

. (6.14)
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Applying (6.14) with in our case of a bounded from below design density,
̺(Ij,k) ≤ 2−j/m and l = Jα, it follows

‖
∑

j≥Jα

∑

k

βjkψj,k(G)‖2 ≤ C
∑

j≥Jα

(

∑

k

|βjk|2
)1/2

≤ C
∑

j≥Jα

2−js ≤ C2−Jαs

hence

B = ‖
∑

j>Jα

2j−1
∑

k=0

βjkψj,k(G(x))‖2
2 ≤ C2−2Jαs = C(1/n)2s/α

which completes the proof of Theorem 1.

Lemma 4. Let wjk a sequence of random weights lying in [0, 1]. We assume
that there exist positive constants c, m and K such that for any ε > 0,

β̌n = (wjkβ̂jk)jk

is a shrinkage rule verifying for any n,

wjk(n) = 0, a.e. ∀ j ≥ Jn with 2Jn ∼ n/ log(n) := t2n, ∀ k (6.15)

|β̂jk| ≤ mtn ⇒ wjk ≤ ctn, ∀ j ≤ Jn, ∀ k, (6.16)

(1 −wjk(n)) ≤ K

(

tn

|β̂jk|
+ tn

)

a.e. ∀ j ≤ Jn, ∀ k. (6.17)

and let
f̌ =

∑

j<Jn

∑

k

wjkβ̂jkψjk(G(x))

Then
sup

f(G−1)∈Bs2,∞(R)

E‖f̌ − f‖2
2 ≤ (log(n)/n)2s/(2s+1).

Proof of Lemma 4.

E‖f̌ − f‖2
2 ≤ 2C

(

Jn
∑

j≤Jn

∑

k

E(β̌jk − βjk)
2 + ‖

∑

j>Jn

∑

k

β2
jkψjk(G(x))‖2

2

)

≤ V1 + B1.

We first consider the term V1

V1 ≤ 2JnE

∑

j≤Jn

∑

k

(w2
jk(β̂jk − βjk)

2 + (1 −wjk)
2β2
jk)I{|β̂jk| ≤ mtn}

+ JnE

∑

j≤Jn

∑

k

(w2
jk(β̂jk − βjk)

2 + (1 − wjk)
2β2
jk)I{|β̂jk| > mtn}

= V
′

1 + V ”
1
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V
′

1 = Jn(T5 + T6)

T5 = E

∑

j≤Jn

∑

k

w2
jk(β̂jk − βjk)

2I{|β̂jk| ≤ mtn}

but according to (6.8) we have for 2j ≤ log(n)/n

E(β̂jk − βjk)
2 ≤ C

1 + ‖f‖2
∞

n

hence using (6.16) it follows

T5 ≤ Ct2n2
Jn1/n.

As for T6

T6 = E

∑

j≤Jn

∑

k

(1 −wjk)
2β2
jkI{|β̂jk| ≤ mtn}

≤ E

∑

j≤Jn

∑

k

(1 −wjk)
2β2
jkI{|β̂jk| ≤ mtn}

× [I{|βjk| ≤ 2mtn} + I{|βjk > 2mtn|}].

By (3.3) we get

T6 ≤ 2(mtn)2s/(2s+1)‖f‖2
W2/(1+2s)

+
∑

j≤Jn

∑

k β
2
jkP(|β̂jk − βjk| > mtn).

We are going to bound P(|β̂jk − βjk| > mtn). We have

P(|β̂jk − βjk| ≥ m
√

log(n)/n) ≤ P3 + P4

where

P3 = P(|1/n
n

∑

i=1

ψj,k(G(Xi))(f(Xi) − Eψj,k(G(X))f(X)| ≥m/2
√

log(n)/n)

(6.18)
and

P4 = P(|1/n
n

∑

i=1

ψj,k(G(Xi))εi| > m/2
√

(log(n)/n)). (6.19)

Kerkyacharian and Picard in [20] in order to prove inequality (65) in [20] showed
p. 1088 that

P3 ≤ 2 exp

(

− 3m2 log(n)

4‖f‖∞(3 +m)

)

(6.20)

if 2j ≤ n/ log(n). As for P4, conditionally on (X1, . . . , Xn) we have

1/n

n
∑

i=1

ψj,k(G(Xi))εi ∼ N(0, γ2
jk)
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where γ2
jk has been defined in (2.3).

P4 ≤ E

(

exp

(

−m
2 log(n)

8nγ2
jk

))

= Ee
−
m2 log(n)

8nγ2
jk (I(|γ2

jk − 1/n| ≤ ς/n) + I(|γ2
jk − 1/n| > ς/n))

≤ e
−
m2 log(n)

8(ς+1) + P(|γ2
jk − 1/n| > ς/n). (6.21)

Using (6.3) to bound P(|γ2
jk − 1/n| > ς/n) we get

P(|β̂jk − βjk| > mtn) ≤ 2e−ς
2 log(n)/(C‖ψ‖4

4+ς‖ψ‖
2
∞) + e−

m2 log(n)
8(ς+1) + 2e(−

3m2 log(n)
4‖f‖∞(3+m) )

thus

P(|β̂jk − βjk| > mtn) ≤ 2n
−ς2

C‖ψ‖4
4
+ς‖ψ‖2

∞ + n
−m2

8(ς+1) + 2n
−3m2

4‖f‖∞ (3+m) (6.22)

which entails by fixing m and ς large enough

T6 ≤ 2(mtn)4s/(2s+1)‖f‖2
W2/(1+2s)

+ t2n
∑

j≤Jn

∑

k

β2
jk

≤ 2(mtn)4s/(2s+1)‖f‖2
W2/(1+2s)

+ ‖f(G−1)‖2
2t

2
n.

Let us look at the term V ”
1

V ”
1 = E

∑

j≤Jn

∑

k

(w2
jk(β̂jk − βjk)

2 + (1 − wjk)
2β2
jk)I{|β̂jk| > mtn}

V ”
1 = E

∑

j≤Jn

∑

k

(w2
jk(β̂jk − βjk)

2 + (1 − wjk)
2β2
jk)I{|β̂jk| > mtn}

× [I{|βjk| ≤ mtn/2} + I{|βjk > mtn/2|}]
= T7 + T8

for the term T7, we use the Cauchy Scharwz inequality

T7 ≤
∑

j≤Jn

∑

k

(E(β̂jk − βjk)
4)1/2(P(|β̂jk − βjk| > mtn/2))1/2

+
∑

j≤Jn

∑

k

β2
jkI{|β̂jk| > mtn}I{|βjk| ≤ mtn/2}.

Furthermore, using inequality (64) p. 1086 in [20] we get for 2j ≤ n/ log(n)

E(β̂jk − βjk)
4 ≤ C

1 + ‖f‖4
∞

n2
(6.23)
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and by (6.22)

P(|β̂jk − βjk| > mtn/2) ≤ 2n
−ς2

C‖ψ‖4
4
+ς‖ψ‖2

∞ + n
−m2

32(ς+1) + 2n
−3m2

16‖f‖∞ (3+m)

from which follows by fixing again m and ς large enough

T7 ≤ C/n.2Jn(n
−ς2

C‖ψ‖4
4
+ς‖ψ‖2

∞ + n
−m2

32(ς+1) + 2n
−3m2

16‖f‖∞(3+m) )1/2

+
∑

j≤Jn

∑

k

β2
jkI{|βjk| ≤ mtn/2}

≤ t2n + ((m/2)tn)4s/(1+2s)‖f‖2
Ws/(2s+1)

.

For the term T8

T8 = E

∑

j≤Jn

∑

k

(w2
jk(β̂jk − βjk)

2 + (1 −wjk)
2β2
jk)

× I{|β̂jk| > mtn}I{|βjk > mtn/2|}

≤ 4m−2/(2s+1)

(1 − 2−2/(1+2s))
‖f‖2

W2/(1+2s)
(tn)

4s/(1+2s)

+ E

∑

j≤Jn

∑

k

(1 −wjk)
2β2
jkI{|β̂jk| > mtn}I{|βjk > mtn/2|}

× [I{|β̂jk| ≥ |βjk/2|}+ I{|β̂jk| < |βjk/2|}].

Hereafter we decompose

E

∑

j≤Jn

∑

k

(1 −wjk)
2β2
jk)I{|β̂jk| > mtn}I{|βjk > mtn/2|}

× [I{|β̂jk| ≥ |βjk/2|}+ I{|β̂jk| < |βjk/2|}]
= T ′

8 + T ”
8

T ”
8 ≤

∑

j≤Jn

∑

k

β2
jkP(|β̂jk − βjk| > mtn/4)

using (6.22) we get for m and ς large enough

T ”
8 ≤ (2n

−ς2

C‖ψ‖4
4
+ς‖ψ‖2

∞ + n
−m2

128(ς+1) + 2n
−3m2

64‖f‖∞ (3+m) )
∑

j≤Jn

∑

k

β2
jk ≤ t2n

as for T
′

8

T
′

8 = E

∑

j≤Jn

∑

k

(1−wjk)2β2
jkI{|β̂jk| > mtn}I{|βjk| > mtn/2}I{|β̂jk| ≥ |βjk|/2}
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using (6.17) we get

T
′

8 ≤ E

∑

j≤Jn

∑

k

K2β2
jk

(

tn

|β̂jk|
+ tn

)2

I{|β̂jk| ≥ |βjk|/2}I{|βjk| > mtn/2}

≤ K2
∑

j≤Jn

∑

k

β2
jk

(

2tn
|βjk|

+ tn

)2

I{|βjk| > mtn/2}

≤ 2K2
∑

j≤Jn

∑

k

β2
jk

(

4t2n
|βjk|2

+ t2n

)

I{|βjk| > mtn/2}

= 8K2t2n
∑

j≤Jn

∑

k

I{|βjk| > mtn/2}+ 2K2t2n‖f(G−1)‖2
2

using (3.3) it follows

T
′

8 ≤ 8K2t2n

(

mtn
2

)−2/(1+2s)
22−2/(1+2s)

1 − 2−2/(1+2s)
‖f‖2

W2/(1+2s)
+ 2K2t2n‖f(G−1)‖2

2

≤ 32K2 m−2/(1+2s)

1 − 2−2/(1+2s)
t4s/(1+2s)
n + 2K2t2n‖f(G−1)‖2

2.

It remains to bound the bias term B1. To this purpose we use the fact that
f ∈ Bs2,∞

B−1 = ‖
∑

j>Jn

2j−1
∑

k=0

βjkψj,k(G(x))‖2
2 ≤ C2−2Jns = Ct2sn ≤ Ct4s/(2s+1)

n

which completes the proof.

Proof of Theorem 2.

In order to prove the Theorem 2., we have to prove that the Bayesian estimators
(2.4) based on Gaussian priors with large variance (2.10) and (2.11) satisfy the
conditions of Lemma 4.

We will not get into details of the proof because this latter is identical to the
proof of Theorem 3. in [5], with the sole exception that here, the proof is carried
over the event Ωδn with δ = ς/n, ς some positive constant. Indeed, as precised
above in section 2.2, a key observation is that instead of having a deterministic
noise ε = 1/

√
n like in [5], here we have to deal with a stochastic noise γ2

jk which
expression is given by (2.3).
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